
Evolving Heuristics for Dynamic Vehicle Routing
with Time Windows Using Genetic Programming

Josiah Jacobsen-Grocott, Yi Mei, Gang Chen, Mengjie Zhang
∗ School of Engineering and Computer Science, Victoria University of Wellington

PO Box 600, Wellington 6140, New Zealand
{yi.mei, aaron.chen, mengjie.zhang}@ecs.vuw.ac.nz

Abstract—Dynamic vehicle routing problem with time windows
is an important combinatorial optimisation problem in many
real-world applications. The most challenging part of the problem
is to make real-time decisions (i.e. whether to accept the newly
arrived service requests or not) during the execution of the routes.
It is hardly applicable to use the optimisation methods such
as mathematical programming and evolutionary algorithms that
are competitive for static problems, since they are usually time-
consuming, and cannot give real-time responses. In this paper,
we consider solving this problem using heuristics. A heuristic
gradually builds a solution by adding the requests to the end of
the route one by one. This way, it can take advantage of the latest
information when making the next decision, and give immediate
response. In this paper, we propose a meta-algorithm to generate
a solution given any heuristic. The meta-algorithm maintains a
set of routes throughout the scheduling horizon. Whenever a
new request arrives, it tries to re-generate new routes to include
the new request by the heuristic. It accepts the new request
if successful, and reject otherwise. Then we manually designed
several heuristics, and proposed a genetic programming-based
hyper-heuristic to automatically evolve heuristics. The results
showed that the heuristics evolved by genetic programming
significantly outperformed the manually designed heuristics.

I. INTRODUCTION

The Vehicle Routing Problem (VRP) [1] is an important
combinatorial optimisation problem that has a wide range of
real-world applications in supply chain and logistics-related
areas. It is to design a set of routes, each for a vehicle, to
serve the given requests from different locations subject to
some constraints such as the capacity constraint. VRP has
a number of variations, among which the VRP with Time
Windows (VRPTW) [2], [3] is one of the most commonly
investigated one. In VRPTW, each request has a time window
that specifies the desired period that the customer likes the
service to occur. Then, VRPTW aims to design routes that
minimises the violation of the time windows of the requests.
There have been extensive studies for solving VRPTW, and
many effective algorithms (e.g. [4]–[7]) have been proposed
to solve it.

In reality, the environment is usually dynamic and new
requests may arrive in real time during the execution of the
routes. A typical example is the same-day pick-up and delivery
service provided by the delivery companies. In this case, the
vehicles are sent out to serve the existing requests, and new
requests may arrive while the vehicles are still on their ways.
The company aims to accept as many of the new requests
as possible subject to the capacity of the vehicles and the

fulfillment of the time windows. Whenever a new request
arrives, it is necessary to decide whether to accept or reject the
new request immediately so that the customer will be notified
in time. This raises the Dynamic VRPTW (DVRPTW) [8].

In the dynamic environment, the commonly used solution-
optimisation algorithms such as evolutionary algorithms [9],
variable neighborhood search [10] and ant colony optimisation
[11] are hardly applicable due to their high computational
complexity. They are based on iterative search framework,
which normally takes time to reach high-quality solutions. On
the contrary, heuristics (e.g. the savings heuristic [12]) can
give immediate and reasonably good responses, and thus are
well suited for the dynamic environment. The recent advance
of telecommunication technologies also makes it much easier
to communicate between the management centre and the
vehicles. Therefore, more and more studies consider solving
dynamic VRPs using heuristics (or so-called routing policies)
[13].

There have been a number of works for designing differ-
ent types of heuristics for constructing routes or modifying
the predetermined routes in real time [13]. However, the
effectiveness of a heuristic largely depends on the scenario,
objective(s), and even the graph topology. Therefore, it is
hard to manually design an effective heuristic for a particular
problem scenario of interest.

Recently, automated design of heuristics using hyper-
heuristics [14] has attracted more and more research interests.
Genetic Programming (GP) [15], [16] is one of the most
commonly used hyper-heuristic method due to its flexible
representation. It has been used for automatically evolving
heuristics for a wide range of combinatorial optimisation prob-
lems such as production scheduling [17], knapsack problem
[18], timetabling problem [19] and arc routing problem [20].
However, no effort has been made for DVRPTW so far.

In this paper, we aim to develop a GP-based hyper-heuristic
approach for automatically evolving heuristics for DVRPTW.
To be specific, the paper consists of the following goals:
• Develop a meta-algorithm that can generate a solution

given any heuristic and any problem instance;
• Manually design heuristics for DVRPTW based on do-

main knowledge. These manually designed heuristics will
be used as the baseline benchmark heuristics;

• Develop a GP-based Hyper-Heuristic (GPHH) for auto-
matically evolving heuristics;

• Investigate the effectiveness of the GP-evolved heuristics
in comparison with the manually designed heuristics;

• Investigate the effectiveness of different routing strategies
in the meta-algorithm including the driving-first and
waiting-first strategies [21].

The rest of the paper is organised as follows: Section II
gives the background introduction of the problem and related
work. Section III describes the proposed GPHH method for
evolving heuristics for DVRPTW. Then, Section IV shows
the experimental studies and discussions. Finally, Section V
concludes the paper and discusses about future directions.

II. BACKGROUND

A. Dynamic Vehicle Routing Problem with Time Windows

DVRPTW was formally defined in [22]. In DVRPTW,
suppose we have a connected graph G = (V,E), where V is
the vertex set and E is the edge set. There is a special vertex
v0 ∈ V which is called the depot vertex. There are k vehicles,
each with capacity Q, located at the depot vertex for serving
the requests. Each pair of vertex (vi, vj) ∈ V ×V is associated
with a travel time c(vi, vj). Without loss of generality, we
assume that the graph G is fully connected, and c(vi, vj)
indicates the travel time of the shortest path from vi to vj ,
∀ vi, vj ∈ V .

The request arrival process is defined as a discrete event
simulation within a time horizon [0, T]. Each request τ is
characterised as τ = (v(τ), t(τ), s(τ), d(τ), l(τ), u(τ)), where
v(τ) ∈ V \ v0 is the vertex (location) where the request is
invoked, t(τ) means the time when the request is invoked, s(τ)
is the service time of the request, d(τ) indicates the demand
of the request, and l(τ) and u(τ) stand for the lower and
upper bounds of the time window of the request. Obviously,
0 ≤ t(τ) ≤ l(τ) ≤ u(τ) ≤ T . The request set Υ contains
a subset Υ1 of requests that already exist at the beginning
of the period and a subset Υ2 of requests that arrive during
the execution of the routes. That is, t(τ) = 0,∀τ ∈ Υ1 and
t(τ) > 0,∀τ ∈ Υ2. The information of a request is not known
until it arrives.

The solution of DVRPTW can be seen as a decision making
process, in which a decision is made whenever a new request
arrives or a vehicle becomes available to serve the next
request. When a new request arrives, a decision needs to be
made on whether to accept or reject the new request while
not changing the decisions that have already made for the
previous requests (including the requests in Υ1). When a
vehicle becomes available and there are requests waiting in the
queue, a decision needs to be made on which is its next request
to serve. The solution has to satisfy the following constraints:
• Each vehicle starts and ends its route at the depot;
• Each request is served exactly once by one vehicle (no

interruption);
• The total demand of the requests served by each vehicle

does not exceed its capacity (capacity constraint);
• The starting time of each service cannot be outside

(earlier than the lower bound or later than the upper

bound of) the time window of the request (time window
constraint);

If a request cannot be served feasibly (i.e. in terms of
the capacity and time window constraints), then it has to be
rejected. The objective of the problem is to find a feasible
solution that maximises the number of accepted requests.

A solution S to DVRPTW can be represented as a
set of routes S = {R1, R2, . . . , Rk}. Each route Ri =
(τ0, τi1, . . . , τi,li , τ0) is a sequence of requests, where τ0 =
(v0, 0, 0, 0, 0, T) represents a special request of visiting the
depot node. Then, the problem can be formulated as follows:

max

k∑
i=1

lk, (1)

s.t.: τij 6= τuv,∀i 6= u or j 6= v, i ∈ {1, . . . , k}, j ∈ {1, . . . , li},
(2)

li∑
j=1

d(τij) ≤ Q,∀i ∈ {1, . . . , k}, (3)

l(τij) ≤ ts(τij) ≤ u(τij), i ∈ {1, . . . , k}, j ∈ {1, . . . , li},
(4)

ts(τij) ≥ arr(τij), i ∈ {1, . . . , k}, j ∈ {1, . . . , li}, (5)
τij ∈ Υ, i ∈ {1, . . . , k}, j ∈ {1, . . . , li}. (6)

where Eq. 1 is the objective function, which is maximising the
number of accepted requests. Note that in [22], the objective
was defined as minimising the rejected requests. Given the
same number of requests in total, these two objectives are
equivalent. Eq. (2 means that each request is served exactly
once by one vehicle. Eq. (3 indicates the capacity constraint,
and Eq. (4) refers to the time window constraint, where ts(τ)
stands for the time to start serving τ . Eq. (5) specifies that
the service of each request cannot be started until the vehicle
arrives its location, where arr(τ) indicates the time that the
vehicle arrives v(τ). It is decided as follows:

arr(τi1) ≥ max{0, t(τi1)}+ c(v0, v(τi1)),

∀i ∈ {1, . . . , k}, (7)

arr(τij) = dep(τi,j−1) + c(v(τi,j−1), v(τij)),

∀i ∈ {1, . . . , k}, j ∈ {2, . . . , li}, (8)

dep(τij) ≥ ts(τij) + s(τij),

∀i ∈ {1, . . . , k}, j ∈ {1, . . . , li − 1}. (9)

dep(τi,j−1) ≥ t(τij),
∀i ∈ {1, . . . , k}, j ∈ {2, . . . , li}. (10)

where dep(τ) represents the departure time of the vehicle after
finishing the service of τ . Eq. (7) means that for each route, the
arrival time of the first request is no earlier than the travel cost
from v0 to its location since its arrival (0 if it already exists
initially). Eq. (8) indicates that for each subsequent request,

the arrival time equals the departure time of its predecessor
plus the travel time in between. Eq. (9) means that the vehicle
cannot depart until it finishes serving the request. Eq. (10)
means that the vehicle cannot go to the next request before its
arrival.

B. Related Work on Dynamic Vehicle Routing

Pillac et al. [8] and Ritzinger et al. [13] gave two compre-
hensive surveys for DVRP. They introduced different problem
variations such as deterministic and stochastic DVRPs, as
well as commonly used approaches for solving DVRP. For
example, one can divide the whole time horizon into short time
slices, and periodically solve the corresponding optimisation
problem at the beginning of each time slice (e.g. [23]).
Another alternative is to keep a pool of good and diversely
distributed solutions during the search process, so that when
the environment changes, at least one of the solutions in the
pool still performs well. An example is the adaptive memory
proposed by Taillard et al. [24].

During the execution process, a number of heuristics have
been proposed to decide the next customer to visit, such
as the consensus, expectation and regret methods. The con-
sensus method [25] selects the customer that appears the
most frequently in the past history or sampled scenarios. The
expectation method [25] evaluates the cost of visiting each cus-
tomer by forcing its visit and then optimise for the remaining
customers. The regret method [26] is an approximation of the
expectation method.

Note that after deciding the next customer to go, there is still
another issue to determine the departure time. For example,
the vehicle can depart immediately to arrive the next customer
as soon as possible (i.e. drive-first) or wait at the current
location for a while (i.e. wait-first), as long as all the remaining
customers can still be served in time. The waiting strategy
has been demonstrated to be effective in many scenarios (e.g.
[27]).

Saint-Guillain et al. [22] proposed the DVRPTW, and pro-
posed to solve the problem using a Multi Scenario Approach
(MSA). The main idea is to randomly sample a number of
scenarios based on certain distribution, and conduct robust
optimisation so that the obtained solution performs well on
all the sampled scenarios. Then, whenever a decision needs
to be made (i.e. a new request arrives or a vehicle becomes
available), a short re-optimisation is carried out by means of an
online decision rule called the Global Stochastic Assessment
(GSA) rule.

C. Genetic Programming for Evolving Heuristics

GP has been used for evolving heuristics for many chal-
lenging combinatorial optimisation problems. For example,
Branke et al. gave a review for evolving production scheduling
dispatching rules with GP [17]. Burke et al. [16] explored the
potential of GP as a hyper-heuristic for evolving heuristics, and
showed the applications to the SAT problem and online bin
packing. This paper pointed out the key steps for designing a
hyper-heuristic: (1) designing a framework (meta-algorithm)

for heuristics to operate in; (2) decide on the terminal and
function sets and (3) identify the fitness function.

Weise et al. [20] proposed a GPHH approach for the Arc
Routing Problem (ARP), which is the counterpart of VRP that
serves edges/arcs instead of nodes. They proposed a meta-
algorithm that can generate a feasible solution given any
instance, and defined a heuristic as a priority function of each
unserved arc. The proposed GPHH showed promising results
on both static benchmark instances and stochastic instances in
comparison with manually designed heuristics.

Sim and Hart [28] proposed a hyper-heuristic approach for
VRP, which is a combination of a GP-evolved generative
heuristic and a perturbative heuristic to further improve the
solution generated by the generative heuristic. The results
showed that the proposed hyper-heuristic performed compet-
itively when applied to solve a wide range of different types
of VRP instances. However, there is no GPHH proposed for
DVRPTW so far. In this paper, we fill this gap by propose a
new GPHH that considers both dynamic request arrivals and
time window constraint.

III. GENETIC PROGRAMMING HYPER-HEURISTIC FOR
DVRPTW

There are two major differences between DVRPTW and
other VRP variants. First, in VRP, while adding the new
customers, it is possible to remove some less profitable cus-
tomers from the remaining routes. However, in DVRPTW,
when deciding whether to accept each new request or not, all
the requests that have already been accepted cannot be rejected
again. That is, rejecting a request that is previously accepted
will cause an infinite penalty. Second, in many VRP variants, it
may not be necessary to make acceptance/rejection decisions
for all the existing customers. However, in DVRPTW, such
decision has to be made for each request as soon as it arrives.
Due to these two differences, the existing meta-algorithms
(i.e. frameworks that heuristics operate on) cannot be applied
directly to DVRPTW. Therefore, we developed a new meta-
algorithm for DVRPTW.

A. Meta-algorithm

The proposed meta-algorithm can be seen as a decision
process. Whenever a new request arrives, a decision needs to
be made on whether to accept or reject the new request without
rejecting any requests that have already been accepted before.
Note that at the beginning of the scheduling horizon, there
may already exists a set of initial requests (i.e. Υ1 6= ∅). In
this case, the acceptance/rejection decisions are made for all
the initial requests at the beginning.

Note that in DVRPTW, the requests that have been accepted
before cannot be rejected again. In other words, when accept-
ing a new request, one has to make sure all the previously
accepted requests can still be served. For this purpose, we
maintain a complete feasible solution for serving all the
accepted requests at all times. At the beginning, we generate
a feasible solution (by heuristic or optimisation method) that
serves as many initial requests as possible, and reject the initial

requests that cannot be served. Then, whenever a new request
arrives, we generate a new solution based on the current
vehicle states and request set plus the new request. If the new
solution successfully serves all the requests, then we accept
the new request, otherwise we reject it.

In this algorithm, a solution S is represented as a sequence
of actions, i.e. S = (π1, π2, . . .), where each action π =
〈tyπ, stπ, etπ, veπ, τπ〉 is characterised by its type tyπ , start
time stπ , end time etπ , vehicle veπ and request τπ . Here we
define two types of actions: (1) travel from one node to another
and (2) serve a request.

Given the above representations, the proposed meta-
algorithm is described in Algorithm 1.

Algorithm 1: The meta-algorithm of the GPHH for DVRPTW.
Input: A problem instance I , a heuristic h(·).
Output: A solution S.
// Initialise the state

1 Set t← 0, Υt ← Υ1;
2 for i = 1→ k do
3 Set vehicle location at loci ← v0, remaining capacity

Q̄i ← Q, available time ai ← 0;
4 end
5 Set the state Ω←

∏k
i=1〈loci, Q̄i, ai〉;

// Generate a solution for initial requests
6 if Υt 6= ∅ then S ← InitialSolution(Ω,Υt) ;
// Online decision making

7 while t ≤ T do
8 Extract the next arrived request τ ′ from the random arrival

process;
9 for unfinished action π ∈ S do

10 if st(π) < t(τ ′) then Execute π and update Ω ;
11 end
12 Υt ← Υt ∪ τ ′, S′ ← S;
13 S ← GenerateSolution(t,Ω,Υt);
14 if S serves all the requests in Υt then
15 Accept τ ′;
16 else
17 Reject τ ′, Υt ← Υt \ τ ′, S ← S′;
18 end
19 t← t(τ ′);
20 end
21 return S;

In line 10, an action updates the state Ω as follows:
• When a vehicle travels from one node to another, its

location is changed to the new node and its available
time becomes the end time of the action;

• When a vehicle serves a request, its remaining capacity is
deducted by the demand of the request and its available
time becomes the end time of the action. The request is
removed from the request set.

In Algorithm 1, a key component is the function
GenerateSolution(·), which generates a complete solu-
tion based on the current state Ω and request set Υt. Since
the acceptance/rejection decision of the new request needs to
be made immediately, we choose an efficient heuristic which
is similar to those used for VRP [28] and ARP [20]. The
algorithm is described in 2. At each step, the simulation time

is incremented to the time when the next vehicle becomes
available. Then, the servable requests are identified (line 4). A
request is servable to a vehicle if (1) the vehicle has sufficient
remaining capacity to serve it, and (2) the vehicle can arrive
the location no later than the upper bound of the time window.
If there is no servable request for the vehicle, it goes back
to the depot, refill its capacity and wait for potential future
requests. Otherwise, we select the request with the minimal
value of the heuristic value h(·).

After deciding the next request, the departure time of the
vehicle is decided (line 10). The decision on the departure
time is not a trivial task, since there may be a wide fea-
sible range to choose from. It is known that t ≤ dep ≤
u(τ ′)− c(loci∗ , v(τ ′)). In this case, we consider two different
strategies for deciding the departure time: (1) driving-first and
(2) wait-first. The two strategies are described as follows:

• Driving-first strategy: the vehicle departs as soon as
possible, and waits at the request location if necessary.
That is, dep← t;

• Wait-first strategy: the vehicle waits at the current location
if it is expected to arrive earlier than the time window.
That is, dep← max{l(τ ′)− c(loci∗ , v(τ ′)), t}.

Algorithm 2: S ← GenerateSolution(t,Ω,Υt)

Input: Current time t, state Ω and request set Υt.
Output: A solution S.

1 while t ≤ T do
2 Find the next available vehicle and time

(i∗, a∗) = minki=1{ai};
3 t← a∗;
4 Ῡt ← ServableRequests(Υt, i

∗);
5 if Ῡt = ∅ then

// Go back to depot
6 S ← (S, 〈travel, t, t+ c(loci∗ , v0), i∗, ∅〉);
7 Q̄i∗ ← Q, ai∗ ← t+ c(loci∗ , v0), loci∗ ← v0;
8 else

// Select the request with the minimal
heuristic value

9 τ ′ ← arg minτ∈Ῡ{h(τ)};
10 Decide the departure time dep;
11 arr ← dep+ c(loci∗ , v(τ ′));
12 ts ← max{arr, l(τ ′)};
13 S ← (S, 〈travel, dep, dep+ c(vcurr, v(τ ′)), i∗, ∅〉);
14 S ← (S, 〈serve, ts, ts+ s(τ ′), i∗, τ ′〉);
15 loci∗ ← v(τ ′), Q̄i∗ ← Q̄i∗ − d(τ ′), ai∗ ← ts + s(τ ′);
16 end
17 end
18 return S;

The initial solution S is generated by the function
InitialSolution(·). The function can be
defined as a constructive heuristic or a search-based
optimisation method. For the sake of simplicity, in
our experiment we generate the initial solution using
Algorithm 2. That is, InitialSolution(Ω,Υt) =
GenerateSolution(0,Ω,Υt).

B. Manually Designed Heuristics

From Algorithm 2, it can be seen that the heuristic function
h(·) plays an important role in generating a high-quality solu-
tion. Here, we design three simple heuristic functions manually
based on our domain knowledge and intuition. They are the
earliest-first (EF), urgent-first (UF) and linear-combination
(LC) heuristic functions. They are defined as follows:
• EF heuristic: first serve the request that can be started the

earliest, i.e. h(τ) = max{t + c(loc, v(τ)), l(τ)}, where
loc is the current location of the vehicle;

• UF heuristic: first serve the request that is the most urgent,
i.e. whose time window will close earliest. h(τ) = u(τ);

• LC heuristic is a more sophisticated heuristic that con-
siders a number of attributes including the following
attributes: A1 = max{t+ c(loc, v(τ)), l(τ)} (EF heuris-
tic), A2 = u(τ) (UF heuristic), A3 = c(loc, v(τ))
(travel time from the current location), A4 = (1 −
Q̄/Q)c(v(τ), v0) (travel time to the depot times the
current normalised load), A5 = d(τ) (demand), and
A6 = minki=1{c(loci, v(τ))} (travel time to the nearest
vehicle). The heuristic function is defined as a weighted
linear combination as follows: h(τ) = A1 + A2 + A3 +
0.1A4 + 0.1A5 −A6.

In the experimental studies, these three heuristic will be used
as the baseline heuristics to compare with the GP-evolved
heuristics.

C. Genetic Programming-based Hyper-Heuristic

In the GPHH, a heuristic function is represented as a syntax
tree. The terminal set is given in Table I. The vertex density
reflects the density of vertices around the given vertex, where
the scaling parameter s was set to s = max{d(vi, vj)}/100
after some parameter tuning. The vehicle density indicates the
density of vehicles around the given vertex. It was defined in
the same way as the vertex density, except that the scaling
parameter was set to s′ = max{d(vi, vj)}/8.

TABLE I
THE TERMINALS USED IN THE GPHH FOR DVRPTW

Notation Description

TD Normalised travel time to the depot c(v(τ), v0)/T
T Normalised travel time from current location c(loc, v(τ))/T

OT Normalised relative open time max{l(τ)− t, 0}/T
CT Normalised relative close time (u(τ)− t)/T
ST Normalised service time s(τ)/T
Q Normalised remaining capacity Q̄/Q

DEM Normalised demand d(τ)/Q

VTD Vertex density
∑
v′∈V,v′ 6=v(τ) e

− 1
2

(
c(v′,v(τ))

s

)2

VHD Vehicle density
∑k
i=1,i 6=i∗ e

− 1
2

(
c(loci,v(τ))

s′
)2

TOV Travel time from nearest other vehicle minki=1
i 6=i∗
{c(loci, v(τ))}

1 The constant 1

In addition to the above terminals, we designed two more
terminals about the probabilistic information of the requests
as follows:

• Expected number of future requests at v(τ) (NFR)
• Probability that a new request arrives at v(τ) within the

next T/6 time (PNR)
These two terminals are calculated based on the stochastic
information (temporal distributions of requests during the
horizon) given by the dataset. Based on the terminals, we
propose the following two GP versions:
• GP1 with the terminals shown in Table I;
• GP2 with the terminals shown in Table I as well as NFR

and PNR.
For the function set, we used the basic arithmetic operators

including addition, subtraction, multiplication and protected
division (returns 1 if denominator is zero), along with the non-
linear operators max(·, ·) and exp(·).

The fitness of a GP individual is simply defined as the
average objective value over a set of training instances. Given
a set of training instances Itr, the fitness function of a heuristic
function h is defined as follows:

fit(h) =
1

|Itr|
∑
I∈Itr

f(S(I, h)), (11)

where S(I, h) is the solution obtained by applying the meta-
algorithm (Algorithm 1) to the instance I and heuristic h, and
f(S) indicates the number of rejected requests in the solution
S.

IV. EXPERIMENTAL STUDIES

We use the benchmark instances designed by Saint-Guillain
et al. [22]. The benchmark consists of 6 classes, with the
degree of dynamism from ranging low to high. Our experi-
ments focus on classes 4, 5 and 6, which are highly dynamic
instances (with average degree of dynamism of 57% for
class 4, 81% for class 5 and 100% for class 6). Each class
contains 3 scenarios (namely rc101, rc102 and rc104), which
are based on the same graph with 100 nodes. Each scenario
has the same distribution of request arrivals. In the datasets,
for each scenario, 5 instances were randomly sampled from
the distribution. More details of the benchmark instances can
be found in [22].

In our experiments, we train a heuristic function using GP
for each of the 9 scenarios (3 classes, each with 3 scenarios).
For each scenario, the 5 instances given in the dataset were
used as the test instances. At each generation of the GP
process, we randomly sample 20 training instances from the
distribution of the scenario. We change the random seed
for sampling the training set at each generation to prevent
overfitting.

The parameter setting of GP is as follows: the population
size is set to 1024. The maximal depth is 8. The crossover,
mutation and reproduction rates are 0.8, 0.15 and 0.05 respec-
tively. The best 10 individuals are considered as elitists. The
parents are selected by tournament selection of size 7. The
number of generations is set to 25. The algorithms were run for
30 times independently on desktops with Intel(R) Core(TM)
i7 CPU @3.60GHz.

A. Results and Discussions

Tables II–IV show the test performance (with the format of
“mean(std)”) of the proposed GP1 and GP2 methods as well
as the three manually designed heuristics on the Class 4–6
instances. As mentioned in Algorithm 2, we consider either
drive-first or wait-first strategies for deciding the departure
time. For each test instance, we conducted Wilcoxon’s rank
sum test with significance level of 0.05, and highlight the
tables as follows:

• For drive-first/wait-first strategy, if the results of
GP1/GP2 is significantly better than all the manually
designed heuristics, then the results are highlighted in
bold;

• For drive-first/wait-first strategy, if the results of one GP
approach is significantly better than the other, then the
better results are marked with ∗;

• For each heuristic, if drive-first (wait-first) strategy is
better than the other, then the better results are marked
with underline.

From the tables, we have the following observations:

• GP1 and GP2 can evolve significantly better heuristics
than the manually designed heuristics in most cases. As
the degree dynamism increases, such advantage becomes
more obvious. For example, when using the drive-first
strategy, GP1 obtained significantly better results for 5
Class-4 instances, 6 Class-5 instances and 14 Class-6
instances.

• GP1 and GP2 obtained similar test performance in most
cases. The only exceptions are Class-5 rc101-4 with
drive-first strategy and rc101-2 with wait-first strategy,
Class-6 rc101-3 and rc102-2 with wait-first strategy. GP1
outperformed GP2 in three out of these four exceptions.
This implies that simply including the probability infor-
mation as terminals failed to help the discovery of better
heuristics.

• The wait-first strategy is generally significantly better
than the drive-first strategy. There are much more under-
lines in the wait-first side than the drive-first side. This
observation is consistent with intuition and those found
in other literatures such as [21], [22].

• The UF heuristic is usually worse than the EF and LC
heuristics. When the degree of dynamism is not high
(Class-4), the EF heuristic performs better than LC more
often. However, as the degree of dynamism increases
(Classes 5 and 6), the LC heuristic performs better.

B. Further Analysis

Fig. 1 shows the convergence curves of GP1 on Class-6
rc101 using the wait-first strategy. The other instances and
other algorithms show similar patterns. From the figure, we
have two observations. First, the search almost converged at
around generation 15. Therefore, 25 generations is enough to
guarantee convergence. Second, the test curve is consistent
with the training curve. This implies that the rotation of

training instances successfully prevented overfitting. The test
performance also converged after generation 15.

Fig. 1. Convergence curves of GP2 on Class-6 rc101 using wait-first strategy.

Fig. 2 shows the average frequency of terminals used in
the GP2-evolved heuristics over the 30 runs on Class-6 rc104
using wait-first strategy. All the other cases show similar
patterns. It can be seen that CT and T are the most important
terminals in the heuristic, followed by OT. This makes sense,
since CT is equivalent to the UF heuristic, and max{T,OT}
is essentially equivalent to the EF heuristic. On the contrary,
NFR and PNR were rarely used in the heuristics, which means
GP failed to effectively use these terminals. A wiser way of
incorporating the probability information is needed. Finally,
the constant terminal was not often used, indicating that it can
be removed without much affecting the performance of GP.

Fig. 2. The average frequency of terminals used in the GP2-evolved heuristics
on Class-6 rc104 using wait-first strategy.

V. CONCLUSIONS AND FUTURE WORK

This paper solves the Dynamic Vehicle Routing Problem
with Time Windows (DVRPTW), which requires an immediate
decision on accepting/rejecting the newly arrived request in
real time. We consider solving DVRPTW using a GP-based

TABLE II
THE TEST PERFORMANCE OF THE COMPARED ALGORITHMS ON THE CLASS-4 INSTANCES.

Drive-first Wait-first

Instance EF UF LC GP1 GP2 EF UF LC GP1 GP2

rc101-1 11.0 13.0 20.0 12.47(4.03) 10.80(4.28) 12.0 8.0 20.0 5.23(1.45) 4.80(1.79)
rc101-2 14.0 15.0 13.0 12.87(3.77) 12.90(4.25) 10.0 12.0 21.0 7.70(2.91) 7.20(2.35)
rc101-3 7.0 12.0 17.0 8.80(3.67) 8.53(3.66) 5.0 12.0 11.0 4.23(1.74) 3.70(1.86)
rc101-4 6.0 15.0 17.0 12.07(4.70) 12.53(3.95) 7.0 8.0 5.0 5.97(1.94) 6.20(1.56)
rc101-5 24.0 22.0 23.0 14.67(5.01) 14.53(4.40) 14.0 12.0 16.0 7.47(1.36) 7.77(2.05)
avg 12.4 15.4 18.0 12.17(2.20) 11.86(1.97) 9.6 10.4 14.6 6.12(1.04) 5.93(0.93)

rc102-1 18.0 19.0 15.0 8.83(6.34) 7.40(4.57) 7.0 8.0 8.0 2.57(2.03) 1.97(1.38)
rc102-2 19.0 17.0 7.0 11.33(5.78) 9.77(5.30) 8.0 13.0 11.0 10.50(3.65) 9.90(4.00)
rc102-3 14.0 20.0 11.0 11.87(6.63) 12.13(4.92) 21.0 14.0 16.0 11.43(4.75) 11.23(3.04)
rc102-4 16.0 19.0 6.0 8.77(2.91) 8.90(2.58) 7.0 12.0 2.0 7.87(3.55) 7.50(3.71)
rc102-5 9.0 14.0 17.0 5.60(4.38) 7.27(4.76) 19.0 15.0 9.0 4.57(3.32) 4.23(3.49)
avg 15.2 17.8 11.2 9.28(2.65) 9.09(2.06) 12.4 12.4 9.2 7.39(1.36) 6.97(1.39)

rc104-1 14.0 46.0 16.0 8.60(5.79) 8.70(6.28) 6.0 46.0 8.0 6.80(3.93) 7.90(7.69)
rc104-2 20.0 38.0 7.0 6.67(5.84) 5.37(3.85) 17.0 33.0 7.0 9.80(5.73) 8.93(8.12)
rc104-3 33.0 36.0 19.0 8.00(5.02) 6.87(5.28) 19.0 39.0 34.0 8.30(5.34) 7.40(4.14)
rc104-4 24.0 45.0 2.0 10.67(6.26) 11.43(6.03) 24.0 44.0 12.0 8.17(4.23) 10.13(6.56)
rc104-5 11.0 38.0 23.0 10.20(5.10) 10.73(4.72) 8.0 41.0 2.0 8.70(4.19) 9.10(4.78)
avg 20.4 40.6 13.4 8.83(2.50) 8.62(2.34) 14.8 40.6 12.6 8.35(2.14) 8.69(2.94)

TABLE III
THE TEST PERFORMANCE OF THE COMPARED ALGORITHMS ON THE CLASS-5 INSTANCES.

Drive-first Wait-first

Instance EF UF LC GP1 GP2 EF UF LC GP1 GP2

rc101-1 15.0 15.0 22.0 13.53(4.67) 13.23(5.48) 13.0 14.0 19.0 10.67(4.69) 10.13(3.59)
rc101-2 14.0 13.0 16.0 10.97(5.36) 8.90(3.32) 6.0 8.0 4.0 8.43(3.49) 6.23(2.66)*
rc101-3 9.0 21.0 10.0 10.90(7.48) 12.27(5.34) 8.0 8.0 19.0 5.60(3.51) 6.23(4.17)
rc101-4 8.0 17.0 19.0 7.80(4.32)* 9.10(3.69) 6.0 10.0 19.0 7.47(3.06) 7.37(3.27)
rc101-5 20.0 19.0 16.0 15.27(5.75) 13.47(4.61) 17.0 15.0 20.0 10.97(3.52) 9.83(3.68)
avg 13.2 17.0 16.6 11.69(3.23) 11.39(2.34) 10.0 11.0 16.2 8.63(1.73) 7.96(1.50)

rc102-1 14.0 27.0 6.0 11.50(6.21) 10.83(4.93) 10.0 19.0 2.0 5.97(4.68) 6.00(3.49)
rc102-2 19.0 33.0 30.0 5.93(3.78) 5.13(3.14) 18.0 15.0 8.0 3.17(2.96) 3.43(2.46)
rc102-3 8.0 20.0 5.0 6.60(4.85) 7.00(5.14) 5.0 3.0 3.0 3.00(2.12) 2.97(2.28)
rc102-4 7.0 17.0 7.0 3.90(2.67) 3.87(2.29) 2.0 10.0 7.0 3.30(3.06) 3.27(2.16)
rc102-5 22.0 16.0 14.0 1.77(2.08) 2.10(2.09) 10.0 14.0 6.0 4.57(3.40) 4.27(2.92)
avg 14.0 22.6 12.4 5.94(1.86) 5.79(1.95) 9.0 12.2 5.2 4.00(1.48) 3.99(1.25)

rc104-1 11.0 36.0 5.0 10.20(4.16) 9.87(4.25) 22.0 32.0 13.0 14.77(3.74) 13.57(4.22)
rc104-2 29.0 42.0 22.0 25.90(7.01) 23.30(6.90) 32.0 39.0 27.0 19.50(5.53) 21.30(8.17)
rc104-3 11.0 39.0 4.0 7.50(5.73) 8.63(7.82) 19.0 33.0 6.0 5.07(2.98) 5.07(3.42)
rc104-4 27.0 33.0 12.0 11.10(5.12) 11.80(5.44) 22.0 37.0 13.0 16.57(4.78) 16.90(5.62)
rc104-5 15.0 46.0 16.0 6.70(6.50) 7.03(6.03) 28.0 32.0 8.0 9.07(7.10) 12.13(8.81)
avg 18.6 39.2 11.8 12.28(2.54) 12.13(2.75) 24.6 34.6 13.4 12.99(1.60) 13.79(3.60)

Hyper-Heuristic (GPHH). To this end, we proposed a meta-
algorithm that maintains a set of routes throughout the schedul-
ing horizon, and updates it by heuristic in an attempt to accept
new requests. Then we designed three heuristics manually,
and developed a GPHH for automatically evolving heuristics.
Experimental results show that the GP-evolved heuristics
significantly outperformed the manually designed heuristics,
and such advantage becomes more obvious as the degree of
dynamism increases. This demonstrates the efficacy of GPHH
in designing heuristics for DVRPTW. On the other hand, it
is shown that simply including the probability information
as terminals is not effective for finding good heuristics. In

the future, we will investigate wiser ways of using such
information, e.g. manually designing new composite terminals
based on the raw information.

REFERENCES

[1] B. L. Golden, S. Raghavan, and E. A. Wasil, The vehicle routing
problem: latest advances and new challenges. Springer Science &
Business Media, 2008, vol. 43.

[2] O. Bräysy and M. Gendreau, “Vehicle routing problem with time
windows, part i: Route construction and local search algorithms,”
Transportation science, vol. 39, no. 1, pp. 104–118, 2005.

[3] ——, “Vehicle routing problem with time windows, part ii: Metaheuris-
tics,” Transportation science, vol. 39, no. 1, pp. 119–139, 2005.

TABLE IV
THE TEST PERFORMANCE OF THE COMPARED ALGORITHMS ON THE CLASS-6 INSTANCES.

Drive-first Wait-first

Instance EF UF LC GP1 GP2 EF UF LC GP1 GP2

rc101-1 35.0 41.0 26.0 16.17(6.08) 18.53(7.42) 20.0 15.0 7.0 12.97(3.44) 11.93(2.85)
rc101-2 32.0 35.0 34.0 12.93(4.35) 14.37(5.48) 20.0 19.0 12.0 11.63(2.76) 12.13(3.17)
rc101-3 38.0 39.0 34.0 18.17(5.50) 19.00(7.60) 19.0 21.0 22.0 12.27(4.09)* 14.67(4.68)
rc101-4 23.0 28.0 28.0 18.07(4.95) 19.70(6.75) 17.0 17.0 18.0 18.50(2.86) 17.73(2.80)
rc101-5 37.0 39.0 35.0 15.53(5.18) 17.10(4.04) 26.0 21.0 13.0 14.33(3.39) 14.13(3.37)
avg 33.0 36.4 31.4 16.17(2.80) 17.74(3.74) 20.4 18.6 14.4 13.94(1.76) 14.12(2.04)

rc102-1 32.0 42.0 32.0 18.17(6.16) 16.00(6.32) 26.0 28.0 26.0 16.73(6.07) 14.03(6.00)
rc102-2 41.0 37.0 37.0 15.70(5.15) 15.63(5.81) 25.0 23.0 10.0 12.87(3.39)* 14.57(3.78)
rc102-3 39.0 38.0 32.0 14.87(3.65) 13.17(3.22) 12.0 16.0 16.0 8.00(3.10) 7.30(3.63)
rc102-4 29.0 29.0 23.0 17.57(6.16) 17.67(6.05) 24.0 17.0 16.0 14.80(2.92) 14.07(3.31)
rc102-5 45.0 46.0 32.0 19.07(5.10) 17.77(4.52) 28.0 23.0 20.0 12.47(4.38) 13.13(5.14)
avg 37.2 38.4 31.2 17.07(3.26) 16.05(3.65) 23.0 21.4 17.6 12.97(1.71) 12.62(2.09)

rc104-1 46.0 56.0 31.0 13.27(8.20) 13.33(7.62) 20.0 43.0 24.0 18.13(4.02) 18.10(4.63)
rc104-2 33.0 56.0 21.0 18.13(8.62) 16.33(6.70) 18.0 44.0 25.0 14.67(2.54) 15.83(4.71)
rc104-3 40.0 55.0 43.0 23.77(7.11) 22.93(5.75) 25.0 50.0 25.0 18.00(6.15) 16.97(3.91)
rc104-4 29.0 52.0 28.0 21.13(6.94) 20.83(6.20) 33.0 44.0 28.0 24.30(3.99) 22.87(4.01)
rc104-5 22.0 51.0 16.0 21.07(5.94) 21.30(5.05) 22.0 38.0 16.0 22.20(5.63) 22.80(4.97)
avg 34.0 54.0 27.8 19.47(3.93) 18.95(2.87) 23.6 43.8 23.6 19.46(2.25) 19.31(1.99)

[4] L. M. Gambardella, É. Taillard, and G. Agazzi, “Macs-vrptw: A multiple
ant colony system for vehicle routing problems with time windows,”
1999.

[5] P. K. Nguyen, T. G. Crainic, and M. Toulouse, “A tabu search for
time-dependent multi-zone multi-trip vehicle routing problem with time
windows,” European Journal of Operational Research, vol. 231, no. 1,
pp. 43–56, 2013.

[6] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins, “A hybrid genetic
algorithm with adaptive diversity management for a large class of
vehicle routing problems with time-windows,” Computers & operations
research, vol. 40, no. 1, pp. 475–489, 2013.

[7] S. Belhaiza, P. Hansen, and G. Laporte, “A hybrid variable neighborhood
tabu search heuristic for the vehicle routing problem with multiple time
windows,” Computers & Operations Research, vol. 52, pp. 269–281,
2014.

[8] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A review of
dynamic vehicle routing problems,” European Journal of Operational
Research, vol. 225, no. 1, pp. 1–11, 2013.

[9] C. Prins, “A simple and effective evolutionary algorithm for the vehicle
routing problem,” Computers & Operations Research, vol. 31, no. 12,
pp. 1985–2002, 2004.

[10] J. Kytöjoki, T. Nuortio, O. Bräysy, and M. Gendreau, “An efficient
variable neighborhood search heuristic for very large scale vehicle
routing problems,” Computers & operations research, vol. 34, no. 9,
pp. 2743–2757, 2007.

[11] B. Yu, Z.-Z. Yang, and B. Yao, “An improved ant colony optimization
for vehicle routing problem,” European journal of operational research,
vol. 196, no. 1, pp. 171–176, 2009.

[12] G. Laporte, M. Gendreau, J.-Y. Potvin, and F. Semet, “Classical and
modern heuristics for the vehicle routing problem,” International trans-
actions in operational research, vol. 7, no. 4-5, pp. 285–300, 2000.

[13] U. Ritzinger, J. Puchinger, and R. F. Hartl, “A survey on dynamic and
stochastic vehicle routing problems,” International Journal of Produc-
tion Research, vol. 54, no. 1, pp. 215–231, 2016.

[14] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and R. Qu, “Hyper-heuristics: A survey of the state of the art,” Journal
of the Operational Research Society, vol. 64, no. 12, pp. 1695–1724,
2013.

[15] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. MIT press, 1992, vol. 1.

[16] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
J. R. Woodward, “Exploring hyper-heuristic methodologies with genetic
programming,” in Computational intelligence. Springer, 2009, pp. 177–
201.

[17] J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang, “Automated design
of production scheduling heuristics: A review,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 1, pp. 110–124, 2016.

[18] R. Glanville, D. Griffiths, P. Baron, J. H. Drake, M. Hyde, K. Ibrahim,
and E. Ozcan, “A genetic programming hyper-heuristic for the multidi-
mensional knapsack problem,” Kybernetes, vol. 43, no. 9/10, pp. 1500–
1511, 2014.

[19] M. Bader-El-Den, R. Poli, and S. Fatima, “Evolving timetabling heuris-
tics using a grammar-based genetic programming hyper-heuristic frame-
work,” Memetic Computing, vol. 1, no. 3, pp. 205–219, 2009.

[20] T. Weise, A. Devert, and K. Tang, “A developmental solution to (dy-
namic) capacitated arc routing problems using genetic programming,” in
Proceedings of the 14th annual conference on Genetic and evolutionary
computation. ACM, 2012, pp. 831–838.

[21] R. Bent and P. Van Hentenryck, “Waiting and relocation strategies in
online stochastic vehicle routing.” in IJCAI, 2007, pp. 1816–1821.

[22] M. Saint-Guillain, Y. Deville, and C. Solnon, “A multistage stochastic
programming approach to the dynamic and stochastic vrptw,” in Interna-
tional Conference on AI and OR Techniques in Constriant Programming
for Combinatorial Optimization Problems. Springer, 2015, pp. 357–
374.

[23] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and A. V. Donati,
“Ant colony system for a dynamic vehicle routing problem,” Journal of
Combinatorial Optimization, vol. 10, no. 4, pp. 327–343, 2005.

[24] É. D. Taillard, L. M. Gambardella, M. Gendreau, and J.-Y. Potvin,
“Adaptive memory programming: A unified view of metaheuristics,”
European Journal of Operational Research, vol. 135, no. 1, pp. 1–16,
2001.

[25] R. Bent and P. Van Hentenryck, “The value of consensus in online
stochastic scheduling.” in ICAPS, vol. 4, 2004, pp. 219–226.

[26] ——, “Regrets only! online stochastic optimization under time con-
straints,” in AAAI, vol. 4, 2004, pp. 501–506.

[27] G. Ghiani, E. Manni, A. Quaranta, and C. Triki, “Anticipatory algorithms
for same-day courier dispatching,” Transportation Research Part E:
Logistics and Transportation Review, vol. 45, no. 1, pp. 96–106, 2009.

[28] K. Sim and E. Hart, “A combined generative and selective hyper-
heuristic for the vehicle routing problem,” in Proceedings of the 2016
on Genetic and Evolutionary Computation Conference. ACM, 2016,
pp. 1093–1100.

