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Abstract

In autonomous agent systems, internal memory can be an important element to
overcome the limitations of purely reactive agent behaviour. This paper presents
an analysis of memory requirements for T-maze tasks well known as the road sign
problem. In these tasks a robot agent should make a decision of turning left or
right at the T-junction in the approach corridor, depending on a history of percep-
tions. The robot agent in simulation can sense the light intensity influenced by light
lamps placed on the bank of the wall. We apply the evolutionary multiobjective
optimization approach to finite state controllers with two objectives, behaviour per-
formance and memory size. Then the internal memory is quantified by counting
internal states needed for the T-maze tasks in noisy environments. In particular,
we focused on the influence of noise on internal memory and behaviour perfor-
mance, and it is shown that state machines with variable thresholds can improve
the performance with a hysteresis effect to filter out noise. This paper also pro-
vides an analysis of noise effect on perceptions and its relevance on performance
degradation in state machines.

keywords: T-maze, delayed response task, evolutionary robotics, finite state ma-
chines, evolutionary multiobjective optimization, internal memory
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1 Introduction

Behaviour-based robotics has been a feasible and attractive approach in mobile robot
control systems. It has proved that a reactive coupling between sensor readings and
motor actions can be successful in physical world environments. Brooks, who pro-
posed the concept of behaviour-based approach, built multiple primitive behaviours to
handle many difficult situations and put the mechanism of action selection over those
primitives [Brooks, 1986]. Nowadays the design of intelligent systems, especially in
robotics, emphasizes the physical interaction with the environment, that is, more direct
coupling of perception to action and dynamic interaction with the environment.

In many robotic tasks, the design of control systems is not a trivial problem. Evolu-
tionary algorithms have been a popular approach to develop desirable control systems
which can be adapted to complex environments [Harvey et al., 1992, Nolfi and Flore-
ano, 2000]. The incorporation of state information permits an evolved control structure
to behave better, using past information, than a pure reaction to the current sensor in-
puts. Yamauchi and Beer [1994] showed that dynamical recurrent neural networks
could be evolved to integrate temporal sensory perceptions before an agent’s decision
action. In their experiments, the networks were evolved to process time-varying sonar
signals to identify two different landmarks. Also one-dimensional navigation to learn
the relationship between a landmark and the goal was achieved with the neural net-
works. As a result, they suggested the dynamic neural networks should be used to inte-
grate reactive, sequential and learning behaviour. Evolutionary robotic approaches of-
ten use recurrent neural networks as controllers for complex behaviours [Harvey et al.,
1992, Floreano and Mondada, 1996, Meyer et al., 1998, Nolfi and Floreano, 2000],
combined with genetic algorithms to determine the network structure or parameteri-
zation. Such networks make effective controllers, offering the possibility for creating
many possible dynamical systems with a variety of attractors, but it is hard to analyse
them theoretically and to quantify the amount of memory a particular network provides
to an agent.

The use of internal memory in agent behaviours has been of interest in evolutionary
robotics or adaptive behaviour community. Internal memory can play a role in escap-
ing difficult situations where the information of sensor readings is insufficient to direct
motor actions. Situations1 with the same sensory pattern but requiring different motor
actions often occur when sensor readings are restricted. Especially an analytical study
of internal states for an agent problem can be found in Bakker and de Jong [2000]’s
work. They estimated the complexity of agents and environments with functional and
mechanistic states. The mechanistic perspective is concerned with a variety of sen-
sory features that an agent uses, for example, the activation levels of hidden nodes in
feedforward neural networks. In contrast, the functional states correspond to internal
states or memory that the agent needs to process a history of sensor inputs or percep-
tual aliasing. In their approach, Elman networks [Elman, 1990] were first trained by
reinforcement learning and then finite state automata were extracted from the recurrent
neural networks. The mechanistic states and the functional states were counted within
an error bound to match the finite state automata and the recurrent neural networks. As

1They are called perceptual aliasing [Whitehead and Ballad, 1991].
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a difficulty measure of a given agent problem, they suggested to count the number of
functional states to achieve a certain level of performance.

In fact, the two perspectives, mechanistic states and functional states, are corre-
lated to each other [Kim, 2004], and the number of functional states needed for a given
problem may depend on mechanistic states, which has been neglected in Bakker and de
Jong’s approach. Moreover, their measure greatly relies on the training performance of
recurrent neural networks and there was no effort to find the minimal form of recurrent
neural networks in the learning procedure. Instead they used the Hopcroft algorithm
[Hopcroft and Ullman, 1979] to minimize the number of functional states on the ex-
tracted finite state automata after training neural networks. There has been research
of memory analysis in a noise-free grid world environment [Kim and Hallam, 2002],
which uses an evolutionary multiobjective optimization with two objectives, memory
size and behaviour performance. Generally agent behaviours are not progressed to a
large extent in terms of evolutionary fitness values if the amount of memory is over
the essential limit. It would be meaningful to find what is the basic memory limit to
produce a certain level of behaviour performance.

Finite state machines (FSMs) have been used previously in evolutionary compu-
tation to represent state information [Fogel et al., 1966, Ashlock et al., 1995, Miller,
1996, Kim and Hallam, 2002]. They are advantageous for the analysis of memory by
their discrete expressions even though they are less powerful in representation than re-
current neural networks. State machines have been applied to robotic tasks [Kim and
Hallam, 2001, Kim, 2002] and it was proved that a few internal states improve the be-
haviour performance for robotic tasks and the internal states are served as connectives
of decomposable tasks or a series of actions. FSMs have a feature of identifying each
internal state, enumerating memory amount and stacking a sequence of subtasks. In
this paper, control structures are based on FSMs to analyse the role of internal mem-
ory for a set of T-maze tasks, where necessary internal states will be quantified and
identified.

In our experiments, an agent is supposed to make a decision of moving left or
right at the T-junction after accumulating a series of sensor activations in the corridor.
This T-maze task is one of the road sign problems, which can be classified as a de-
layed response task [Rylatt and Czarnecki, 2000]. There have been several approaches
for the road sign problems, mostly with recurrent neural networks [Ulbricht, 1996,
Jakobi, 1997, Rylatt and Czarnecki, 2000, Linåker and Jacobsson, 2001a,b, Bergfeldt
and Linåker, 2002, Ziemke and Thieme, 2002]. Ulbricht [1996] started the work of
memorizing a time-warped sequence of sensor activations and suggested a state layer
placed before the hidden layer of the neural network, where neurons with self-recurrent
feedback loops process a history of sensor readings. Later Rylatt and Czarnecki [2000]
used Elman network [Elman, 1990] to solve the same task where the activations of
hidden layer unit are fed back to a set of context units at the input layer. Bergfeldt and
Linåker [2002] showed that FSMs can be extracted with two layers of neural networks
for the road sign problem, where the upper layer dynamically modulates the lower
layer of reactive mapping. The upper layer, in particular, consists of an unsupervised
classifier as an event extractor, memory cells and gating units [Linåker and Jacobsson,
2001a,b]. The finite state automata were extracted from the upper layer configuration
for a 3-choice delayed response task. Ziemke and Thieme [2002] showed that a short-
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term memory can be realized for delayed response tasks through synaptic plasticity and
dynamic modulation of sensorimotor mapping.

So far the research on the road sign problem has focused on the methodology of
how to design neural network controllers to solve the problem. The analysis over the
memory amount has not been studied in detail. We will thus use an evolutionary multi-
objective optimization approach over two objectives, number of memory states (func-
tional states) and behaviour performance. This could reveal the complexity of the road
sign problem. Here, our approach is distinguished from the method of extracting state
machines from recurrent neural networks. The suggested approach will directly evolve
state machines to find the minimal form of control structure for desirable behaviour
performance.

In this paper, we will assume that only a limited number of mechanistic states are
available to design simplest controller for the road sign problem. It can help to under-
stand the influence of internal states on the behaviour performance; more mechanistic
states have a potential of reducing the size of internal memory [Kim, 2004]. FSMs
need a threshold value to binarize or partition sensor readings. The performance of
state machines may greatly depend on the threshold which builds sensory features. We
will investigate how to organize sensorimotor mapping by varying the threshold level
and observe the relationship among sensory features, internal states and behaviour per-
formance.

In mobile robots, noise influences the behaviour performance by misleading the
perceptions. It is one of challenging works in evolutionary robotics to handle the noise
and to extract correct sensory perceptions from noisy signals. Jakobi et al. [1995]
studied the effects of simulation noise level in their experiments. According to their
results, when the noise levels in simulation are significantly different from the real
noise in the real robot, the transfer from the simulated controller to the real world is
not effective. They provided some guidelines for constructing simulations that would
probably allow successful transfer of evolved behaviour to reality [Jakobi et al., 1995,
Jakobi, 1997, 1998]. Miglino et al. [1995] also used the method transferring the best
simulation controller to the physical world. They applied statistical analysis of real
sensor noise to the simulation and observed that more realistic noise levels can provide
more feasible solutions, reducing the gap between simulation and reality. However, It
has not been considered how noise influences memory encoding of controllers. We will
explore how internal memory handles noise in delayed response tasks with a limited
sensor space, or how the noise level influences the performance for a given task.

We first introduce an evolutionary multiobjective optimization approach with FSM
controllers. The approach is then applied to a set of T-maze tasks to investigate their
memory requirement and to estimate the complexity of the delayed response tasks.
Single-light / two-light experiments in T-maze environment and their results are demon-
strated. FSM controllers are evolved in noisy environments, and they are tested with
various levels of noise to see the robustness of evolved controllers and the impact of
noise on internal memory. To handle noise appropriately, a method of varying thresh-
olds on sensors in FSMs is provided. Finally we present an analysis of noise effect on
perceptions to explain why noise is involved with performance degradation.
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2 Methods

2.1 Robot configurations

In this paper, robotic tasks are investigated with simulation involving noisy signals in
sensor readings and motor actions, and we take a Khepera robot model [Mondada et al.,
1993] for simulation. There are ambient light sensors at the same angle positions as
infrared sensors. The light sensors can detect light intensity in a given environment.
In the simulation experiments, only two light sensors at angle

�����
and ����� � (the front

direction 	�
 � ) are used. The light intensity is estimated with two factors, the distance
of the light sensor from a lamp, and the lamp’s angle deviated from the centre-line of
the sensor. The motor commands for both left and right wheels are restricted to the
set �������������������� � � 2, 4, 6, 8 � and only eight possible actions are allowed for each
wheel. These motor commands will be used for turning left or turing right to reach
the goal position. For T-maze task, a robot is forced to move forward in the approach
corridor until it reaches the T-junction. The wheel dynamics are subjected to random
noise. A random noise of � 10% is added to the motor speeds for the two wheels, and
the direction of the robot is influenced by � 5% random noise. Infrared sensor readings
ranges from 0 to 1023 and a random noise of 10% is added to the sensor values. In
evolutionary experiments, the sensor readings will be binarized with a threshold of 500
for state machines. Ambient light sensors have values from 0 to 500 (0 means the
highest light intensity). At the initial experiments a threshold of 250 will be used for
light sensors (we select this threshold by the middle point of the sensor range) and then
varying thresholds will be tested.

2.2 Finite state machines

A Finite State Machine (FSM) can be considered as a type of Mealy machine model
[Kohavi, 1970, Hopcroft and Ullman, 1979], so it is defined as ������� �"!#�"$%�'&(�')*�,+.-�/
where +�- is an initial state, � is a finite set of states, ! is a finite set of input val-
ues, $ is a set of multi-valued output values, & is a state transition function from
�102! to � , and ) is a mapping from �102! to $ , where )*�3+��,45/ will be a mem-
ber of the output set $ . &5�6+��,45/ is defined as the next state for each state + and input
value 4 , and the output action of machine � for the input sequence 487.�'49��,4�:;�=<><?<?�,4�@ is
)A�6+ - �,4�7�/B�')A�6+.7(�'4�9=/B�")*�3+�9��,4�:=/C��<?<><?�')A�6+=@�DE7;�,4�@�/ , where + - �,+.7(�'+�9;�=<><?<?�,+�@ is the sequence
of states such that &5�6+.F��,45FBGA7=/H�I+=FBGA7 for JK�L
���<?<>�,MN�O� . The finite state machine we
consider is encoded for the evolutionary algorithm as a sequence of pairs (state number,
state output) on each sensor value in canonical order of state number; one chromosome
will be represented as an one-dimensional array of genes.

[Insert figure 1 about here]

A chromosome representation including state + - �,+.7.�=<><?<>�'+�P (total QNRS� states) is
given in figure 1, where for state +�T , U FT is the motor action, + FT is the next state for
the J -th sensor configuration and V�TXW is the threshold for the Y -th sensor to binarize
the corresponding sensor readings; for a special case, V TZ7 �[V T?9 �\<?<><]�[V T>@ . For M
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sensors, � � � @ sensor configurations are available. For the experiments with a fixed
threshold on light sensors, evolving thresholds will be omitted. For state machines, the
chromosome size is dependent upon the number of states, since a series of the state
transition and motor action will be repeated as many as the number of states. Each
FSM has a pre-defined number of internal states. In the genetic pool of evolutionary
computation, variable length chromosomes are allowed for varying sizes of states in
FSMs.

2.3 Evolutionary multiobjective optimization

To determine how many memory elements are required to solve a particular agent-
environment interaction problem, evolutionary computation will try to optimize agent
performance for each level of memory amount. By doing so, the trade-off between
performance and quantity of memory can be explored. If sensors are discretized, a
controller with internal memory can easily be expressed as a finite state machine. The
amount on memory needed for a given task will here be defined as the number of
states used to achieve a desirable behaviour score. This approach follows estimating
the complexity of a given task by the memory states [Bakker and de Jong, 2000, Kim
and Hallam, 2002].

The method to see the behaviour performance for each level of memory amount
is to use the Evolutionary Multiobjective Optimization (EMO) [Goldberg, 1989, Fon-
seca and Fleming, 1993, Zitzler, 1999, Coello et al., 2002]. The EMO approach has
been applied in quantifying internal memory required for the Woods problem which is
one of goal-search problems in a grid world [Kim and Hallam, 2002]. In this paper,
two objectives, behaviour performance and memory size, are used in the Pareto opti-
mization to try to maximize behaviour performance and minimize number of controller
states. The shape of the Pareto surface after an evolutionary run indicates a desirable
number of memory elements for a given performance level. As a result, one can often
determine a threshold amount of memory needed to achieve a task. We assume that
the quantity of memory in the control structure needed for a given task represents the
complexity of the problem faced by the agent.

The Pareto scoring in EMO approach has been popular [Goldberg, 1989, Fonseca
and Fleming, 1993] and it can maintain a diverse population over multi-objectives. A
dominance rank is defined to specify the rank of members in the Pareto distribution.

A vector
� ����� 7;���89��=<><?<?����� / for � objectives is said to dominate � � �	�57.�
��9;�=<><?<?����� /

(written as
�� � ) if and only if X is partially less than Y, that is,

�������O���=<><?<>�
� �
� T�� � T /�� ������� ���=<><?<?��� �
� T�� � T /B<
A Pareto optimal set is said to be the set of vectors that are not dominated by any

other vector.

� � ����� 7;��<?<><?����� /��  ���!�S� �	�7(��<?<><?����� /B�"� �#� /B�
To obtain a Pareto optimal set, a dominating rank method2 [Fonseca and Flem-

ing, 1993] is applied to the tournament selection of group size four in this paper. The
2The dominating rank method defines the rank of a given vector in a Pareto distribution as the number of

elements dominating the vector. The highest rank is zero, for an element which has no dominators.
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tournament selection initially partitions the whole population into multiple groups for
the fitness comparison. Inside the tournament group, Pareto score of each member is
compared each other and ranked. A higher rank of genomes in the group have more
probability of reproducing themselves for the next generation. In our approach, a pop-
ulation is initialized with random length chromosomes by variable state machines. The
two best chromosomes are selected using a dominating rank method over the two ob-
jectives, memory size and behaviour performance. They reproduce themselves only
with mutation and the two worst chromosomes are replaced by new offspring produced
using one point crossover followed by mutation on the two best genomes. In the appli-
cation of variable state machines, offspring with variable numbers of states should be
generated to keep diversity in the genetic pool. Thus, a size modifying genetic operator
is introduced to maintain variable length coding. When offspring are produced, the
number of memory states3 is randomly pre-selected for each new offspring. The chro-
mosome size for each offspring will depend on this chosen amount of memory. The
size-modifying operators are used to produce new offspring such that they have charac-
teristics of their parents and have the pre-chosen chromosome length. It concatenates
several copies of the parent chromosomes and then cuts the string at the pre-chosen
length [Kim and Hallam, 2002]. After applying the size-modifying operator, crossover
is applied to the two offspring. The crossover point is selected inside both chromo-
some strings after aligning the prefixes of two strings. During this crossover process,
mutation is used to change one integer value in the strings into a random number. The
size-modifying operator is applied to 75% of new offspring, in experiments with vari-
able state machines. When it is not used, the offspring keep the size of their parents.
New offspring are thus produced with a size modifying operator, crossover and muta-
tion by turns. Crossover rate is 0.6, and mutation rate is set to two over chromosome
length in the experiments.

The multi-objectives in the EMO consist of behaviour fitness and the number of
memory states. The single EMO run produces a Pareto-optimal set in which all mem-
bers have a rank zero. The set corresponds to the best behaviour performance for each
level of memory amount. It will easily display what is the desirable number of mem-
ory elements for a given behavior performance. The method can relatively decrease the
computation time required to take multi-experiments of independent runs for each size
of memory elements.

2.4 Sensory configurations

[Insert figure 2 about here]

The memory amount needed for an agent problem may depend on sensory config-
urations. In this paper, we will assume only a limited number of sensor features are

3Memory size is an objective in our EMO approach, and the range of memory states is finite and small so
that we can enumerate all the possible values. The memory size is related to the structure of genomes, and
so the diversity of genomes is maintained by randomly selecting memory size for a new genome. It has an
effect of searching for the whole range in the objective of memory size.
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available. If each sensor has its own threshold V.T , the parameter space is divided into
two non-overlapping subsets, depending on V�T ; it has a dichotomy � T�� V=T and �ET � V�T
where � T is the � -th sensor value. For T-maze tasks, two light sensors are used and so
the effective sensor space will have four subdivisions. They reflect four sensory con-
figurations (mechanistic states), irrespective of the threshold value. We will explore
how a variation of sensory features can influence the memory requirement for a fixed
number of mechanistic states. Figure 2 shows possible sensory feature structures de-
pending on thresholds. For some T-maze task, we will evolve three types of controllers
shown in figure 2 to check the effect of sensory feature structures. This study will
show the importance of the quality of sensory features for a fixed number of sensory
configurations.

3 Experiments

We test a set of T-maze tasks as the road sign problem. The T-maze decision behaviour
will require long short-term memory to remember the past perceptions. An agent will
pass through a narrow corridor and must decide its directional move, left or right,
depending on its perception experience when it sees the T-junction in front. This T-
maze experiment has been tested with robots by Jakobi [1997]. In his experiments with
one lamp, robots maintained internal states with recurrent neural networks to remember
which side the lamp was on such that they could make a correct decision at the junction.
In our experiments, we will identify internal states of controllers in noisy environments
and also several light positions will be tested with one or two light lamps.

For the T-maze task, random controllers will have 50% probability for each di-
rection, left and right. Desirable controllers will, for their choice of actions, depend
on perceptual cues or landmarks that have been experienced while they are moving
forward. Robots in the T-maze will use light intensity instead of complex landmarks.
This will demonstrate an example of how robots can organize their memory from their
perceptions.

Instead of allowing free movement, robots are forced to move forward until they
reach the T-junction; this is unlike Jakobi [1997]’s work where robot controllers were
evolved to go forward to the junction before the decision of turning. Two ambient light
sensors at angle

����� ������� � and two infrared sensors at angles ��� � �=����� � on a Khepera
robot will be used in the experiments (the front direction is 	�
 � ), where the infrared
sensors are supposed to detect obstacles or walls in the front (the sensor readings are
used to recognize the T-junction). A threshold of light intensity is assumed to binarize
their intensity. The intensity values of ambient light sensors are influenced with ran-
dom noise. Later we will see the decision performance depending on the noise level
or varying thresholds. While robots move forward from starting positions to the T-
junction, their light sensors continue to change and binarized signals will flip from 0 to
1 or from 1 to 0, depending on how close to light robots are.

In evolutionary experiments, the penalty fitness function is defined as follows:

��� ����� ��
	 �
��
W�A7

��
T�A7�� �6U T W ��� T W / (1)
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where UT W is the direction that robots choose at the T-junction, ��TXW is the direction for
goal position, � is the number of environments to test robots, and � is the number
of experimental runs. Expression � �648���C/ is the equality function to be set to 1 if the
directions of 48��� are the same and otherwise 0. The fitness evaluation is influenced
by noise and so the evolutionary algorithm will prevent accidental success or failure
of controllers by evaluating one robot controller several times ( � times). The success
rate of the T-maze decision can be estimated by ��� � �

.
As the average performance over samples is considered, each chromosome in a

population is evaluated five times to estimate the fitness in equation (1) ( � � � ).
The best chromosome of the population is evaluated again 25 times with � � � � in
equation (1) (more runs will produce a better estimate of the prediction success rate for
a chromosome) and the fitness score of the best chromosome will be monitored. The
EMO method is applied to see significance statistics results on variable state machines
for T-maze tasks in noisy environments. The EMO evolutionary run will be repeated
25 times.

3.1 Single-Light Experiments

[Insert figure 3 about here]

First, a simple task with single light was tested. In the experiments, light is placed
on the left or right block bank. Light can be placed in the middle of each bank as
shown in figure 3; robots do not detect light initially, but when they move forward,
they can sense the light as they approach it. When they move away, they cannot sense
the light again. When robots are close enough to the T-junction, they decide which
direction to move in. If the light is placed on the left side, robots should move left at
the T-junction. The goal position is at the end of corridor on the left side. If light is
placed on the right side, then robots should move right to reach the goal on the right
side. They detect walls with infrared sensors to find the moment of turning to the left
or right. The task will test if robots can do conditional movement depending on one
position of the light. In fact, this experiment has been studied in the road sign problem
[Ulbricht, 1996, Jakobi, 1997, Rylatt and Czarnecki, 2000]

[Insert figure 4 about here]

The EMO approach is applied for memory analysis of the single light T-maze with
a population size of 50 and 100 generations. The result4 shows that the task requires
at least two internal states as displayed in figure 4. The experiment was run 25 times
and its average performance is estimated with 95% confidence intervals by assuming�
-distribution. Purely reactive controllers have 50% success rate and they only choose

one direction in any condition of perceptions. When standing at the T-junction, purely

4The Pareto set in evolutionary runs has two objectives, the behaviour fitness ��� and the number of states,
but for convenience, the success rate ( �	�
� � ) vs. states will be displayed in the paper.
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reactive robots do not see any light and they cannot consider any previous light con-
dition. They can just choose to turn left or right regardless of light that has been seen
in the corridor path. The best controllers with at least two states have internal states to
be triggered by left light lamp or right light lamp. For example, a two-state controller
has its internal state for turning right by default and ignores light on the right side but
if it sees light on the left side, it changes its internal state into the mode for turning
left as shown in figure 5. When the robot reaches the T-junction, the turning move will
depend on its internal state.

[Insert figure 5 about here]

However, the task can be purely reactive if robots can move freely in the corridor
[Jakobi, 1997, Bergfeldt and Linåker, 2002]. When they see light on the left side, they
can begin to turn left and follow left walls until they reach the goal position. Otherwise,
they follow right walls. Robots determine their movement in advance before they cross
the T-junction at the instant that they can see light. Thus, it can be easily achieved
with purely reactive controllers. When robots are forced to move forward in spite of
any perception, they internalise perceptual states using available memory states. The
internal states will determine which move they should choose at the T-junction. We
evolved controllers with various noise levels ranging from 0 to �#��
 for this task, and we
obtained controllers with the perfect performance irrespective of noise level. For this
single light task, noise did not decline the behaviour performance or the convergence
speed to desirable controllers. Figure 5 shows a set of state machines evolved in a
noise-free environment with a success rate of 0.5, 1.0, 1.0 and 1.0, respectively. At this
point, we checked if each evolved controller can survive the noisy environment. State
machines in figure 5 were evaluated 500 times ( � � ��
�
 in equation (1)) with noise
level � ��
 , and they showed the success rate 0.5, 1.0, 0.8785, and 1.0, respectively.
The three-state machine has a significant drop of performance in noisy environments
(a higher level of noise induces worse performance), even though it showed a perfect
score with 500 evaluations in a noise-free environment. It is caused by the fact that
the evolved noise-free environment provides no information about a state transition to
be prevented and the FSM experiences an inappropriate state transition by noisy sensor
readings. The three-state machine in figure 5 has a stable state + - for the sensory event5

01, when a light appears on the right side. After moving away from light, the robot
detects no light and the sensory event is switched to 00. It triggers a state transition
from +�- to + 9 and the agent keeps the stable state to make a decision of turing right.
This situation, however, can be distorted by noise. Noise often changes the sensory
event 01 into event 00 or event 00 into event 01, when the light intensity is close to the
threshold level for FSMs. The agent may experience state transitions from +.- to + 9 and
then +�9 to +�7 , or a cyclic transition from + - to +�9;�'+�7(�,+ - in sequence. The state transition
can accidentally stop at the state +(7 at the moment that no light is sensed any more. It
will lead to turning left at the T-junction, which is a false movement. In contrast, the

5We will represent the sensor activation as a binary value, binary 1 means a high activation of the sensor.
For instance, the sensory feature event 01 indicates that the left light sensor has a low light intensity and the
right sensor value has high, that is, the agent detects light on the right side.
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two-state machine and the four-state machine in figure 5 shows a stable state transition
for any noise level.

[Insert figure 6 about here]

To test the robustness of the evolved controllers (by 25 trials), each best controller
is evaluated 500 times with a variety of noise levels ranging from 0 to �#�
 . Then the
average performance of 25 best controllers and its error bar are calculated. Figure 6
shows how much the performance of the evolved controllers changes in test environ-
ments. The controllers evolved with a low noise level often experience degradation of
performance. Testing them with higher noise levels on light sensors produces worse
performance. The reason is that transient error signals caused by noise can severely in-
fluence state transition in state machines. More internal states tend to produce a larger
drop of performance. It implies that FSMs with a large number of internal states can
be sensitive to noise and structurally unstable for this case. As shown in figure 6(b),
controllers evolved with a high level of noise are more robust. This test experiment
says that noise can significantly defect evolved state transitions. Evolving controllers
in noisy environments with a high level of noise can reduce the possibility of ill-posed
state transition by noise. We will explore more about the noise effect in other T-maze
tasks.

3.2 Two-Light Experiments

[Insert figure 7 about here]

More complex situations can be made with two lights. Four possible cases with two
lights are created to distinguish environmental situations, as displayed in figure 7; both
lights can be placed on the left side or on the right, or one light is placed in the lower
area on the one side and another light is in the upper area on the other side. Figure
7 also shows examples of noisy light intensity signals. If light is close to an ambient
light sensor, its sensor readings becomes very low (ambient light sensors on a Khepera
robot have low sensor readings for high light intensity). The initial experiments use a
fixed threshold of 250 to binarize the intensity signals.

[Insert table 1 about here]

We design three possible tests over four cases with two lights as in table 1; they will
be called tmaze-env1, tmaze-env2, tmaze-env3. Each experiment will be
tested to see how many memory states are required to make correct decisions for mov-
ing to the goal position. The EMO approach is applied to each experiment for memory
analysis with a population size of 50. The above experiments will evolve controllers
which are attentive to light signals. For the setting tmaze-env1, goal positions de-
pend on lights in the upper area and robots should be able to detect lights near the
T-junction by ignoring lights near starting positions. Direction of turning left or right
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will rely on which side light is placed in the upper area. In the environmental setting
tmaze-env2, goal positions will depend on lights in the lower area. Robots should
recognize the direction of lights near the starting position and they should decide their
turning actions using their first perception of light. For the setting tmaze-env3, the
formation of light should be memorized to decide the move. It will be a more complex
task since the perceptions of lights should be sequenced and the detection of the second
light after the first light is required to make appropriate actions.

3.2.1 tmaze-env1 task

[Insert figure 8 about here]

[Insert figure 9 about here]

[Insert figure 10 about here]

The tmaze-env1 setting has two lights but the environmental situations require
only two memory states. One of the best controllers, as shown in figure 8(a), changes its
internal state depending on light sensation; while passing light on the left side, robots
mark their internal state in advance so that they will decide on turning left and when
they reach the T-junction, they move left by following their internal state. If light is
seen on the right side, robots change their internal state to move right later. While the
robot moves forward in the corridor, it may see light on the alternate side. The robot
then toggles its internal state into the state of light direction. In this way two memory
states, one state for each direction, are sufficient to predict goal positions correctly. The
EMO approach result in figure 9(a) also shows that two states are required to achieve
the task. Figure 8(b) is a 5-state FSM evolved in a noise-free environment. The FSM
showed a success rate of 1.0, 1.0, 0.997, 0.94, 0.873 and 0.8355 over 500 evaluations
for a noise level of 0, � �5�"�N��
��B� � 
��B� ��
��"�#��
 , respectively. A higher level of noise
is spawning worse performance. Transient error signal on perceptions by noise tends
to change the intended internal state into irrelevant states. For example, a sequence of
light perception in a noisy environment, �6
�
/���� ��
�/����6
�
�/�� �=
/C�3
�
�/�� , encounters a state
transition from + - to +�7(�,+=9��'+�� , and then from +�� to +�:;�'+ - in order. It finally ends at the
state +C- corresponding to the mode of turing right, which is a false decision, although
this type of state transition cannot occur in a noise-free environment. For the T-maze
task tmaze-env1, we tested various noise levels for controllers evolved with a noise
level of � � and � � 
 . Similar to the result in the single-light experiments, we can see
that more states tend to be sensitive to noise and evolving controllers with a high level
of noise helps to find robust controllers – see figure 10.

3.2.2 tmaze-env2 task

[Insert figure 11 about here]
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Memory analysis in figure 9(b) for tmaze-env2, which is similar to the test en-
vironment by Ziemke and Thieme [2002], says that it requires at least three memory
states. One of the best control strategies is to set the robot’s internal state into the
mode of turning left or right at initial perception of light. It will ignore any light con-
figuration after the robot decides its turning action in advance. In this environment,
two-state controllers, as well as purely reactive controllers cannot be successful in ev-
ery case. Desirable controllers need to disambiguate the situations where light is near
the T-junction from those where it is near the starting position on the same side. As
a result, it will require one more memory state than the tmaze-env1 experiment.
Figure 11 shows examples of state machines evolved in a noise-free environment. The
two-state machine on the left side shows a success rate of 0.75 over 500 evaluations
with a noise level of � ��
 , and another two-state machine on the right has a success
rate of 0.626. The former machine correctly predicts the goal position for case 1, case
2 and case 3 in table 1(b) and it always fails for case 4. The latter machine correctly
predicts the goal position only for case 4, but takes a random decision over the other
three cases by alternate switch between two internal states, which shows a relatively
low performance in noisy environments (theoretically the prediction rate can be calcu-
lated as � � � �/ R � � � �/ 	 � � � � / � � � � , which is close to our experimental result). This
FSM was often evolved in a noise-free environment and it seems that it recorded the
time-span of light perception on the left side. However, this machine was never found
among a set of controllers evolved in noisy environments, for instance, with a noise
level of � ��
 . The 3-state machine in figure 11 showed a perfect prediction rate for any
noise level.

[Insert figure 12 about here]

The FSM controllers in the EMO approach were evolved 25 times with noise level
�N�=
��"� � 
��"� ��
��B�#��
 , respectively, and then each of the best evolved controllers was
tested over 500 evaluations. The results are shown in figure 12. It is observed that
controllers evolved with a high level of noise, � ��
 or �#��
 are very robust, while a
noise level of �N�=
 or � � 
 produces a significant drop of performance in the test with
a higher level of noise.

3.2.3 tmaze-env3 task

In the tmaze-env3 experiment, the decision of turning cannot be simply determined
after passing the corridor. This task is more complex than the previous two-light exper-
iments, since robots should recognize the formation of lights. When noise is involved
with sensor readings, the perceptual states may become unstable, which will render
the task more difficult. Thus, it is investigated whether or not noise in sensor readings
can affect the memory requirement for the given task. Experiments with and without
noise in sensor readings are tested with several memory states in the problem tmaze-
env3 (but noise still remains on infrared sensors and motor actions for any case). Each
evolutionary experiment is repeated 25 times with a population size of 50.
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[Insert figure 13 about here]

Figure 13 is the result of EMO application to the environment tmaze-env3. It
shows the performance hierarchy of memory states. Without noise, the performances
of two, three and four states are significantly different – see figure 13(a). For four states
or more, the fitness is stabilized. Various noise levels for ambient light sensors ranging
from � � to �#�
 were tested. Purely reactive controllers are significantly worse than
two- or three-state controllers for every case. Sensor noise makes it a harder problem
and the hierarchy of behaviour performance is a little changed. Four or more states
are remarkably better than two- or three-state controllers in the experiments with noise
levels ranging from 0 to � � 
 . From the figures, the T-maze problem for tmaze-env3
needs at least four memory states. Even though there is an optimal solution with four
states, more capacious memory has a tendency to improve solutions rapidly. Purely
reactive controllers are only able to choose one direction. Its decision success rate was
0.5. It is almost the same as random decision in performance.

[Insert figure 14 about here]

One of the best evolved controllers predicted the decision with 100% success rate
among 500 evaluations. This controller is shown in figure 14 and noise does not
severely influence its state transition. Two states ( + 7 �,+ 9 ) represent the state of detecting
light on the left and on the right. If robots detect light on the same side, they keep their
internal state. They change their state into a new state ( +.: ) if a light is observed on
the other side. In our experiments, noise often changes the perception of light, that is,
varies the perception event by Hamming distance 1, for instance, 10 into 00, 01 into 00,
00 into 01, or 00 into 10. Figure 14 shows how to handle this misleading perception
and each state keeps its state invariant to noise. Thus, we presume that the task can be
accomplished with at least four memory states, regardless of any noise in light sensor
readings. It was observed that controllers with more than four states can also handle
transient errors in perceptions. Their control strategies change their internal state into
a different internal state temporarily when noise creates transient error signals in light
intensity, and when the signal becomes stable, the previous state is restored.

[Insert table 2 about here]

To see the hierarchy of behaviour performance, a success is defined as the case in
which the success rate after 500 generations is greater than 0.90, 0.95 or 0.99. Table
2 shows the number of success cases among 25 trial runs with population size 50.
Controllers with less than four states have no success at all and so the record in the
table again confirms that at least four states are required to achieve the T-maze task. A
high level of noise, � ��
 or �#�
 , significantly degrades the performance and makes the
task more difficult. We presume that this difficulty of evolution is caused by the fitness
function and its deceptive property depending on noise level. A higher level of noise
seems to produce more local optima in the fitness landscape.
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[Insert figure 15 about here]

We also check the robustness of evolved controllers by providing different levels
of sensor noise. Each best controller is evaluated 500 times with a variety of noise
levels. Figure 15 shows how much the performance of the evolved controllers changes
in test environments. The controllers evolved with a low noise level on light sensors
often experience the performance decline in the test with a higher noise level. If the
evolved controllers are tested in the environment with a lower level of noise, there
was no degradation in performance but rather a slight improvement although it is not
statistically significant. The decline occurs only when they are tested with a higher
level of noise. It partly supports Jakobi’s argument that the noise level in simulation
should match that in reality for successful transfer of the evolved controllers [Jakobi
et al., 1995, Jakobi, 1997]. The noise level reflects the distortion level of the original
sensor values and it influences the performance. This will be explained in more detail
in the analysis of noise effect in section 4. In the robustness test, more than two states
tend to experience a prominent drop of the performance, and the degradation level is
stabilized for four states or more, with any noise level evolution.

For the next set of experiments, we introduce variable thresholds for sensor config-
urations as shown in figure 2. First, state machines with one varying threshold (ranging
from 50 to 450 for light sensors) for each state are evolved. Two light sensors share
one threshold for each internal state, and each state has its own threshold to binarize
the light intensity. Second, we test evolving an independent threshold for each sensor.

[Insert figure 16 about here]

Figure 16 shows that variable thresholds (sharing one threshold for each state) in
state machines can significantly improve the decision performance even for a high level
of noise. The EMO approach proved three states are sufficient for state machines with
variable thresholds. State machines with a fixed threshold of 250 required four internal
states, but variable thresholds has the effect of reducing the number of internal states
needed for the T-maze task tmaze-env3. Moreover, the former controllers did not
succeed in achieving high success rate with noise level � 30 and � 40 as shown in fig-
ure 13(e)-(f). For finite state machines with variable thresholds, the evolved controllers
showed similar performance regardless of the noise level. The variable thresholds ef-
fectively process the sensor noise and so help more robust controllers evolved.

[Insert figure 17 about here]

Figure 17 displays one of the best controllers evolved with variable thresholds. At
the initial state, the agent monitors light sensor values and checks if both sensor values
are inactive, that is, larger than a threshold of 350. Once no light is perceived on either
side, it lowers its threshold level into 150 to prevent state transition caused by any noise.
Thus, the agent needs a perception of high light intensity to change its internal state.
This process can be seen as a kind of hysteresis phenomenon to block transient error
by random noise. If we have a fixed threshold value, the noisy sensor values around the
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threshold will toggle the internal state frequently. It thus delivers a negative effect of
misleading the perceptions and as an alternative, it requires another redundant internal
state to handle such noise.

[Insert figure 18 about here]

[Insert figure 19 about here]

To see the robustness, evolved state machines with variable thresholds were tested
in a variety of noise level. Figure 18-19 show the test results after 1000 generations.
Their evolving and test performances are mostly better than those of evolving con-
trollers with a fixed threshold of 250. Also the performance degradation by noise in the
test experiments is rather smaller, because they find effective thresholds. Here evolv-
ing controllers with noise level � ��
 or more may lead to different styles of controllers,
because both left and right light sensors together can have high intensity values due to
a high level of noise. That is, state transitions can be evolved with the sensory event
11 which is not obserseved with a low noise level. Thus, the pattern of the graphs is
changed in test experiments with noise level � ��
 . Allowing two varying thresholds for
each state does not improve the performance significantly, but more clearly shows that
three states are sufficient for the T-maze task.

4 Analysis of Noise Effect on Perceptions

We have shown that noise has a negative effect of misleading perceptions and so pro-
duces a bad performance on memory-encoding controllers. Now we analyse why a
higher level of noise tends to produce worse performance in test experiments.

[Insert figure 20 about here]

The sensory event over one light sensor has a binary value and the event value flips
by noise when the sensor readings surpasses the threshold or when it becomes lower
than the threshold. We assume the sensor readings on light sensors is linearly increas-
ing or decreasing when the robot moves away from or towards light. For increasing
sensor readings, a negative effect of noise occurs when one sensor value is over the
threshold at a given time step and the next sensor reading is below the threshold (see
figure 20), that is, ��@NR���@ ��� and ��@;G 7 R���@�GA7 � � where � is the threshold and
��T is the noise-free sensor value and ��T the noise at time � with ��T ���>�����	��
 . Also the
event flipping can happen when �(@ R���@ � � and ��@;GA7 R���@;G 7
��� for decreasing
sensor readings. We will only consider the first case, since the other case is the same
as the former case and only differs in the inequality sign. If we take the equation

�=@ R��@ ��������@;GA7HR��@;G 7 � �
, then ��@ R���@N��� R� ����@;GA7 ����@�GA7 � 
 . We can write it as follows:

� @ ��� @;GA7 ��� @�GA7 ��� @ �I& @
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where &=@ is the change rate of sensor readings for one time step. ��@ � ��@;G 7 are random
noise � � ranging from ��� to � in which � is the maximal noise in the range. Then the
flipping probability can be calculated as the shaded region over the whole squared area
as displayed in figure 20. Hence, the flipping probability � is estimated as

� � �
� � �O&;/ 9� 	 ��� 9 � �

� � � &;/ 9
��� 9 � � �� � � &

� � � /
9 <

According to the above equation, the flipping probability depending on noise level is
shown in figure 21(a). If the noise level � increases, then the flipping probability �

also increases for a fixed change rate of sensor readings, & . If & is larger than twice
the maximal noise level, then the noise flipping can never happen. It implies that a
slow robot movement has more potential of being sensitive to noise, and its internal
state may experience an undesirable state transition. Similarly we can estimate the
flipping probability for Gaussian noise as shown in figure 21(b), which is achieved
with numerical analysis.

[Insert figure 21 about here]

In the experiments, solutions evolved with a high level of noise improve the per-
formance when they are tested with lower noise levels. If the noise level decreases,
the flipping probability also reduces and the memory encoding with state machines
will less often experience an inappropriate state transition when we assume that the
evolved state machines are not a perfect solution to handle noise. It thus improves the
performance in the test with lower noise levels.

[Insert figure 22 about here]

Now we show how state machines with variable thresholds can overcome this noise
flipping. At initial state, the sensory event is set to 4 and a threshold �*- is given a higher
value than the normal threshold as shown in figure 22. If the sensor readings reaches
the first threshold � - , then the internal state is changed to hold a new sensory event
� , and the threshold value is newly switched into � 7 , smaller than the normal. For
any noise within the range � - ��� 7 , the state machines keep the internal state and the
sensory event � constant. Only when the sensor readings are below the new threshold
�*7 , they can return to the sensory event 4 and the previous internal state is restored.
The diagram of the state/event change is similar to the hysteresis effect often observed
in magnetic materials. It is also equivalent to the Schmitt trigger operation in electronic
circuit; the Schmitt trigger application is a comparator to stabilize switches from the
noisy input voltage, and it can prevent rapid triggering by noise, using two reference
voltages. The above hysteresis performance will largely depend on the two thresholds,
� - and � 7 . In this paper, our experiments successfully evolved FSM controllers with
the hysteresis effect, and the structure processes noise as in the above analysis. Schmitt
trigger can be simply achieved with variable thresholds in FSMs.
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5 Discussion

We applied the finite state machines to identify memory states needed for the T-maze
problem. The approach used axis-parallel sensor configurations with a dichotomy of
sensor space for each sensor, while complex sensory configurations are available with
a combination of sensor values and the weight parameters in neural networks. Two
types of controllers, FSMs with a fixed threshold and FSMs with variable thresholds,
showed that T-maze tasks can be achieved with several memory states and simple sen-
sory configurations. We suggest that evolving FSMs can be a useful tool to design
simple controllers and to understand the operation of internal control memory for a
given task. The above T-maze tasks can be extended to more complex situations, for
example, decision with more light lamps or finding the goal by counting the number of
lights. It would require more memory amount to handle such problems.

Neural network approaches have been popular to handle the delayed response tasks.
Here the agent-environment complexity issues were exploited for the tasks. By follow-
ing Bakker and de Jong [2000]’s criterion on the agent complexity based on functional
states, internal memory was quantified in the FSMs for a set of T-maze tasks. In neural
networks, sensory configurations are complex and it is difficult to analyse and measure
the memory amount needed for the tasks, even though there is an approach to extract
FSMs from neural networks [Omlin and Giles, 1996]. In our approach, the FSMs are
directly evolved to quantify the memory amount without the extraction process from
recurrent neural networks. It can produce a simpler design of FSM controllers by
handling the parameter of memory states easily. The results of extraction from neural
networks may be different from those of evolving directly the FSM to see the necessary
memory amount. We leave the comparison of the two approaches for future work.

Some approaches that tackled the road sign problem have used the filtering pro-
cess by unsupervised learning [Linåker and Jacobsson, 2001a,b] or by a combination
of neuron weights and sensor values [Ziemke and Thieme, 2002]. It is presumed that
the methods may have misleading perceptions by noise unless they employ short-term
memory. State transitions in evolved FSMs can be seen as a conceptual abstraction of
internal memory as Ulbricht [1996] showed in her work. In our approach, the sensory
feature can be obtained directly by dividing sensor space with thresholds. State transi-
tions include two parts, a part of recording internal memory and a part of handling sen-
sory features. The experiments with the hysteresis effect showed that a limited sensor
space needs states, which should be disambiguated from internal states of processing
the abstraction of memory. We argue that the sensory feature needs short-term memory
to process noise. Linåker and Jacobsson [2001a] showed that unsupervised classifiers
process sensory features or events in an early stage and then the events are handled
with internal nodes including feedback loops, which correspond to internal memory.
In their approach, the extraction of sensory features requires no short-term memory.
In contrast, the state machines with variable thresholds use short-term memory for the
hysteresis effect to process sensory features, and the memory is not separated from in-
ternal memory of controlling a sequence of events. As a result, it reduces the number
of memory states needed for the T-maze task.

In this paper, we do not intend to imply that finite state machines can produce better
solutions than recurrent neural networks or that finite state machines have a better fea-
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ture of memory encoding. The state machines with a fixed threshold over sensor space
have shortcomings of being sensitive to noise, even though it is essential to filter out
noise for a delayed response task. However, the FSM approach helps to understand the
role of internal memory to achieve a given T-maze task. The experiments also prove
that an appropriate choice of threshold is significant to handle noisy sensor readings.
FSMs with variable thresholds improve the performance and this implies that the qual-
ity of sensory configurations, when their number is fixed, can play an important role of
evolving desirable controllers.

According to Jakobi’s argument, the noise in simulation should be close to that in
the reality. However, it is noted that a noise level higher than in reality can also assist
successful transfer. In our experiments, controllers evolved with a high noise level
improve the performance in the test with lower noise levels. Also there is a limit of
noise level to preserve the original environmental situation; too low or too high levels
of noise may evolve controllers adapted to slightly different environments. It would
be an interesting question what is the limit of noise level for the successful transfer of
evolved controllers.

6 Conclusion

The T-maze problem, as a small domain of the road sign problem, needs long short-
term memory to recognize the environmental situations before decisions of turning left
or right. In this paper the evolutionary multiobjective optimization (EMO) approach
was applied for an analysis of memory requirement for T-maze tasks. The EMO ap-
proach produced significance statistics on the performance difference of variable state
machines in noisy environments. Purely reactive controllers could not succeed in pre-
dicting correct decisions from perceptual experience in the T-maze problem, and multi-
states were required to memorize perceptual states. For T-maze tasks, several experi-
ments were tested with lights acting as environmental landmarks. The intensity of light
signals fluctuates depending on the distance between the sensors and the lights. When
one light was used for the direction of future movements, two internal states were re-
quired. When two lights were placed at four possible positions and the turning decision
relied on the formation of lights, a different size of memory states from two to four was
required. If more lights are used at various positions, more memory states would be
required to record various environmental situations.

We also studied the noise effect on perceptions. A high level of noise has a potential
of distorting sensory perceptions and triggering inappropriate state transitions in FSM
controllers, which can lead to false T-maze decisions. A higher level of noise leads to a
high probability of false movements. When evolved controllers are tested with a lower
level of noise, the performance can be improved under the condition that a history
of sensory perceptions in the evolved environment is not so different from that in the
test environment. We need further study to find what ranges of noise can improve the
performance. The experiments showed that more memory states tend to be sensitive to
noise and have a potential of degrading the performance in test environments, but the
degradation level is stabilized after some number of internal states.

Allowing variable thresholds in state machines can effectively extract sensory fea-
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tures and exploit the memory states. It may need a smaller number of internal states for
the state machines to achieve correct T-maze decision and as well it can design more
robust controllers. We believe that variable thresholds can discover more accurate or
prominent sensory features in a noisy environment by using a hysteresis effect to avoid
misleading sensory perceptions.
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F. Linåker and H. Jacobsson. Learning delayed response tasks through unsupervised
event extraction. International Journal of Computational Intelligence and Applica-
tions, 1(4):413–426, 2001a.
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Figure 1: Chromosome representation with integer encoding ( Q R � states are available)
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Figure 2: Diagram of possible sensory feature structures with four internal states
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Figure 3: T-maze environment 1
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Figure 4: EMO result over the single light T-maze experiment with a noise level �N�=

(dotted: 50 generations, solid: 100 generations)
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Figure 5: Examples of evolved state machines for a single light T-maze
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Figure 6: Test experiments of evolved FSMs over single light T-maze problem (tested
with different noise levels on ambient light sensors)
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Figure 7: Examples of T-maze environment tmaze-env3 with light sensor noise
level � 20 (higher intensity has a lower light level) (a) case 1 (b) case 3
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cases goal position light position
case 1 left both lights are on the left
case 2 left one light in the upper left and the other in the lower right
case 3 right both lights are on the right
case 4 right one light in the lower left and the other in the upper right

(a) tmaze-env1

cases goal position light position
case 1 left both lights are on the left
case 2 left one light in the lower left and the other in the upper right
case 3 right both lights are on the right
case 4 right one light in the upper left and the other in the lower right

(b) tmaze-env2

cases goal position light position
case 1 left both lights are on the left
case 2 left both lights are on the right
case 3 right one light in the lower left and the other in the upper right
case 4 right one light in the upper left and the other in the lower right

(c) tmaze-env3

Table 1: Experiments with two lights
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Figure 8: Examples of state machines for T-maze tmaze-env1 (a) 2-state FSM (b)
5-state FSM
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Figure 9: EMO result over T-maze problem tmaze-env1 and tmaze-env2 with a
noise level �N�=
 (a) tmaze-env1 (dotted: 50 generations, solid: 100 generations) (b)
tmaze-env2 (dotted: 100 generations, dashdot: 200 generations, solid: 300 genera-
tions)
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Figure 10: Test experiments of evolved FSMs over T-maze problem tmaze-env1
with different noise levels on ambient light sensors
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Figure 11: Examples of evolved state machines for T-maze tmaze-env2
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Figure 12: Test experiments of evolved FSMs over T-maze problem tmaze-env2
(tested with different noise levels on ambient light sensors)
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Figure 13: EMO result over T-maze problem tmaze-env3 with various noise levels
on ambient light sensors (dotted: 100 generations, dashdot: 200 generations, solid: 500
generations)
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Figure 14: State transition diagram with four states for tmaze-env3 (sensory con-
figurations involving infrared sensors are not displayed)

parameters memory states
noise success 1 2 3 4 5 6 7
level rate state states states states states states states

0.90 0 0 0 18 22 22 23
noise � 0 0.95 0 0 0 9 13 15 16

0.99 0 0 0 7 9 10 10

0.90 0 0 0 11 15 12 18
noise � 5 0.95 0 0 0 8 8 8 9

0.99 0 0 0 8 6 8 9

0.90 0 0 0 12 13 16 14
noise � 10 0.95 0 0 0 11 13 13 13

0.99 0 0 0 7 11 10 9

0.90 0 0 0 7 15 15 16
noise � 20 0.95 0 0 0 2 11 14 14

0.99 0 0 0 1 5 8 8

0.90 0 0 0 1 2 4 4
noise � 30 0.95 0 0 0 1 2 3 3

0.99 0 0 0 0 0 1 1

0.90 0 0 0 0 2 3 2
noise � 40 0.95 0 0 0 0 0 2 1

0.99 0 0 0 0 0 0 0

Table 2: Number of successes for various memory states in T-maze problem tmaze-
env3 (each column represents the number of successes among 25 trials for a given
success rate and the success rate is measured by the fitness value ( � � � � ); there is no
success at all for less than 4 states with any noise level)
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Figure 15: Test experiment of FSMs evolved with a fixed threshold of 250 (25 trial
evolutionary runs produce 25 best controllers; each of the best evolved controllers is
evaluated 500 times and its average score is calculated)

33



1 2 3 4 5 6 7
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
su

cc
es

s 
ra

te

states
1 2 3 4 5 6 7

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

states

su
cc

es
s 

ra
te

(a) evolved with noise �N�=
 (b) evolved with noise � ��

Figure 16: EMO result over T-maze problem tmaze-env3 with one varying thresh-
old for each state (dotted: 100 generations, dashdot: 200 generations, solid: 500 gen-
erations)

q1

light=01,10,11
/T=350

q0
light=00 / T=350

light=00 / T=150

LEFT RIGHT

light=00,11 / T=100

light=01,10 / T=100

light=01,10,11 / T=150
q2

Figure 17: An example of state machines with variable thresholds for tmaze-env3
(T: threshold value)
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Figure 18: Test experiments of FSMs with one varying threshold for each state over
T-maze problem tmaze-env3 (tested with different noise levels on ambient light
sensors)
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Figure 19: Test experiments of FSMs with two varying thresholds for each state over
T-maze problem tmaze-env3 (tested with different noise levels on ambient light
sensors)
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Figure 20: A picture of undesirable event flipping and the noise flipping zone
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Figure 21: Flipping probability near the sensor threshold (a) random noise (b) Gaussian
noise (mean 0, variance �

9 )
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Figure 22: Decision of sensory event with hysteresis effect to handle noise
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