
Evolving Multi-objective Strategies for Task
Allocation of Scientific Workflows on Public Clouds

Claudia Szabo
School of Computer Science

The University of Adelaide

Australia, SA, 5005

Email: claudia.szabo@adelaide.edu.au

Trent Kroeger
School of Computer Science

The University of Adelaide

Australia, SA, 5005

Email: trent.kroeger@adelaide.edu.au

Abstract—With the increase in deployment of scientific appli-
cation on public and private clouds, the allocation of workflow
tasks to specific cloud instances to reduce runtime and cost has
emerged as an important challenge. The allocation of scientific
workflows on public clouds can be described through a variety
of perspectives and parameters and has been proved to be
NP-complete. This paper presents an optimization framework
for task allocation on public clouds. We present a solution
that considers important parameters such as workflow runtime,
communication overhead, and overall execution cost. Our multi-
objective optimization framework builds on a simple and exten-
sible cost model and uses a heuristic to determine the optimal
number of cloud instances to be used. Using the Amazon Elastic
Compute Cloud (EC2) and Amazon Simple Storage Service
(S3) as an example, we show how our optimization heuristics
lead to significantly better strategies than other state-of-the-
art approaches. Specifically, our single-objective optimization is
slightly better than a simple heuristic and a particle swarm opti-
mization approach for small workflows, and achieves significant
improvements for larger workflows. In a similar manner, our
multi-objective optimization obtains similar results to our single-
objective optimization for small-size workflows, and achieves up
to 80% improvement for large-size workflows.

I. INTRODUCTION

Cloud computing is increasingly becoming the platform of

choice for affordable, easy-to-use off-site computation, due

mainly to its appealing advantages such as pay-per-use, elas-

ticity, and availability among others [17]. However, it has yet

to become as widely accepted as initially envisaged [9], [17],

[25]. In particular in the scientific community, there is a need

for a computational platform to replace High Performance

Computing (HPC) for on-demand, responsive, and highly cus-

tomized computational scientific research [9]. Cloud comput-

ing offers an appealing promise for the execution of emerging

computationally and I/O intensive scientific workflows. The

suitability of cloud computing for scientific computation has

been the focus of research in the past years [9], [25], with

recent work proposing solutions that schedule and execute

scientific workflows in the cloud [5], [24], [26].
The task allocation problem is an NP-complete problem [10]

and as such various heuristics have been proposed [5], [26].

Traditional task allocation algorithms look at the problem from

a provider perspective, in which the focus is to maximize

the utilization of specific homogeneous resources in a grid

or cluster, when multiple workflows from different users are

submitted [1], [15]. In contrast, in cloud computing, virtual

clusters can be easily set up using heterogeneous resources [3],

and the perspective is shifted to the user that is concerned with

reduced runtime at minimal costs [17]. The inherent variety of

cloud providers and solutions leads to a different formulation

of the task allocation problem, as different types of resources

(hardware, software), and utility functions (single or multi-

objective, performance, cost, profit, energy consumption) can

be devised [17].

In this paper, we present a problem formulation for the

allocation of scientific workflows on public clouds and discuss

an optimization framework to solve it. Our framework consid-

ers communication overhead and transfer bandwidth between

scientific tasks and proposes both single objective and multi-

objective evolutionary algorithms to reduce the total workflow

runtime, as well as the total cost of executing the workflow

on a platform built from various cloud instances. To illustrate

these algorithms, we employ a model based on the Amazon

Elastic Compute Cloud (EC2) and Scalable Storage Service

(S3), but our framework can be easily extended to other cloud

providers. We analyze several scientific workflows of different

sizes and characteristics. Firstly, our experiments allocate I/O

- intensive workflows such as Montage [4], which creates

science-grade astronomic image mosaics using data collected

from telescopes. We next analyze computationally-intensive

workflows such as Epigenomics [4], which maps short DNA

segments to previous existing references. Secondly, we analyze

scientific workflows of varying size, in the range of tens,

hundreds, and thousands of tasks.

This paper is organized as follows. Section II presents

the task allocation problem in detail, and related work is

discussed in Section III. The formulation of this problem as an

optimization problem follows in Section IV. Our experiments

follow in Section V. Section VI concludes this paper and

presents our future work.

II. EXECUTION OF SCIENTIFIC WORKFLOWS ON PUBLIC

CLOUDS

A scientific workflow is a directed acyclic graph (DAG)

representation of a sequence of tasks in a program that solves

a scientific problem [16]. Tasks in a workflow are routines

that may require one or more input files and that produce
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Fig. 1. Allocation of Scientific Workflows on Public Clouds

one or more output files. Task dependence is represented

by the DAG, in which tasks are nodes connected by edges

representing file dependencies. More formally, we can define

a scientific workflow as the set of tasks T = {ti}, of size

m = |T |, that are organized based on their dependencies in

the set W = {(ti, tj , Fij)|ti, tj ∈ T, Fij ∈ Φ}. In the DAG

representation, a weighted edge between task ti and tj has

the weight Fij , as shown in Fig. 1. The set Φ contains the

file sizes, in gigabytes (GB), transferred between the tasks

in the workflow, with Fij representing the total size of the

files produced by task ti that are needed by its child tj . The

task allocation problem looks at assigning workflow tasks on

various cloud instances, as shown in Fig. 1, where the six

workflow tasks are allocated to three cloud instances.
Scientific workflows are both data and computationally in-

tensive, with file sizes up to hundreds of gigabytes exchanged

between tasks. A key challenge is how to allocate tasks on

specific cloud instances to ensure a minimum communication

overhead between tasks that exchange large files, e.g. Mon-

tage, which has 99% execution time taken by data operations

[12], [13], [21]. The optimization of the allocation of tasks on a

number of nodes can be defined from a variety of perspectives

and using various parameters. For example, from a cloud user

perspective, of interest are inter-task communication, com-

munication topology, and different instance types depending

on the task size. Moreover, a trade-off between runtime and

cost might occur for large scientific workflows, as more cloud

instances (hence an increase in cost) might be employed to

reduce the runtime. From a cloud provider perspective, issues

of importance are the allocation of heterogeneous resources,

a minimized inter-process communication, as well as meeting

availability and reliability. For a cloud provider, optimization

functions could look at profit, performance, meeting deadlines,

ensuring security, and reducing energy consumption. Lastly,

when clouds from different providers are aggregated in a

federated cloud, network latency, reliability, and availabil-

ity become important challenges. From this perspective, the

objective is to increase profit, to ensure appropriate time-

zones for sensitive applications running on geographically

distributed clouds, and reduce energy consumption. Moreover,

the execution of scientific workflows on a parallel platform can

be static or dynamic. A static allocation considers the initial

status of the cloud platform. In the case of dynamic scientific

workflows, where the load and output of individual tasks and

cloud instances changes over time, a task needs to be moved

from one cloud instance to another transparently for the other

tasks in the workflow, and at minimal impact on the runtime

and cost.

Hereafter, we use the term node or cloud instance to refer

to a virtual machine instance obtained from a cloud provider

that offers Infrastructure-as-a-Service [17], in which clusters

can be formed using bare-metal virtual machine instances. In

this paper, we employ the Amazon Elastic Cloud Compute

(EC2) service as an example of such a cloud. Our model

assumes that tasks are allocated to nodes to be executed in

a specific order. In other words, our optimization framework

will not only assign tasks to specific nodes but also specify the

order in which these tasks are executed, to minimize runtime

and cost. Thus our proposed optimization framework performs

both allocation and scheduling of tasks on a number of nodes.

III. RELATED WORK

Deelman et al. [7] have proposed the Pegasus workflow

management system (WMS) as a framework that maps com-

plex scientific workflows into grid resources, using the Condor

system. Similar to most workflow management systems [16],

[18], Pegasus schedules tasks based on their earliest start or

finish time, and/or resource utilization, and does not consider

other parameters such as placement of data and resource cost.

A recent paper investigates the suitability of cloud computing

for the execution of Pegasus workflows, but only a single

cloud instance (in which the Condor scheduler is installed)

is considered [22]. Other approaches include matrix-based

heuristics [26], hypergraph-based heuristics [5], and particle

swarm optimizations [19], [24].

In matrix-based heuristics, a similarity matrix is built for

files exchanged in the workflow [26]. In this matrix, entry

d(ij) shows the number of tasks that require both files f(i)
and f(j). In the initial stage, the similarity matrix is used to

cluster the files such that highly related files are placed in the



same site. When a task arrives during the workflow execution,

it is greedily assigned to the execution site that contains most

of its files. Similarly, when a data file is generated, it is placed

in a site that contains files with a high similarity score with

the input file. While a greedy approach offers an increase in

speed, it might not lead to an optimal solution, and similarity

scores between data files are difficult to calculate.

Hypergraph-based heuristics [5] model the workflow as a

hypergraph considering both data placement and task assign-

ment. This permits simultaneous construction of data place-

ment and task assignment schemes that distribute the stor-

age and computational loads among the execution sites with

respect to some pre-determined ratios. This static allocation

approach assumes that storage and execution capabilities of

each cloud instance, as well as the exact number of cloud

instances, is provided by the user, together with information

about cloud instance desirability. The approach achieves a 35%

improvement over the matrix-based heuristic in terms of load

balancing. However, this approach assumes a cost model based

only on the communication overhead (i.e. the number of files

exchanged between sites) in a static workflow.

From a provider perspective, evolutionary algorithms have

been used to allocate tasks on cluster nodes to reduce compute

node utilization [15], but the task order on the compute nodes,

as well as execution cost and runtime are not considered.

Other approaches [19], [24] model the task-resource mapping

as a particle swarm optimization problem (PSO) [14] to

minimize the overall cost of execution. However, this limits the

optimization to a single objective, such as runtime, as current

multi-objective particle swarm optimizers only deal with small

problems. As we show in Section V, this is also the case

for our simple PSO implementation, which cannot allocate

workflows with size greater than 500 tasks. In contrast, we

propose both single and multi-objective evolutionary algorithm

based optimization frameworks. Our single-objective approach

achieves good results for small workflows of up to 100

tasks, while our multi-objective approach obtains significant

improvements for large-size workflows of up to 1,000 tasks.

IV. PROBLEM FORMULATION

We represent solutions to the task allocation problem by two

chromosomes. The first chromosome specifies the allocation

strategy and maps individual tasks to nodes within the cloud.

The second chromosome in each candidate solution represents

a total ordering over all tasks, as shown in Fig. 2. Specifically,

in the first chromosome the index represents the task id in

the workflow, from 0 to m − 1, and the values represent the

node id, from 1 to n. The second chromosome contains a task

ordering from t1 to tm. For the example in Fig. 1, we have

n = 3,m = 6, and an encoding as shown in Fig. 2.

With information about both the task allocation and or-

dering, each solution can be evaluated to estimate the over-

all runtime and total cost of scientific workflow execution.

While there is likely to be a correlation between runtime

and total cost for the execution of scientific workflows, the

highly parallel nature of these workflows and communication

overheads may give rise to significant trade-offs between these

two objectives. To handle this, we propose the application

of recently developed multi-objective evolutionary algorithms,

such as NSGA-II to optimize towards a solution [6].

Rather than evolving solutions towards a single optima,

multi-objective evolutionary algorithms maintain a set of op-

timal solutions - termed collectively a pareto front - that

represent different trade-off solutions to be chosen by the

scientist. In this case, the NSGA-II algorithm is used to opti-

mize both the allocation and ordering strategies simultaneously

by applying appropriate crossover and mutation operators.

This problem is interesting from an algorithmic point of

view as it involves a number of complexities, including the

multi-objective nature of the problem, co-evolution of two

chromosomes and the construction of crossover and mutation

operators that respect task dependencies. The following sub-

sections describe how solutions to this problem may be

evaluated, with respect to the objectives of runtime and cost,

and how solutions may be modified using problem-specific

operators.
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0 1 2 3 m-1
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Encoding:
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Fig. 2. Chromosome Encoding

A. Fitness Function Evaluation

Each solution is evaluated using the following method. For

each possible allocation a of workflow W on n cloud instances

we use the notation a = {a1 = (. . . , ti1, . . . , tj1), a2 =
(. . . , ti2, . . . , tj2), . . . , an = (. . . , tin, . . . , tjn)} to denote that

ai represent all the tasks running on the cloud instance i.
For each allocation a, our evaluation method returns a three-

dimensional array representing the communication overhead,

runtime, and cost respectively. The communication overhead is

calculated as the sum of the file sizes exchanged by workflow

tasks across cloud instances. Consider the case shown in Fig.

3, when a parent ti is allocated to a cloud instance and

all or some of its child tasks tj are allocated to another

cloud instance. When using the Scalable Storage Service (S3)

model, the parent will upload its output files to S3 (the first

component in Equation 1) and the children will download the

files from S3 when needed (the second component in Equation

1). The additional upload incurred by the parent uploading



its files to S3 might seem like an additional overhead and

would discourage the use of S3. However, all of the scientific

workflows we analyzed are characterized by a parent with

a large number of children (over 500 in one case). In this

case, the impact of the single upload is minimal. Besides

being established as a de-facto approach, the use of S3 is also

justified by the need of data persistence, parallelized access to

buckets, and increased bandwidth [9], [23]. More formally,

overhead(a) =
∑

Fi +
∑

Fij (1)

where Fi represents all of the output files of task ti, and

∃k, l, k 6= l such that ti ∈ ak and tj ∈ al, and (ti, tj , Fij) ∈
W .

The runtime of a scientific workflow given a specific alloca-

tion a is calculated as the maximum endtime of the execution

of tasks per each cloud instance, assuming all input/output files

are present, plus the transfer overhead required to transfer the

needed files from one cloud instance to another. Thus

runtime(a) = maxk(maxi(end time(tik)) +
overhead(a)

bandwidth
(2)

where tik ∈ ak, ak ∈ a, and the value of bandwidth and

other Amazon EC2 and S3 parameters are specified in Table

I. The maximum end time of tasks per node is calculated

using a simple algorithm that at each iteration visits each cloud

instance and determines the first task that can be executed.

The runtime of that task is then established according to the

workflow specification file1 and the value of the end time
variable is increased accordingly. This follows the behavior

of a simple first-come first-served scheduler. When all tasks

have been executed, the maximum end time of all nodes

is considered. This follows the assumption that all cloud

instances will be shut down only when the last task completes.
The cost of running a scientific workflow given a specific

allocation a is calculated as the cost of keeping all cloud

instances running, runtime cost, and the cost of communi-

cation when using the Amazon S3 model, S3 cost:

cost(a) = runtime cost(a) + S3 cost(a) (3)

Fig. 3 shows a simple example of the calculation of S3 cost
when using Amazon S3. As it can be seen, we consider the

use of S3 whenever a parent task i and all or some if its child

tasks j are not allocated to the same cloud instance. In this

case, the parent will upload its output files to Amazon S3 using

buckets of 5GB each, as per the Amazon S3 instructions [2].

This results in a number pi of PUT requests, which are priced

by Amazon according to Table I, as costp. All children that

are not allocated to the same node as their parent will obtain

the required files from S3 using GET requests for each 5GB

bucket. This results in a number gj of GET requests, which

are priced by Amazon according to Table I, as costg . Thus

we have

S3 cost(a) =
∑

i,j

pi ∗ costp + gj ∗ costg

1The runtime of each task varies depending on the workload of the system.
We employ benchmark values as described in Section V.

where ∃k, l, k 6= l such that ti ∈ ak and tj ∈ al, and

(ti, tj , Fij) ∈ W .

t1

t2 t3

Cloud Instance 1

Cloud Instance 2

5GB 5GB 5GB
...

(1) PUT: F13 (2) GET: F13

Amazon Scalable Storage Service (S3)

Fig. 3. Using the Amazon Scalable Storage Service (S3)

B. Problem-specific Operators

The proposed optimization framework is based on common

metaheuristic algorithms that are used in conjunction with

the fitness function evaluation method described above. Both

our single-objective and multi-objective algorithms apply the

same set of evolutionary operators for selection, crossover

and mutation. Due to solution constraints implied by the

workflow task-graphs, the crossover and mutation operators

have problem-specific aspects that are based on a similar opti-

mization problem for the allocation of processes to computing

nodes [15].

For each algorithm, a standard Binary Tournament selection

operator is used at the beginning of each algorithm iteration to

select two parent solutions from the population. This selection

operator chooses two pairs of solutions uniformly at random

from the population, performs a comparison of the fitness of

the solutions within each pair and selects the best solution

from each pair. The two selected solutions are then considered

parent solutions for the subsequent crossover operator.

Two separate crossover operators, corresponding to the

two chromosomes of the parent solutions, are applied, with

specified probability. Firstly, a standard single-point crossover

is applied to the allocation chromosomes of the solutions,

where a crossover point is chosen uniformly at random to

divide the chromosome. The first segment of the chromosome

from one parent is then combined with the second segment

of the other parent to yield valid allocation chromosomes for

two offspring solutions. In a second step, an order crossover

operator is applied to the ordering chromosomes of the parent

solutions. Such an operator is necessary since the ordering

chromosome is constrained by the workflow task-graph and

the application of a standard single-point crossover may lead



to the generation of infeasible solutions. For this operator, a

crossover point is chosen uniformly at random for each parent

solution and the first segment of the chromosomes for the

offspring solutions are populated as per the standard single

point crossover operator. Genes that were not included in the

first segment are then added in the same order as they appear

in the alternate parent chromosome.

A mutation operator is then applied, with specified proba-

bility, to the offspring solutions. Due to task-graph constraints,

mutation of these solutions is performed as a two step process.

If a solution is chosen for mutation, then each gene within its

allocation chromosome is randomly flipped, with probability

1/n, where n is the number of tasks. The flipped gene is

assigned a random integer value, which represents a cloud

node. However, a random mutation is not appropriate for the

ordering chromosome and will often lead to solutions that

invalidate workflow constraints. Instead, the second part of

the process applies a swap mutation operator to the order-

ing chromosome. Our implementation pre-processes the input

workflow to identify a list of all possible pairs of tasks that

may be swapped, without violating precedence constraints.

The swap mutation operator randomly chooses one pair from

this list and exchanges this pair of values within the ordering

chromosome.

V. EXPERIMENTS

A. Experimental Parameters

Towards a realistic cloud model, we implemented a number of

parameters as shown in Table I. Our cloud computing model

considers a Infrastructure-as-a-Service (IaaS) model, in which

the cloud provider offers the users the infrastructure required to

run any type of application, regardless of its implementation

and deployment details. In IaaS, the cloud users employ a

virtual machine instance in a similar manner as they would

use a physical machine. For our experiments, we use the

Parameter Value

Cloud provider Amazon
Cloud type Infrastructure-as-a-Service (IaaS)

Cloud instance
- type c1.xlarge
- CPU 20 EC2 Compute Units

- memory 7 GB
Cloud instance price 0.68$/hr

S3 object size 5 GB
S3 request PUT price 0.01$
S3 request GET price 0.001$

S3 bandwidth 12 MB/s

TABLE I
CLOUD CHARACTERISTICS

characteristics of Amazon c1.xlarge instances, which are

suited for computationally intensive applications as they have

high I/O performance and a large memory capacity. This is

because this type of instance has been found to be similar

to the cluster nodes on which the scientific workflows in

Table II were executed and for which the runtime benchmark

values were obtained, as published by the Pegasus project [20].

The Pegasus project publishes the specifications of a number

of scientific workflows shown in Table II. The published

information includes workflow size, workflow DAG, as well

as details about the execution of the workflows (runtime, file

transferred, etc.) on a cluster composed of instances equivalent

to Amazon c1.xlarge instances [12]. These workflows have

been used as benchmark workflows in a variety of projects and

as such are employed in our study [5], [24].

Workflow
Type

Number of Tasks
Number of

I/O; Memory; CPU Cloud Instances

Montage High; Low; Low 25; 50; 100; 1,000 5; 6; 10; 77
CyberShake Low; Low; Medium 30; 50; 100; 1,000 3; 5; 9; 5

Inspiral Low; Medium; Medium 30; 50; 100; 1,000 3; 3; 9; 50
Sipht Low; Medium; High 30; 60; 100; 1,000 4; 8; 12; 128

Epigenomics Low; Medium; High 24; 46; 97; 997 2; 5; 2; 15

TABLE II
SCIENTIFIC WORKFLOW CHARACTERISTICS

Our framework determines an optimal configuration of tasks

executing on a number n of cloud instances that form a

virtual cloud cluster. It is important to highlight here that

determining the optimal value of n for a particular workflow

can impact the performance and results of the optimization.

An approach would be to set a pre-defined value of n for

all scientific workflows. However, as it can be seen in Table

II, the size of the workflows varies from 25 to 1,000 and a

single value of n might not be optimal for all. In contrast,

we propose a simple heuristic to determine a good value of

the number of cloud instances the workflow will be executed

on. Our heuristic determines, for each workflow DAG, n as

the maximum number of task sets that can be executed in

parallel, as shown in Table II. Our experiments show that the

heuristic values of n lead to better results than a fixed value of

n, say n = 10, for all workflows. Space constraints prevent us

from showing the results here. An analysis of the suitability

of this heuristic, as well as introducing n as an objective in

our optimization framework, is part of our future work.

B. Heuristic Allocation

For comparison, we implement a simple heuristic allocation

that aims to reduce the communication overhead incurred by

the allocation. Informally, the heuristic tries to allocate parent-

child pairs of tasks that have large files exchanged between

them on the same cloud instance. The heuristic proposes

the concepts of task bundle and task parallel sets. Firstly,

tasks ti+2, ti+ 3 in a chain, e.g. ti, ti+2, ti+ 3, ti+4 with no

children and no execution constraints in the tree, and in which

Fi+2,i+3 has a large size, can be aggregated, i.e. executed

on the same cloud instance. The heuristic then attempts to

determine tasks that can be executed in parallel and puts them

in parallel sets. The tasks in the parallel sets have no parents

or have the same parent and will be assigned to different

cloud instances. Based on the task bundles and the parallel

sets, the heuristic then goes through the entire workflow tree

and allocates tasks to cloud instances to minimize overhead

as discussed above. The allocation is then evaluated using

the evaluation function discussed in Section IV-A. As shown

in tables IV and III, this heuristic obtains good results for

workflows of small size, but does not perform well for large

workflows, because of the large number of children (more



than 500) for each parent, that are allocated on different cloud

instances and thus incur a high communication overhead.

C. Particle Swarm Optimization

In a similar manner, we implement a simple particle swarm

optimization (PSO) algorithm, as proposed in [24]. The al-

gorithm was implemented using jSwarm [11] and constructs

a particle with size equal to the number of tasks. The PSO

uses cost functions described in Equations 1 - 3. We executed

30 independent optimization runs for each workflow-objective

combination and recorded the results. The mean and standard

deviation for these runs are shown in tables III and IV. Our

implementation obtains results similar to the above heuristic

for workflows of small size, below 100 tasks. However,

our implementation does not scale beyond workflows with

more than 500 tasks. A solution for this known problem is

suggested in [19] and involves performing a pre-ordering of

tasks followed by allocation of workflow tasks on a first-

come first-served basis. Since this contradicts our problem

formulation, we have not implemented this solution here.

D. Single Objective Evolutionary Algorithm

We implement a single-objective evolutionary algorithm to

optimize the task allocation and ordering with respect to cost

and runtime. We embed the problem formulation and operators

described above within a standard steady-state genetic algo-

rithm, implemented within the jMetal optimization framework

[8]. We configure this algorithm with a population size of 10,

mutation and crossover probabilities of 0.9 and a maximum

number of evaluations set to 100000. We have evaluated other

parameter configurations but found that these mutation and

crossover probabilities lead to the best results. We executed 30

independent optmization runs for each workflow to minimize

overall execution cost and separately for each workflow to

minimize execution runtime. The mean and standard deviation

for these runs are shown in tables III and IV.

E. Multi-Objective Evolutionary Algorithm

As the principal contribution of this paper, we implement

a multi-objective evolutionary algorithm to optimize the task

allocation and ordering simultaneously with respect to both

cost and runtime. We embed the problem formulation and

operators described above within the standard NSGA-II algo-

rithm, implemented within the jMetal optimization framework.

To allow comparison with the single-objective case, we also

configure this algorithm with a population size of 10, mutation

and crossover probabilities of 0.9 and a maximum number of

evaluations set to 100000. We again executed 30 independent

optimization runs for each workflow to minimize, simulta-

neously, the overall execution cost and runtime. Formulating

this problem as a multi-objective optimization allows, users

of scientific workflows to consider tradeoffs between cost and

runtime. An illustrative example of this is given in Fig. 4,

which shows the pareto front generated for cost and runtime

optimization of the Sipht 1000 workflow.

To allow for meaningful comparison with the single-

objective variant, the mean and standard deviation for the best

cost and runtime achieved for each of these runs are shown in

Table III and Table IV respectively.
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Fig. 4. Cost versus Runtime tradeoffs for Sipht 1000 Workflow

F. Analysis of Results

Tables III and IV summarize the experimental results and

list the mean cost and runtime optimization results for each

algorithm-workflow combination and the standard deviation

across all runs for the stochastic algorithms trialled. An

examination of this data shows that the evolutionary algorithms

proposed in this paper clearly out-perform the heuristic alloca-

tion and particle swarm optimization approaches, particularly

for workflows with larger number of tasks. This is con-

firmed statistically through the application of Mann-Whitney-

Wilcoxon tests to compare the performance of the particle

swarm optimization algorithm to that of the single objective

evolutionary algorithm for workflows of size aprox. 100. The

results of these tests, shown in tables V and VI, confirm that

the single-objective algorithm achieves better results for all

workflows tested at a level of significance less than 0.001.
It is also observed from the data that for large workflows,

the multi-objective algorithm seems to out-perform the single-

objective algorithm. This is also confirmed statistically through

the application of the Mann-Whitney-Wilcoxon tests, shown in

tables VII and VIII. These results show that the multi-objective

algorithm achieves better results for both cost and runtime

optimization for all workflows tested at a level of significance

less than 0.001. One possible reason for this result is that the

NSGA-II algorithm implicitly includes a diversity mechanism

to spread solutions across the pareto front. It is recognised

that on some occasions this can lead to increased performance,

compared to single objective algorithms within which no such

diversity mechanisms have been implemented.

Workflow MeanPSO MeanSO WStatistic p-value

Montage 100 27.2 2.49 900 <0.001
CyberShake 100 369.92 1.36 900 <0.001

Inspiral 100 7.41 2.16 900 <0.001
Sipht 100 30.26 3.02 900 <0.001

Epigenomics 97 111.93 6.53 900 <0.001

TABLE V
MANN-WHITNEY-WILCOXON COMPARISON FOR PSO AND SINGLE

OBJECTIVE ALGORITHMS WITH RESPECT TO COST (US $)



Workflow
Heuristic PSO Single Objective Multi-Ojbective

Allocation Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Montage 25 2.26 6.8 0.001 0.88 0.31 0.77 0.23
Montage 50 3.8 13.7 0.001 1.31 0.34 1.17 0.36
Montage 100 6.95 27.2 0.001 2.49 0.56 2.44 0.70

Montage 1,000 64.55 - - 54.02 2.39 45.32 2.00

CyberShake 30 31.01 139.4 0.001 1.20 0.32 1.20 0.21
CyberShake 50 43.99 192.44 0.001 1.36 0.001 1.36 0.005

CyberShake 100 82.52 369.92 0.001 1.36 0.001 1.36 0.001
CyberShake 1,000 910.35 - - 4.11 1.36 1.37 0.003

Inspiral 30 2.74 2.88 0.27 1.224 0.29 1.08 0.33
Inspiral 50 4.11 3.42 0.12 1.36 0.001 1.31 0.17

Inspiral 100 4.13 7.41 0.48 2.16 0.17 2.05 0.001
Inspiral 1,000 7.35 - - 13.11 1.29 11.39 1.08

Sipht 30 4.22 5.44 0.001 1.71 0.43 1.15 0.31
Sipht 60 11.12 18.04 0.73 2.31 0.49 2.14 0.37

Sipht 100 13.32 30.26 2.38 3.02 0.61 2.98 0.58
Sipht 1,000 98.59 - - 67.78 2.51 57.31 2.88

Epigenomics 24 15.12 52.76 4.25 1.67 0.38 1.69 0.39
Epigenomics 46 22.45 75.53 5.71 2.13 0.001 2.13 0.001
Epigenomics 97 62.88 111.93 14.65 6.53 0.35 6.51 0.37
Epigenomics 997 372.53 - - 106.15 25.93 19.81 3.88

TABLE III
COMPARISON OF OPTIMIZATION METHODS WITH RESPECT TO COST (US $)

Workflow
Heuristic PSO Single Objective Multi-Ojbective

Allocation Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Montage 25 1.46 8.76 0.04 0.07 0.04 0.02 0.003
Montage 50 3.15 18.97 0.09 0.36 0.47 0.24 0.35

Montage 100 7.34 38.42 0.09 1.91 0.97 1.54 0.93
Montage 1,000 79.72 - - 62.94 2.70 52.94 2.17

CyberShake 30 37.73 203.36 0.002 0.07 0.009 0.068 0.01
CyberShake 50 52.30 281.65 0.002 0.07 0.005 0.08 0.01
CyberShake 100 100.30 540.50 0.02 0.10 0.01 0.11 0.001

CyberShake 1,000 1252.89 - - 2.89 3.28 0.14 0.01

Inspiral 30 0.18 1.22 0.03 0.37 0.002 0.37 0.06
Inspiral 50 0.50 1.58 0.05 0.40 0.003 0.39 0.03
Inspiral 100 0.60 2.12 0.07 0.38 0.01 0.37 0.05

Inspiral 1,000 2.94 - - 2.82 0.17 2.03 0.19

Sipht 30 1.67 3.87 0.009 1.01 0.0001 0.99 0.09
Sipht 60 2.78 7.65 0.05 1.25 0.08 1.20 0.01
Sipht 100 4.00 10.93 0.28 1.40 0.11 1.35 0.13

Sipht 1,000 29.06 - - 17.76 1.05 15.06 0.88

Epigenomics 24 13.63 73.6 6.20 0.86 0.19 1.72 0.02
Epigenomics 46 18.21 114.18 19.60 1.55 0.0001 1.96 0.001
Epigenomics 97 35.84 156.49 21.73 8.44 0.11 8.42 0.11

Epigenomics 997 443.80 - - 67.93 7.32 21.05 3.64

TABLE IV
COMPARISON OF OPTIMIZATION METHODS WITH RESPECT TO RUNTIME (HOURS)

Workflow MeanPSO MeanSO WStatistic p-value

Montage 100 27.2 2.49 900 <0.001
CyberShake 100 369.92 1.36 900 <0.001

Inspiral 100 7.41 2.16 900 <0.001
Sipht 100 30.26 3.02 900 <0.001

Epigenomics 97 111.93 6.53 900 <0.001

TABLE VI
MANN-WHITNEY-WILCOXON COMPARISON FOR PSO AND SINGLE

OBJECTIVE ALGORITHMS WITH RESPECT TO RUNTIME (HOURS)

Workflow MeanSO MeanMO WStatistic p-value

Montage 1000 54.02 45.32 900 <0.001
CyberShake 1000 4.11 1.37 691 <0.001

Inspiral 1000 13.11 11.39 718 <0.001
Sipht 1000 67.78 57.31 900 <0.001

Epigenomics 997 106.15 19.81 900 <0.001

TABLE VII
MANN-WHITNEY-WILCOXON COMPARISON FOR SINGLE AND MULTIPLE

OBJECTIVE ALGORITHMS WITH RESPECT TO COST (US $)

Workflow MeanSO MeanMO WStatistic p-value

Montage 1000 62.94 52.94 900 <0.001
CyberShake 1000 2.89 0.14 768 <0.001

Inspiral 1000 2.82 2.03 899 <0.001
Sipht 1000 17.76 15.06 866 <0.001

Epigenomics 997 67.93 21.05 900 <0.001

TABLE VIII
MANN-WHITNEY-WILCOXON COMPARISON FOR SINGLE AND MULTIPLE

OBJECTIVE ALGORITHMS WITH RESPECT TO RUNTIME (HOURS)

VI. CONCLUSION AND FUTURE WORK

The allocation of scientific workflows on public clouds is

a NP-complete problem that can be analyzed from a variety

of perspectives and using different parameters. In this paper,

we propose an evolutionary approach that looks at optimizing

execution cost and execution runtime, when the scientific

workflow is executed on an Amazon EC2 cloud that uses



Scalable Storage Service (S3). The contributions of this paper

are twofold. Firstly, we propose single and multi-objective

evolutionary algorithms with problem-specific operators for

mutation and crossover. Secondly, we embed within these

algorithms a simple and extensible cost model to evaluate a

specific allocation and ordering of tasks executed on a set

of cloud instances. This evaluation considers communication

overhead, runtime, cost, as well as bandwidth and other cloud

parameters. In contrast to existing work [15], our approach

considers the allocation of tasks on a specific cloud instance,

as well as the scheduling of tasks execution on the instance.

Our experiments employ computationally-intensive and I/O

intensive scientific workflows as specified by the Pegasus

project, with a variety of sizes from 25 to 1,000 tasks.

In comparison with a simple heuristic and particle swarm

optimization implementation, our single-objective approach

performs by a factor of 10 better for workflows of small

size, of up to 100 tasks, both for execution cost and runtime.

Specifically, for workflows of size 100, our single objective

optimization consistently out-performs the other approaches,

obtaining a cost of under $10 for all workflows. For example,

for the Sipht workflow, the cost of allocation obtained

by our single-objective optimization is around 2$, whereas

the cost obtained by the heuristic and PSO is around $12

and $30 respectively. Our multi-objective approach performs

only slightly better for small workflows, but offers an 80%

improvement for larger workflows, where a significant trade-

off can be observed. For example, for the computationally-

intensive Epigenomics workflow, our multi-objective ap-

proach obtains a cost of around $20, as opposed to $100

obtained by our single-objective approach.

The allocation of scientific workflow tasks on public clouds

can be defined using a variety of parameters. In this paper, we

have only considered execution cost, execution runtime, and

communication overhead, but other parameters can be consid-

ered in future work. Specifically, of interest are heterogeneous

cloud instance types as well as realistic runtime evaluations.

Moreover, the number of cloud instances was established using

a simple heuristic and would be a good candidate objective in a

multi-objective implementation. Lastly, we propose to increase

the efficiency of our algorithms by improving problem-specific

operators and investigating alternative genome representations.
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