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ABSTRACT

This study investigates evolving methodologies for radar and merged gauge–radar quantitative precipi-

tation estimation (QPE) to determine their influence on the flow predictions of a distributed hydrologic

model. Thesemethods include the NationalMosaic andQPE algorithm package (NMQ), under development

at the National Severe Storms Laboratory (NSSL), and the Multisensor Precipitation Estimator (MPE) and

High-Resolution Precipitation Estimator (HPE) suites currently operational at National Weather Service

(NWS) field offices. The goal of the study is to determine which combination of algorithm features offers the

greatest benefit toward operational hydrologic forecasting. These features include automated radar quality

control, automatedZ–R selection, brightband identification, bias correction, multiple radar data compositing,

and gauge–radar merging, which all differ between NMQ and MPE–HPE. To examine the spatial and tem-

poral characteristics of the precipitation fields produced by each of the QPE methodologies, high-resolution

(4 km and hourly) gridded precipitation estimates were derived by each algorithm suite for three major

precipitation events between 2003 and 2006 over subcatchments within the Tar–Pamlico River basin of North

Carolina. The results indicate that the NMQ radar-only algorithm suite consistently yielded closer agreement

with reference rain gauge reports than the corresponding HPE radar-only estimates did. Similarly, the NMQ

radar-only QPE input generally yielded hydrologic simulations that were closer to observations at multiple

stream gauging points. These findings indicate that the combination of Z–R selection and freezing-level

identification algorithms within NMQ, but not incorporated within MPE and HPE, would have an appre-

ciable positive impact on hydrologic simulations. There were relatively small differences between NMQ and

HPEgauge–radar estimates in terms of accuracy and impacts on hydrologic simulations, most likely due to the

large influence of the input rain gauge information.

1. Introduction

Improving the accuracy of both quantitative precipi-

tation estimation (QPE) and high-resolution distributed

hydrologic models are critical to the National Oceanic

and Atmospheric Administration’s (NOAA) mission.

The experiments described herein provide a foundation

for NOAA hydrometeorological service improvements

for the Tar–Pamlico River basin of North Carolina and

eventually much of the United States. These service im-

provements will provide additional benefits to NOAA

programs in the Carolinas focusing on ecosystem and

water resource management, severe storm hazards, and

estuary health.

This project is a joint scientific research effort conducted

by the National Severe Storms Laboratory (NSSL); the

National Weather Service (NWS) Office of Hydrologic

Development (OHD); and the National Environmental

Satellite, Data, and Information Service (NESDIS).

These organizations are working to identify an optimum

set of techniques and algorithms to serve as a state-of-

the-science NOAAmultisensor QPE. A key component

of this collaborative research is the scientific validation
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of the techniques for use in NOAA forecast and warning

operations.

The evaluation consists of three phases: first, evalua-

tion of precipitation algorithms in post-case analysis in

terms of accuracy relative to a set of reference rain gauges;

second, identification of QPE algorithms and individual

elements that provide substantial improvements in accu-

racy over current operational baselineQPE products; and

third, evaluation of the impact of improved QPE on the

quality of streamflow simulations produced by an ad-

vanced distributed hydrologic model.

The Tar–Pamlico River basin in North Carolina has

been identified as a test bed region for several reasons.

The basin and surrounding areas feature radar and rain

gauge networks that are similar to those in many hydro-

logically sensitive areas of the United States (see Fig. 1).

Furthermore, interdisciplinary, multiagency research ef-

forts focused on improving coupled hydrologic, hydrau-

lic, and water-quality models for both rivers and estuaries

are ongoing in the basin and Pamlico Sound. These ac-

tivities include the Coastal and Inland Flood Observa-

tion and Warning (CI-FLOW) project, which seek to

leverage the outcomes of this multisensor QPE research

effort to improve river and flash-flood forecasts for the

Tar–Pamlico basin. CI-FLOW focuses on a number of

problems related to precipitation–environment inter-

actions including flooding, debris flow prediction, river–

estuary interactionmodeling, andwater-quality prediction.

This article describes the evolution of this QPE re-

search activity to date and presents initial results in terms

of accuracy of radar-only precipitation estimation tech-

niques relative to reference rain gauge reports and the

sensitivity of streamflow predictions in headwater basins

to these different precipitation inputs. This paper is

structured so that sections 2–4 provide information on

the experimental models, methods, and input. Section 2

describes the radar and gauge–radar estimation algorithm

suites; section 3 describes the experimental methodology

for rain gauge and hydrologic simulation evaluations, with

a brief description of the hydrologic model framework;

and section 4 describes precipitation, temperature, and

stream discharge inputs.

Sections 5–9 present results of the research experi-

ments with a summary of the research and conclusions

presented in section 10. Sections 5 and 6 detail the radar

and multisensor precipitation fields for three storm

events and rain gauge verification results, respectively.

Section 7 describes the hydrologic simulations and their

overall accuracy relative to observations, and section 8

gives details for subbasins in the individual storm events.

Further details of the impact of differences in QPE on

the hydrologic simulations are provided in section 9.

2. Precipitation estimation algorithm packages

The subsections here present a brief description of

existing NOAA QPE algorithm packages, their output,

FIG. 1. (a) Rain gauge, stream gauge, and radar locations within and near the Tar–Pamlico basin, North Carolina,

basin (shaded gray). Stream gauge sites used in this study are shown as labeled stars, input rain gauge locations are

shown as circles, and reference rain gauges are shown as triangles. Input rain gauge locations are those employed in

this study during the June 2006 event. WSR-88D sites are indicated by crosses. (b) The location of the basin on the

United States east coast region, with WSR-88D radar sites indicated by dots.

DECEMBER 2011 K I TZM I L LER ET AL . 1415



and their capabilities. Each NOAA QPE system con-

tinues to evolve in response to user needs, which accounts

for their different approaches and unique features as

each system attempts to produce themost accurate QPE

possible.

a. NMQ

This system (J. Zhang et al. 2011, 2006, 2004; Vasiloff

et al. 2007) developed from a joint initiative between

NSSL; the Salt River Project (SRP); the Federal Avia-

tionAdministration (FAA)AviationWeatherResearch

Program; and the NWS Office of Climate, Water, and

Weather Services. The objective of the National Mosaic

and QPE system (NMQ) research and development,

which meets the objectives of NOAA’s weather and

water mission, was twofold. The first goal was to develop

a seamless high-resolution national 3D grid of radar

reflectivity for operational utilization in data assimila-

tion, numerical weather prediction (NWP) model veri-

fication, and aviation product development. The second

goal was to develop fully automated multisensor QPE

techniques at high spatial and temporal resolutions and

accuracy for use in operational flash-flood monitoring

and prediction and water resource management.

The NMQ system is a collection of techniques and

algorithms that facilitate the integration of multiple ra-

dar and gauge networks, including the Weather Surveil-

lance Radar-1988 Doppler (WSR-88D), the Terminal

Doppler Weather Radar, and Canadian radar networks,

into a unified 3Dgrid.A suite ofQPEproducts is produced

at ;1-km resolution and is updated every 5 min. Using

a combination of vertical reflectivity profiles and Rapid

Update Cycle (RUC) model analyses, the NMQ system

identifies whether the precipitation is convective, strati-

form, or tropical for each grid cell and assigns appropriate

Z–R relationships every 5 min to obtain a radar-based

QPE product suite (Xu et al. 2008; Zhang et al. 2008). An

alternative Z–R relationship is applied in conditions when

the RUC analysis indicates snow at the surface (i.e., when

the temperature is below 28C and the wet bulb tempera-

ture is below 08C). Hail detection and appropriate ad-

justment of Z–R relationships are also incorporated.

NMQproduces a set of gauge–radar QPE products by

applying a local rain gauge bias adjustment to the radar-

basedQPE, on an hourly basis. Real-timeQPE products

for the conterminous United States (CONUS) have been

available to researchers since 2007. The system is scalable

and could be configured for national implementation at

an NWS national office such as the National Centers for

Environmental Prediction (NCEP) as well as at regional

or local offices.

NMQ is a complete end-to-end system and operates

independently of current NWS field-office baseline

hardware and software. A real-time prototype is cur-

rently functional, and, although it is not operational, it is

being evaluated for transition to operations.

b. MPE and HPE

The High-Resolution Precipitation Estimator (HPE;

Kitzmiller et al. 2008) functions operationally within

the Advanced Weather Interactive Processing System

(AWIPS). Multisensor Precipitation Estimator (MPE)

and HPE use the AWIPS environment to integrate rain

gauge, radar, and Geostationary Operational Environ-

mental Satellite (GOES) precipitation estimates (Scofield

and Kuligowski 2003) into fields covering the area of

responsibility for individual Weather Forecast Offices

(WFOs) and River Forecast Centers (RFCs). MPE,

designed primarily for river prediction applications, in-

cludes a large suite of interactive tools for quality con-

trol (QC) of all inputs and resulting output products. All

MPE rainfall estimates are spatially averaged to a 4-km

grid and updated hourly.

HPE was designed primarily for flash-flood monitor-

ing and creates 1-km grids of precipitation rate and ac-

cumulation on a subhourly update cycle.All radar rainfall

accumulation and rain-rate products used by HPE are

derived from the WSR-88D Precipitation Processing

System (Fulton et al. 1998). For this research collabo-

ration, HPE radar-only and gauge–radar estimates were

evaluated. It should be noted that MPE and HPE pres-

ently ingest only precipitation estimates and do not have

a capability for direct estimation of precipitation from

raw remote sensor input (e.g., radar reflectivity, satellite

radiance data) in terms of precipitation rate.

c. Operational gauge–radar precipitation analyses

from the SERFC

These analyses are routinely produced, gridded gauge–

radar QPE analyses using the Hydrologic Rainfall

Analysis Project (HRAP) rectangular grid (Greene and

Hudlow 1982; Reed and Maidment 1999). The HRAP

grid is defined at the 4-km by 4-km resolution that cor-

responds directly to the NWSNext GenerationWeather

Radar (NEXRAD) precipitation products. HRAP grid-

ded QPE data are produced operationally at the South-

east River Forecast Center (SERFC) and other NWS

River Forecast Centers, through application of MPE or

similar analysis packages. Analysts apply extensive

quality control to gauge and radar input and often blend

different input fields to produce a final estimated QPE

grid. For this study, the research team compiled these

analyses from internal OHD archives and from Stage IV

mosaic composites created by theNational Precipitation

Verification Unit (Lin and Mitchell 2005). This QPE

source is referred to as SERFC.
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3. Project outline and methodology

The project steps can be summarized as follows:

1) identification of suitable historical heavy precipitation

events in both cold and warm seasons;

2) creation of common radar, satellite, numericalweather

prediction model, and rain gauge input datasets for

all QPE algorithms and collection of stream gauge

reports;

3) quality control of a common set of rain gauge reports,

with some for input and some for validation;

4) execution of NMQ, and MPE–HPE algorithms to

produce QPEs;

5) evaluation of precipitation algorithms relative to the

reference rain gauge reports; and

6) evaluation of QPE in terms of impact on the quality

of streamflow simulations from an advanced distrib-

uted hydrologic model.

a. Hydrometeorological events and input data

For this study, researchers selected three hydrome-

teorological events during the period from January 2003

to June 2006. The collaborators assembled the input and

verification datasets required by all algorithms for each

case. Each case features at least one major precipitation

event over a period of at least 10 days. The precipitation

events fell within the following periods:

d 1200 UTC 17 September–1200 UTC 20 September

2003 (Hurricane Isabel);
d 1200 UTC 9 December 2004–1200 UTC 17 January

2005 (three major precipitation events); and
d 0000 UTC 11 June–0000 UTC 16 June 2006 (major

convective events, including Tropical Storm Alberto).

Event selection was contingent on availability of the ra-

dar and other data for the Tar–Pamlico basin and sur-

rounding areas. Datasets included RUC model fields of

surface temperature and melting level (1-h/20-km grid-

ded fields), meteorological in situ data (precipitation

and surface air temperature), and operational gridded

MPE analyses from the SERFC. Level-2 data were

collected for the WSR-88D sites of KRAX (NWSWFO

Raleigh, North Carolina), KMHX (NWS WFO More-

head City, North Carolina), and KAKQ (NWS WFO

Wakefield, Virginia), which are shown in Fig. 1a.

b. Hydrologic model

The Hydrology Laboratory-Research Distributed

Hydrologic Model (HL-RDHM) served as the vehicle

for testing the impact of the different QPEs on stream-

flow simulations. The HL-RDHM [formerly the Hydrol-

ogy Laboratory Research Modeling System (HL-RMS);

Koren et al. 2004] consists of a framework integrating

several components of streamflow modeling, including

rainfall runoff [Sacramento Soil Moisture Accounting

model (SAC-SMA); Burnash 1995; Koren et al. 2004],

hill slope routing (Reed 2003), and snowmelt (a tem-

perature index model commonly designated SNOW-17;

Anderson 1976).

For these experiments, HL-RDHM was configured

with the HRAP grid. A priori estimates of tunable pa-

rameters, such as those for the soil moisture and hill

slope routing models, were used. These parameters

were based on available soil type and land-use datasets

(Y. Zhang et al. 2011). All simulations started with

a zero base flow initial condition, though release of free

water caused nonzero discharge prior to precipitation.

Cell-to-cell connectivity for runoffwater routingwas based

on evaluation of topography data from a 100-m digital

elevationmodel. Evapotranspiration estimates were based

on a climatic specification of the potential rate. Based on

recent results from a survey administered by OHD, this

methodology is used by most NWS RFCs in their fore-

casting operations.

It is important to note that, for this study, HL-RDHM,

using a priori parameters only, was not calibrated to

produce optimum discharge simulations for any one

precipitation input source. However, we found that the

three sets ofmodel simulations based on combined gauge–

radar input were all of comparable quality. Therefore,

conclusions drawn from the series of assessments out-

lined in this paper are based on the impact of the dif-

ferent QPEs on the accuracy of the simulations in

depicting hourly discharge time series and discharge and

timing of flood peaks.

c. Scope of the study

Collecting and processing base radar data and then

assessing the quality and accuracy of gauge datasets

necessary for verification to determine a level of accu-

racy is both data and labor intensive. Thus, it was not

practical for the scope of this study to produce long-term

continuous time series of QPE grids from each of the

algorithm suites. Rather, this study focused on creating

analyses and verification datasets covering three active

precipitation periods of ten to thirty days each and only

for the hours when precipitation was observed over the

basin. Because the initial assessment period was asso-

ciated with Hurricane Isabel in September 2003, a basic

HL-RDHM simulation was run from 1 January 2003 to

30 June 2006, using precipitation input from the SERFC

operational 1-h datasets. The 8-month period beginning

1 January 2003 served as a ‘‘warm up’’ period for the

hydrologicmodel. The SERFCdatasets incorporateMPE

gauge–radar analysis with forecasters’ quality control
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of input data and gridded output fields. For each of

the evaluation–comparison events, the SERFC QPE

grids were replaced with the experimental ones (i.e.,

NMQ or MPE–HPE). These simulations were then com-

pared with hourly time series stream discharge obser-

vations in terms of linear correlation and Nash–Sutcliffe

efficiency (Nash and Sutcliffe 1970). Separate evaluations

of flood peak simulations were also made, in terms of the

mean absolute error (MAE) and median absolute er-

ror of peak discharge and time of flood peaks. Finally,

an assessment was made of the impact of QPE on the

flood peak discharge per unit basin area, or specific

discharge.

4. Precipitation and temperature input

The NMQ and HPE algorithm packages use a com-

mon set of radar and rain gauge inputs. In addition, the

NMQrequires an externally supplied estimate of freezing

level, used inZ–R corrections. The inputs and processing

steps are described below.

a. Radar input and products

WSR-88D level-II reflectivity (18 azimuth 3 1 km

range resolution in local radar coordinates), for multiple

elevation angles, from the NWS radar sites of KRAX,

KMHX, and KAKQ served as the radar input. These

data were used by the NMQ system to create 3D reflec-

tivity grids at multiple levels, which were then used as

input to additionalQPE algorithms. TheNMQQPEgrids

are of approximately 1-km mesh spacing (0.018 latitude–

longitude grid). Although NMQ produces a variety of

multisensor products, this report includes only an anal-

ysis of the basic radar-only precipitation estimates. For

MPE–HPE, the data were input to the Open Radar

Product Generator (ORPG) version OB5.2, which gen-

erated digital storm-total precipitation (DSP) and digital

precipitation array (DPA) products, which were input to

an offline copy of MPE and HPE. Precipitation accu-

mulations used for this study were based on time dif-

ferencing of the DSP product.

ForHPE, outputwas removed for the 2-h period ending

at 2300 UTC 26 December, when a time accounting error

caused a zero storm total precipitation amount to be in-

dicated at the beginning of the hour. The correct storm

total was still in place at the end of the hour; thus, the time

difference scheme caused the erroneous value of storm

total precipitation to be assigned to that hour. This

resulted in some basin-average amounts of over 25 mm

resulting in obviously unrealistic results. Because of the

error not being physically reasonable, that hour’s HPE

grid was replaced with the MPE radar-only grid. The

MPE product indicated no precipitation at that hour, as

did the other QPE sources. To date, this time accounting

error has not been observed in operations.

b. Rain gauge reports for QPE input and reference

evaluations

Hourly reports from rain gauges both inside and out-

side the basin boundaries were collected and input into

the algorithm suites. Gauges well outside the boundaries

of the basin have very little impact on the basin-average

precipitation but must be included as the reports do in-

fluence bias corrections for the radar data.

Gauge sites in this study were primarily from four dif-

ferent networks: North Carolina Econet sites, which are

maintained for environmental and other purposes;

NWS Automated Surface Observing System (ASOS)

sites; Cooperative Observer (COOP) sites whose reports

were supplied by the National Climatic Data Center

(NCDC); and real-time reporting sites operated by sev-

eral federal and local authorities, commonly reporting

through the GOES Data Communication System and

collected and collated by the NWS Hydrologic Auto-

mated Data System (HADS). The distribution of rain

gauges used in the analyses is shown in Fig. 1a.

Other rain gauge locations were used to provide val-

idation reference observations for the three precipitation

events (Fig. 1a). The observations from these gauges

were not used in the gauge bias algorithms and were only

used as validation points. For the 2003 event, three hourly

rain gauge sites were selected to be reference gauges:

Aurora (AURO; North Carolina Econet site), Oxford

(OXFO; North Carolina Econet site), and the Lizzie

(LZZN7) HADS site. For the 2006 event, reports from

the rain gauge at the U.S. Geological Survey (USGS)

Swift Creek at NC97 near Leggett, North Carolina

(LEGN7), gauge;OXFO; andWilliamston (WILL;North

CarolinaEconet site) served as references. For the 2004–05

event, the Tranters Creek (TRAN7) HADS site and

KRWI (Rocky Mount-Wilson Airport ASOS site) were

designated reference gauges. A set of 68 daily reporting

sites, not collocated with hourly reporting ones, were

available as a reference for 24-h precipitation amounts.

These rain gauge data were collected fromNCDC, North

Carolina state government, and NWS sources.

c. Rain gauge report quality control

Although we attempted no modification or quality

control of input radar data, the existence of certain sys-

tematic errors necessitated manual quality control of the

input rain gauge data. The reports were compared man-

ually with neighbors and with radar reflectivity and pre-

cipitation fields. All suspect reports were removed from

the final analysis, consistent with current operational

practice at RFCs.
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Rain gauge input (for both multisensor analyses and

reference validation sites) was quality controlled jointly

byNSSL, OHD, andNCDC.A common set of input and

validation reports was agreed upon and used in the ver-

ification statistics.

Of the available set of hourly gauges, only the ASOS

unitswere equipped to report thewater equivalent during

frozen precipitation events. An examination of the

hourly gauge time series indicated that some sites were

affected by snow during the precipitation event of 14–16

December 2004, when several centimeters of snow ac-

cumulated over parts of the river basin. These gauges

reported little or no precipitation during the latter part

of the event. These reports were deleted from that por-

tion of the overall record and were not used for input or

validation. We found that the 14 daily reports also had

questionable accuracy especially with zero values. The

daily reports were carefully examined and suspect re-

ports during two events were removed.

d. Temperature input

In addition to the freezing-level information required

by NMQ, the HL-RDHM package requires gridded es-

timates of surface air temperature as input to its snowfall

accumulation and melt model, SNOW-17. These were

extracted from the long-term NCEP–National Center

for Atmospheric Research (NCAR) reanalysis archive

(Kalnay et al. 1996) and interpolated to the basin area.

Although frozen precipitation and melting had little in-

fluence on the warm-season events, some snow was ob-

served during the cool-season events, particularly around

27 December 2004.

e. Stream gauge reports

USGS hourly stream gauge reports for seven sites

within the Tar–Pamlico basin were kindly provided by

the North Carolina district office of the USGS. These

sites are all forecast points within theNWS river forecast

system. Time series from the EFDN7, LOUN7, RNGN7,

TRVN7, SIMN7, SWIN7, andROKN7 sites (Fig. 1) were

used to evaluate HL-RDHM output. These basins range

in size from 116 to 2343 km2. All but one of the gauge

sites reports discharge from unregulated headwaters.

The ROKN7 site is immediately downstream of a res-

ervoir and is subject to some regulation, which is not

modeled by theHL-RDHMpackage.However, we have

included the ROKN7 simulations in our results.

The hourly time series for all stream gauges included

some missing data. For instances where the missing data

sequences were less than 10 h andwere in periods of slow

recession, the dischargeswere estimated by interpolation.

For LOUN7, the reported hydrograph appeared unre-

alistic during a period on 19–20 September 2003, following

the passage of Hurricane Isabel. Alternative reports in-

dicated the gauge was giving unreliable values (D. Kim

2010, personal communication), and these discharge data

were excluded from our verification statistics.

5. Precipitation analyses and comparisons

The differing radar analyses yielded accumulation fields

with both subtle and obvious differences over the course

of all events. During all events, the spatial pattern of 24-h

precipitation was very similar among the three estimation

systems, as might be expected given the common sources

of radar data. However, assumptions about Z–R rela-

tionships made by the logic within each of the algorithm

suites caused large systematic differences in the magni-

tude of the estimated rainfall. Sample 24-h accumulations

ending at 1200 UTC 19 September 2003 and 0000 UTC

27December 2004 are shown in Figs. 2 and 3, respectively.

In these figures, the 4-km mesh HRAP projection is

used, illustrating the granularity of the precipitation

input to the distributed hydrologic model. The effective

coverage of the various analyses (nongray areas) differs

depending on the number of radar units used as input

and on the radarQPEalgorithms; the operational SERFC

analyses (Figs. 2a and 3a) extend southward from central

Virginia and northern West Virginia to Florida and the

Gulf Coast, whereas the HPE analyses (Figs. 2c and 3c)

used solely DPA data from the three radar units nearest

the study basin. TheNMQanalyses (Figs. 2b and 3b) used

data from the same three radars, but they include radar

estimates from beyond the 230-km range limit of the

DPA product and thus encompass a slightly larger valid

area than the HPE analyses.

An examination of all the days included in the study

reveals differences among the various precipitation anal-

yses were most pronounced during the September 2003

Hurricane Isabel event. As shown in Figs. 2a–c, the

operational SERFC analysis contained significantlymore

rainfall than the NMQ or HPE radar-only analyses did.

Over the Tar–Pamlico basin (white rectangle in Fig. 2a),

these differences amounted to 25 mm over the 24-h pe-

riod ending at 1200 UTC 19 September and 40 mm over

the course of the entire storm event. Between the two

radar-only analyses of NMQ and HPE (Figs. 2b,c), rain-

fall magnitude differences were most apparent over the

extreme northern portion of the basin and south-central

Virginia. The NMQ and HPE multisensor algorithms

also yielded substantially different accumulations over

the extreme northern portion of the basin and southern

Virginia, with the HPE analysis (Fig. 2e) indicating a

much larger area of rainfall exceeding 150 mm than the

SERFC or NMQ analyses had. Underestimation by the

radar algorithms was also evident during the June 2006
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event (not shown), where theHPE algorithm also yielded

a greater level of underestimation.

The spatial distribution and amount of precipitation

also differed appreciably among the SERFC and radar-

only algorithms during the short event of 26 December

2004 (Fig. 3). The SERFC analysis contains some arti-

facts from radar coverage boundaries as illustrated by

the northwest–southeast-oriented line in east-central

North Carolina (Fig. 3a). This line does not appear in the

NMQorHPE analyses, which used no input from radars

south of Morehead City, North Carolina. Some artifacts

due to bright banding are plainly evident in the HPE

radar only (Fig. 3c). Differing assumptions regarding

Z–R relationships and multiple radar data merging are

reflected in differences between Figs. 3b,c. As in the

September 2003 example, differing treatment of gauge–

radar merging produced multisensor fields with some

obvious differences (Figs. 3d,e).

The introduction of gauge–radar bias correction greatly

reduced the differences among the estimation packages.

The NMQ and HPE gauge–radar multisensor algorithms

differ in their treatment of gauge input. The NMQ radar–

gauge analysis operates by calculating a multiplicative

gauge–radar bias factor separately at each gauge loca-

tion with precipitation and then applying an objective

analysis of the bias factor field to all points with nonzero

radar precipitation (Ware 2005). The HPE gauge–radar

analysis option applied in this experiment was the clos-

est operationally available analog to that used in NMQ.

In theHPE approach, a singlemean-field bias correction

factor was first estimated from the gauge–radar pairs in

each radar umbrella and applied to the QPE data from

that umbrella (Seo et al. 1999). The resulting radar QPE

field was then merged directly with rain gauge obser-

vations, following the method described by Seo (1998).

Both of these multisensor approaches adjusted the final

precipitation estimates to values much closer to that of

the SERFC analyses (Figs. 2d,e and 3d,e). In the case

of HPE, some underestimation was still suggested for

the September 2003 event (Fig. 2e).

6. Statistical analyses of radar-only andmultisensor

estimates relative to rain gauge reports

The research team compared grid values from NMQ

and HPE to daily precipitation totals from cooperative

FIG. 2. Precipitation accumulations (mm) for the 24-h period ending 1200 UTC 19 Sep 2003, from (a) SERFC operational analysis, (b) NMQ

radar only, (c) HPE radar only, (d) NMQ multisensor, and (e) HPE multisensor. White outline in (a) indicates location of the Tar basin.
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observer reports archived at NCDC to complete an

objective comparison of the performance of features

within each of the algorithm suites. Precipitation anal-

ysis and radar–gauge comparisons were carried out for

68 daily reporting sites collected from NCDC archives

and from three hourly reporting sites collected from

NCDC,USGS, andNorth Carolina StateDepartment of

the Environment archives. These hourly reference re-

ports were withheld from the NMQ and HPE input for

gauge-biasing algorithms. The statistics shown in Figs. 4

and 5 are based on precipitation pairs: that is, those pairs

in which the reference gauge reported a nonzero value

or at least one of the radar or multisensor estimates was

nonzero. This criterion provided 425 daily pairs and 265

hourly pairs.

A comparison of 24-h values during each of the three

storm periods (Fig. 4, black and gray squares for NMQ

andHPE radar only, respectively) shows that radar-only

NMQ and HPE both generally underestimated daily

precipitation. The greatest percentage of underesti-

mation occurred during the Isabel and Alberto (warm

season) events (Figs. 4a,c), as inferred previously. For

example, during the September 2003 Hurricane Isabel

event, the radar/gauge ratio was 0.75 for NMQ and 0.54

for HPE radar-only estimates, respectively. There was

a smaller negative bias during the 2004–05 cool-season

events (Fig. 4b). The NMQ radar only consistently gave

biases closer to 1, suggesting that the adaptive Z–R re-

lationship and freezing-level identification algorithms

had a positive impact on the estimates.

During each storm period and over all the events

combined, the correlation between gauge values and the

radar-only estimates from NMQ and HPE was similar

(0.82 and 0.80 over all the events for NMQ and HPE,

respectively, as shown in Table 1). However, this dif-

ference of 0.02 in the correlation is still statistically sig-

nificant at the 5% level, based on a t test that accounts

for the two correlation coefficients being derived from

a matched sample of rain gauge reports and for the high

degree of correlation between the NMQ and HPE es-

timates (Carter-Clark 1997). The low bias in HPE radar-

only precipitation had appreciable impact on hydrologic

simulations, as will be shown.

The introduction of gauge bias correction appreciably

corrected the biases, as indicated by the distribution of

gauge–multisensor pairs closer to the zero-bias diagonal

FIG. 3. As in Fig. 2, but for precipitation for the 24-h period ending at 0000 UTC 27 Dec 2004.
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line (black and open triangles for NMQ and HPE in

Fig. 4). The HPE multisensor estimates still had an

appreciably low bias during all the events, with multi-

plicative bias factors between 0.8 and 0.85. The NMQ

multisensor estimates had biases between 0.95 and 1.

For each of the three events, the statistics presented in

Table 1 show that the NMQ and HPE bias correction

algorithms increased the accuracy of the estimates as the

linear correlation of the estimates to reference gauge

amounts increased to 0.89 and 0.85 for NMQ and HPE,

respectively.

An analysis of multisensor estimates with hourly pre-

cipitation values yielded similar results, except that the

apparent underestimation by the radar algorithms was

smaller (Fig. 5 andTable 2).Withinmost of the individual

events and overall, the HPE multisensor estimates had

biases between 0.9 and 1. For both the radar and mul-

tisensor algorithms, the NMQ continued to yield biases

closer to unity than HPE did.

These verification results, which incorporate data from

multiple radars, clearly indicate a need to adjust radar

algorithms to correct overall low bias, particularly during

the warm season. The NMQ radar-only algorithm, which

includes features for dynamic adjustment of Z–R re-

lationships based on the detection of changes in hydro-

meteor types, performed better overall than HPE did.

The NMQ gauge–radar multisensor algorithm also per-

formed better than the HPE multisensor option applied

in this phase of the experiment did.

7. Streamflow simulations based on differing

precipitation inputs

The second phase of our study was carried out to

document the impact of QPE accuracy on simulations

of a state-of-the art distributed hydrologic model. Al-

though our goal in improving QPE is improved hydro-

logic prediction, it is possible for improvements in input

QPE to be masked by limitations to hydrologic models

or for errors in theQPE to bemagnified by the nonlinear

nature of hydrologic response.

The impact of QPE on streamflow simulations could

be most thoroughly documented by generating estimates

through each of the four algorithm suites for extended

periods of time, preferably 8 yr or longer, and then

 

FIG. 4. Comparison between NMQ and HPE gridded analyses

to reference 24-h rain gauge reports. Statistics are for collocated

gauge–radar pairs with at least one system reporting nonzero

precipitation, for (a) September 2003, (b) December 2005–January

2005, and (c) June 2006.
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calibrating a hydrologicmodel of the Tar–PamlicoRiver

basin for subbasins well upstream of the tidal plain to

optimize the accuracy of the simulations for each input

QPE time series. We did not envision this level of effort

and followed a simpler approach.

The Tar–Pamlico River system was modeled with a

version of the SAC-SMA in which soil parameters were

specified a priori through application of existing datasets

for terrain, soil properties, and land use (Y. Zhang et al.

2011). As will be shown (in section 8), this approach

gave reasonable results relative to discharge observa-

tions when driven by the operational SERFC QPE time

series. The hydrologic model was then run with data

from each of the remotely sensed QPE time series for

the three storm events, by replacing the SERFC input

for the relevant time periods. The hydrologic model

output showed a realistic sensitivity to these differing

QPE inputs. In general, the simulations based on SERFC

input and NMQ and HPE multisensor input were fairly

close to observed stream discharge values collected at

USGS gauge locations. An exception was the smallest

basin, gauged at SIMN7; possible reasons for this poor

performance are explained below.

The hydrologic model was run for a continuous period

from 1 January 2003 to 30 June 2006, with a 1-h time step

and a computationalmesh defined by theHRAP (;4 km)

grid. Channel flow was assumed to be initially zero at all

points. Except for the storm events, precipitation input

was always taken from the SERFC operational hourly

QPE grids.

Under the assumptions outlined above, HL-RDHM

provided realistic simulations during the period September

2003–June 2006. The linear correlation between the

simulated and observed flow over most basins (Fig. 6)

was between 0.78 and 0.85 (explained variance between

0.60 and 0.72). Nash–Sutcliffe (Nash and Sutcliffe 1970)

efficiency values, which are sensitive to both correlation

and bias, ranged from 0.55 to 0.65. The quality of the

simulations for the SIMN7 outlet was the poorest. The

SIMN7 basin is small and in flat terrain. These factors

make it possible that the gridcell connectivity was not

optimally specified by the generating algorithm.

The lack of specific calibration and the assumption

of no base flow had some effects on the absolute ac-

curacy of the flow simulations. Overall, the observed

total unit area discharge for all basins was about 9 3

1023 m3 s21 km21, which themodel underestimated by

10%–20% (Fig. 7). The simulations were also under-

dispersed, with flow standard deviations 20%–30%

smaller than the observed in most of the basins. As will

be shown in sections 8 and 9, simulations of magnitude

of flood crests during our defined precipitation events

were generally fairly close to the observed.

FIG. 5. As in Fig. 3, but for 1-h reference rain gauge reports.
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8. Summary of subbasin simulation results based on

NMQ and HPE QPEs

The impact of variations in QPE on hydrologic sim-

ulations in two of the Tar–Pamlico River subbasins,

EFDN7 and TRVN7, are shown in Figs. 8 and 9. The

simulations for these basins are characteristic of those

for other basins and illustrate the effects of the major

differences and similarities between the NMQ and HPE

radar-only precipitation inputs. The secondary axis

shows approximate stage values (m) corresponding to

the discharges, based on recent USGS rating curves

(U.S. Geological Survey 2010).

Both figures show simulations for 18–22 September

2003, 9 December 2004–18 January 2005, and 11–18

June 2006, with all simulations beginning and ending at

0000 UTC on the respective dates. These periods cor-

respond to the start of the calendar day onwhich different

precipitation sources were entered into the simulations,

to approximately 48 h after the end of the precipitation

event. Basin-average total precipitation estimates from

all sources are shown for the storm events in September

2003, December 2004, January 2005, and June 2006

(Figs. 8a and 9a).

Differences among the observations and the simula-

tions for these two particular subbasins are described in

sections 8a and 8b. A narrative description of differ-

ences among the simulations for the other five subbasins

is contained in section 8c.

a. Subbasin EFDN7

Simulations for the second-largest basin in our study,

EFDN7, followed a pattern similar to that for most of

the other subbasins. In general, the HPE radar-only QPE

yielded lower simulated discharge than NMQ radar-only

QPE did, particularly for the warm-season periods. The

NMQ and HPE multisensor discharge hydrographs pro-

duced by the HL-RDHM simulations were usually close

to each other and to the SERFC-forced simulation, in

phase andmagnitude. Because of the long time separation

between the experimental periods, the discharge for all

four NMQ and HPE inputs were identical or nearly so at

the start of these periods.

The radar-only QPEs were generally lower than the

multisensor estimates, particularly for the September

2003 hurricane event (Fig. 8a). The NMQ radar-only

QPEwas closer to SERFC than theHPE radar only was,

and that correlation was reflected in the streamflow sim-

ulations (Figs. 8b,c).Although the SERFCQPEproduced

a substantial overestimate of the first flood peak around

hour 100, the radar-only QPEs produced a lower and

later peak (Fig. 8b). Merging of gauge and radar data

produced NMQ and HPE multisensor QPE data with

a higher correlation to SERFC QPE values. This mul-

tisensor QPE data consequently produced hydrographs

that were much closer to the SERFC simulations than

the radar-only QPE did (Fig. 8c).

During the cool-season events, all simulations greatly

overpredicted the magnitude of the observed flood peak

around 27 December 2004 (hour 450, Figs. 8d,e). The

discharge overestimates for the HPE radar-only precipi-

tation input correspond to stage errors of;3 m based on

rating curves derived from current USGS stage–discharge

charts. Of note, the application of rain gauge correction

lowered the degree of overprediction. Otherwise, the

discharge simulations forced by HPE radar-only QPE

were generally lower than those forced by NMQ radar-

only QPE, and the discharge simulations forced by NMQ

and HPE multisensor QPE were close to the discharge

values produced using SERFC QPE.

For the June 2006 event, the discharge simulation

produced using NMQ radar-only QPE was consistently

closer to that of the SERFC simulation and to USGS

observations than the simulation using HPE radar-only

QPE was, which generally under simulated discharge

relative to the other time series. For themain storm peak

around hour 120, the HPE radar-only QPE-driven dis-

charge was about 50% of the observed, whereas NMQ

radar-only QPE simulation was within 20% of the ob-

served (Fig. 8f). Incorporation of gauge data greatly

TABLE 1. Statistics for 425 nonzero 24-h gauge–radar precipitation estimate pairs.

Gauge NMQ radar only HPE radar only NMQ multisensor HPE multisensor

Mean (mm) 25.9 19.4 14.4 25.6 21.2

Correlation with gauge values 0.82 0.80 0.89 0.85

TABLE 2. Statistics for 265 nonzero 1-h gauge–radar precipitation estimate pairs.

Gauge NMQ radar only HPE radar only NMQ multisensor HPE multisensor

Mean (mm) 2.67 1.96 1.62 2.65 2.41

Correlation with gauge values 0.81 0.78 0.86 0.83
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increased the HPE precipitation and corresponding

discharge, to values close to those simulations forced by

SERFC precipitation estimates (Fig. 8g).

b. Subbasin TRVN7

During the September 2003 event, the NMQandHPE

radar-only QPE (Fig. 9b) produced nearly identical

streamflow discharge traces for the event period. Ad-

dition of rain gauge information (Fig. 9c) produced hy-

drographs very close to those of the SERFC simulation

and the observed; however, all simulations underesti-

mated the discharge peak.

For the cool season, all discharge simulations were

very similar in the early December and January storm

FIG. 6. Long-term linear correlation and Nash–Sutcliffe effi-

ciency for RDHM simulations based on the SERFC operational

gridded precipitation analysis, for each basin. Statistics are for the

period September 2003–June 2006.

FIG. 7. Long-term mean discharge and standard deviation of

discharge (in cubic meters per second, m3 s21, or cms), both ob-

served and simulated, as functions of total area for the seven

basins in the evaluation experiment. Statistics are for the period

September 2003–June 2006. RDHM simulations tend to under-

predict the mean and standard deviation of discharge.

FIG. 8. For basin EFDN7, (a) mean areal precipitation from all algorithms for the four major precipitation events, and resulting

streamflow simulations for (b),(c) September 2003, (d),(e) December 2004–January 2005, and (f),(g) June 2006. All hydrographs show

observed discharge (black) and RDHM simulations based on SERFC (gray), NMQ (dashed), and HPE (dotted) traces. Featured are

(b),(d),(f) radar-only QPE and (c),(e),(g) simulations from gauge–radar multisensor QPE. Approximate stage values (m) are shown on

the right-hand scale.
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events. The NMQ radar only was closer to the results of

the SERFC simulation than the HPE radar only in

January was (Figs. 9d,e). For the late December event,

the NMQ radar-only precipitation produced an anom-

alous late peak in streamflow discharge, not reflected in

the HPE radar-only or SERFC simulations, which cap-

tured the magnitude and timing of that minor precipi-

tation event closely. This anomalous peak was associated

with the overestimation of precipitation that affected

some basins on 26 December (Fig. 3). The addition of

rain gauge input substantially corrected the over-

estimate (Fig. 9e). The radar-only QPE simulations of

the January peak were somewhat low and again the

addition of rain gauge information to NMQ and HPE

caused their respective HL-RDHM discharge hydro-

graphs to more closely approximate that of the SERFC-

QPE simulation (Fig. 9e).

Observed flow and all simulations started from a very

low discharge state in the June 2006 event (Figs. 9f,g).

The SERFC and radar-only QPE simulations under-

estimated peak discharge, which was observed at around

20 and 30 cms, following the two main precipitation

events. Discharge simulations forced by the NMQ

radar-only QPE were much closer to SERFC than those

forced by the HPE radar-only QPE throughout the

event period. Incorporation of rain gauge data (Fig. 9g)

had little impact on the NMQ and HPE simulations of

the first peak but greatly increased the QPE and peak

discharge during the second event (hour 120).

c. Distribution of flood peak simulation errors

in terms of stage error

We can estimate the effects of the input QPE differ-

ences on river stage by applying current rating curves,

supplied by the USGS, to the discharge time series. In

Fig. 10, stage errors (in m) for the NMQ- andHPE-based

simulations are shown as functions of the errors associ-

ated with the SERFC simulations. For both EFDN7 and

TRVN7 (Figs. 10a,b, respectively), there is a strong

correlation among the errors associated with different

inputs. The largest errors for the HPE and NMQ simu-

lations are larger than those associated with the SERFC

simulations (2.8 m versus 1.5 m for EFDN7 and 1.75 m

versus 1.25 m for TRVN7). In general, the errors for the

multisensor QPE are smaller and closer to errors ob-

served from the SERFC-based simulations than those

for the radar-only simulations. Particularly for EFDN7,

theHPE radar-only (denoted asHPE-RAD inFigs. 10a,b)

simulations produced some very large errors in excess

of 2 m, associated with the December 2004 events. The

FIG. 9. As in Fig. 8, but for basin TRVN7.
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various simulation errors for TRVN7 were more closely

correlated among each other than those for EFDN7

were, with the largest and smallest stage errors generally

falling within a range of 0.5 m.

d. Summary of results for other subbasins

The hydrologic simulations for these subbasins all

followed a similar pattern. The simulations forced by

NMQ radar-only QPE were generally closer to those

based on SERFC QPE input and to observations than

the simulations forced by HPE radar-only QPE were.

Incorporation of rain gauge data consistently adjusted

both NMQ and HPE precipitation closer to SERFC

QPE values, and the corresponding HL-RDHM simu-

lations also more closely tracked those based on SERFC

input. In several of the basins, the anomalously high

precipitation indicated by the radar-only analyses on

26 December 2004 was substantially reduced by the in-

troduction of rain gauge bias correction, with corre-

sponding improvements in the hydrologic simulations.

The model simulations generally featured peaks that

were 10–12 h too early. Differing precipitation input

FIG. 10. Approximate peak stage errors for simulations driven with NMQ and HPE pre-

cipitation as functions of the stage error for the SERFC-driven simulation, at (a) gauge for

EFDN7 and (b) gauge for TRVN7. Errors for radar-only precipitation are shown as black and

gray squares, and errors for multisensor precipitation are shown as black and gray triangles.

The diagonal line shows a no-bias reference.
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had little impact on this feature. As will be shown in

section 9, the flood peaks in the simulations based on

gauge–radar QPE were well correlated in magnitude

with the corresponding observations, when all eventswere

considered together.

The SIMN7 basin of only 116 km2, near the south-

eastern boundary of the Tar–Pamlico basin, featured

poor simulations during the storm periods, except for

those forced with NMQ multisensor QPE. Given that

the quality of hydrologic simulations driven by NMQ

andHPEmultisensor precipitation over the other basins

was similar, this finding is possibly anomalous.

9. Quantitative assessment of the impact of QPE

on streamflow simulations

As shown in the hydrograph traces in Figs. 8 and 9, the

magnitude of the simulated streamflow and its correla-

tion with observations is strongly dependent on the

precipitation estimation source. The impact of the dif-

ferent QPEs on the streamflow simulations can be illus-

trated by considering the correlation between simulated

and observed hourly streamflow over the three storm

periods combined, a total of 1237 h. The correlation thus

takes into account several precipitation events of mark-

edly different character and runoff effects. Although the

NMQ- and HPE-driven simulations were all nearly

identical immediately prior to the events, because of the

application of the same SERFC operational QPE time

series during the months between events, the introduc-

tion of different QPE had significant impacts for several

days thereafter.

In Fig. 11, the correlation between all simulations and

observations, over the combined storm periods, is shown

separately for each basin. Except for SIMN7, there is

a consistent pattern in that the highest correlations are

from simulations forced by multisensor input: that is,

SERFC QPE or NMQ or HPE multisensor QPE. The

poorest correlations were for HPE radar-only QPE,

with the NMQ radar-only input consistently yielding

higher correlations. The differences in correlations be-

tween the NMQ and HPE radar-only simulations are

statistically significant at the 5% confidence level. In five

of the basins, the HPEmultisensor QPE yielded slightly

higher correlations than the NMQ multisensor did, in

contrast to the results from the radar-to-gauge com-

parisons described in section 6. These differences in

correlation coefficient are relatively small compared to

those for the radar-only QPE algorithms and indicate

the strong influence of rain gauge input on the multi-

sensor products.

Very similar results (not shown) were obtained when

the simulationswere assessed in terms ofMAE.Again, the

lowest MAE was realized for the multisensor QPE-based

simulations, and the NMQ radar-only QPE input con-

sistently yielded lower MAE than the HPE radar only

did. There were generally minor differences among the

MAE values for the NMQ and HPE multisensor input.

These time series correlation statistics, which are based

on hourly discharge values, are necessarily sensitive to

timing errors introduced by precipitation errors and hy-

drologic model assumptions. In operational hydrologic

prediction, it is also important to assess the reliability of

simulations of the magnitude of floods regardless of the

timing error (e.g., Reed et al. 2007). Results of this study

demonstrate the positive impact of improved precipi-

tation estimates on the simulation of the relative magni-

tude of discharge peaks during the storm periods.

The median error in simulated flood peaks for each

basin, in terms of specific discharge and stage, is shown

in Figs. 12a,b, respectively. These errors are for the five

major peaks observed during the storm periods. As

might be expected, the magnitude of the discharge errors

was positively correlated with basin size. To simplify the

comparison among basins, the errors were divided by

the basin size to yield specific discharge errors. Because

of the nonlinearity of the stage–discharge relationships,

the smallest discharge errors did not necessarily produce

the smallest stage errors. The HPE radar-only QPE

generally produced larger discharge and stage errors

than the NMQ radar only did, consistent with the time

series correlations. Over some basins, the HPE radar-

only simulations produced large errors in two or more

events; hence, the median errors for the ROKN7 and

RNGN7 basins were.1.5 m (Fig. 12b). By comparison,

the differences between the HPE and NMQmultisensor

simulations were relatively small and neither consistently

FIG. 11. Linear correlation between observed and simulated

discharge during the three storm periods combined, for each basin

and each QPE input. Statistics are for a combined total of 1237 h,

encompassing the storm period. In each basin, the QPE inputs are

arranged from left to right: SERFC, NMQ radar only, HPE radar

only, NMQ multisensor, and HPE multisensor.
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produced smaller errors than the other (Figs. 12a,b). For

some basins, either NMQ or HPE produced smaller

median errors than the SERFCoperational analyses did.

An analysis for all basins and storm events is shown

in Fig. 13, where all simulated peak specific discharge

values are displayed as a function of the observed. Note

that all values in the figure were multiplied by 100.

Consistent with the gauge verification and simulation

studies, we note that the radar-only simulations (Fig. 13a)

were consistently biased low and that the HPE radar

only featured some larger errors in the poorly simulated

minor events in the winter period, where only rather

small peaks of 0.01–0.02 cms km22 were observed (ex-

treme left portion of Fig. 13a). The multisensor-based

simulations (Fig. 13b) had less bias but also greater

random errors for the larger events.We found, however,

that both MAE and correlation relative to the observed

specific discharge improved with the addition of rain

gauge information, for both NMQ and HPE.

In general, the multisensor and NMQ radar-only sim-

ulations produced the smallest errors relative to obser-

vations and to the SERFC simulations. Although these

statistics are based on a very limited sample, they are

consistent with the results for the rain gauge verification

analysis and suggest that improved QPE has an appre-

ciable impact on flood peak predictions.

Although there were pronounced differences between

the simulations driven with the NMQ and HPE radar-

only QPE, differences between the NMQ and HPE

gauge–radar simulations were much smaller, and, over

five of the seven basins, the HPE produced a closer ap-

proximation to observed flow in terms of overall corre-

lation and peak error (Figs. 11 and 12). The rather dense

gauge network applied in this experiment had a strong

influence on the final multisensor QPE. As noted in sec-

tion 5, the NMQ and HPE approaches to gauge–radar

merging differ in some details. Although this result is

in contrast to the rain gauge verification, where NMQ

multisensor QPE had the smaller errors relative to rain

gauge reports, it is possible that the limited number of

geographic sampling points was not a completely accu-

rate reflection of the two multisensor algorithms’ poten-

tial for representing larger-scale precipitation patterns.

10. Summary and conclusions

This study compiled a set of gridded 1-h precipitation

estimates for a study area centered on northeastern

North Carolina using NSSL’s National Mosaic and

FIG. 12. Median storm peak errors for RDHM simulations, in

terms of (a) specific discharge and (b) stage. Large values for HPE

radar only at the ROKN7 and RNGN7 gauge sites are due to

precipitation overestimation during two winter events.

FIG. 13. Simulated storm peak discharge per unit area for all

basins, five storm events, for (a) radar-only and (b) SERFC and

multisensor precipitation. Values have all been multiplied by 100.

The diagonal line shows a no-error reference.
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Quantitative Precipitation Estimation algorithm suite

(NMQ) and the NWS’s operational High-Resolution

Precipitation Estimator (HPE). For three event time

series, the research team prepared gridded radar-only

and gauge–radar precipitation estimates using the dif-

ferent QPE systems. The estimates covered storm events

during September 2003, December 2004–January 2005,

and June 2006. Although NMQ and HPE radar-only

QPE algorithm suites both underestimated precipitation

during Hurricane Isabel (September 2003), NMQ radar-

only QPE showed less tendency, in general, to under-

estimate rainfall quantities for the other events and had

a higher correlation to the reference rain gauge reports.

The quality of both NMQ andHPEmultisensor (gauge–

radar) QPEs were considerably better, in terms of bias

and correlation with reference gauge reports. The HPE

multisensor QPE continued to underestimate the ref-

erence rain gauge reports.

An assessment of potential impacts of different QPE

algorithms on hydrologic simulations for subbasins of

the Tar–Pamlico, varying in size from 110 to 2300 km2,

was conducted. Four precipitation datasets, NMQ and

HPE radar only and NMQ and HPE multisensor, were

inserted for particular time periods within a 42-month

time series compiled from SERFC QPE data obtained

from the stage 4 archive. The QPE precipitation forc-

ings were then input to a distributed hydrologic model

(HL-RDHM). The resulting streamflow simulations were

compared with a reference simulation based solely on the

operational precipitation grids and discharge observa-

tions at seven stream gauge locations. A common set of

a priori soil parameters, estimated from available soil and

land-use datasets, were used for all five simulations. Re-

sults from this study indicate that the streamflow simu-

lations were sensitive to differences in the QPE input

and that the quality of the streamflow simulations was

strongly correlated with the accuracy of the QPE.

The findings also indicate an operationally significant

impact is provided by algorithm features unique toNMQ,

particularly those that have the greatest effect in cool-

season and tropical events. These features include dy-

namic Z–R adjustments and snow detection. The largest

differences in data quality were evident between the

NMQ and HPE radar-only QPE datasets, and such dif-

ferences are likely to be even more significant in areas

with fewer rain gauges than were available in this study

area. The NMQ and HPE multisensor QPEs yielded

simulation results generally close to those from the

SERFC QPE, reflecting the major influence of rain

gauge input on these estimates.

Further studies (Wu and Kitzmiller 2009) confirm the

results of this study in terms of accuracy of the NMQQPE

relative to rain gauge reports. NMQ estimates are now

available for use in real time at all RFCs in the contermi-

nous United States and are being used operationally at

some RFCs. Possibilities for operational implementation

of NMQby the NWS are being documented by a team of

NWS headquarters, NCEP, and NSSL personnel.
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