Evolving Neural Network Ensembles by Minimization of
Mutual Information

Xin Yao' and Yong Liu?

1School of Computer Science
The University of Birmingham
Edgbaston, Birmingham, U.K.
X.Yao@cs.bham.ac.uk
2The University of Aizu
Aizu-Wakamatsu, Fukushima 965-8580, Japan
yliu@u-aizu.ac.jp

Abstract. Learning and evolution are two fundamental forms of adaptation. There has been a great interest
in combining learning and evolution with neural networks in recent years. This paper presents a hybrid
learning system for learning and designing of neural network ensembles based on negative correlation
learning and evolutionary learning. The idea of the hybrid learning system is to regard the population of
neural networks as an ensemble, and the evolutionary process as the design of neural network ensembles.
Two fitness sharing techniques have been used in the evolutionary process. One is based on the covering set.
The other is to use the concept of mutual information. The effectiveness of such hybrid learning approach
was tested on two real-world problems.

Keywords: hybrid learning system, evolutionary learning, negative correlation learning, fitness sharing

1 Introduction

Learning and evolution are two fundamental forms of adaptation. There has been a great interest in combining
learning and evolution with neural networks (NNs) in recent years. Evolutionary NN refer to a special class
of NNs in which evolution is another fundamental form of adaptation in addition to learning (Yao 1991,
Yao 1993, Yao 1994, Yao 1995). In evolutionary NNs, evolutionary algorithms are used to perform various
tasks, such as connection weight training, architecture design, learning rule adaptation, input feature selection,
connection weight initialization, rule extraction from NNs, etc. One distinct feature of evolutionary NN is
their adaptability to a dynamic environment. In other words, evolutionary NNs can adapt to an environment as
well as changes in the environment. The two forms of adaptation, i.e., evolution and learning in evolutionary
NN, make their adaptation to a dynamic environment much more effective and efficient. In a broader sense,
evolutionary NNs can be regarded as a general framework for adaptive systems, i.e., systems that can change
their architectures and learning rules appropriately without human intervention.

In evolutionary NN, it is practical that the NN with the minimum error on a training data set or a validation
data set is chosen to be the final learning system. However, learning is different from optimization in practice
because we want the learned system to have best generalization, which is different from minimizing an error
function on the training data set or the validation data set. The NN with the minimum error on a training data
set may not have best generalization unless there is an equivalence between generalization and the error on the
training data. Unfortunately, measuring generalization quantitatively and accurately is almost impossible in
practice (Wolpert 1990) although there are many theories and criteria on generalization, such as the minimum
description length (Rissanen 1978), Akaike information criteria (Akaike 1974), and minimum message length
(Wallace and Patrick 1991). In practice, these criteria are often used to define better error functions in the
hope that minimizing the functions will maximize generalization. While these functions often lead to better
generalization of learned systems, there is no guarantee.

Since the maximum fitness or the minimum error may not be equivalent to best generalization in evolution-
ary learning, the best individual with the maximum fitness in a population may not be the desired one. Other
individuals in the population may contain some useful information that will help to improve generalization of
learned systems. It is thus beneficial to make use of the whole population rather than any single individual. A
population always contains at least as much information as any single individual. Hence, combining different
individuals in the population to form an integrated system is expected to produce better results. Such a popula-
tion of NN is called an NN ensemble in this paper. There have been some very successful experiments which

show that evolutionary learning can be used to evolve NN ensembles (Liu et al. 2000, Liu et al. 2001, Liu and
Yao 2002, Liu and Yao 2002).

In this paper, a hybrid learning system based on evolutionary learning and negative correlation learning
(Liu and Yao 1999a, Liu and Yao 1999b, McKay and Abbass 2001) is presented to learn and evolve NN
ensembles. NN ensembles adopt the divide-and-conquer strategy. Instead of using a single network to solve
a task, an NN ensemble combines a set of NNs which learn to subdivide the task and thereby solve it more
efficiently and elegantly (Liu and Yao 1999a, Liu and Yao 1999b). However, designing NN ensembles is a
very difficult task. It relies heavily on human experts and prior knowledge about the problem. The idea of the
hybrid learning system is to regard the population of NNs as an ensemble, and the evolutionary process as the
design of NN ensembles.

The negative correlation learning (Liu and Yao 1999a, Liu and Yao 1999b, McKay and Abbass 2001) and
fitness sharing (Liu and Yao 1998) were adopted in the hybrid learning system to encourage the formation
of species in the population. The idea of negative correlation learning is to encourage different individual
networks in the ensemble to learn different parts or aspects of the training data, so that the ensemble can better
learn the entire training data. In negative correlation learning (Liu and Yao 1999a, Liu and Yao 1999b), the
individual networks are trained simultaneously rather than independently or sequentially. This provides an
opportunity for the individual networks to interact with each other and to specialize.

Fitness sharing refers to a class of speciation techniques in evolutionary algorithms (Goldberg 1989). Two
fitness sharing techniques were used in the hybrid learning system. One is based on the idea of the covering
set that consists of the same training patterns correctly classified by the shared individuals. The other is based
on the mutual information between one individual and the rest of population. Although the covering set could
roughly show the similarity between two NNs, a more accurate similarity measurement between two NNs in
a population can be defined by the explicit mutual information of output variables extracted by two NNs. The
mutual information between two variables, output F; of network ¢ and output F}; of network j, is given by

I(F;; Fj) = H(F;) + H(F;) — H(F;, Fj) (1)

where H (F}) is the entropy of F;, H(F}) is the entropy of F};, and H (Fj, F;) is the joint differential entropy
of F; and Fj. The equation shows that joint differential entropy can only have high entropy if the mutual
information between two variables is low, while each variable has high individual entropy. That is, the lower
mutual information two variables have, the more different they are. By minimizing the mutual information
between variables extracted by two NNs, two NNs are forced to convey different information about some
features of their input.

In this paper, negative correlation learning is firstly analyzed in terms of minimization of mutual infor-
mation on a regression task. Secondly, two fitness sharing techniques based on mutual information and the
idea of covering set are introduced into the hybrid learning system. Through negative correlation learning and
evolutionary learning, a diverse and cooperative population of NNs can be evolved. The effectiveness of such
hybrid learning approach was tested on two real-world problems.

The rest of this paper is organized as follows: Section 2 explores the connections between the mutual infor-
mation and the correlation coefficient, and explains how negative correlation learning can be used to minimize
mutual information. Section 3 analyzes negative correlation learning via the metrics of mutual information
on a regression task. Section 4 describes the hybrid learning system for evolving NN ensembles. Section 5
presents experimental results of the hybrid learning system. Finally, Section 6 concludes with a summary of
the paper.

2 Minimizing Mutual Information by Negative Correlation Learning

2.1 Minimization of Mutual Information

Suppose the output F; of network ¢ and the output F}; of network j are Gaussian random variables. Their
variances are o7 and 012- , respectively. The mutual information between F; and F}; can be defined by Eq.(1). The

differential entropy h(F;) and h(Fy) are given by h(F;) = 3[1 +log(2n0?)] and h(F}) = $[1 4 log(27a?)].
The joint differential entropy h(F;, F;) is given by

1
W(F;,) = 1+ log(2) + 5 logloZo2(1 - p3)) @)

where p;; is the correlation coefficient of F; and Fj

., = B = B = B)

O'Z-O'j

By substituting F;, F}, and Eq. (2) in (1), we get
1
I(F;; Fy) = =5 log(1 - p};))

From Eq.(4), we may make the following statements:

1. If F; and F} are uncorrelated, the correlation coefficient p;; is reduced to zero, and the mutual information
I(F;; F;) becomes very small.

2. If F; and Fj are highly positively correlated, the correlation coefficient p;; is close to 1, and mutual infor-
mation I(Fj; F;) becomes very large.

Both theoretical and experimental results (Clemen and Winkler 1985) have indicated that when individual
networks in an ensemble are unbiased, average procedures are most effective in combining them when errors
in the individual networks are negatively correlated and moderately effective when the errors are uncorrelated.
There is little to be gained from average procedures when the errors are positively correlated. In order to create
a population of NN that are as uncorrelated as possible, the mutual information between each individual NN
and the rest of population should be minimized. Minimizing the mutual information between each individual
NN and the rest of population is equivalent to minimizing the correlation coefficient between them.

2.2 Negative Correlation Learning

We consider estimating y by forming an NN ensemble whose output is a simple averaging of outputs F}; of a
set of NNs. Given the training data set D = {(x(1),y(1)),- -, (x(N),y(N))}, all the individual networks in
the ensemble are trained on the same training data set D

F(n) = %Eé‘ilﬂ(n) ©)
where F;(n) is the output of individual network 4 on the nth training pattern x(n), F'(n) is the output of the
NN ensemble on the nth training pattern, and M is the number of individual networks in the NN ensemble.

The idea of negative correlation learning (Liu and Yao 1999a, Liu and Yao 1999b) is to introduce a
correlation penalty term into the error function of each individual network so that the mutual informa-
tion among the ensemble can be minimized. The error function E; for individual ¢ on the training data set
D = {(x(1),y(1)),---, (x(N),y(N))} in negative correlation learning is defined by

1
=N

N1 Ei(n) = 5 |5 (Fi(n) — () + dpi(n) ©

E
2

where N is the number of training patterns, E;(n) is the value of the error function of network ¢ at presentation
of the nth training pattern, and y(n) is the desired output of the nth training pattern. The first term in the right
side of Eq.(6) is the mean-squared error of individual network ¢. The second term p; is a correlation penalty
function. The purpose of minimizing p; is to negatively correlate each individual’s error with errors for the rest
of the ensemble. The parameter A is used to adjust the strength of the penalty.

The penalty function p; has the form

1 .
pi(n) = =5 (Fi(n) - F(n))* ™)
The partial derivative of E; with respect to the output of individual ¢ on the nth training pattern is
OE;(n
Sr = Fi0) =) = X(F(m) = F(w)

= (1= A)(Fi(n) —y(n)) + A(F(n) —y(n)) ®)

where we have made use of the assumption that the output of ensemble F'(n) has constant value with respect
to F;(n). The value of parameter A lies inside the range 0 < A < 1 so that both (1 — A) and A have nonneg-
ative values. The standard back-propagation (BP) (Rumelhart et al. 1986) algorithm has been used for weight

adjustments in the mode of pattern-by-pattern updating. That is, weight updating of all the individual networks
is performed simultaneously using Eq.(8) after the presentation of each training pattern. One complete presen-
tation of the entire training set during the learning process is called an epoch. Negative correlation learning
from Eq.(8) is a simple extension to the standard BP algorithm. In fact, the only modification that is needed is
to calculate an extra term of the form A(F;(n) — F'(n)) for the ith NN.

From Eq. (8), we may make the following observations. During the training process, all the individual
networks interact with each other through their penalty terms in the error functions. Each network F; minimizes
not only the difference between F;(n) and y(n), but also the difference between F(n) and y(n). That is,
negative correlation learning considers errors what all other NNs have learned while training an NN.

3 Simulation Results
In order to understand how negative correlation learning minimizes mutual information, this section analyzes

it through measuring mutual information on a regression task in three cases: noise free condition, small noise
condition, and large noise condition.

3.1 Simulation Setup

The regression function investigated here is

2
1 1

fx) = R 10sin(rzzs) + 20 (.’L‘g — 5) + 10x4 + 5x5] -1 9)

where x = [21,...,2s5] is an input vector whose components lie between zero and one. The value of f(x)

lies in the interval [—1, 1]. This regression task has been used by Jacobs (Jacobs 1997) to estimate the bias of
mixture-of-experts architectures and the variance and covariance of experts’ weighted outputs.

Twenty-five training sets, (x(®) (1), y®) (1)),1 =1,---,L, L = 500,k = 1,---, K, K = 25, were created
at random. Each set consisted of 500 input-output patterns in which the components of the input vectors were
independently sampled from a uniform distribution over the interval (0,1). In the noise free condition, the target
outputs were not corrupted by noise; in the small noise condition, the target outputs were created by adding
noise sampled from a Gaussian distribution with a mean of zero and a variance of o2 = 0.1 to the function
f(x); in the large noise condition, the target outputs were created by adding noise sampled from a Gaussian
distribution with a mean of zero and a variance of 0> = 0.2 to the function f(x).

A testing set of 1024 input-output patterns, (t(n),d(n)),n = 1,---, N, N = 1024, was also generated.
For this set, the components of the input vectors were independently sampled from a uniform distribution over
the interval (0,1), and the target outputs were not corrupted by noise in all three conditions.

Each individual network in the ensemble is a multilayer perceptron with one hidden layer. All the individual
networks have five hidden nodes in an ensemble architecture. The hidden node function is defined by the
logistic function. The network output is a linear combination of the outputs of the hidden nodes.

For each estimation of mutual information among an ensemble, twenty-five simulations were conducted. In
each simulation, the ensemble was trained on a different training set from the same initial weights distributed
inside a small range so that different simulations of an ensemble yielded different performances solely due to
the use of different training sets. Such simulation setup follows the suggestions from Jacobs (Jacobs 1997).

3.2 Measurement of Mutual Information

The average outputs of the ensemble and the individual network ¢ on the nth pattern in the testing set,
(t(n),d(n)),n=1,---, N, are denoted respectively by F'(t(n)) and F';(t(n)), which are given by

F(b(n) = 254 FO (t(n) (10)
and .
Fi(t(n) = 3, F® (t(n)) an

where F*) (t(n)) and Fi(k) (t(n)) are the outputs of the ensemble and the individual network ¢ on the nth
pattern in the testing set from the kth simulation, respectively, and K = 25 is the number of simulations. The

correlation coefficient between network ¢ and network j is given by

SN (B (6) = Fatm)) (P (6m) = F(6(n)))

Pij = (] 2)
— 2 —
\/ SR (FR k) - Fit)) Nl (B9 (40) - Fj(tn)))
From Eq.(4), the integrated mutual information among the ensembles can be defined by
1
Emi = _§Eg1zjﬂi1,]’¢ilofl(1 - ng) 13)
The integrated mean-squared error (MSE) on the testing set can also defined by
E = Lisv Lygx (p® dn))” 14
test_mse — N n=1 E k=1 ((t (n)) - (n)) (14)

3.3 Results of Negative Correlation Learning

The results of negative correlation learning for the different values of A at epoch 2000 are given in Table 1.
For the noise free condition, the results suggest that Fcg:_mse appeared to decrease with increasing value of
A. The mutual information E,,; among the ensemble decreased as the value of A increased when 0 < A < 0.5.
However, when A increased further to 0.75 and 1, the mutual information E,,; had larger values. The reason
of having larger mutual information at A = 0.75 and A = 1 is that some correlation coefficients had negative
values and the mutual information depends on the absolute values of correlation coefficients.

For the small noise (variance 02 = 0.1) and large noise (variance o2 = 0.2) conditions, the results show
that there were same trends for E,,,; and Fjegs_mse in both noise free and noise conditions when A < 0.5.
That is, E,,; and Eiest_mse appeared to decrease with increasing value of A. However, Eyest_mse appeared
to decrease first and then increase with increasing value of A. Choosing a proper value of A is important, and
also problem dependent. For the noise conditions used for this regression task and the ensemble architectured
used, the performance of the ensemble was optimal for A = 0.5 among the tested values of A in the sense of
minimizing the MSE on the testing set.

Table 1. The results of negative correlation learning for different A values at epoch 2000.

Noise free Small noise (62 = 0.1) [Large noise (02 = 0.2)

A Emi Etest_mse Emi Etest_mse Emi Etest_mse
0 [0.3706| 0.0016 |6.5495 0.0137 6.7503 0.0249

0.25{0.1478 | 0.0013 |3.8761 0.0128 3.9652 0.0235
0.50.1038| 0.0011 |1.4547 0.0124 1.6957 0.0228
0.75{0.1704| 0.0007 |0.3877 0.0126 0.4341 0.0248
1 |0.6308| 0.0002 |0.2431 0.0290 0.2030 0.0633

4 Evolving Neural Network Ensembles

The major steps of the proposed hybrid learning system (HLS) are given as follows:

1. Generate an initial population of M NN, and set £ = 1. The number of hidden nodes for each NN, np, is
specified by the user. The random initial weights are distributed uniformly inside a small range.

2. Train each NN in the initial population on the training set for a certain number of epochs using negative

correlation learning. The number of epochs, n, is specified by the user.

Randomly choose a group of n; NN as parents to create n; offspring NNs by Gaussian mutation.

4. Add the n; offspring NNs to the population and train the offspring NNs using negative correlation learning
while the remaining NNs’ weights are frozen.

5. Calculate the fitness of M + nj NNs in the population and prune the population to the M fittest NNGs.

6. Stop the evolution process if the maximum number of generations has been reached. Otherwise, k = k+ 1
and go to Step 3.

(O8]

There are two levels of adaptation in HLS: negative correlation learning at the individual level and evo-
lutionary learning based on evolutionary programming (EP) (Fogel 1995) at the population level. In HLS,
an evolutionary algorithm based on evolutionary programming (Fogel 1995) has been used to search for a
population of diverse individual NNs that solve a problem together.

The fitness evaluation in HLS is carried out by fitness sharing. Explicit and implicit fitness sharing have
been proposed to encourage speciation in recent years (Mahfoud 1995, Darwen and Yao 1997). Fitness sharing
accomplishes speciation by degrading the raw fitness (i.e., the unshared fitness) of an individual according to
the presence of similar individuals. Thus this type of speciation requires a distance metric on the phenotype
or genotype space of the individuals. Traditionally, such a measurement is based on the Hamming distance
between two binary strings. However, this sharing scheme is not suitable for HLS because the individual
networks are not represented by binary strings in HLS.

Two fitness sharing techniques were used in HLS. One fitness sharing is based on the idea of covering the
same training patterns by shared individuals. The procedure of calculating shared fitness is carried out pattern-
by-pattern over the training set. If one training pattern is learned correctly by p individuals in the population,
each of these p individuals receives fitness 1/p, and the rest of the individuals in the population receive fitness
zero. Otherwise, all the individuals in the population receive fitness zero. The fitness is summed over all train-
ing patterns. Such fitness evaluation encourages each individual in the population to cover different patterns in
the training set.

The other fitness sharing is based on the minimization of mutual information. In order to create a population
of NN that are as uncorrelated as possible, the mutual information between each individual NN and the rest
of population should be minimized. The fitness f; of individual network ¢ in the population can therefore be

evaluated by the mutual information:
1

2 i L(Fis Fy)
Minimization of mutual information has the similar motivations as fitness sharing. Both of them try to generate
individuals that are different from others, though overlaps are allowed.

fi= 5)

5 Experimental Studies of HLS

This section investigates HLS on two benchmark problems: the Australian credit card assessment problem
and the diabetes problem. Both data sets were obtained from the UCI Machine Learning Repository. They are
available by anonymous ftp at ics.uci.edu (128.195.1.1) in directory /pub/machine-learning-databases.

The Australian credit card assessment problem is to assess applications for credit cards based on a number
of attributes. There are 690 patterns in total. The output has two classes. The 14 attributes include 6 numeric
values and 8 discrete ones, the latter having from 2 to 14 possible values.

The diabetes data set is a two-class problem that has 500 examples of class 1 and 268 of class 2. There are
8 attributes for each example. The data set is rather difficult to classify. The so-called “class” value is really a
binarized form of another attribute that is itself highly indicative of certain types of diabetes but does not have
a one-to-one correspondence with the medical condition of being diabetic.

In order to tell the difference between HLS with minimization of the size of covering sets and HLS with
minimization of mutual information. We name them HLSCS and HLSMI, respectively. The experimental setup
is the same as the previous experimental setup described in (Michie et al. 1994, Liu et al. 2000). The n-fold
cross-validation technique (Stone 1974) was used to divide the data randomly into n mutually exclusive data
groups of equal size. In each train-and-test process, one data group is selected as the testing set, and the other
(n — 1) groups become the training set. The estimated error rate is the average error rate from these n groups.
In this way, the error rate is estimated efficiently and in an unbiased way. The parameter n was set to be 10 for
the Australian credit card data set, and 12 for the diabetes data set, respectively.

All parameters used in HLS except for the number of training epochs were set to be the same for both the
Australian credit card assessment problem and the diabetes problem: the population size M (25), the number
of generations (200), the reproduction block size np (2), and the strength parameter A (0.5). The number of
training epochs n, was set to 3 for the Australian credit card data set, and 15 for the diabetes data set. The
used NN in the population are multilayer perceptrons with one hidden layer and five hidden nodes. These
parameters were selected after some preliminary experiments. They were not meant to be optimal.

5.1 Comparisons between HLSMI and HLSCS

Tables 2-3 show the results of HLSMI for the two data sets, where the ensembles were constructed by the
whole population in the last generation. Three combination methods for determining the output of the ensemble
have been investigated in HLSMI. The first is simple averaging. The output of the ensemble is formed by a
simple averaging of output of individual NNs in the ensemble. The second is majority voting. The output
of the greatest number of individual NNs will be the output of the ensemble. If there is a tie, the output of
the ensemble is rejected. The third is winner-takes-all. For each pattern of the testing set, the output of the
ensemble is only decided by the individual NN whose output has the highest activation. The accuracy rate
refers to the percentage of correct classifications produced by HLSMI. In comparison with the accuracy rates
obtained by three combination methods, majority voting and winner-takes-all outperformed simple averaging
on both problems. Simple averaging is more suitable to the regression type of tasks. Because both problems
studied in this section are classification tasks, majority voting and winner-takes-all are better choices.

Table 2. Comparison of accuracy rates between HLSCS and HLSMI for the Australian credit card data set. The
results are averaged on 10-fold cross-validation. Mean and SD indicate the mean value and standard deviation,

respectively.
Simple Averaging | Majority Voting | Winner-Takes-All
Methods | Mean SD Mean| SD |Mean SD
HLSMI |0.864| 0.038 [0.870| 0.040 |0.868| 0.039
HLSCS |0.855| 0.039 |0.857| 0.039 |0.865| 0.028

Table 3. Comparison of accuracy rates between HLSCS and HLSMI for the diabetes data set. The results are
averaged on 12-fold cross-validation. Mean and SD indicate the mean value and standard deviation, respectively.

Simple Averaging | Majority Voting | Winner-Takes-All
Methods | Mean SD Mean| SD Mean SD
HLSMI |0.771| 0.049 |0.777| 0.046 [0.773| 0.051
HLSCS |0.766| 0.039 |0.764| 0.042 |0.779| 0.045

Tables 2-3 compare the results produced by HLSMI and HLSCS using three combination methods. Major-
ity voting supports HLSMI, while winner-takes-all favors HLSCS. Since the only difference between HLSMI
and HLSCS is the fitness sharing scheme used, the results suggest that combination methods and fitness sharing
are closely related to each other. Further studies are needed to probe the relationship of these two.

5.2 Evolution Process of Mutual Information

In order to observe the evolution process of the mutual information among the populations evolved by HLSMI
and HLSCS, Figure 1 shows the evolution of the mean of sum of the mutual information among the population
for the Australian credit card data set. The sum of the mutual information among the population is calculated
by
MM
Ipopulatz’on = § Z . Z I(FMF])
i=1 j=1,j#i

where Fj is the vector formed by the output of network 4 on the training set, and F; is the vector formed by
the output of network j on the training set. The mean of Ipspuiation is averaged on 10-fold cross-validation.

In Figure 1, the values of mutual information of populations evolved by both HLSMI and HLSCS reduced
quickly at the initial generations. After that, the values of mutual information of population evolved by HLSCS
decreased very slowly. However, HLSMI was able to steadily decrease the mutual information among the
population through the whole evolution process.

(16)

1000 T T

900

ISP
1

800

700

600

500

400

300

200 1 1 1
0 50 100 150 200

Figure 1. The evolution of the mean of sum of the mutual information among the populations evolved by HLSMI
ans HLSCS for the Australian credit card data set. The mean is averaged on 10-fold cross-validation. The vertical
axis is the mutual information value and the horizontal axis is the number of generations.

Table 4. Comparison among HLSMI, HLSCS, and others (Michie et al. 1994) in terms of the average testing error
rate for the Australian credit card data set. The results are averaged on 10-fold cross-validation.“FD” indicates
Kohonen algorithm failed on that data set. The error rates of HLSMI using majority voting and HLSCS using the
winner-takes-all are shown in the table.

Algorithm | Error Rate | Algorithm | Error Rate | Algorithm | Error Rate | Algorithm | Error Rate
HLSMI 0.130 [ALLOCS80| 0.201 AC? 0.181 Cal5 0.131
HLSCS 0.135 k-NN 0.181 Baytree 0.171 Kohonen FD
Discrim 0.141 CASTLE | 0.148 |NaiveBay | 0.151 |DIPOL92| 0.141
Quadisc 0.207 CART 0.145 CN2 0.204 | Backprop | 0.154
Logdisc 0.141 IndCART | 0.152 C4.5 0.155 RBF 0.145
SMART 0.158 NewID 0.181 ITrule 0.137 LVQ 0.197

5.3 Comparisons with EENCL and Other Work

Tables 4-5 compare the results produced by HLSMI, HLSCS, and other 22 algorithms tested by Michie et
al. (Michie et al. 1994). These 22 algorithms can be categorized into four groups: statistical algorithms (Dis-
crim, Quadisc, Logdisc, SMART, ALLOCS80, k-NN, CASTLE, NaiveBay, Default); decision trees (CART,
IndCART, NewlD, AC?, Baytree, Cal5, C4.5); rule-based methods (CN2, ITrule); NNs (Backprop, Koho-
nen, LVQ, RBF, DIPOL92). More details about these algorithms appear in (Michie et al. 1994). HLSMI and
HLSCS used the same data setup as in (Michie et al. 1994), i.e., 10-fold cross-validation for the Australian
credit card data set and 12-fold cross-validation for the diabetes data set. The error rate refers to the percentage
of wrong classifications on the testing set. Only the results of HLSMI using majority voting and HLSCS using
the winner-takes-all combination method are shown in Tables 4-5. The average testing error rates of HLSMI
and HLSCS are 0.130 and 0.135 for the Australian credit card data set, and 0.223 and 0.221 for the diabetes
data set. As demonstrated by the results, HLSMI and HLSCS have been able to achieve the generalization
performance comparable to or better than the best of 22 algorithms tested (Michie et al. 1994) for both the

Australian credit card data set and the diabetes data set.

Table 5. Comparison among HLSMI, EENCL, and others (Michie et al. 1994) in terms of the average testing error
rate for the diabetes data set. The results are averaged on 12-fold cross-validation. The error rates of HLSMI using
majority voting and HLSCS using the winner-takes-all are shown in the table.

Algorithm | Error Rate | Algorithm | Error Rate | Algorithm | Error Rate | Algorithm | Error Rate
HLSMI 0.223 |ALLOCS80| 0.301 AC? 0.276 Cal5 0.250
HLSCS 0.221 k-NN 0.324 Baytree 0.271 Kohonen | 0.273
Discrim 0.225 CASTLE 0.258 |NaiveBay | 0.262 |DIPOL92 | 0.224
Quadisc 0.262 CART 0.255 CN2 0.289 | Backprop | 0.248
Logdisc 0.223 | IndCART | 0.271 C4.5 0.270 RBF 0.243
SMART 0.232 NewID 0.289 ITrule 0.245 LVQ 0.272

6 Conclusions

Fitness sharing is important to evolve a diverse and cooperative population of NNs that make a good NN
ensemble. Two fitness sharing techniques have been introduced and compared in the hybrid learning system.
Because of being more accurate measurement of similarity, mutual information not only provides a better fit-
ness sharing scheme, but also leads to study on the connections between fitness sharing and mutual information
concept.

There are a large number of combination methods which have been proposed in the fields of NNs, machine
learning and statistics (Jacobs 1995). Three combination methods are adopted in the hybrid learning system,
including simple averaging, majority voting and winner-takes-all, because of their simplicity and effectiveness.
It would be desirable to study a more complex model, such as a supra Bayesian methods (Jacobs 1995), which
are theoretically well-motivated and normative. The problems existing in such complex models are that they
may be impractical on some real-world tasks and involve expensive computation. It will be an important topic
of how to apply these complex models in our hybrid learning system for real-world applications.

References

Akaike, H. (1974), “A new look at the statistical model identification,” IEEE Trans. Appl. Comp., AC-19:716-
723.

Clemen, R. T. and R. .L Winkler, R. L. (1985), “Limits for the precision and value of information from
dependent sources,” Operations Research, 33:427-442.

Darwen, P. J. and Yao, X. (1997), “Speciation as automatic categorical modularization,” IEEE Trans. on Evo-
lutionary Computation, 1(2):101-108.

Fogel, D. B. (1995), Evolutionary Computation: Towards a New Philosophy of Machine Intelligence, IEEE
Press, New York, NY.

Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley,
Reading, MA.

Jacobs, R. A. (1995), “Methods for combining experts’ probability assessments,” Neural Computation, 7:867-
888.

Jacobs, R. A. (1997), “Bias/variance analyses of mixture-of-experts architectures,” Neural Computation,
9:369-383.

Liu, Y. and Yao, X. (1998), “Towards designing neural network ensembles by evolution,” In Parallel Problem
Solving from Nature — PPSN V: Proc. of the Fifth International Conference on Parallel Problem Solving
from Nature, volume 1498 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 623-632.

Liu, Y. and Yao, X. (1999a), “Simultaneous training of negatively correlated neural networks in an ensemble,”
IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 29(6):716-725.

Liu, Y. and Yao, X. (1999b), “Ensemble learning via negative correlation,” Neural Networks, 12:1399-1404.

Liu, Y., Yao, X., and Higuchi, T. (2000), “Evolutionary ensembles with negative correlation learning,” IEEE
Transactions on Evolutionary Computation, 4(4):380-387.

Liu, Y., Yao, X., Zhao, Q., and Higuchi, T. (2001), “Evolving a cooperative population of neural networks by
minimizing mutual information,” Proc. of the 2001 Conference on Evolutionary Computation, IEEE Press,
pp- 384-389.

Liu, Y. and Yao, X. (2002), “Maintaining population diversity by minimizing mutual information,” Proceed-
ings of the 2002 Genetic and Evolutionary Computation Conference (GECC0O2002), Morgan Kaufmann,
pp. 652-656.

Liu, Y. and Yao, X. (2002), “Learning and evolution by minimization of mutual information,” Parallel Problem
Solving from Nature — PPSN VII: Proc. of the 7th International Conference on Parallel Problem Solving from
Nature, Lecture Notes in Computer Science, Vol. 2439, Springer, pp. 495-504.

Lubbe, J. C. A. van der (1999), Information Theory, Prentice-Hall International, Inc., 2nd edition.

Mahfoud, S. W. (1995), Niching Methods for Genetic Algorithms. PhD thesis, University of Illinois at Urbana-
Champaign.

McKay, R. I. and Abbass, H. A. (2001), “Analyzing anti correlation in ensemble learning,” Proceedings of the
2001 Conference on Artificial Neural Networks and Expert Systems, pp. 22-27.

Michie, D., Spiegelhalter, D. J., and Taylor, C. C. (1994), Machine Learning, Neural and Statistical Classifi-
cation, Ellis Horwood Limited, London.

Rissanen, J. (1978), “Modeling by shortest data description,” Automatica, 14:465-471.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986), “Learning internal representations by error prop-
agation,” In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Explorations in
the Microstructures of Cognition, Vol. I, MIT Press, Cambridge, MA, pp. 318-362.

Stone, M. (1974), “Cross-validatory choice and assessment of statistical predictions,” Journal of the Royal
Statistical Society, 36:111-147.

Wallace, C. S. and Patrick, J. D. (1991), “Coding decision trees,” Technical Report 91/153, Dept. of Computer
Science, Monash University, Clayton, Victoria 3168, Australia.

Wolpert, D. H. (1990), “A mathematical theory of generalization,” Complex Systems, 4:151-249.

Yao, X. (1991), “Evolution of connectionist networks,” In T. Dartnall, editor, Preprints of the Int’l Symp. on
Al Reasoning & Creativity, Griffith University, Queensland, Australia, pp. 49-52.

Yao, X. (1993), “A review of evolutionary artificial neural networks,” International Journal of Intelligent
Systems, 8(4):539-567.

Yao, X. (1994), “The evolution of connectionist networks,” In T. Dartnall, editor, Artificial Intelligence and
Creativity, Kluwer Academic Publishers, Dordrecht, pp. 233-243.

Yao, X. (1995), “Evolutionary artificial neural networks,” In A. Kent and J. G. Williams, editors, Encyclopedia
of Computer Science and Technology, volume 33, Marcel Dekker Inc., New York, NY 10016, pp. 137-170.

