
1

Evolving Neural Networks to Play Checkers without
Relying on Expert Knowledge

Kumar Chellapilla

University of California at San Diego

Dept. Electrical and Computer Engineering

La Jolla, CA 92093

kchellap@ece.ucsd.edu

David B. Fogel

Natural Selection, Inc.

3333 N. Torrey Pines Ct., Suite 200

La Jolla, CA 92037

dfogel@natural-selection.com

Abstract

An experiment was conducted where neural networks compete for survival in an evolving

population based on their ability to play checkers. More specifically, multilayer

feedforward neural networks were used to evaluate alternative board positions and games

were played using a minimax search strategy. At each generation, the extant neural

networks were paired in competitions and selection was used to eliminate those that

performed poorly relative to other networks. Offspring neural networks were created

from the survivors using random variation of all weights and bias terms. After a series of

250 generations, the best-evolved neural network was played against human opponents in

a series of 90 games on an internet website. The neural network was able to defeat two

expert-level players and played to a draw against a master. The final rating of the neural

network placed it in the “Class A” category using a standard rating system. Of particular

importance in the design of the experiment was the fact that no features beyond the piece

differential were given to the neural networks as a priori knowledge. The process of

2

evolution was able to extract all of the additional information required to play at this level

of competency. It accomplished this based almost solely on the feedback offered in the

final aggregated outcome of each game played (i.e., win, lose, or draw). This procedure

stands in marked contrast to the typical artifice of explicitly injecting expert knowledge

into a game-playing program.

Keywords: evolutionary computation, feedforward neural networks, game playing,

checkers, alpha-beta search.

I. Introduction

There has been interest in designing computer algorithms to play common games since

the early advent of the modern digital computer. Chess has received the most attention in

this regard, with efforts to beat the human world champion finally being successful in

1997 (Deep Blue defeated Garry Kasparov). Other games have also been tackled,

including othello, backgammon, and checkers. With a few exceptions (e.g.[13]), these

efforts have relied on domain-specific information programmed into an algorithm in the

form of weighted features that were believed to be important for assessing the relative

worth of alternative positions in the game. That is, the programs relied on human

expertise to defeat human expertise.

Although the accomplishment of defeating a human world champion in any significant

game of strategy is a worthy goal, the majority of these “successes” did not incorporate

any learning in their algorithms. Every “item” of knowledge was preprogrammed. In

some cases, the programs were even tuned to defeat particular human opponents,

3

indicating their brittle nature. The fact that they require human expertise a priori is

testament to the limitation of this approach.

In contrast, Fogel [1] offered experiments where evolution was used to design neural

networks that were capable of playing tic-tac-toe without incorporating features

prescribed by experts. The neural networks competed against an expert system, but their

overall quality of play was judged solely on the basis of their win, loss, and draw

performance over a series of 32 games. No effort was made to assign credit to the

evolving networks for any specific move or board feature. The results indicated that

successful strategies for this simple game could be developed even without prescribing

this information.

A more significant challenge lies in having an evolutionary algorithm learn competent

strategies in a complex setting in the absence of a knowledgeable, hand-crafted (i.e.,

human-designed) opponent. To address this concern, consider the problem of designing

an evolutionary algorithm that improves the strategy of play in the game of checkers (also

known as draughts, pronounced “drafts”) simply by playing successive games between

candidate strategies in a population, selecting those that perform well relative to others in

the population, making random variations to those strategies that are selected, and

iterating this process. Following the previous experiments using the game of tic-tac-toe,

strategies can be represented by neural networks. Before providing the algorithmic

details, however, the game will be described here for completeness.

4

II. Background

A. Rules of the Game

Checkers is played traditionally on an eight by eight board with squares of alternative

colors of red and black (see Figure 1). There are two players, denoted as “red” and

“white” (or “black” and “white,” but here, for consistency with a commonly available

website on the internet that allows for competitive play between players who log in, the

notation will remain with red and white). Each side has 12 pieces (checkers) which begin

in the 12 alternating squares of the same color that are closest to that player’s side, with

the right-most square on the closest row to player being left open. The red player moves

first and then play alternates between sides. Checkers are allowed to move forward

diagonally one square at a time, or, when next to an opposing checker and there is a space

available directly behind that opposing checker, by jumping diagonally over an opposing

checker. In the latter case, the opposing checker is removed from play. If a jump would in

turn place the jumping checker in position for another jump, that jump must also be

played, and so forth, until no further jumps are available for that piece. Whenever a jump

is available, it must be played in preference to a move that does not jump; however, when

multiple jump moves are available, the player has the choice of which jump to conduct,

even when one jump offers the removal of more opponent’s pieces (e.g., a double jump

vs. a single jump). When a checker advances to the last row of the board it becomes a

king, and can thereafter move diagonally in any direction (i.e., forward or backward). The

game ends when a player has no more available moves, which most often occurs by

having their last piece removed from the board but can also occur when all existing

pieces are trapped resulting in a loss for the player with no remaining moves and win for

5

the opponent (the object of the game). The game can also end when one side offers a

draw and the other accepts.1

Unlike tic-tac-toe and many other simpler games, there is no known “value” of the game

of checkers. That is, it is not known if the player who moves first can force a win or a

draw. The number of possible combinations of board positions is over 5 × 1020 [2, p. 43],

and the game tree of possible sequences of moves remains too large to enumerate.

Endgame positions with up to eight pieces remaining on the board have been enumerated

and incorporated into some checkers-playing computer programs as look-up tables to

determine exactly which moves are best (as well as the ultimate outcome) under these

conditions (e.g., in the program Chinook [3]). The number of positions with up to eight

pieces is about 440 billion. The number of positions rapidly increases with the number of

pieces as a combinatorial function thereby making an exhaustive listing of longer

endgame sequences impractical.

B. Computer Algorithms for Checkers

There have been many attempts to design programs to play checkers since the late 1950s.

These are documented in [2] and for the sake of space only two will be described here.

The current computer world champion checkers program is Chinook, designed by J.

Schaeffer and others at University of Alberta. The program uses a linear handcrafted

evaluation function that considers several features of the game board including 1) piece

count, 2) kings count, 3) trapped kings, 4) turn, 5) runaway checkers (unimpeded path to

a king), and other minor factors [2, pp. 63-65]. In addition, the program has 1) access to a

library of opening moves from games played by grand masters, 2) the complete endgame

6

database for all boards with eight or fewer pieces, and 3) a "fudge factor" that was chosen

to favor boards with more pieces than fewer pieces. This last facet was included to

present more complicated positions to human opponents in the hopes of eliciting a

mistake. No machine learning methods have been employed successfully in the

development of Chinook. All of its "knowledge" has been programmed by humans.

Chinook played to a draw after six games in a 40-game match against the former human

world champion Marion Tinsley, the best player to have lived.2 Tinsley retired the match

after these six games for health reasons and died shortly thereafter. Chinook is rated at

2814, well beyond the ratings of 2632 and 2625 held by the current best human players

[2, p. 447] (see the results section below for a more detailed explanation of the ratings

sytems).

In contrast to Chinook, the most well-known effort in designing an algorithm to play

checkers is owed to Samuel [4] which was one of the first apparently successful

experiments in machine learning. The method relied in part on the use of a polynomial

evaluation function comprising a subset of weighted features chosen from a larger list of

possibilities. The polynomial was used to evaluate alternative board positions some

number of moves into the future using a minimax strategy. The technique relied on an

innovative self-learning procedure whereby one player competed against other. The loser

was replaced with a deterministic variant of the winner by altering the weights on the

features that were used, or in some cases replacing features that had very low weight with

other features. Samuel's program, which also included rote learning of games played by

masters, was played against and defeated R.W. Nealey in 1962. IBM Research News

7

described Nealey as "a former Connecticut checkers champion, and one of the nation's

foremost players."

The success of Samuel [4] was overstated, and continues to be overstated. The 1962

match against Nealey was, in retrospect, pocked with errors on both sides, as has been

demonstrated by using Chinook to analyze the game [2, p. 93-97]. Moreover, Nealey was

not a "former Connecticut champion" as advertised at the time of the match, although he

did earn this title later. Nealey defeated Samuel's program in a rematch the next year, and

Samuel played four games with his program against both the world champion and

challenger in 1966, losing all eight games. As Schaeffer [2, p. 97] wrote: "The promise of

the 1962 Nealey game was an illusion."

The promise of machine learning methods for addressing complicated games, however, is

not an illusion. Reinforcement and evolutionary learning methods have been employed

with success in backgammon [5,6], particularly when using neural networks to determine

the appropriate moves. Of particular interest is the possibility of using neural networks to

extract nonlinear structure inherent in a problem domain [7]. More specifically, a

significant challenge is to devise a method for having neural networks learn how to play a

game such as checkers without being given expert knowledge in the form of weighted

features, prior games from masters, look-up tables of enumerated end game positions, or

other similar information. This would appear to be a necessary precursor to any effort to

generate machine intelligence that is capable of solving new problems in new ways. The

measure of success is the level of play that can be attained against humans without

preprogramming in the requisite knowledge to play well.

8

Early speculation on the potential success of just these sorts of efforts was entirely

negative. Newell (in [8]) offered "It is extremely doubtful whether there is enough

information in 'win, lose, or draw' when referred to the whole play of the game to permit

any learning at all over available time scales." Minsky [8] noted being in "complete

agreement" with Newell. To test the veracity of these conjectures, an experiment in

evolutionary algorithms was designed whereby neural networks that represent strategies

for playing checkers were competed against themselves starting from completely random

initializations. Points were assigned for achieving a win, loss, or draw in each of a series

of games. Only the total point score was used to represent the quality of a neural

network's play (i.e., no credit assignment was employed, even to the level of identifying

which games were won, lost, or tied). Those networks with the highest scores were

maintained as parents for the next generation. Offspring networks were created by

randomly varying the connection weights of their parents, and the process was iterated.

After 250 generations, the best-evolved neural network was tested against a range of

human players. In contrast to the comments by Newell and Minsky, the network not only

rose to a reasonably high level of play, it was able to occasionally defeat expert players

and played to a draw against a master.

9

III. Method

The following protocol was adopted for evolving strategies in the game of checkers. Each

board was represented by a vector of length 32, with each component corresponding to an

available position on the board. Components in the vector could take on elements from

{−K, −1, 0, +1, +K}, where K was the value assigned for a king, 1 was the value for a

regular checker, and 0 represented an empty square. The sign of the value indicated

whether or not the piece in question belonged to the player (positive) or the opponent

(negative). A player’s move was determined by evaluating the presumed quality of

potential future positions. This evaluation function was structured as a fully connected

feed forward neural network with an input layer, two hidden layers, and an output node.

The nonlinearity function at each hidden and output node was chosen to be the hyperbolic

tangent (tanh, bounded by ±1) with a variable bias term, although other sigmoidal

functions could undoubtedly have been chosen. In addition, the sum of all entries in the

input vector was supplied directly to the output node. Figure 2 shows the general

structure of the network. At each generation, a player was defined by their associated

neural network in which all of the connection weights (and biases) were evolvable, as

well as their evolvable king value. For all experiments offered here, each network

comprised 40 nodes in the first hidden layer and 10 nodes in the second layer.3

It is important to note that, with one exception, no attempt was made to offer useful

features as inputs to a player’s neural network. The common approach to designing

superior game playing programs is to perform exactly this sort of intervention where a

human expert delineates a series of board patterns or general features that are weighted in

10

importance, positively or negatively [3, 9, 10]. In addition, as with Chinook, entire

opening sequences from games played by grand masters and look-up tables of end game

positions can also be stored in memory and retrieved when appropriate. This is exactly

opposite of the approach here. The only feature that could be claimed to have been

offered is a function of the piece differential between a player and its opponent, owing to

the sum of the inputs being supplied directly to the output node. The output essentially

sums all the inputs which in turn offers the piece advantage or disadvantage. But this is

not true in general, for when kings are present on the board, the value K or −K is used in

the summation, and as described below, this value was evolvable rather than prescribed

by the programmers a priori. Thus the evolutionary algorithm had the potential to

override the piece differential and invent a new feature in its place. Absolutely no other

explicit or implicit features of the board beyond the location of each piece were

implemented.

When a board was presented to a neural network for evaluation, the output node

designated a scalar value that was interpreted as the worth of that board from the position

of the player whose pieces were denoted by positive values. The closer the output value

was to 1.0, the better the evaluation of the corresponding input board. Similarly, the

closer the output was to −1.0, the worse the board. All positions that were wins for the

player (e.g., no remaining opposing pieces) were assigned the value of exactly 1.0 and

likewise all positions that were losses were assigned the value of exactly −1.0.

To begin the evolutionary algorithm, a population of 15 strategies (neural networks), Pi, i

= 1, ..., 15, defined by the weights and biases for each neural network and the strategy’s

11

associated value of K, was created at random. Weights and biases were generated by

sampling from a uniform distribution over [−0.2,0.2], with the value of K set initially to

2.0. Each strategy had an associated self-adaptive parameter vector σi, i = 1, ..., 15, where

each component corresponded to a weight or bias and served to control the step size of

the search for new mutated parameters of the neural network. To be consistent with the

range of initialization, the self-adaptive parameters for weights and biases were set

initially to 0.05.

Each parent generated an offspring strategy by varying all of the associated weights and

biases, and possibly the value of K as well. Specifically, for each parent Pi, i = 1, ..., 15 an

offspring P′i, i = 1, ..., 15, was created by:

σ′i(j) = σi(j)exp(τN(0,1)), j = 1, ..., Nw

w′i(j) = wi(j) + σ′i(j)Nj(0,1), j = 1, ..., Nw

where Nw is the number of weights and biases in the neural network (here this is 1741), τ

= 1/sqrt(2sqrt(Nw)) = 0.1095, and Nj(0,1) is a standard Gaussian random variable

resampled for every j. The offspring king value K′ was obtained by:

K′ i = Ki exp((1/sqrt(2)) N(0,1))

For convenience, the value of K′ i was constrained to lie in [1.0, 3.0] by resetting to the

limit exceeded when applicable. Thus the offspring’s king value had the possibility of

taking on any real value in [1.0, 3.0].

12

All parents and their offspring competed for survival by playing games of checkers and

receiving points for their resulting play. Each player in turn played one checkers game

against each of five randomly selected opponents from the population (with replacement).

In each of these five games, the player always played red, whereas the randomly selected

opponent always played white. In each game, the player scored −2, 0, or +1 points

depending on whether it lost, drew, or won the game, respectively (a draw was declared

after 100 moves for each side). Similarly, each of the opponents also scored −2, 0, or +1

points depending on the outcome. These values were somewhat arbitrary, but reflected a

generally reasonable protocol of having a loss be twice as costly as a win was beneficial5.

In total, there were 150 games per generation, with each strategy participating in an

average of 10 games. After all games were complete, the 15 strategies that received the

greatest total points were retained as parents for the next generation and the process was

iterated.

Each game was played using a fail-soft alpha-beta search [11] of the associated game tree

for each board position looking a selected number of moves into the future. The minimax

move for a given ply was determined by selecting the available move that affords the

opponent the opportunity to do the least damage as determined by the evaluation function

on the resulting position. The depth of the search, d, was set at four to allow for

reasonable execution times (100 generations on a 400 MHz Pentium II required about

two days, although no serious attempt was made to optimize the run-time performance of

the algorithm). In addition, when forced moves were involved, the search depth was

extended (let f be the number of forced moves) because in these situations the player has

no real decision to make. The ply depth was extended by steps of two, up to the smallest

13

even number that was greater than or equal to the number of forced moves f that occurred

along that branch. If the extended ply search produced more forced moves then the ply

was once again increased in a similar fashion. Furthermore, if the final board position was

left in an "active" state, where the player has a forced jump, the depth was once again

incremented by two ply. Maintaining an even depth along each branch of the search tree

ensured that the boards were evaluated after the opponent had an opportunity to respond

to the player's move. The best move to make was chosen by iteratively minimizing or

maximizing over the leaves of the game tree at each ply according to whether or not that

ply corresponded to the opponent’s move or the player’s move. For more on the

mechanics of alpha-beta search, see [11].

This evolutionary process, starting from completely randomly generated neural network

strategies, was iterated for 250 generations. The best neural network (from generation

250) was then used to play against human opponents on an internet gaming site

(www.zone.net). Each player logging on to this site is initially given a rating, R0, of 1600

and a player’s rating changes according to the following formula (which follows the

rating system of the United States Chess Federation (USCF)):

 RNew = ROld + C Outcome – W
(1)

where

 W = 1

1 + 10
ROpp – ROld

400

 Outcome ∈ 1 if Win, 0.5 if Draw, 0 if Loss

ROpp is the rating of the opponent, and C = 32 for ratings less than 2100.4

14

Over the course of two weeks, 90 games were played against opponents on this website.

Games were played until (1) a win was achieved by either side, (2) the human opponent

resigned, or (3) a draw was offered by the opponent and (i) the piece differential of the

game did not favor the neural network by more than one piece and (ii) there was no way

for the neural network to achieve a win that was obvious to the authors, in which case the

draw was accepted. There was a fourth condition which occurred infrequently in which

the human opponents abandoned the game without resigning (by closing their graphical-

user interface) thereby breaking off play without formally accepting defeat. When an

opponent abandoned a game in competition with the neural network, a win was counted if

the neural network had an obvious winning position (one where a win could be forced

easily in the opinion of the authors) or if the neural network was ahead by two or more

pieces; otherwise, the game was not recorded. In no cases were the opponents told that

they were playing a computer program, and no opponent ever commented that they

believed their opponent was a computer algorithm.

Opponents were chosen based primarily on their availability to play (i.e., they were not

playing someone else at the time) and to ensure that the neural network competed against

players with a wide variety of skill levels. In addition, there was an attempt to balance the

number of games played as red or white. In all, 47 games were played as red. All moves

were based on a ply depth of d = 6, 8, or in rare cases 10, depending on the perceived

time required to return a move (less than a minute was desired). The majority of moves

were based on d = 6.

IV. RESULTS

15

Figure 3 shows a histogram of the number of games played against players of various

ratings along with the win-draw-loss record attained in each category. The evolved neural

network dominated players rated 1800 and lower, and had almost as many losses as wins

against opponents rated between 1800 and 1900. Figure 4 shows the sequential rating of

the neural network and the rating of the opponents played over all 90 games. Table I

provides a listing of the class intervals and designations accepted by the USCF. The

highest rating attained by the evolved neural network was 1975.8 on game 74. The final

rating of the neural network was 1914.4. However, the order in which games are played

has a significant impact on the final rating obtained.

From Eq. (1) the largest increase in rating occurs when a weak player defeats a strong

player, while the largest decrease in rating occurs when a strong player loses to a weak

player. Given that the 90 independent games played to evaluate the player could have

been played in any order (since no learning was performed during the series of games

played on the website), a better estimate of the network's true rating can be obtained by

sampling from the population of all possible orderings of opponents. (Note that the total

number of orderings is 90! ≈ 1.48x10138, which is too large to enumerate.) The network's

rating was recalculated over 2000 random orderings drawn uniformly from the set of all

possible orderings. Figure 5 shows the histogram of the ratings that resulted from each

permutation. The corresponding mean rating was 1901.98, with a standard deviation of

27.57. The minimum and maximum ratings obtained were 1820.61 and 2006.39. Figure 6

shows the rating trajectory averaged over the 2000 permutations as a function of the

number of games played. The mean rating starts at 1600 (the standard starting rating at

the website) and steadily climbs to a rating of above 1860 by game 50. As the number of

16

games reaches 90, the mean rating curve begins to saturate and reaches a value of

1901.98 which places it subjectively as a Class A player. For comparison, the top 10

rated players registered at this internet site (as of December 13, 1998) had ratings of:

1. 2308

2. 2294

3. 2272

4. 2248

5. 2246

6. 2239

7. 2226

8. 2224

9. 2221

10. 2217

Thus the top 10 players were all at the master level.

The best performance of the evolved network was likely recorded in a game against a

player rated 2207 (master level), which ended in a draw. At the time, this opponent was

ranked number 18 on the website out of more than 40,000 registered players. The

sequence of moves is shown in the Appendix. Certain moves are annotated, but note that

these annotations are not offered by an expert checkers player (instead being offered here

by the authors). Undoubtedly, a more advanced player might have different comments to

make at different stages in the game. Selected positions are also shown in accompanying

17

figures. Also shown is the sequence of moves of the evolved network in a win over an

expert rated 2134, who was ranked 48th on the website.

V. CONCLUSIONS

Overall, the results indicate the ability for an evolutionary algorithm to start with

essentially no preprogrammed information in the game of checkers (except the possibility

for using piece differential as indicated above) and learn, over successive generations,

how to play at a level that is challenging to many humans. Further, the best evolved

neural network was sometimes able to defeat expert-level players, and even play to a

draw against a master. No doubt, the limited ply depth that could be employed was a

handicap to the performance observed. This was particularly evident in the end game,

where it is not uncommon to find pieces separated by several open squares, and a search

at d = 6, 8, or even 10, may not allow pieces to effectively “see” that there are other

pieces within eventual striking distance. Moreover, the coordinated action of even two

pieces moving to pin down a single piece can necessitate a long sequence of moves where

it is difficult to ascribe advantage to one position over another until the final result is in

view. Finally, it is well known that many end game sequences in checkers can require

very high ply (e.g., p. 20-60 in [3]), and all of these cases were simply unavailable to the

neural network to assess. With specially designed computer hardware, it would be

possible to implement the best neural network directly on a chip and greatly increase the

number of boards that could be evaluated per unit time, and thereby the ply that could be

searched. Under the available computing environment, the speed was limited to

evaluating approximately 3,500 possible board positions per second. For comparison,

18

Deep Blue was able to evaluate 200 million chess boards per second (Hoan, cited in

[12]).

Another limitation of the procedure was in the use of minimax as a strategy for choosing

the best move. Although this is a commonly accepted protocol, it is not always the best

choice for maximizing the chances of obtaining a win against an opponent that may make

a mistake. By assuming that the opponent will always make the move that is worst from

the player’s perspective, the player must play conservatively, minimizing that potential

damage. This conservatism can work against the player, because when offered the choice

between one move that engenders two possible opponent responses, each with values of

say +0.05 and +0.2 points, respectively, and another move with two possible responses of

0.0 and +0.9 points, the minimax strategy will favor the first move because it can at worst

still yield a gain of +0.05. But the qualitative difference between +0.05 and 0.0 is

relatively small (both are effectively even positions), and if the second move had been

favored there would have been the potential for the opponent to make an error, thereby

leaving them in a nearly certain defeat (corresponding to the board evaluated at +0.9).

The proper heuristic to use when evaluating the relative advantage of one move over

another is not always clear.

To summarize, the information given to the evolving neural networks was essentially

limited to:

(1) A representation defining the location of each piece (and its type) on the board.

(2) A variable coding value for a king.

19

(3) A mechanism for computing all possible legal moves in any potential state of the

game.

(4) A means for searching ahead up to a prescribed ply depth.

(5) A heuristic (minimax) for selecting which move to favor in light of the neural network

evaluation function.

(6) The potential to use piece differential as a feature.

None of these capabilities are much different from those that a novice human player

brings to their first game. They are told the rules of how pieces move, thereby giving

them the potential to make legal moves. They are told the object of the game, and the

most direct manner to achieve that object is to remove the opponent’s pieces, therefore

having more pieces than your opponent is a clearly evident subgoal. They are told that

kings have properties that extend beyond regular pieces, and they must choose some

internal representation to separate these two types of pieces. And they are told that the

game is played in turns, so it is again clearly evident that moves must be considered in

light of what moves the opponent is likely to make in response. The novice human player

also recognizes the spatial characteristics of the board, the nearness or distance between

pieces, a series of empty squares in a row indicating the potential for moving unimpeded,

and other nuances that carry over from recognizing patterns in everyday life. The neural

network evolved here had no knowledge of the spatial nature of the game; its board was

simply a 32-component vector rather than an eight by eight checker board. It would be of

interest to assess the performance of neural networks that could evaluate board positions

based upon such spatial features. Yet, even with this handicap, the evolutionary algorithm

20

was able to learn how to play competent checkers based essentially from the information

contained in “win, lose, or draw.”

References

[1] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence. Piscataway, NJ: IEEE Press, 1995.

[2] J. Schaeffer, One Jump Ahead: Challenging Human Supremacy in Checkers, Berlin:

Springer, 1996.

[3] J. Schaeffer, R. Lake, P. Lu, and M. Bryant, “Chinook: The World Man-Machine

Checkers Champion,” AI Magazine, Vol. 17:1, pp. 21-29, 1996.

[4] A. L. Samuel, "Some Studies in Machine Learning Using the Game of Checkers,"

IBM J. of Res. and Dev., Vol. 3:3, pp. 210-219, 1959.

[5] G. Tesauro, “Practical Issues in Temporal Difference Learning,” Machine Learning,

8, pp. 257-277, 1992.

[6] J. B. Pollack and A. D. Blair, “Co-Evolution in the Successful Learning of

Backgammon Strategy,” Machine Learning, Vol. 32, pp. 225-240, 1998.

[7] G. Tesauro, “Comments on ‘Co-Evolution in the Successful Learning of

Backgammon strategy’,” Machine Learning, Vol. 32, pp. 241-243, 1998.

21

[8] M. Minsky, “Steps Toward Artificial Intelligence,” Proc. Of the IRE, Vol. 49, No. 1,

pp. 8-30, Jan. 1961.

[9] J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron, “A World

Championship Caliber Checkers Program,” Artificial Intelligence, pp. 273-290, Vol. 53,

No. 2-3, 1992.

[10] N. J. L. Griffith and M. Lynch, “NeuroDraughts: The Role of Representation,

Search, Training Regime and Architecture in a TD Draughts Player,” Unpublished

technical report, University of Limmerick, Ireland, 1997.

[11] H. Kaindl, “Tree Searching Algorithms,” In Computers, Chess, and Cognition,

edited by T. A. Marsland and J. Schaeffer, NY: Springer, pp. 133-168, 1990.

[12] D. Clark, “Deep Thoughts on Deep Blue,” IEEE Expert, Vol. 12:4, p. 31, 1997.

[13] D. E. Moriarty and R. Mikkulainen, “Discovering Complex Othello Strategies

Through Evolutionary Neural Networks,” Connectionist Science, Vol. 7, no. 3, pp. 195-

209.

22

Footnotes

1. The game can also end in other ways: (1) by resignation, (2) a draw may be declared

when no advancement in position is made in 40 moves by a player who holds an

advantage, subject to the discretion of an external third party, and if in match play (3)

a player can be forced to resign if they run out of time, which is usually limited to 60

minutes for the first 30 moves, with an additional 60 minutes being allotted for the

next 30 moves, and so forth.

2. From 1950 until his death in 1995, Tinsley won every tournament in which he played

and lost only three games.

3. These values were chosen after initial experiments with 10 and 8 nodes in each

hidden layer gave modestly encouraging results and no further tuning of the number

of nodes was undertaken. No claim of optimality is offered for the design chosen, and

indeed the result that reasonable levels of play can be achieved without tuning the

neural structure is one of the main points to be made here.

4. More complicated transformations are applied for ratings that switch between

designated classes above 2100 points, and the value for C changes as well. These

situations were not relevant to the scores attained here. The formulae above pertain

legitimately to players with established ratings based on 20 or more games, but the

internet gaming zone appeared to use this formula consistently. The USCF uses a

different rating formula for players with under 20 games. In essence, the internet

gaming zone estimates the player's performance of their first 20 games to be 1600.

5. The choice reflected a desire to avoid networks that would tolerate losing. It would be

interesting to observe any difference in performance that would result from setting the

payoff to be zero sum.

23

24

Table Captions

Table I. The relevant categories of player indicated by the corresponding range of rating

score.

25

Table I.

Class Rating
Senior Master 2400+
Master 2200-2399
Expert 2000-2199
Class A 1800-1999
Class B 1600-1799
Class C 1400-1599
Class D 1200-1399
Class E 1000-1199
Class F 800-999
Class G 600-799
Class H 400-599
Class I 200-399
Class J below 200

26

Appendix

This appendix contains the complete sequence of moves from two selected games where

the best-evolved neural network from generation 250 played to a draw against a human

rated 2207 (master level) and defeated a human rated 2134 (expert level). The notation

for each move is given in the form a-b, where a is the position of the checker that will

move and b is the destination. Forced moves (mandatory jumps or occasions where only

one move is available) are indicated by (f). Accompanying the move sequences are two

figures for each game indicating a pivotal position and the ending. The figures are

referred to in the annotations.

Game Against Human Rated 2207 (Master)
NN Plays Red, Human Plays White
(f) denotes a forced move
Comments on moves are offered in brackets

 Computer Human Comments
1.R:11-16 1.W:22-18
2.R:16-19 2.W:24-15
3.R:10-19(f) 3.W:23-16(f)
4.R:12-19(f) 4.W:25-22
5.R:7-10 5.W:21-17 [Human gives up two for one exchange and never recovered] (see

Figure A1)

6.R:9-14 6.W:18-9(f)
7.R:5-14-21 7.W:22-18
8.R:8-11 8.W:27-24
9.R:11-16 9.W:24-15(f)
10.R:10-19(f) 10.W:31-27
11.R:3-7 11.W:18-15 [Attacking/defending piece on 19]

12.R:1-5 12.W:29-25
13.R:4-8 13.W:27-24
14.R:6-9 14.W:24-20
15.R:8-12 15.W:20-11(f) [NN willing to swap piece on 16 and give up king]

16.R:7-16(f) 16.W:15-11 [White goes for king]

17.R:19-23 17.W:26-19(f)
18.R:16-23(f) 18.W:11-8 [NN pinning the back rank]

19.R:2-6 19.W:8-3 [Human gets king]

27

20.R:23-26 20.W:30-23(f) [NN swaps out for king]

21.R:21-30(f) 21.W:3-8 [NN gets king with piece that made double jump on move 7]

22.R:30-26 22.W:23-19
23.R:26-23 23.W:19-15
24.R:12-16 24.W:8-11
25.R:23-19 25.W:11-20(f) [NN willing to swap]

26.R:19-10(f) 26.W:32-27
27.R:9-13 27.W:20-16
28.R:10-15 28.W:28-24
29.R:15-18 29.W:16-19
30.R:13-17 30.W:24-20
31.R:17-22 31.W:20-16 [NN and Human heading for second kings]

32.R:22-26 32.W:19-23 [Attack]

33.R:26-31 33.W:23-14(f) [NN parries by swapping]

34.R:31-24(f) 34.W:16-11
35.R:24-27 35.W:11-7
36.R:6-10 36.W:14-17 [NN-on the attack; Human-king backs off]

37.R:27-31 37.W:7-2 [Human gets king]

38.R:10-15 38.W:2-7 [NN heads for king]

39.R:15-18 39.W:7-11
40.R:18-23 40.W:17-13 [Trapping piece on 5]

41.R:23-27 41.W:11-15
42.R:27-32 42.W:15-19 [NN gets king]

43.R:32-27 43.W:19-15
44.R:27-23 44.W:15-10
45.R:23-27 45.W:10-14 [NN toggles position]

46.R:27-23 46.W:14-10
47.R:23-27 47.W:10-15
48.R:27-23 48.W:15-10
49.R:23-27 49.W:10-15
50.R:27-23 50.W:13-17 [6 ply search]

51.R:23-27 51.W:17-13 [8 ply search]

52.R:27-23 - [Human offers draw accepted after 10 ply search] (see Figure A2)

Game Against Human Rated 2134 (Expert)
Human Plays Red, NN Plays White
(f) denotes a forced move
Comments on moves are offered in brackets

 Human Computer Comment
1.R:11-15 1.W:22-18 [standard NN response]

2.R:15-22(f) 2.W:26-17
3.R:8-11 3.W:17-13
4.R:9-14 4.W:30-26
5.R:11-15 5.W:25-22
6.R:14-17 6.W:21-14(f) [NN in danger of giving up a king after swap]

7.R:10-17(f) 7.W:24-19
8.R:15-24(f) 8.W:28-19 [Swap]

9.R:17-21 9.W:22-17 [Good move - NN pins the piece on 21]

10.R:7-10 10.W:19-16

28

11.R:12-19(f) 11.W:23-16(f)
12.R:10-15 12.W:26-23
13.R:15-19 13.W:31-26 [NN chooses not to swap]

14.R:3-7 14.W:16-12
15.R:7-10 15.W:23-16(f) [Human gives up a piece - no option?]

16.R:10-15 16.W:16-11
17.R:15-19 17.W:12-8 [Human makes bad move? 15-18 better?]

18.R:6-10 18.W:8-3 [NN gets king]

19.R:10-15 19.W:17-14
20.R:2-6 20.W:14-9 [NN sets the trap, see Figure A3]

21.R:5-14(f) 21.W:29-25 [NN gives up king, goes down two pieces]

22.R:21-30(f) 22.W:3-7
23.R:30-23(f) 23.W:27-18-9-2(f) [NN springs trap, triple jumps to king]

24.R:19-23 24.W:7-10
25.R:15-18 25.W:2-6
26.R:18-22 26.W:6-9
27.R:22-26 27.W:9-5
28.R:26-31 28.W:11-7 [Human gets first king]

29.R:23-26 29.W:7-3 [NN gets king]

30.R:26-30 30.W:32-28 [Human gets king]

31.R:31-27 31.W:13-9
32.R:30-26 32.W:9-6 [Going for king]

33.R:26-23 33.W:6-2 [NN gets fourth king]

34.R:23-19 34.W:3-7
35.R:19-16 35.W:10-15
36.R:27-32 36.W:15-11
37.R:16-12 37.W:7-10
38.R:32-27 38.W:11-7
39.R:12-8 39.W:2-6
40.R:8-12 40.W:7-3
41.R:27-23 41.W:28-24
42.R:12-16 42.W:24-20
43.R:16-12 43.W:6-9
44.R:23-18 44.W:9-13
45.R:18-23 45.W:13-17
46.R:23-19 46.W:17-13 [NN toggles after long exchange]

47.R:19-24 47.W:10-7
48.R:24-19 48.W:7-10
49.R:19-24 49.W:13-9
50.R:24-19 50.W:20-16
51.R:19-24 51.W:16-11 [NN going for fifth king]

52.R:12-16 52.W:11-7
53.R:16-11 53.W:7-2 [NN gets fifth king]

54.R:11-16 54.W:2-7
55.R:24-20 55.W:7-2
56.R:20-24 56.W:2-7
57.R:24-20 57.W:7-2
58.R:16-19 58.W:9-14 [Human plays a different move]

59.R:20-16 59.W:14-17
60.R:16-20 60.W:17-21 [NN move seems pointless]

29

61.R:20-16 61.W:2-6
62.R:16-11 62.W:10-15 [NN gives up a piece having already seen victory,

 see Figure A4]

63.R:11-18 63.W:3-7
64.R:1-10(f) 64.W:7-14-23-16(f) [NN moves in for the kill]

65.R:4-8(f) 65.W:21-25 [Human Resigns]

30

Figure Captions

Figure 1. The starting position for the game of checkers. Pieces move forward diagonally

toward the opposing side of the board. Any piece that reaches the opposing far side

becomes a "king" and can thereafter move forward and backward diagonally.

Figure 2. The neural network topology chosen for the evolutionary checkers

experiments. The networks have 32 input nodes corresponding to the 32 possible

positions on the board. The two hidden layers comprise 40 and 10 hidden nodes

respectively. All input nodes are connected directly to the output node with a weight of

1.0. Bias terms affect each hidden and output node, but are not shown.

Figure 3. The performance of the evolved neural network after 250 generations, played

over 90 games against human opponents on an internet checkers site. The histogram

indicates the rating of the opponent and the associated performance against opponents

with that rating. Ratings are binned in intervals of 100 units (i.e., 1650 corresponds to

opponents who were rated between 1600 and 1700). The numbers above each bar indicate

the number of wins, draws, and losses, respectively. Note that the evolved network

generally defeated opponents who were rated less than 1800, and played to about an equal

number of wins and losses with those who were rated between 1800-1900.

Figure 4. The sequential rating of the evolved neural network (ENN) over the 90 games

played against human opponents. The graph indicates both the network's rating and the

corresponding rating of the opponent on each game, along with the result (win, draw, or

31

loss). The highest rating for the ENN was 1975.8 on game 74. The final rating after game

90 was 1914.3, placing the ENN as a better than median Class A player.

Figure 5. The rating of the evolved neural network after 250 generations computed over

2000 random permutations of the 90 games against human opponents on the internet

checkers site (www.zone.com). The mean rating was 1901.98, with a standard deviation

of 27.57. The minimum and maximum ratings obtained were 1820.61 and 2006.39.

Figure 6. The mean sequential rating of the evolved neural network (ENN) over 2000

random permutations of the 90 games played against human opponents. The mean rating

starts at 1600 (the standard starting rating at the website) and steadily climbs to a rating

of above 1860 by game 50. As the number of games reaches 90, the mean rating curve

begins to saturate and reaches a value of 1901.98 which places the ENN subjectively as a

Class A player.

Figure A1. White (human) to move. White chooses 21-17 which appears to be a mistake,

as it results in white giving up a two for one exchange (R:9-14, W:18-9 (f);

R:5-14-21(f)). White never recovered from this deficit.

Figure A2. The final board position, with White (human) to move. Both White (human)

and Red (NN) toggle three times (R:27-23, W:13-17; and R:23-27, W:17-

13) between the 45th and 50th moves. On move number 52, White (human) offered a draw

which was accepted.

32

Figure A3. The game reaches this position on move number 20 as Red (human) walks

into a trap set by White (NN) by moving R:2-6. In the next three moves White gives up

three pieces (20.R:2-6, 20.W:14-9; 21.R:5-14(f) 21.W:29-25;

22.R:21-30(f), 22.W:3-7; 23.R:30-23(f)) and comes back with a triple

jump (23.W:27-18-9-2(f)), which also earns a king.

Figure A4. An endgame position with Red (human) to move. Red chooses to move

R:16-11. With six-ply alpha-beta search, the NN already sees a victory. It gives up

three pieces (62:W:10-15; 63.R:11-18, 63.W:3-7; 64.R:1-10(f)) and

comes back with a winning triple jump (64.W:7-14-23-16(f)). The game

continues, 65.R:4-8(f), 65.W:21-25, at which point White (human) resigns.

Note that White did not have to play R:11-18 but all other options also led inevitably to

defeat.

