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Abstract

Go is a di�cult game for computers to master, and the best go programs are still weaker
than the average human player. Since the traditional game playing techniques have proven
inadequate, new approaches to computer go need to be studied. This paper presents a new
approach to learning to play go. The SANE (Symbiotic, Adaptive Neuro-Evolution) method
was used to evolve networks capable of playing go on small boards with no pre-programmed
go knowledge. On a 9 � 9 go board, networks that were able to defeat a simple computer
opponent were evolved within a few hundred generations. Most signi�cantly, the networks
exhibited several aspects of general go playing, which suggests the approach could scale up
well.

1 Introduction

Go is hard. For computers at least, this is true. Though the game has not received the level
of attention that computer chess, for example, has received, considerable e�ort has gone
into trying to create strong go playing programs. Yet, despite this e�ort, the best computer
programs are still relatively weak.

There are a number of reasons why go is hard for traditional computer game playing
techniques: the branching factor is prohibitively large, the game is pattern oriented, and
there are multiple interacting goals. In fact, the game is so di�cult that new techniques are
probably going to be needed before go programs are as strong as those that play checkers,
chess, or Othello.

This paper explores the usefulness of neuro-evolution as a mechanism for learning to play
go. The SANE (Symbiotic, Adaptive Neuro-Evolution [7, 8, 9]) algorithm demonstrates that
networks that display a general ability in playing go on small boards can be evolved without

�To appear in Applied Intelligence.
yThis research was supported in part by NSF under grant #IRI-9504317.

1



����
� 2 3�
1�
�
 4

��
�
�

(a) Four liberties.
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(b) One liberty.
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(c) No liberties.

Figure 1: The group in (a) has four liberties, or adjacent free positions, while the group in (b) has

one. After that last liberty is lost (c), the group is said to be captured and is removed from the

board.

any prior knowledge about the game. This result forms a promising foundation for scaling
up to full-scale go.

The paper begins with an introduction to the rules of go followed by a brief word on
computer go and why neural network techniques might be useful for go programs. Next
the SANE neuro-evolution algorithm is is reviewed, and details of the architecture and the
experiments given. The paper concludes with an analysis of the strategies evolved and
suggestions for future research.

2 The Game of Go

Although the term go is taken from the Japanese word for the game, go is believed to have
originated in China more than 3,000 years ago, making it one of the oldest board games still
actively played in modern times. Go is an appealing game because it appears simple yet
features strategy and tactics that rival games such as chess.

Go is played on a square grid 19 intersections across. Smaller boards are often used
for teaching purposes. The two players, black and white, alternate placing stones of their
respective colors on the intersections of the grid. Game play continues until both players
pass, at which time the score is calculated and a winner is determined.

Game play is deceivingly simple. Stones can be placed on empty intersections. Once
played, a stone cannot be moved to another location. However, a stone or a group of stones
can be captured and removed from the board.

A liberty is an empty point adjacent to a group of stones. Any group that has no
liberties is said to be dead and the stones in that group will be removed from the board. For
example, the black group in �gure 1a has 4 liberties. Figure 1b shows the same black group
with further white stones placed such that the black group now has only 1 liberty. If white
were to play an additional move at 1, the black stones would be reduced to 0 liberties. They
would be considered dead and removed from the board, as shown in �gure 1c.

The liberty rule gives rise to the simple concept of an eye. Any group of stones that
completely surrounds some interior space is said to have an eye. In �gure 2a, the black
group has one eye, at point \a". The black group in �gure 2b has 2 eyes, at points \b" and
\c". The �rst group can easily be captured if white plays at point \a". However, the second
black group cannot be captured by white as white would need to simultaneously occupy
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(a) A group with one eye.
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(b) A group with two eyes.

Figure 2: Eye space determines life and death of a group of stones. The group in (a) has one eye

and can be killed by placing a stone in the eye (position \a"), while the group in (b) has two eyes,

\b" and \c", and cannot be killed.
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Figure 3: Repetition of full board positions is not allowed. If black has just played the marked

stone to capture a white stone at \a", white would not be allowed to play at \a" immediately

to capture the black stone, because that would recreate the board full board position before the

black's move.

both points \b" and \c" to reduce the black group to 0 liberties. This is not possible, and
therefore the group cannot be killed. This example demonstrates the most common and
simplest form of a living group. Forming living groups is one of the primary goals of the
game.

Previous full-board positions cannot be repeated. This rule is known as the ko rule.
Figure 3 shows an example of how the rule applies. Suppose black has just played the marked
stone to capture a white stone at point \a". White would not be allowed to immediately
play at point \a" to capture the marked stone because it would recreate the board position
before black's move. White must instead play elsewhere, and thereby create a new full-board
position. If black does not move to point \a", white would then be allowed to play at \a"
on a subsequent move because the full-board position would no longer be repeated.

Play continues until there are no more moves of value to be made and both players pass.
Each side receives a score where all stones and all locations completely surrounded by groups
of the same color are counted as points. A komi, 5.5 points in a typical even game, is added
to white's score to o�set black's �rst move advantage. The player with the highest score
wins. Because komi is not an integer, a tie cannot occur.

Unlike many other board games, go provides an easy way to handicap games so that
players of di�erent ranks can play an even game. White will give black a certain number of
free moves at the beginning of the game. This advantage is generally well de�ned, and go
ranks are based on it. A player who is ranked 2 stones above another player should be able
to give the other player 2 free moves in order to play an even game.
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3 Computers and Go

Despite the relatively simple game play, computers have had little success mastering the
game. Whereas in games like chess, Othello and checkers the traditional game playing
techniques such as minimax search and its variations are competitive even at the master level
[4, 5, 13], those techniques, when applied to go, have not been able to produce programs
that can challenge even weak amateur players. The best computer programs in the world
are ranked 6{8 stones below what would be considered master level. Progress continues to
be made; however, the gap is so large that traditional techniques are unlikely to reach even
the weakest master levels for some time to come.

A game of go can be divided into three general phases: the opening, the midgame and
the endgame. Computers have had varying success in each of the these stages, revealing
insight into what can and cannot be achieved with computational methods.

3.1 The Opening

The opening stage of the game is referred to as the fuseki. Typically play starts in the
corners. Speci�c sequences in the corners are referred to as joseki, and they are similar to
book openings in chess. However, the fuseki typically refers to the direction of play as it
relates to all 4 corners. Good go programs tend to have joseki move databases that range
from 5,000 to 50,000 moves, and current programs do not have any di�culty in playing
through a database of joseki sequences. Choice of joseki and choosing between variations is
more troublesome; however, play by the computers is not advanced enough to consider such
issues. Even with such limited techniques, some programs are capable of playing very good
openings.

3.2 The Midgame

As play moves into the midgame, search-based programs begin to have di�culty. One reason
is the sheer size of the game. On a 19�19 board, there are typically 200-300 potential moves
available from a midgame position, so brute force searching of the game tree is not a viable
option.

Current go programs apply a wide variety of techniques to control the complexity of the
midgame. Typically, a move generation facility is used to generate a number of candidate
moves from a position using techniques such as pattern libraries, tactical analysis, and rule-
based expert systems. Then, the candidate moves are evaluated, usually through static
board evaluation functions. Some programs rely solely on the evaluation function for choice
of moves while others attempt limited global search using traditional search techniques.
Search plays a more prominent role in local tactical analysis where the number of moves and
the size of the search tree are signi�cantly smaller.

There are several problems with the current midgame techniques. They tend to be
di�cult to apply and error-prone. Because most evaluation techniques are static, it is di�cult
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to achieve general play, and advance can only be made by laborous human tweaking of rules,
patterns and databases.

3.3 The Endgame

The endgame is typically signi�cantly easier for computers. During the endgame, programs
are capable of playing very well because the branching factor is signi�cantly reduced and
patterns are local in nature. However, in the endgame the score is often already mostly
decided and fewer points are usually at stake. Even perfect endgame play might only change
the score by a small number of points. So, the most important and most di�cult part of
playing go is in the midgame where the traditional techniques are the weakest.

4 Neural Networks and Go

Go is largely pattern based; as a matter of fact, go players often refer to board positions
as shape. Groups of stones can be said to have good shape or bad shape depending on the
shape's potential of creating a living group and of e�ciently capturing territory. Human
players instinctively know where to search for moves based largely on learned knowledge of
shape. Although there are many techniques that highly skilled players use and computer
programs do not, viewing the board as a search node instead of a collection of shapes and
patterns is probably the most signi�cant factor holding computer go programs back.

Neural networks are very good at pattern transformation tasks, and thus could well be
applicable to go. A network could be trained to compute a mapping between the input
space, that is, the current board position, and the output indicating the next move. The
main problem with this approach is the credit assignment problem. Suppose a standard
backpropagation neural network [12] were being trained to play go. For backpropagation
to work, advance knowledge about the best move at any given position would be required.
Such knowledge is di�cult to come by. In reality, only the �nal game result is available. The
credit assignment problem is the problem of determining which of the many moves played
were good and deserve credit for a win, and which were bad and deserve to be blamed
for a loss. In go, this problem is severe enough that standard learning techniques such as
backpropagation cannot be e�ectively applied.

5 SANE

SANE1 (Symbiotic Adaptive Neuro-Evolution [7, 8, 9]) solves the credit assignment problem
by using evolutionary algorithms to search for e�ective neural networks. Instead of punishing
or rewarding individual moves, networks are evaluated, selected, and recombined based on
their overall performance in the game. Evolutionary algorithms perform a global, parallel

1SANE is described in more detail in [8], and the source code can be obtained from
http://www.cs.utexas.edu/users/nn/.
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Figure 4: A three-layer feedforward network is created from 3 neurons. The neurons are
shown on the left, and the corresponding network is shown on the right. Labels indicate
which input or output unit a connection corresponds to, while the weight indicates the
strength of the connection.

search and are guided by a �tness function that measures the goodness of a particular
solution. The search tries to maximize the goodness level throughout the search space to
�nd the best solution.

SANE di�ers from other approaches to neuro-evolution systems where each individual in
the population represents a complete neural network. In SANE, two separate populations
are maintained and evolved: a population of neurons and a population of neural network
blueprints. The neuron level evolution explicitly decomposes the search space and maintains
a high level of diversity throughout evolution. The blueprint population maintains and
exploits e�ective combinations of individuals in the neuron population. Conjunctively, the
two levels of evolution provide an e�cient genetic search that is capable of solving di�cult
real-world decision problems with minimal domain information [8].

In the neuron population, SANE evolves a large population of hidden neuron de�nitions
for a three-layer feedforward network (�gure 4). A neuron is represented by a series of
connection de�nitions that describe the weighted connections of the neuron from the input
layer and to the output layer. Each neuron has a �xed number of connections, but may
allocate them arbitrarily among the units in the input and output layers. A connection
de�nition consists of a label and weight pair. The label is an integer value that speci�es a
speci�c input or output unit, and the weight is a 
oating point number that speci�es the
strength of the connection. Figure 4 gives three example hidden neuron de�nitions and the
resulting neural network.

The activation of a neuron is computed as the sum of all the connected input units
multiplied by their weights and passed through the sigmoid activation function �(x) =
1=(1 + e�x). For this application, the output units are linear so that both positive and
negative values and be generated.

Neural networks could be formed by randomly choosing neurons from the neuron popu-
lation. In fact, this approach performs well in simpler problems [7, 10]. However, random
participation does not retain knowledge of the best combinations of neurons and can often
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Figure 5: The network blueprints consist of a set of neurons in the neuron population. A
neural network is formed from a blueprint by following its neuron pointers and decoding the
respective neurons.

stall the search in more di�cult problems [8]. To focus the search on the best neuron com-
binations, SANE maintains and evolves a separate population of good neuron combinations
called neural network blueprints. The blueprints are made up of a series of pointers to
members of the neuron population and de�ne an e�ective neural network from a previous
generation. Figure 5 shows how the network blueprint population and the neuron population
are related.

SANE integrates the neuron and blueprint populations in a generational evolutionary
algorithm that iterates over two phases: an evaluation phase and a reproduction phase.
In the evaluation phase, SANE simultaneously evaluates the blueprints and the neurons.
A blueprint is evaluated by the performance of the network that it speci�es. A neuron is
evaluated based on the performance of the networks in which it participates. The basic steps
in the SANE evaluation phase are shown in the following pseudo code:

for each neuron n in population Pn

n:fitness  0
n:participation  0

for each blueprint b in population Pb

neuralnet  decode(b)
b:fitness  task(neuralnet)
for each neuron n in b

n:fitness  n:fitness + b:fitness
n:participation  n:participation + 1

for each neuron n in population Pn
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n:fitness  n:fitness / n:participation

Neural networks are formed from each blueprint and evaluated in the task environment. The
evaluation score is given to each blueprint and is added to each neuron's �tness variable.
After all blueprints have been evaluated, each neuron's �tness is normalized by dividing the
sum of its scores by the total number of networks in which it was a participant.

In the reproduction phase, SANE uses common genetic operators such as selection,
crossover, and mutation to obtain new blueprints and neurons. Each population is ranked
based on �tness and a mate is selected for each of the elite individuals. In this application,
the elite parameter is de�ned as the top 15% in the blueprint population and the top 25%
in the neuron population. The mate for each elite individual is selected from the other elite
individuals. SANE uses a one-point crossover to mate two individuals, which creates two
o�spring. The o�spring from each of the crossover operations replace the worst performing
individuals (according to �tness) in the population. All individuals that are not explicitly
replaced by o�spring remain in the population, although they may be mutated.

A conservative mutation rate of 1% per chromosome position is used on the neuron pop-
ulation, because neuron evolution automatically maintains high diversity (good networks
require serveral di�erent types of neurons). A more aggressive, two-tiered strategy is used
on the blueprint level. First, a small number (approximately 1%) of neuron pointers in each
blueprint are swapped with randomly selected neurons in the neuron population. Second,
pointers to breeding neurons are replaced by pointers to their o�spring with a 50% prob-
ability. The second mutation component promotes utilization of o�spring neurons, which
has two advantages. First, it creates diversity in the blueprint population, and second, it
explores new structures created by the neuron population.

6 Applying SANE to Go

SANE has previously been shown e�ective in several sequential decision tasks including robot
control [7, 8, 9], constraint satisfaction [10], pursuit and evasion [3], and the game of Othello
[6, 8, 10]. This paper will evaluate the usefulness of SANE in learning to play go. SANE is
used to evolve networks to play on small boards against a simple computer opponent, and
the scale-up properties are evaluated.

In order to apply SANE, three aspects of the architecture must be speci�ed: the network
parameters, evolution parameters and the evaluation function. Let us look at each one of
these in turn in the go task.

6.1 Network Parameters

SANE evolves standard three-layer feed-forward networks. The network architecture is �xed;
only the associated weights and connections are evolved. The number of units depends on
the board size. There are 2 input units and one output unit for each board position. The
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Board size Neuron Population Blueprint Population Number of neurons per network
5� 5 2000 200 100
7� 7 3000 200 300
9� 9 4000 200 500

Table 1: Network de�nitions used for evolving networks for various small board sizes.

�rst input unit indicates whether a black stone is present at that location, and the second
unit whether a white stone is present. Since only one stone can occupy any given board
position at a time, both input units cannot be active simultaneously for any position.

The output units are signed 
oating point values. A positive value indicates a good move.
The larger the value, the better the move. Negative (or 0) output indicates that the move
is not suggested.

6.2 Evolution Parameters

Most aspects of SANE are easily tunable. Some experimentation was done to �nd good
values, however, it was not necessary to �nd optimum values as SANE operates well as long
as the values are withing reasonable ranges.

The neurons evolved are 312 bits long and represent a set of 12 weights connecting either
from input layer to hidden layer or from the hidden layer to the output layer. Table 1 shows
the population and network sizes used in conjunction with the various board sizes. Each
generation, 200 networks were formed. This allowed each neuron on average to participate in
10-25 networks per generation. Mutation occurred at a rate of 0.1% The crossover operation
was a one-point crossover between neurons or networks in the breeding population. The top
25-30% of the population were allowed to breed.

6.3 Evaluation Function

The most di�cult aspect of the evaluation function was deciding on a set of evaluation
criteria that could be computed completely without human intervention. The �rst di�culty
is in determining the end of the game. When humans play, the end of the game is decided
by agreement. When the players feel the game is over, they pass their turn. Stones that
are mutually agreed to be dead are removed from the board. If there is a dispute, play can
be resumed to settle the issue. After the status of each group is determined, a �nal score is
calculated.

Since there is no separate output unit for pass, the network can pass only when none of
its positive output units (if any) correspond to a legal move. Because there is no arbitration
phase for disputed groups, a series of 3 passes is required to end the game. This simpli�es
certain endgame situations where ko (i.e. repetition) might occur.
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Removing dead stones is more di�cult. Rather than de�ning a separate protocol for this
task, the evaluation function requires a player to explicitly kill any stones it thinks are dead.
Human players �nd this process tedious, so those groups that are obviously dead are simply
removed from the board at the end of the game. For computer opponents, killing groups is
not so tedious. If all stones on the board are considered alive, the need for settling disputes
after the game is over is eliminated, and the task of scoring is greatly simpli�ed.

An upper bound is placed on the number of moves, so that it is not actually necessary
to check for repetition of entire board positions. It is enough that only the simple ko
(demonstrated in �gure 3) is checked. An upper bound also ensures that non-repeating but
prohibitively long sequences are not followed. Games between human players do not involve
such sequences. However, they may occur in a game by an unskilled program. An example of
such a sequence would be the �lling in of a player's own eye space, which allows a previously
alive group to be killed. If two unskilled opponents play in this manner, excessively long
sequences of play might result. Such play is punished by counting excessively long games as
a loss for the network. Because this behavior is selected against, the networks become less
likely to develop it.

Since all stones still on the board are presumed to be alive, determining the score becomes
a straightforward task. Simple Chinese scoring, where all stones of each color and all locations
completely surrounded by stones of that color are counted as points, is used.

The evaluation function must produce a �tness level for the network, and it should be a
�ne-grained value so that slight improvements in the network's play can be rewarded. In our
experiments, the di�erence in score between SANE and its opponent (for example +10.5 or
-7.5) is summed over N games, which allows for good resolution in determining improvement.

7 Results

SANE was tested with various board sizes. The opponent used was wally (written by Bill
Newman), a simple publicly available go program. Wally is a good choice for an opponent for
several reasons. First, wally is one of the few go playing programs available in source code.
This turns out to be particularly helpful when trying to adjust parameters, like the degree of
randomness, to make the opponent more useful as a training partner. Second, wally's skill
level is appropriate for a �rst training partner. It is strong enough to be a challenge to an
unskilled network without being so strong that progress cannot be made.

7.1 Evolution E�ciency

SANE was able to evolve a network that could defeat wally on small boards. On a 5 � 5
board, SANE needed only 20 generations, on a 7� 7 board, 50 generations, and for a 9� 9
game, 260 generations. These numbers are averages over 100 - 1,000 simulations, requiring
the ability to beat the opponent 75% of the time. The network was playing black without a
komi, which is an equivalent to a 1-stone handicap for the network.

Although these results were relatively easy to get, they take a lot of CPU time (up to
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5 days for the 9 � 9 board). Moreover, the training times increase with board size quite
rapidly. It can be estimated that for a 13 � 13 board, several thousand generations would
be required, and for a full-size 19 � 19 board, perhaps tens of thousands. The CPU time
for such simulations could be more than a year with the current CPU speeds, and was not
available. However, it is still possible to get an idea of how well such a network plays go by
studying the e�ect of nondeterminism and handicap in the opponent.

7.2 E�ect of Nondeterminism

An important issue with developing general go playing is the degree of determinism of the
opponent. SANE actually manages to learn to defeat more deterministic opponents very
rapidly. However, in those cases the network learned little about playing go and only learned
what was necessary to win against that particular opponent.

To force the network to learn more diverse solutions, 10% non-determinism were applied
to wally. This means that 10% of the time, instead of making the normal move, a random
legal move would be played instead. The 10% value was chosen experimentally to be a
reasonable value. Smaller values did not signi�cantly increase the diversity of the games
played nor the solutions learned, and larger values made the opponent behave too randomly
and easy to beat.

As a test of generality, one network was evolved against the original wally on a 7 � 7
board, while another was evolved against wally playing with 10% randomness. An otherwise
deterministic player playing occasional random moves should be weaker in absolute terms.
However, when playing a series of games against a learning opponent, the deterministic
player turned out to be easier to beat. The �rst network learned to defeat wally very
rapidly. However, it would be defeated easily by the weaker but less-deterministic wally. In
fact, it would even lose some games against the randomly moving opponent. The network's
behavior in this case was not diverse enough to be useful against other opponents. Instead
of learning moves that represent general go-playing ability, the network simply learned tricks
and simple sequences that utilize 
aws in the static opponent.

The network playing against the less deterministic opponent required more generations
to train. However, the solution evolved was capable of defeating wally at various levels of
determinism, including its normal mode of play, and did not lose to the random opponent.

7.3 E�ect of Handicaps

Since few stronger go playing programs are freely available, there was no good opportunity
to evolve networks against other opponents. However, the go handicapping mechanism does
provide a way to modify the di�culty of the game against a given opponent.

Networks were evolved on the 7�7 board while giving wally di�ering handicaps. Initially,
the networks were evolved to play black and make the �rst move. After about 50 generations,
a network evolves to defeat wally. The networks were then evolved with wally playing the
�rst move. After 130 more generations, a network was able to beat wally 75% of the time.
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Figure 6: This position is from a game played between wally (white) and the network (black).

After white plays the marked stone in (a), black should be dead in the left corner as it should not

be able to make the two eyes necessary to live. But the network has learned a trick. It plays the

marked stone in (b), threatening to capture the white stone below \a". Instead of playing at \b",

which would ensure the death of the black group, it plays the move at \a" to defend the single

stone below it. As a result, the network can move to \b" and live.

At this level, it could give wally a 2-stone handicap and still win 45% of the games.

With these results, we can get a rough idea of the level of play evolved. Handicap stones
on a small board represent a larger di�erence in skill than on a larger board. For example, a
single handicap stone on a 13�13 board represents approximately 3 stones on a 19�19 board.
On a 9� 9 board, the di�erence is about 4{5 stones. Thus, the 2 stone handicap on a 7� 7
board may represent a di�erence in skill of about 10 stones, which is quite signi�cant and
would allow a good amateur compete with master-level player on the full board. Although
this is just a rough estimate, it shows that quite powerful go play can be achieved through
neuro-evolution methods.

8 Strategies Evolved

Given that the networks started with no prior knowledge on how to play go, an important
question is: what kind of strategies did they evolve?

One peculiar problem with the evolutionary approach is that the strategy evolved often
exploits weaknesses found in the particular opponent rather than representing good general
go playing abilities. Figure 6 is an example of such a situation taken from an actual game
played by a network against wally on a 7� 7 board. The network is playing black and wally
is white.

In this situation, white plays the marked stone in 6a. This is a move that should e�ectively
kill the black group in the lower left corner because the black group would no longer be able
to make two eyes. However, black has learned that it can actually win in this situation
against wally. It plays the marked move in 6b, which makes a single eye and threatens
to capture the single white stone above it at \a". The correct move for white is to play
\b" next. Allowing black to play at \b" would give black life. However, this particular
computer opponent does not realize this and picks the tiny defensive move at \a" over the
large o�ensive move at \b". The network has learned to take advantage of this weakness
and moves to \b" as its next move.
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That such strategies would evolve is understandable considering that the opponent is the
only source of information the network has about the game. The network is never explicitly
taught about living or dead groups. It's concept of a living group is any group that the
opponent cannot kill. In this case, since the opponent cannot kill this group, the network
learns it as a favorable position. This example emphasizes the importance the training
partner has on the strategies learned.

One possible method for forcing the network to rely less on exploiting this type of weak-
ness in speci�c opponents is to evolve against a variety of opponents. The network would
be less likely to learn these kinds of techniques because it is less likely that the same 
aw
will be present in multiple opponents. This type of evolution would have a better chance of
producing a well-rounded go playing program. However, the lack of multiple freely available
go playing programs makes this approach impractical at present time.

The neuro-evolution system is clearly learning enough to defeat a simple opponent, but
are the networks evolving to play go in any general sense? A closer inspection of game tran-
scripts shows that especially when evolved against a nondeterministic opponent, the networks
demonstrated a reasonable amount of diversity and were able to cope with variations in play
from the opponent.

At the beginning of evolution, the networks' outputs are essentially random. After a few
generations, they start to make simple living groups. Typically, they evolve the capability
to make one or two such groups along the edges or in the corners, and to extend them from
there. As evolution continues, the networks become more 
exible and capable of developing
a greater variety of living positions. Such a strategy is valid, although not particularly
strong. Since this type of strategy is all that is required to defeat the computer opponent,
the network really does not need to develop more advanced strategies. Against more powerful
opponents, the situation would be di�erent. The experiments with handicaps show that in
such cases, more powerful strategies are likely to develop.

Some well-known general go strategies were also evolved. For example, consider choosing
the �rst move. In the �rst few generations, the network plays quite randomly, and therefore
its �rst move tends to be on the edge or the outer lines of the board since they comprise
56 of the 81 positions on a 9� 9 board. Such a move is not a good idea, however, because
it is likely to lead to a losing position. Indeed, in a few generations the networks start to
make more opening moves near the center of the board. Since the earlier strategy led to
losses, the networks that did not use that strategy are now more prevalent in the population.
Later on in evolution all the best networks open at or near the center of the board, which
is exactly the strategy good go players use. Remarkably, the evolution system discovered
it entirely on its own, based on what moves led to wins and losses. This result suggests
that the neuro-evolution method is capable of developing good go playing strategies without
preprogrammed knowledge, directed by the sparse reinforcement of the game outcomes only.
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Figure 7: Figure (a) shows a position known as a ladder, which retains its shape as it is grown in

successive moves. The life or death of the white stone depends on groups far away on the board.

Figures (b) and (c) show two such situations: in (b) the white stone in location \b" allows white to

escape. In (c) the ladder reaches the edge of the board and the white group is killed. In real games,

such variations can span the whole board and are di�cult to evaluate with only local methods.

9 Future Work

There are three main issues for future work: scaling up to larger boards, enhancing the
network architecture, and evolving against stronger opponents.

9.1 Larger Boards

Ideally, a network should be able to play on any board size. Currently the networks can only
play on the board on which they were evolved. For example, a network that was evolved on
a 9 � 9 board is not able to play on a 7 � 7 board. One possibility would be to design a
representation that is independent of board size. Another would be to evolve solutions that
only consider a portion of the board at a time. This type of evaluation function could then
be extended to cover boards of varying sizes.

However, considering only local board positions instead of the whole board tends to result
in weaker play. To see why, consider the position shown in �gure 7, known as a ladder. Based
on only the local position, it is impossible to tell whether or not the white group can escape.
White can play at point \a", and may live or die depending on stones that are on the other
side of the board. If there is a white stone at point \b", for example, white can easily live.
The extra stone allows white to break out of the ladder, as can be seen in �gure 7b. However,
if there are no stones on the area, white cannot live. Eventually the ladder position faces
the edge of the board, where it is a losing position for white as can be seen in �gure 7c. This
way stones that are far away from the current play can transform the position drastically.
These types of positions can span the entire board, not merely one corner. Recognizing
such distance relationships is essential for playing go on larger boards, yet they cannot be
captured with methods that consider only part of the board at a time.

It is likely that other types of network architectures need to be employed before play on
full boards becomes practical. Possibilities include architectures that use preprogrammed
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features or are hierarchically organized,

9.2 Advanced Architectures

Evolving simple unstructured neural network architectures without any prior knowledge
demonstrates the feasibility of the neuro-evolution approach. There are several ways the
architecture could be enhanced to make it more e�ective, including preprogrammed feature
detectors and hierarchies of networks.

Since the networks are not given any prior knowledge about what features are relevant
to playing go, they are forced to discover useful features themselves. Allowing the network
to access a pre-de�ned feature space instead of looking at the raw board might make the
task easier [2]. Such features could include common patterns and positions such as an eye
or a group or even complicated constructs such as the ladder. These features would then
be used as inputs to the neural network [1, 11]. It would still probably be useful to let the
network develop its own features as well, but the pre-programmed features might allow it to
learn faster and deal with more complex patterns.

SANE demonstrates the feasibility of evolving structures on more than one level at the
same time. It should be possible to extend this idea and evolve a hierarchy of networks,
where the lower levels would provide the inputs for networks at higher levels. In e�ect,
evolution would be searching for an e�ective combination of networks, much the same way
it is searching for an e�ective combination of weights and neurons now. When the task of
playing go is broken into such subtasks, it may be the case that the number of generations
required will increase with the number and size of the networks evolved and not with the
size of the board. If this is the case, then evolving networks that play on full-size boards
would no longer be computationally prohibitive.

9.3 Stronger Opponents

Even with more sophisticated architectures, stronger opponents are necessary in order to
achieve truly high levels of play. The ability to use handicaps to simulate stronger opponents
is a useful technique but not enough alone. The techniques used in handicap games are
di�erent than those that would be used against a stronger player in an even game. Handicap
stones allow the weaker player to build stronger positions, but it still continues weak play
from these positions. On the other hand, in an even game the opponent may play brilliant
moves that would never be seen in a handicap game. If evolution is never exposed to such
moves, it cannot develop comprehensive go skills.

A variety of stronger opponents would allow for a greater generality of play to evolve.
However, it is not known how great the di�erence in play would be nor what the e�ect on the
time required to evolve the networks would be. It is also not yet clear how much diversity is
necessary to achieve general play.

One problem with using stronger opponents is that they tend to take considerably longer
to generate moves than weaker programs. Given the large number of trial games generated
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every generation, it may not be possible to evolve against a slow opponent in a reasonable
amount of time. However, the evaluation function might be modi�ed to compensate for the
lack of time. Each generation, a signi�cant number of the networks evolved are signi�cantly
weaker than the networks of the previous generation. It should be possible to distinguish the
weaker networks from the stronger networks by the use of a faster but weaker opponent. Only
those networks that appear promising need be evaluated fully against the slower opponent.

Even if stronger computer opponents are used, eventually they would be exhausted. It
would be necessary to �nd a way to evolve networks against actual human players. Given
the popularity of internet-based go servers, there is no shortage of human players. However,
there would be di�culties, particularly in the generation of �tness values. Fitness is used
to distinguish the better networks from the worse networks in any given generation. It
requires that the evaluation function be consistent for all networks evaluated. Since it would
be unlikely for many di�erent networks from the same generation to play the same human
opponent, it would be di�cult to assign a fair �tness value. The problem is compounded in
that the strength of the human opponent is not always known and cannot be reliably used
to weight game results against the strength of the human opponent. Nevertheless, good
results have been reported in neuro-evolution with noisy evaluation functions[8], suggesting
that the problems could be overcome. This way perhaps go-playing programs could �nally
be evolved that were able to compete with the best humans.

10 Conclusions

Traditional arti�cial intelligence techniques have been insu�cient for building go programs
that would be competitive at high levels of play. It appears new techniques based on pattern
recognition and learning will be required to reach these levels. The SANE neuro-evolution
approach is one such promising direction. Networks were evolved to defeat a publicly avail-
able go program on small boards with no pre-programmed knowledge of the game, and they
exhibited several aspects of general go strategies.
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