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Abstract. Refactoringsare behavior-preserving program transformations that automate design evolution in
object-oriented applications. Three kinds of design evolution are: schema transformations, design pattern microar-
chitectures, and the hot-spot-driven-approach. This research shows that all three are automatable with refactorings.
A comprehensive list of refactorings for design evolution is provided and an analysis of supported schema trans-
formations, design patterns, and hot-spot meta patterns is presented. Further, we evaluate whether refactoring
technology can be transferred to the mainstream by restructuring non-trivial C++ applications. The applications
that we examine were evolved manually by software engineers. We show that an equivalent evolution could be
reproduced significantly faster and cheaper by applying a handful of general-purpose refactorings. In one appli-
cation, over 14K lines of code were transformed automatically that otherwise would have been coded by hand.
Our experiments identify benefits, limitations, and topics of further research related to the transfer of refactoring
technology to a production environment.
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1. Introduction

Before the invention ofgraphical user interface (GUI)editors, the process of evolving
a GUI was to design, code, test, evaluate, and redesign again. With the introduction of
editors, GUI design has become an interactive process allowing users to design, evaluate,
and redesign an interface on-screen and to output compilable source code that reflects the
latest design.

We believe that a similar advance needs to occur for editing object-oriented class dia-
grams. Editing a class diagram can be as simple as adding a line between classes to represent
an inheritance relationship or moving a variable from a subclass to a superclass. However,
such changes must now be accompanied by painstakingly identifying lines of affected
source code, manually updating the source, testing the changes, fixing bugs, and retesting
the application until the risk of new errors is sufficiently low.

Just as GUI editors revolutionized GUI design, we believe that class diagram editors
(where changes to an application’s diagram automatically trigger corresponding changes to
its underlying source code) will revolutionize the evolution of software design. The tech-
nology to power such a tool isrefactorings— behavior-preserving program transformations
that automate many design1 level changes.

We use the termautomateto refer to a refactoring’s programmed check for enabling
conditions and its execution of all source code changes. The choice of which design to im-
plement and which refactorings to apply isnotautomated and is always made by a person.
That is, a person creates the initial application design and manually selects the sequence
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of refactorings to transform the design. Not all changes to a program can be automated
by refactorings. Fixing bugs and improving algorithms are common changes made to ap-
plications, but these changes arenot refactorings.Refactorings only address automatable
modifications to the class structure of an application.The benefit of refactorings is that they
reduce the cost and tedium of debugging and testing commonly performed modifications
that would otherwise have to be performed manually.

2. Refactorings

A refactoring is a parameterized behavior-preserving program transformation that automat-
ically updates an application’s design and underlying source code. A refactoring is typically
a very simple transformation, one that has a straightforward (but not necessarily trivial) im-
pact on application source code. An example isinherit [Base,Derived], which establishes
a superclass-subclass relationship between two classes,BaseandDerived, that were previ-
ously unrelated. From the perspective of an object-oriented class diagram,inherit merely
adds an inheritance relationship between theBaseandDerived classes, but it also checks
enabling conditions to determine if the change can be made safely and it alters the appli-
cation’s source code to reflect this change. A refactoring is more precisely defined by (a) a
purpose, (b) arguments, (c) a description, (d) enabling conditions, (e) an initial state, and
(f) a target state. Such a definition forinherit [Base, Derived] is given in figure 1. Applying
refactorings is superior to hand-coding similar changes because it allows an architect to
evolve the design of an existing body of code at the level of a class diagram leaving the
code-level details to automation. A summary of the class diagram notation used throughout
this paper is presented in figure 2.

Ideally, the behavior preservation of refactorings should be proven formally. In practice
and in previous research, this generally has not been done for two reasons. First, to automate
refactorings requires a significant engineering effort to build compilers that allow abstract
syntax tree manipulations of programs and that have convenient metaprogramming facilities
for code generation. Such compilers are especially daunting to implement for C++—the
language that we have chosen to use in our experiments. Second, proving that refactorings
are behavior preserving requires a formal semantics for the target language to be defined.
To do this for a language as complicated as C++ is of dubious value, for the semantics
will be limited to a particular version of a particular compiler (where subsequent hacks may
inadvertently alter the language semantics).

Instead of formal proofs, we adopt the approach originally proposed by Banerjee and
Kim for database schema evolutions (Banerjee and Kim, 1987). They identified a set of
invariants that preserved the behavior of object-oriented database schemas. Opdyke pro-
posed a similar set of seven invariants to preserve behavior for refactorings (Opdyke, 1992).
Opdyke’s refactorings were accompanied by proofs which demonstrated that the enabling
conditions he identified for each refactoring preserved the invariants. Opdyke did not prove
that preserving these invariants preserved program behavior.

As an example, Opdyke’s first invariant is that each class must have a unique superclass
and its superclass must not also be one of its subclasses. When a refactoring runs the risk
of violating an invariant, enabling conditions are added to guarantee that the invariant is
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Figure 1. Inherit [Base, Derived] transformation.

preserved. Enabling conditions for theinherit refactoring are listed in figure 1.Inherit’s
first enabling condition preserves Opdyke’s first invariant.

Thus, the engineering approach that we and others have used is to define for each refac-
toring a set of enabling conditions that are necessary for behavior preservation. Because of
the complexity of the languages studied, these conditions maynotbe sufficient. In fact, our
experiments show Opdyke’s invariants are insufficient for C++. In Section 5.2 we iden-
tify counter examples—i.e., additional conditions—that must be considered for behavior
preservation. By the same token, there may be additional conditions that even we have not
discovered. Until main-stream languages become simple enough for language semantics to
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Figure 2. Notation.

be defined formally and for proofs of behavior preservation to be practical, the approach
that we have taken is likely to dominate.

There is yet one more difficulty related to enabling conditions: some conditions cannot
be checked automatically. For example, condition 7 of figure 1 says that “Program behavior
must not depend on the size or layout ofDerived”. That is, if a program exploits knowledge
of howDerived objects are laid out in memory (e.g., field X has a byte off-set of 5 from the
beginning of an object), there is no obvious way to automate the detection of this usage. As
another example, it is not possible to verify the “logical correctness” of a refactoring. For
example, relating two arbitrary classes viaInherit is probably meaningless (e.g., making
classDoga subclass ofBuilding ); but it is possible to perform this refactoringcorrectlyeven
though it makes no sense. In this paper and in any refactoring tool, the logical correctness
of refactorings is assumed. In the cases where enabling conditions cannot be checked
automatically, a refactoring tool must ask for human intervention to manually verify these
conditions (or assert that the conditions are satisfied by the design) before proceeding.

The list of automatable refactorings used in our research is presented in Table 1. Those that
are listed in non-italicized font were proposed by Bannerjee, Kim, and Opdyke; refactorings
that we have added areitalicized. In the following sections, we illustrate many of the
refactorings in Table 1. For details on refactorings (e.g., code changes, enabling conditions,
etc.), we refer readers to Bannerjee and Kim (1987), Opdyke (1992), Tokuda and Batory
(1999a,b,c).

3. Automatable modes of design evolution

3.1. Schema transformations

The database schema for anobject-oriented database management system(OODBMS)
looks like a class diagram of an object-oriented application. Thus, OODBMS schema
transformations have parallels in object-oriented software evolution. An example schema
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Table 1. Object-oriented refactorings.

Schema Refactorings movemethodacross

addvariable objectboundary

createvariableaccessor delegatemethodacrossobjectboundary

createmethodaccessor
renamevariable extractcodeasmethod

removevariable declareabstractmethod

pushdown variable structureto pointer

pull up variable

movevariable across C++ Refactorings

objectboundary procedureto method

createclass structureto class

renameclass

removeclass Pattern Refactorings

inherit add factory method

uninherit createiterator

substitute composite

renamemethod decorator

removemethod procedureto command

pushdown method procedureptr to command

pull up method singleton

transformation is moving an instance variable up the inheritance hierarchy (see figure 3).
This transformation is supported by the refactoringpull up variable which moves an
instance variable to a superclass. Banerjee and Kim describe 19 object-oriented database
schema transformations of which we implement 12 as automated refactorings.2 These trans-
formations are listed in Table 2.

Four other useful schema transformations not listed in (Banerjee and Kim, 1987) are
given in Table 3. Themoveanddelegaterefactorings introduce a level of indirection when
accessing moved methods and variables. Their difference is slight:delegateleaves the

Figure 3. Using pull up variable to move instance variable “iv” from derived to base.
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Table 2. Banerjee and Kim refactorings.

Description from Banerjee and Kim (1987) Refactoring from Table 1

Adding a new instance variable add variable

Drop an existing instance variable remove variable

Change the name of an instance variable rename variable

Change the domain of an instance variable pull up variable andpush down variable

Drop the composite link property of an instance variablea structure to pointer

Drop an existing method remove method

Change the name of a method rename method

Make a classS a superclass of classC inherit

Remove classS as a superclass of classC uninherit

Add a new class create class

Drop an existing class remove class

Change the name of a class rename class

aA classA with an instance variable of classB having the composite link property specifies thatA ownsB. B
cannot be created independently ofA andB cannot be accessed through a composite link of another object.

Table 3. Addition schema refactorings.

Description Refactoring from Table 1

Move a variable through a composite link move variable acrossobject boundary (figure 4)
Move a method through a composite link move method acrossobject boundary
Move a method via delegation through a composite linkdelegatemethod acrossobject boundary
Change a class’s dependency on a classC to a substitute (figure 5)

dependencey on a superclassS of C

interface of the original class intact by introducing a delegate method. Themoverefactoring
eliminates the method from the original class altogether and replaces direct calls to the
designated methodfoo() with an indirect callvar->foo() where variablevar identifies
the class/object to whichfoo() was moved.

The substituterefactoring generalizes a relationship by replacing a subclass reference to
that of its superclass (figure 5). This refactoring must be highly constrained, because it does
not always work. For example, clients of a subclass can invoke subclass methods that are
not present in the superclass. The only time thatsubstitute is permitted is under the specific
circumstance that the superclass is intentionally designed to representtheinterface to all of
its subclasses; there are no subclass-specific methods or variables that clients should access.
This interface might contain only pure virtual functions (which means that all subclasses
must provide implementations for these functions) or it might contain methods or method
templates that are shared by all subclasses. We discuss a use forsubstitute later in Section
3.2.2 and Section 3.3.1.

Schema transformations perform many of the simple edits encountered when evolving
class diagrams. They can be used alone or in combination to evolve object-oriented designs.
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Figure 4. Using movevariableacrossobjectboundary to move instance variablesx andy.

Figure 5. Using substitute to change Filer’s reference to a Letter to a reference of a document.

3.2. Design pattern microarchitectures

Design patterns capture expert solutions to many common object-oriented design prob-
lems: creation of compatible components, adapting a class to a different interface, subclass-
ing versus subtyping, isolating third party interfaces, etc. Patterns have been discovered
in a wide variety of applications and toolkits including Smalltalk Collections (Goldberg,
1984), ET++ (Weinand et al., 1988), MacApp [App89], and InterViews (Linton, 1992). As
with database schema transformations, refactorings have been shown to directly implement
certain design patterns:

Pattern Description Example

Command Command encapsulates a request as an object, (Tokuda and Batory, 1999)
thereby letting you parameterize clients with
different requests, queue or log requests, and
support undoable operations. TheProcedure
to commandrefactorings converts a procedure
to a command class.

Factory Method Factory Method defines an interface for creating an (Tokuda and Batory, 1995)
object, but lets subclasses decide which class to
instantiate.The add factory method refactoring
adds a factory method to a class.

Singleton Singleton ensures a class will have only one instance (Tokuda, 1999)
and provides a global point of access to it. The
singlton refactoring converts an empty class into
a singleton.
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We directly support three additional patterns as refactorings:

Pattern Description

Composite Composite composes objects into tree structures to represent part-shole hier-archies.
The compositerefactoring converts a class into a composite class.

Decorator Decorator attaches additional responsibilities to an object dynamically. Thedecorator
refactoring converts a class into a decorator class.

Interator Iterator provides a way to access the elements of an aggregate object sequentially without
exposing its underlying representation. Thecreate iterator refactoring generates
an iterator class.

While design patterns are useful when included in an initial software design, they are
often applied in the maintenance phase of the software lifecycle (Gamma et al., 1993). For
example, the original designer may have been unaware of a pattern or additional system
requirements may arise that require unanticipated flexibility. Alternatively, patterns may lead
to extra levels of indirection and complexity inappropriate for the first software release. A
number of patterns can be viewed as automatable program transformations applied to an
evolving design. Examples for the following two patterns have been documented:

Pattern Description Example

Abstract Factory Abstract Factory provides an interface for creating (Tokuda and Batory, 1995)
families or related or dependent objects without
specifying their concrete class.

Visitor Visitor lets you define a new operation without (Roberts et al., 1997)
changing the classes of the elements on which
it operates.

At least five additional patterns from Gamma et al. (1995) can be viewed as a program
transformations:

Pattern Description

Adapter Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces.

Bridge Bridge decouples an abstraction from its implementation so
that the two can vary independently.

Builder Builder separates the construction of a complex object from
its representation so that the same construction process
can create different representations.

Strategy Strategy lets algorithms vary independendently
from the clients that use them.

Template Method Template Method lets subclasses redefine certain
steps of an algorithm without changing the
algorithm structure.
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Figure 6. TextShape adapts TextView’s interface.

Figure 7. Unadapted text View class.

In all cases, we can apply refactorings to simple designs to create the designs used as
prototypical examples in Gamma et al. (1995). The following sections show how the first
two patterns can be automated.

3.2.1. Adapter. Adapter lets classes work together that couldn’t otherwise because of
incompatible interfaces. In the object adapter example from Gamma et al. (1995) (figure 6),
theTextShapeclass adaptsTextView’s GetExtent() method to implementBounding-
Box(). The adapter can be constructed from the originalTextView class (figure 7) in five
steps:

1. Create the classesTextShapeandShapeusingcreate class.
2. MakeTextShapea subclass ofShapeusinginherit (figure 8).
3. Add thetext instance variable toTextShapeusingadd variable (figure 9).

Figure 8. Adaptor class created.
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Figure 9. Adaptee instance variable to adaptor.

4. Create theBoundingBox() method which callstext->GetExtent() using create
method accessor. Not only is the method created,create method accessoralso re-
places expressionstext->GetExtent() with the call toBoundingBox().

5. DeclareBoundingBox() in Shapeusingdeclare abstract method (figure 6).

3.2.2. Bridge. Bridge decouples an abstraction from its implementation so that the two
can vary independently. In the example from Gamma et al. (1995) (figure 10), theWin-
dow abstraction andWindowImp implementation are placed in separate hierarchies. All
operations onWindow subclasses are implemented in terms of abstract operations from
theWindowImpinterface. Only theWindowImphierarchy needs to be extended to support
another windowing system. We refer to the relationship betweenWindowandWindowImp
as a bridge because it bridges the abstraction and its implementation, allowing them to vary
independently.

Refactorings can be used to install a bridge design pattern given a simple design com-
mitted to a single window system. Figure 11 depicts a system designed for X-Windows.

Figure 10. Bridge design pattern example.
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Figure 11. Design for a single window system.

Figure 12. Implementor classes created.

This system can be evolved with refactorings to use the bridge design pattern in six
steps:

1. Create classesXWindow andWindowImpusingcreate class.
2. MakeWindowImpa superclass ofXWindow with inherit (figure 12).
3. Add instance variableimp to the Window class usingadd variable (figure 13).
4. Move methodsDrawLine() andDrawText() to theXWindow class using the refac-

toring delegatemethod acrossobject boundary. This refactoring moves the bodies
of theDrawLine() andDrawText() methods toXWindow , while leaving a delegate
method in theWindow class (i.e., theXWindow methods are accessed through theimp
instance variable (figure 14)).

5. Declare methodDrawLine() andDrawText() in WindowImpwith declare abstract
method.
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Figure 13. Implementor instance variable added to Window.

Figure 14. Window system-specific methods moved to XWindow class.

6. Change the type of instance variableimp from XWindow to WindowImpusingsubsti-
tute (figure 10). This is possible becauseWindowImpdefines the interface that all its
subclasses, such asXWindow , must implement.

The Bridge design pattern uses object composition to provide needed flexibility. Object
composition is also present in the Builder and Strategy design patterns. The trade-offs
between use of inheritance and object composition are discussed in Gamma et al. (1995,
pp. 18–20). Refactorings allow a designer to safely migrate from statically checkable designs
using inheritance to dynamically defined designs using object-composition.
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Figure 15. Overenthusiastic use of design patterns.

3.2.3. Role of refactorings for design patterns.Gamma et al. note that a common design
pattern pitfall is overenthusiasm: “Patterns have costs (indirection, complexity) therefore
[one should] design to be as flexible as needed, not as flexible as possible.” The example
from (Gamma et al, 1996) is displayed in figure 15. Instead of creating a simpleCircle
class, an over-enthusiastic designer adds aCircle factory with strategies for each method, a
bridge to aCircle implementation, and aCircle decorator. The design is likely to be more
complex and inefficient than what is actually required. The migration from a singleCircle
class to the complex microarchitecture in figure 15 can be viewed as a transformation. This
transformation is in fact automatable with refactorings.3 Thus, instead of overdesigning, one
can start with a simpleCircle class and add the Factory Method, Strategy, Bridge, and Dec-
orator design patterns as needed. Refactorings can restructure existing implementations to
make them more flexible, dynamic, and reusable, however, their ability to affect algorithms
is limited. Patterns such as Chain of Responsibility and Memento require that algorithms be
designed with knowledge about the patterns employed. These patterns are thus considered
fundamental to a software design because there is no refactoring enabled evolutionary path
which leads to their use. Refactorings allow a designer to focus on fundamental patterns
when creating a new software design. Patterns supported through refactorings can be added
on an if-needed basis to the current or future design at minimal cost.

3.3. Hot-spot analysis

The hot-spot-driven-approach(Pree, 1994) identifies which aspects of a framework are
likely to differ from application to application. These aspects are calledhot-spots.When
a data hot-spot is identified, abstract classes are introduced. When a functional hot-spot is
identified, extra methods and classes are introduced.

3.3.1. Data hot-spots.When instance variables between applications are likely to differ,
Pree prescribed the creation of abstract classes. Refactorings have repeatedly demonstrated
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Figure 16. Initial state of mailing system.

the ability to create abstract classes (Opdyke and Johnson, 1993; Tokuda and Batory, 1995;
Roberts et al., 1997). As an example, Pree and Sikora provide a Mailing System case study
(Pree and Sikora, 1995). Figure 16 displays the initial state of its software design. In this
system,Folder cannot be nested, and onlyTextDocumentcan be mailed. Their suggested
design is displayed in figure 17. Under the improved design,Folders can be nested and
any subclass ofDesktopItemcan be mailed. Refactorings can automate most of these
changes:

1. Create aDesktopItemclass usingcreate class(figure 18). Create an abstract method in
DesktopItemfor every public method inTextDocumentusingdeclare abstract method;
DesktopItemis to be the interface to all objects that can be mailed.

2. MakeDesktopItema superclass ofTextDocumentusinginherit (figure 19).
3. Generalize the link betweenMailer and TextDocument to a link betweenMailer

andDesktopItemusingsubstitute (figure 20). Subclasses ofDesktopItemcan now be
mailed.

Figure 17. Final state of mailing system.
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Figure 18. Empty TextDocument class created.

Figure 19. TextDocument inherits fromDesktopItem.

Figure 20. Mailer dependency changed from TextDocument toDesktopItem.
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Figure 21. Folder can contain anyDesktopItem.

4. Generalize the link betweenFolder andTextDocument to a link betweenFolder and
DesktopItemusing substitute (figure 21).Folder can now contain anyDesktopItem.

5. This step cannot be automated: add methods toFolder that implement the abstract
methods ofDesktopItem. Such methods would include the procedures for mailingFolder
objects, and would allowFolder objects to be treated asDesktopItemobjects.

6. MakeFolder a subclass ofDesktopItemusinginherit (figure 17). AFolder which can
contain aDesktopItemcan now contain anotherFolder, and can now be mailed like any
otherDesktopItem.

With the improved design,DesktopItemprovides a superclass for adding other types of
media to be mailed. While not all changes to the original design are automatable, most are.

3.3.2. Functional hot-spots. For the case of differing functionality, solutions based on
template and hook methods are prescribed to provide the needed behavior. Atemplate
methodprovides the skeleton for a behavior. Ahook methodis called by the template
method and can be tailored to provide different behaviors. Figure 22 is an example of a
template method and hook method defined in the same class. Different subclasses ofT can
override hook method M2() which leads to differing functionality in template method M1()
(figure 23). Pree identifies seven meta patterns for template and hook methods: unification,

Figure 22. Template and hook methods in same class.
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Figure 23. Hook method M2() overridden in class H.

Figure 24. Hot-spot meta pattern transitions enabled by refactorings.

1 : 1 connection, 1 : Nconnection, 1 : 1recursive connection, 1 : Nrecursive connection, 1 :
1 recursive unification, and1 : N recursive unification (Pree, 1994). Refactorings automate
the introduction of meta patterns into evolving designs. The transitions between patterns
enabled by refactorings are displayed in figure 24.4 As examples, we demonstrate how the
first two transitions might be expressed using refactorings.

In the unification composition, both the template and hook methods are located in the same
class (figure 22). The behavior of the template is changed by overriding the hook method
in a subclass (figure 23). A design with no template or hook methods can be transformed
to use the unification meta pattern (transition 1 in figure 24). To see how this is possible,
consider the class diagram in figure 25 with classT having method M1() which calls some
special behavior. A hook method can be added with refactorings in one step:

1. Create a hook method M2() which executes the special behavior usingextract codeas
method (figure 22).Extract codeas method replaces a block of code with a call to a
newly created method which executes the block.

Figure 25. Method M1() calls a special behavior which differs for each application.
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Figure 26. Hook class created.

In the new microarchitecture, general behavior is contained in template methodM1()
while special behavior is captured by hook methodM2(). To extend the design, subclasses
of T overrideM2() to provide alternative behaviors forM1(). The extended structure can
be added in three steps:

1. Create classH usingcreate class.
2. MakeT a superclass ofH using inherit (figure 26).
3. Move the implementation ofM2() into H usingpush down method (figure 23). This

refactoring preserves the original interface ofT, but introduces an abstract methodM2()
that is overridden byH.

As a second example, we outline the transition from unification to 1 : 1 connection (tran-
sition 2 in figure 24). Consider the 1 : 1 connection meta pattern which stores the hook
method in an object owned by the template class (figure 27). Behavior can be changed at
run-time by assigning a hook object with a different behavior to the template class. 1 : 1
connection can be automated in three steps using the unification pattern (figure 22) as a
starting point.

1. Create classH usingcreate class.
2. Add an instance variableref of typeH to T with add variable (figure 28).
3. MoveM2() to classH usingmove method acrossobject boundary (figure 27).

Figure 27. 1 : 1 connection.
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Figure 28. Connection to H object created.

The behavior of template methodM1() can now be altered dynamically by pointing to
different hook class objects with different implementations ofM2(). Other transitions in
figure 24 have similar descriptions.

3.3.3. Role of refactorings in hot-spot analysis.The hot-spot-driven-approach provides a
comprehensive method for evolving designs to manage change in both data and functionality.
Pree notes that “the seven composition meta patterns repeatedly occur in frameworks.” Thus,
we expect an ongoing need to add meta patterns to evolving designs. The addition of meta
patterns is currently a manual process. Conditions are checked to ensure that a pattern can
be added safely, lines of affected source code are identified, changes are coded, the system is
tested to check for errors, any errors are fixed and the system is retested. Retesting continues
until the expected likelihood of an error is sufficiently low.

This section suggests that most meta patterns can be viewed as transformations from a
simpler design. Refactorings automate the transition between designs granting designers
the freedom to create simple frameworks and add patterns as needed when hot-spots are
identified.

4. Evolving applications.

We selected SEMATECH’s CIM Works and CMU’s Andrew User Interface System as
examples of evolving applications. They were chosen based on availability of source code
with a version history, size, and presence of design changes. The following features make
our study unique:

Replication of design evolution. Designs were extracted from two versions of the same
application. The older design became the initial state and the newer design became the
target state. Our objective was to determine if a sequence of refactorings could be applied
to transform the initial state to the target state. By doing so, we would automate changes
that were performed manually by the original application designers. This correspondence
makes comparison of automation versus hand-coding valid and provides us with a key
indicator: how often refactorings could be used.
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Non-trivial applications . Transforming large applications tests refactoring scalability.
Ideas that are effective on small applications of fewer than one thousand lines of code may
ultimately fail for real world applications whose size can exceed one hundred thousand
lines.

Mainstream object-oriented language.C++was chosen as the target language for exper-
imentation. It is by far the most widespread object-oriented programming language for
practical reasons such as backward compatibility with C, portability, availability of third
party compilers and tools, legacy system compatibility, and availability of trained per-
sonnel. It was expected that C++’s complexity might introduce problems which would
not appear in less popular object-oriented languages. A side benefit of this choice is that
most claims for C++ can also be made for the increasingly popular Java programming
language.

4.1. Evolving CIM works

Computer Integrated Manufacturing (CIM)Framework is an industry-wide initiative to
define a standardized object-oriented framework for writing semiconductor manufactur-
ing execution systems (Stewart, 1995). CIM works is a Windows application created to
demonstrate and test the SEMATECH CIM Framework specification (McGuire, 1997).

Major design changes in CIM Works occur between Version 2 and Version 4. The Version
2 design shown in figure 29 stores data and its graphical representation in the same object.
For example,CEquipmentManager contains methods for adding and removing pieces
of equipment to be managed as well as methods for building a GUI menu. The Version
4 design shown in figure 30 separates data and graphics into two class hierarchies. This
separation gave Version 4 the freedom to create different views of the same data as with the
model-view-controller paradigm (Krasner and Pope, 1988).

Version 2 is approximately 11K lines of code. The transformation between designs is
accomplished in nine steps, each of which is realized by applying a sequence of primitive
refactorings:

Figure 29. Version 2 design.
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Figure 30. Version 4 design.

Figure 31. Connect GUI and data classes.

1. Rename the classes of the original hierarchy to the split hierarchy usingrename class.
(The original classes retain the GUI aspects of objects, whereas their corresponding
“split” classes—created in Steps 2 and 4—encapsulate object data).

2. Create the concrete data classesFactory, Person, Equip-Manager, etc. usingcre-
ate class.

3. Add m objptr instance variables to the concrete GUI classes usingadd variable.
m objptr is of the corresponding data class type (figure 31).

4. Create abstract data classesResource, CompManager, MovementResource, etc. using
create class.

5. Establish inheritance relationships between the abstract data classes and the concrete
data classes usinginherit (figure 32).

6. Move non-GUI instance variables and methods from the GUI classes to the data classes
using move variable acrossobject boundary and move-methodacrossobject
boundary. Data is accessed through them objptr instance variables (figure 33).

7. Move common instance variables and method declarations up the data class hierachy
usingpull up variable anddeclare abstract method (figure 34).

8. Change the type ofm objptr from a structure to a pointer usingstructure to pointer.
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Figure 32. Create abstract data class hierarchy.

Figure 33. Instance variables and methods moved to data classes.

Figure 34. Instance variables and method declarations moved to abstract classes.
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9. Declare the reference between GUI objects and data objects in the abstract classes.
References to data objects are made abstract (figure 30).5

These steps were executed by 81 refactorings, resulting in a total of 486 lines of CIM
Works source being modified.

4.2. Evolving the andrew user interface system

The Andrew User Interface System(AUIS) from CMU is an integrated set of tools that
allow users to create, use, and mail documents and applications containing typographically-
formatted text and embedded objects (Morris et al., 1986). The two versions under study
were Version 6.3 written in C and Version 8.0 converted to C++. Version 6.3 stores actions
as function pointers while Version 8.0 supports and recommends creation of a separate
subclass for each action (similar to the Command design pattern).6 Over ninety classes
using almost 800 actions are affected. The transformation is accomplished in five steps.

1. Convert Version 6.3 C structures to C++ classes usingstructure to class(figure 35).
2. Create theATK andCommandabstract classes usingcreate class.
3. Establish the inheritance relationships betweenATK and other classes usinginherit .
4. Derive command classes for each action usingprocedure to command. Figure 36 dis-

plays the result of transformingPlayKbdMacro() into aCommandsubclass. The newly
createdPlayKbdMacroCmd contains anExecute() method which callsPlayKbd-
Macro(). It also contains anInstance() method which returns a unique instance of
the class. UsingInstance() instead ofnew to create objects guarantees that a pointer
to aPlayKbdMacroCmd object is unique.

5. Convert procedure pointers to commands usingprocedure ptr to command. In this
step, the data types for structures using procedure pointers are converted to useCom-
mandpointers, procedure calls are converted to useExecute()methods, and procedure
assignments are converted to useInstance() methods. Figure 37 displays the transfor-
mation of thebind Description structure. Theproc instance variable is converted to a
Commandpointer.

Figure 35. Structures converted to classes.



112 TOKUDA AND BATORY

Figure 36. Software microarchitecture for Im and Command classes.

Figure 37. Convert procedure pointer to Command pointer.

All steps were executed with approximately 800 refactorings resulting in 14K lines of
code changes.7

5. Introspection and lessons learned

Our experiments provided a tremendous learning experience in evaluating refactoring tech-
nologies. In the following sections, we present some of the more important lessons that
we learned on refactoring benefits, limitations, and research problems that must be solved
for refactoring technology to succeed. Further discussion is given in Tokuda and Batary
(1999).

5.1. Refactoring benefits

Automating design changes.The most important result of our research is to establish that
refactorings can automate significant design changes involving thousands of lines of code
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in real world application. It is of interest to compare the effort required to perform these
changes manually versus the effort when aided by refactorings.We estimate that the CIM
Works changes would take us two days to implement and debug by hand versus two hours
when aided by refactorings. We estimate that the AUIS changes would require two weeks
to implement and debug by hand versus one day when aided by refactorings.

Reduced testing.A good refactoring implementation can reduce the effort required to
test new designs. When refactorings preserve behavior, only hand coded changes need to
be tested.

Simpler designs.Refactorings reduce the need for overly complex designs. Gamma
et al. note that a common design pattern pitfall is over-enthusiasm: “Patterns have costs
(indirection, complexity) therefore [one should] design to be as flexible as needed, not
as flexible as possible”. Designs which attempt to anticipate too many future extensions
may also be more error prone with less static type checking.8 Refactorings are capable of
extending designs in multiple ways. They encourage designers to create lean designs for the
task at hand and to extend those designs with refactorings as new capabilities are needed.

Validation assistance.Enabling condition checks can detect conflicts between a code
level implementation and a desired design change. For example, a programmer may decide
to move an instance variable from a base class to a derived class without realizing that
objects of the base class access the instance variable being moved. Enabling condition
checks will detect this error. Refactorings are capable of detecting errors resulting from a
long series of changes which would be costly to perform and undo manually.

Ease of exploration.Refactorings allow designers to experiment with new designs.
While schema evolutions and design patterns are manually coded into applications today,
it is clear that automating their introduction will allow designers to explore more easily a
design space without major commitments in coding and debugging time.

5.2. Refactoring limitations

Experiments with large applications revealed limitations which were not issues in previous
work on small proof-of-concept programs. We discuss our most important observations to
alert future researchers to the problems that they will face.

Preprocessor Directives.Our C++ program transformation tool cannot deal with pre-
processor directives because preprocessor directives are not part of the C++ language. The
programs in our experiments were preprocessed before being transformed and at that point,
preprocessor information could no longer be recovered. While we believe that workarounds
are possible for the majority of the cases, it is generally not possible to handle all problems
that arise in large software applications.

Conservative enabling conditions.Refactorings have been found to be useful even when
predicated on conservative enabling conditions. For example, theinherit transformation
is conservatively limited to single inheritance systems by Opdyke’s first invariant. While
support for multiple inheritance systems is possible, it was not necessary for transforming
the applications described in this paper or for adding numerous design patterns and hot-spot
meta patterns (Tokuda and Batory, 1999).
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Automated verification of enabling conditions.Most but not all enabling conditions
can be verified automatically. For theinherit refactoring, the first five conditions can be
checked automatically (figure 1).

Opdyke identifies a condition which cannot be verified automatically: program behavior
must not be dependent on the size or layout of objects (Opdyke, 1992). Size and layout were
not issues with the two programs transformed in this paper or other programs transformed
in (ToKuda and Batory, 1995; Rober et al., 1997), however, users of refactorings must be
aware of this limitation.

Behavior preservation.Our experiments revealed that preservation of Opdyke’s invari-
ants was not sufficient to guarantee preservation of behavior. Three additional invariants
required for C++ are:

1. Implementation of pure-virtual functions. If a class is concrete (and thus can be
instantiated), it can not have pure-virtual functions.

2. Maintaining aggregate objects.If a program depends on the aggregate property of an
object, then that property must be preserved.9

3. No instantiation side-effects.If a refactoring can change the frequency or order in
which classes are instantiated, then the constructor cannot have any side-effects beyond
initializing the object created.

In light of this discovery, we recognize that refactorings are behavior-preserving due to
good engineering and not because of any mathematical guarantee. It is the responsibility of
the refactoring designer to identify all enabling conditions necessary to ensure that behavior
is preserved. This important issue is explored further in Tokuda (1999).

5.3. Future research

Our work focused on the practicality of applying primitive refactorings to evolving object-
oriented applications. Beyond implementation of required functionality, we identify three
issues which require further research.

Validation. How do we know a refactored program is correct? How do we know any pro-
gram is correct? This is a hard problem in any circumstance. Lacking proofs of correctness
and proofs of behavior preservation, we expect refactoring tools to be like compilers today:
over time, we will learn to trust that the tool makes the correct transformations—until we
have clearly reproducable bugs that tell us otherwise. As languages become simpler (see
Section 5.4), there is hope that more progress can be made.

Granularity of transformations. The refactorings developed for this research were in-
tended to be primitive and composable to perform more complex refactorings. We did not
attempt to minimize the number of refactorings required. In the CIM Works example, the
number of refactorings was large (81) although the conceptual number of transformation
steps was small (8). One way to reduce the number of refactorings would be to provide
larger grain refactorings. In the CIM Works example, the number of refactorings would be
significantly reduced if refactorings to move multiple variables and methods were available.
Similarly for the Andrew example, most of the 800 transformations take place in Step 4—
converting action procedures toCommandsubclasses. A larger grain transformation which
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converted a list of procedures toCommand’scould execute Step 4 in a single transforma-
tion. This would reduce the total number of transformation to fewer than twenty. It is
important to note that the near term goal of our research has been to develop a basis set of
primitive refactorings. Larger grain refactorings up to the size of design patterns may be
more convenient in practice.

Transactional refactorings. A related issue is the notion of what we will call transac-
tional refactorings. Atransactional refactoringcan be decomposed into a composition of
primitive transformations that themselves may not be behavior preserving, but the net ef-
fect of the transactional refactoringis behavior preserving. Thedelegatemethod across
object boundary refactoring is an example. Conceptually, it is equivalent to amove
method acrossobject boundary (which removes the method entirely from its original
class), followed by acreate method acessor(which reintroduces the method to the origi-
nal class and delegates its execution to the moved method). Individually, these refactorings
cannot be applied in sequence. If clients of the original class reference the target method, the
enabling conditions of themove method refactoring will prevent the method from being
moved. Only if we consider the net result of both refactorings do we see that the resultant
refactoring is correct.

We dealt with such situations by creatingnew refactorings, such asdelegatemethod.
However, a better approach will be to define primitive refactorings and to define a series of
these refactorings as an atomic rewrite.

Program families. Transformation systems must recognize that many files may be in-
cluded by multiple programs. When transforming a file used by more than one program,
it is desirable for the transformation system to check enabling conditions for all programs
in which use that file. Otherwise, a file might be transformed safely for one program while
causing another program which uses the same file to break. The situation is further compli-
cated for C++ by conditional complication flags which imply that different preprocessed
versions of a single file should be considered when checking if a transformation can be
performed safely.

Integration with other tools. Refactorings packaged as individual executables are not
dependent on the presence of other tools. In this form, they can be integrated into most
mainstream development environments because most environments support command-line
access to source code.

Higher levels of integration are still possible. We envision integration with an object-
oriented modeling tool such as Rational RoseTM which would allow many refactorings
to be invoked as operations on a UML diagram. Integration with a source code control
system could allow appropriate files to be checked out, transformed, and checked back in
with comments describing the refactorings. Attempts to transform protected files would
block the refactoring and notify the user. Integration with an IDE such as Microsoft Visual
C++TM would allow transformed code to be displayed immediately in open windows.

5.4. Implications for Java

Java inherits all of C++’s refactoring benefits while avoiding many of its limitations. First,
it has no preprocessor which removes a major barrier to a successful C++ implementation.
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Second, it does not use makefiles which simplifies the process of piecing together the source
files to be transformed. Third, code placement is simplified since methods are stored in a file
belonging to the class. Java has no free-floating procedures as with hybrid object-oriented
languages such as C++. For these reasons coupled with its growing popularity as an internet
language, we believe that Java is the best vehicle for transferring refactoring technology
to the mainstream.10 Tools are now being developed to aid in this process (Simonyi, 1995;
Baxter and Pidgeon, 1997; Batory et al., 1998).

6. Related work

Griswold developed behavior-preserving transformations for structured programs written
in Scheme (Griswold, 1991). The goal of this system was to assist in the restructuring
of functionally decomposed software. Software architectures developed using the classic
structured software design methodology (Yourdon and Constantine, 1979) are difficult to
restructure because nodes of the structure chart which define the program pass both data
and control information. The presence of control information makes it difficult to relocate
subtrees of the structure chart. As a result, most transformations are limited to the level of
a function or a block of code.

Object-oriented software designs offer greater possibilities for restructuring. Bergstein
defined a small set of object-preserving class transformations which can be applied to
class diagrams (Johnson and Foote, 1988). Lieberherr implemented these transformations
in the Demeter object-oriented software environment (Lieberherr et al., 1991). Example
transformations are deleting useless subclasses and moving instance variables between a
superclass and a subclass.

Opdyke coined the termrefactoring to describe a behavior-preserving program trans-
formation for restructuring object-oriented software systems. Refactorings were inspired
by the schema evolutions of Banerjee and Kim (1987), the design principles of Johnson
and Foote (1988) and the design history of the UIUC Choices operating system (Maydany
et al., 1989). An example application of refactorings is the creation of an abstract super-
class (Opdyke, 1992). Refactorings are implemented for C++ (Tokuda and Batory, 1995;
Scherlis, 1998; Schulz et al., 1998; Tokuda and Batory, 1999) and for Smalltalk (Roberts
et al., 1997). Roberts offers Smalltalk-specific design criteria for a program transformation
tool (Roberts et al., 1997). One criteria which also applies to C++ software is that users
should be allowed to name new entities introduced through transformations.

Refactorings are shown to automate the addition of design patterns to object-oriented
software systems (Tokuda and Batory, 1995; Roberts et al., 1997; Scherlis, 1998; Schulz
et al., 1998; Tokuda and Batory, 1999). Refactorings also support the addition of Pree’s
(Pree, 1994) hot-spot meta patterns (Tokuda and Batory, 1999).

7. Conclusion

There are regular patterns by which designs of object-oriented applications evolve: schema
transformations, design pattern microarchitectures, and the hot-spot-driven-approach. Many



OBJECT-ORIENTED DESIGNS 117

evolutionary changes can be viewed as program transformations which are automatable with
object-oriented refactorings. Refactorings are superior to hand-coding because they check
enabling conditions to ensure that a change can be made safely, identify all lines of source
code affected by a change, and perform all edits. Refactorings allow design evolution to
occur at the level of a class diagram and leave the code-level details to automation.

Designs should evolve on an if-needed basis:

• “Complex systems that work evolved from simple systems that worked.”—Booch
• “Start stupid and evolve.”—Beck

The ultimate goal of our research is to provide a mainstream tool that makes editing class
diagrams as easy as editing user interfaces with a GUI editor. This paper has taken three
important steps towards this goal:

• First, we implemented a set of refactorings that can automate a suite of schema transfor-
mations, design patterns, and hot-spot meta patterns. They can reduce or eliminate the
need to identify lines of affected source, to execute changes manually, and to test those
changes.
• Second, we showed that refactorings can scale and be useful on large, real-world appli-

cations. We were able to automate thousands of lines of changes with a general-purpose
set of refactorings.
• Third, while our experiments clearly showed the benefits that could result from a refac-

toring tool, they also revealed the limitations and research problems that remain to be
addressed before refactoring technology can be transitioned beyond academic prototypes.

Given the success of our experiments and the difficulty in managing C++ preprocessor
information, Java should be the next target language, as we believe that it holds the greatest
promise for transferring refactoring technology to the mainstream.
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Notes

1. We use a limited definition of the termdesignreferring to the aspect of design reflected in the extended class
diagram notation from Gamma et al. (1995).

2. The seven refactorings which are not supported are: changing the value of a class variable, changing the code
of a method, changing the default value of an instance variable, changing the inheritance parent of an instance
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variable, changing the inheritance of a method, adding a method, and changing the order of superclasses. The
first three refactorings are not behavior-preserving. The next two are not supported by mainstream object-
oriented programming languages. The sixth (adding a method) cannot be automated. The seventh (changing
the order of superclasses) is not supported because this research focusses on applications without multiple
inheritance.

3. A Circle factory is created (Tokuda and Batory, 1995). Strategies are added (Section 3.2). The Bridge pattern
is applied (Section 3.2.2). Finally, a decorator is added (Section 3.2).

4. We consider the 1 : N connection composition to be fundamental to a design. For this pattern, a template object
is linked to a collection of hook objects. This implies that the template method has knowledge about how to
use multiple hook methods and thus cannot be derived from the 1 : 1connection composition in which the
template method is coded for a single hook method.

5. In this step, the generalization is made that allCIcon objects point to aResourceobject through them objptr
instance variable. This requires that casts to the appropriate data class are made whenever data object instance
variables are referenced through GUI objects. For example:

CIcPerson *p = new CIcPerson;

p->person ptr->f name = "John";

is transformed to:

CIcPerson p;

((Person *) p->m objptr)->f name = "John";

It is unclear if this was the correct design decision since the GUI classes are specific to a single data class.
This step was not automated although it would be possible to do so.

6. The Command design pattern objectifies an action. The action is triggered by calling anExecute() method
implemented in each derived class (Gamma et al., 1995).

7. This number is large because AUIS used 800 actions implemented as procedures and the conversion of a
procedure to a command required a transformation. More refactorings did not imply more complexity. We
found it was easier to choose the refactorings for AUIS than for CIM Works because conceptually, the evolution
of AUIS’s design required only five steps.

8. Many design patterns use runtime composition versus inheritance as an extension mechanism (Gamma et al.,
1995). The dynamic nature of composition precludes static typechecking.

9. Inherit destroys this property since aggregates cannot have supervlasses.
10. When we began our work, tool support and availability of large Java files were nonexistent. This is no longer

true today.
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