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Abstract. Refactoringsare behavior-preserving program transformations that automate design evolution in
object-oriented applications. Three kinds of design evolution are: schema transformations, design pattern microar-
chitectures, and the hot-spot-driven-approach. This research shows that all three are automatable with refactorings.
A comprehensive list of refactorings for design evolution is provided and an analysis of supported schema trans-
formations, design patterns, and hot-spot meta patterns is presented. Further, we evaluate whether refactoring
technology can be transferred to the mainstream by restructuring non-trivial@pplications. The applications

that we examine were evolved manually by software engineers. We show that an equivalent evolution could be
reproduced significantly faster and cheaper by applying a handful of general-purpose refactorings. In one appli-
cation, over 14K lines of code were transformed automatically that otherwise would have been coded by hand.
Our experiments identify benefits, limitations, and topics of further research related to the transfer of refactoring
technology to a production environment.
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1. Introduction

Before the invention ofyraphical user interface (GUIgditors, the process of evolving

a GUI was to design, code, test, evaluate, and redesign again. With the introduction of
editors, GUI design has become an interactive process allowing users to design, evaluate,
and redesign an interface on-screen and to output compilable source code that reflects the
latest design.

We believe that a similar advance needs to occur for editing object-oriented class dia-
grams. Editing a class diagram can be as simple as adding a line between classes to represent
an inheritance relationship or moving a variable from a subclass to a superclass. However,
such changes must now be accompanied by painstakingly identifying lines of affected
source code, manually updating the source, testing the changes, fixing bugs, and retesting
the application until the risk of new errors is sufficiently low.

Just as GUI editors revolutionized GUI design, we believe that class diagram editors
(where changes to an application’s diagram automatically trigger corresponding changes to
its underlying source code) will revolutionize the evolution of software design. The tech-
nology to power such atool irefactorings— behavior-preserving program transformations
that automate many desigtevel changes.

We use the ternautomateto refer to a refactoring’s programmed check for enabling
conditions and its execution of all source code changes. The choice of which design to im-
plement and which refactorings to applynigtautomated and is always made by a person.
That is, a person creates the initial application design and manually selects the sequence
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of refactorings to transform the design. Not all changes to a program can be automated
by refactorings. Fixing bugs and improving algorithms are common changes made to ap-
plications, but these changes arat refactoringsRefactorings only address automatable
modifications to the class structure of an applicatibhe benefit of refactorings is that they
reduce the cost and tedium of debugging and testing commonly performed modifications
that would otherwise have to be performed manually.

2. Refactorings

A refactoring is a parameterized behavior-preserving program transformation that automat-
ically updates an application’s design and underlying source code. A refactoring is typically
a very simple transformation, one that has a straightforward (but not necessarily trivial) im-
pact on application source code. An examplimigerit [Base,Derived], which establishes

a superclass-subclass relationship between two clddassandDerived, that were previ-

ously unrelated. From the perspective of an object-oriented class diagtaarit merely

adds an inheritance relationship betweenBhaseandDerived classes, but it also checks
enabling conditions to determine if the change can be made safely and it alters the appli-
cation’s source code to reflect this change. A refactoring is more precisely defined by (a) a
purpose, (b) arguments, (c) a description, (d) enabling conditions, (e) an initial state, and
(f) atarget state. Such a definition faherit [Base Derived] is given in figure 1. Applying
refactorings is superior to hand-coding similar changes because it allows an architect to
evolve the design of an existing body of code at the level of a class diagram leaving the
code-level details to automation. A summary of the class diagram notation used throughout
this paper is presented in figure 2.

Ideally, the behavior preservation of refactorings should be proven formally. In practice
and in previous research, this generally has not been done for two reasons. First, to automate
refactorings requires a significant engineering effort to build compilers that allow abstract
syntax tree manipulations of programs and that have convenient metaprogramming facilities
for code generation. Such compilers are especially daunting to implemeniHer&he
language that we have chosen to use in our experiments. Second, proving that refactorings
are behavior preserving requires a formal semantics for the target language to be defined.
To do this for a language as complicated as{€is of dubious value, for the semantics
will be limited to a particular version of a particular compiler (where subsequent hacks may
inadvertently alter the language semantics).

Instead of formal proofs, we adopt the approach originally proposed by Banerjee and
Kim for database schema evolutions (Banerjee and Kim, 1987). They identified a set of
invariants that preserved the behavior of object-oriented database schemas. Opdyke pro-
posed a similar set of seven invariants to preserve behavior for refactorings (Opdyke, 1992).
Opdyke’s refactorings were accompanied by proofs which demonstrated that the enabling
conditions he identified for each refactoring preserved the invariants. Opdyke did not prove
that preserving these invariants preserved program behavior.

As an example, Opdyke’s first invariant is that each class must have a unique superclass
and its superclass must not also be one of its subclasses. When a refactoring runs the risk
of violating an invariant, enabling conditions are added to guarantee that the invariant is
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Name:
Inherit[ Base, Derived ]

Purpose:
To establish a public superclass-subclass relationship
between two existing classes.

Arguments:
Base - superclass name
Derived - subclass name

Description:
Inherit[] makes Base a superclass of Derived.

1. Base must not be a subclass of Derived and Derived
must not have a superclass.

2. Member variables of Derived must have distinct names
from member variables of Base and its superclasses.

3. A member function of Derived which overrides a func-
tion must have the same type signature as the function it
overrides.

4. Subclasses of Base must implement any pure virtual
methods if objects of that class are created.

5. Initializer lists must not be used to initialize Derived
objects.

6. For all inherited instance variables whose type is a
class, the constructors for those classes cannot have any
side-effects outside of object initialization if Derived is
instantiated. )

7. Program behavior must not depend on the size or layout
of Derived.

Base

Derived

(a) Initial State (b) Target state

Figure L Inherit Base Derived] transformation.

preserved. Enabling conditions for thenerit refactoring are listed in figure Inherit's
first enabling condition preserves Opdyke’s first invariant.

Thus, the engineering approach that we and others have used is to define for each refac-
toring a set of enabling conditions that are necessary for behavior preservation. Because of
the complexity of the languages studied, these conditionsnmotye sufficient. In fact, our
experiments show Opdyke’s invariants are insufficient ferH€ In Section 5.2 we iden-
tify counter examples—i.e., additional conditions—that must be considered for behavior
preservation. By the same token, there may be additional conditions that even we have not
discovered. Until main-stream languages become simple enough for language semantics to
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AbstractClass
strac owns ConcreteClass1

AbstractOperation() references
ConcreteClass2
|
ConcreteSubclass1 I ConcreteSubclass2

InstanceVariable
Operation()

I Implementationl

Figure 2 Notation.

be defined formally and for proofs of behavior preservation to be practical, the approach
that we have taken is likely to dominate.

There is yet one more difficulty related to enabling conditions: some conditions cannot
be checked automatically. For example, condition 7 of figure 1 says that “Program behavior
must not depend on the size or layouDsrived”. That is, if a program exploits knowledge
of how Derived objects are laid out in memory (e.qg., field X has a byte off-set of 5 from the
beginning of an object), there is no obvious way to automate the detection of this usage. As
another example, it is not possible to verify the “logical correctness” of a refactoring. For
example, relating two arbitrary classes Widerit is probably meaningless (e.g., making
classDoga subclass duilding); butitis possible to perform this refactoringrrectlyeven
though it makes no sense. In this paper and in any refactoring tool, the logical correctness
of refactorings is assumed. In the cases where enabling conditions cannot be checked
automatically, a refactoring tool must ask for human intervention to manually verify these
conditions (or assert that the conditions are satisfied by the design) before proceeding.

The list of automatable refactorings used in our researchis presented in Table 1. Those that
are listed in non-italicized font were proposed by Bannerjee, Kim, and Opdyke; refactorings
that we have added aitalicized. In the following sections, we illustrate many of the
refactorings in Table 1. For details on refactorings (e.g., code changes, enabling conditions,
etc.), we refer readers to Bannerjee and Kim (1987), Opdyke (1992), Tokuda and Batory
(1999a,b,c).

3. Automatable modes of design evolution
3.1. Schema transformations
The database schema for ahject-oriented database management syst&@DBMS

looks like a class diagram of an object-oriented application. Thus, OODBMS schema
transformations have parallels in object-oriented software evolution. An example schema
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Table 1 Object-oriented refactorings.
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Schema Refactorings
addvariable
createvariableaccessor

createmethodaccessor
renamevariable

removevariable
pushdown.variable
pull_up_variable
movevariable.across
objectboundary
createclass
renameclass
removeclass
inherit

uninherit
substitute
renamemethod
removemethod
pushdown.method
pull_up_method

movemethodacross
objectboundary
delegataethodacrossobjectboundary

extractodeasmethod
declareabstractmethod
structureto_pointer

C++ Refactorings
procedureto_method
structureto_class

Pattern Refactorings
addfactory.method
createiterator

composite
decorator
procedureto_.command
procedureptr_to_.command
singleton

transformation is moving an instance variable up the inheritance hierarchy (see figure 3).
This transformation is supported by the refactorgl _up_variable which moves an
instance variable to a superclass. Banerjee and Kim describe 19 object-oriented database
schema transformations of which we implement 12 as automated refactdfihgse trans-
formations are listed in Table 2.

Four other useful schema transformations not listed in (Banerjee and Kim, 1987) are
given in Table 3. Thenoveanddelegaterefactorings introduce a level of indirection when
accessing moved methods and variables. Their difference is stiglggateleaves the

Base Base

Derived Derived

iv

Figure 3 Using pulLup_variable to move instance variable “iv’ from derived to base.
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Table 2 Banerjee and Kim refactorings.
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Description from Banerjee and Kim (1987)

Refactoring from Table 1

Adding a new instance variable

Drop an existing instance variable

Change the name of an instance variable
Change the domain of an instance variable
Drop the composite link property of an instance varidble
Drop an existing method

Change the name of a method

Make a class a superclass of clags
Remove clas$§ as a superclass of cla€s
Add a new class

Drop an existing class

Change the name of a class

add_variable
remove.variable
rename.variable
pull _up_variable andpush.down_variable
structure _to_pointer
remove.method
rename.method
inherit

uninherit
createclass
remove_class
rename.class

aA classA with an instance variable of claBshaving the composite link property specifies thadwnsB. B
cannot be created independentlyo&indB cannot be accessed through a composite link of another object.

Table 3 Addition schema refactorings.

Description Refactoring from Table 1

Move a variable through a composite link move.variable_acrossobject boundary (figure 4)
Move a method through a composite link move.method.acrossobject boundary
Move a method via delegation through a composite linkdelegatemethod acrossobject_boundary
Change a class’s dependency on a cass a substitute (figure 5)

dependencey on a supercl&ssf C

interface of the original class intact by introducing a delegate methodndkerefactoring
eliminates the method from the original class altogether and replaces direct calls to the
designated methddo() with anindirect calvar->foo()  where variablear identifies

the class/object to whictoo() was moved.

The substituterefactoring generalizes a relationship by replacing a subclass reference to
that of its superclass (figure 5). This refactoring must be highly constrained, because it does
not always work. For example, clients of a subclass can invoke subclass methods that are
not present in the superclass. The only time shdistitute is permitted is under the specific
circumstance that the superclass is intentionally designed to reptiesenerface to all of
its subclasses; there are no subclass-specific methods or variables that clients should access.
This interface might contain only pure virtual functions (which means that all subclasses
must provide implementations for these functions) or it might contain methods or method
templates that are shared by all subclasses. We discuss a gs@stitute later in Section
3.2.2 and Section 3.3.1.

Schema transformations perform many of the simple edits encountered when evolving
class diagrams. They can be used alone or in combination to evolve object-oriented designs.
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Object Object

;T —>T

Point

Point
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Figure 4 Using movevariableacrossobjectboundary to move instance variabbeandy.

Filer

Document | E I Filer |—>| Document |
£ :» A
5

Figure 5 Using substitute to change Filer's reference to a Letter to a reference of a document.

3.2. Design pattern microarchitectures

Design patterns capture expert solutions to many common object-oriented design prob-
lems: creation of compatible components, adapting a class to a different interface, subclass-
ing versus subtyping, isolating third party interfaces, etc. Patterns have been discovered
in a wide variety of applications and toolkits including Smalltalk Collections (Goldberg,

1984), EH-+ (Weinand et al., 1988), MacApp [App89], and InterViews (Linton, 1992). As

with database schema transformations, refactorings have been shown to directly implement
certain design patterns:

Pattern

Description

Example

Command

Factory Method

Singleton

Command encapsulates a request as an object,
thereby letting you parameterize clients with
different requests, queue or log requests, and
support undoable operations. TReocedure.
to_commandrefactorings converts a procedure
to a command class.

Factory Method defines an interface for creating an
object, but lets subclasses decide which class to
instantiate The add_factory_method refactoring
adds a factory method to a class.

Singleton ensures a class will have only one instance
and provides a global point of access to it. The
singlton refactoring converts an empty class into
a singleton.

(Tokuda and Batory, 1999)

(Tokuda and Batory, 1995)

(Tokuda, 1999)
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We directly support three additional patterns as refactorings:

Pattern Description

Composite Composite composes objects into tree structures to represent part-shole hier-archies.
The compositerefactoring converts a class into a composite class.

Decorator Decorator attaches additional responsibilities to an object dynamicallgeTbeator
refactoring converts a class into a decorator class.

Interator Iterator provides a way to access the elements of an aggregate object sequentially without
exposing its underlying representation. Tneate.iterator refactoring generates
an iterator class.

While design patterns are useful when included in an initial software design, they are
often applied in the maintenance phase of the software lifecycle (Gamma et al., 1993). For
example, the original designer may have been unaware of a pattern or additional system
requirements may arise that require unanticipated flexibility. Alternatively, patterns may lead
to extra levels of indirection and complexity inappropriate for the first software release. A
number of patterns can be viewed as automatable program transformations applied to an
evolving design. Examples for the following two patterns have been documented:

Pattern Description Example

Abstract Factory Abstract Factory provides an interface for creating (Tokuda and Batory, 1995)
families or related or dependent objects without
specifying their concrete class.

Visitor Visitor lets you define a new operation without (Roberts et al., 1997)
changing the classes of the elements on which
it operates.

At least five additional patterns from Gamma et al. (1995) can be viewed as a program
transformations:

Pattern Description

Adapter Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces.

Bridge Bridge decouples an abstraction from its implementation so
that the two can vary independently.

Builder Builder separates the construction of a complex object from
its representation so that the same construction process
can create different representations.

Strategy Strategy lets algorithms vary independendently
from the clients that use them.
Template Method Template Method lets subclasses redefine certain

steps of an algorithm without changing the
algorithm structure.
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Shape

BoundingBox()

1

TextShape text TextView

BoundingBox(}- + GetExtent()

. P text->GetExtent();Iﬁ

Figure 6. TextShape adapts TextView's interface.

TextView

GetExtent()

Figure 7. Unadapted text View class.

In all cases, we can apply refactorings to simple designs to create the designs used as
prototypical examples in Gamma et al. (1995). The following sections show how the first
two patterns can be automated.

3.2.1. Adapter. Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces. In the object adapter example from Gamma et al. (1995) (figure 6),
the TextShapeclass adapt3extView's GetExtent() method to implemerBounding-

Box(). The adapter can be constructed from the origireedtView class (figure 7) in five
steps:

1. Create the classd@extShapeandShapeusingcreate class
2. MakeTextShapea subclass oBhapeusinginherit (figure 8).
3. Add thetext instance variable tdextShapeusingadd_variable (figure 9).

AN

TextView
TextShape

GetExtent()

Figure 8 Adaptor class created.
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A
text TextView
TextShape

GetExtent()

Figure 9. Adaptee instance variable to adaptor.

4. Create theoundingBox() method which callgext->GetExtent() usingcreate.
method_accessor Not only is the method createdreate method accessoralso re-
places expressionsxt->GetExtent() with the call toBoundingBox().

5. DeclareBoundingBox() in Shapeusingdeclare abstract method (figure 6).

3.2.2. Bridge. Bridge decouples an abstraction from its implementation so that the two
can vary independently. In the example from Gamma et al. (1995) (figure 10)Vitire
dow abstraction andVindowImp implementation are placed in separate hierarchies. All
operations or'Window subclasses are implemented in terms of abstract operations from
theWindowlmpinterface. Only th&Vindowlmphierarchy needs to be extended to support
another windowing system. We refer to the relationship betWéieiowandWindowlmp
as a bridge because it bridges the abstraction and its implementation, allowing them to vary
independently.

Refactorings can be used to install a bridge design pattern given a simple design com-
mitted to a single window system. Figure 11 depicts a system designed for X-Windows.

bridge
Window imp WindowImp
P
DrawRect(}- - - f = = - - DrawLinef)
DrawText() - - = = + DrawTexi()
DrawLine()- - - |+ l

: \ 4
| imp->DrawLine( b‘

—

XWindow
l——b_ \{ .
imp-=DrawText() DrawLine() - -}- - -
DrawText()

1
|
'
'

XDrawLine(); 5

imp->DrawLine();
imp->DrawLine();
imp->DrawLine();
imp->DrawLine(};

Figure 10 Bridge design pattern example.
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Window

DrawRect()- - - |- -
DrawText() !

DrawLine() . - 1 - 7 XDrawLine();

DrawLine();
DrawLine();
DrawLine();
DrawLine();

Figure 11 Design for a single window system.

WindowlImp

Wiion

DrawRect() . .- -,
DrawText() .
-[- -3 -9 XDrawLine();

DrawLine() _
DrawLine();
DrawLine();
DrawLine();
DrawLine();

Figure 12 Implementor classes created.

This system can be evolved with refactorings to use the bridge design pattern in six
steps:

. Create classe$éWindow andWindowlmpusingcreate class

. MakeWindowlmpa superclass ofWindow with inherit (figure 12).

. Add instance variablémp to the Window class usingdd_variable (figure 13).

. Move method®rawLine() andDrawText() to theXWindow class using the refac-
toring delegatemethod_acrossobject_boundary. This refactoring moves the bodies
of theDrawLine() andDrawText() methods toaXWindow, while leaving a delegate
method in theVindow class (i.e., th&XWindow methods are accessed throughitap
instance variable (figure 14)).

5. Declare methotirawLine() andDrawText() in Windowlmpwith declare abstract_

method.

A WN PP
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WindowImp

Window imp

XWindow

XDrawLine(); 5

DrawRect() - -
DrawText()
DrawLine() . .|

A 4

DrawLine();
DrawLine();
DrawLine();
DrawLine();

Figure 13 Implementor instance variable added to Window.

WindowlImp
Window
DrawRect(}- - - | - - - - » LF
DrawText() - - 1 - - :im;:a o—
DrawLine()- - - | ) indow
<
DrawLine() -{--.

v ' o X
imp->DrawLine( % . : DrawText() .
,—_lz~ & .
imp->DrawText()} :
E XDrawLine();

imp->DrawLine();
imp->DrawLine();
imp->DrawLine();
imp->DrawLine();

Figure 14 Window system-specific methods moved to XWindow class.

6. Change the type of instance variabie from XWindow to Windowlmpusingsubsti-
tute (figure 10). This is possible becaugéndowlmp defines the interface that all its
subclasses, such Z8&Vindow, must implement.

The Bridge design pattern uses object composition to provide needed flexibility. Object
composition is also present in the Builder and Strategy design patterns. The trade-offs
between use of inheritance and object composition are discussed in Gamma et al. (1995,
pp. 18-20). Refactorings allow a designer to safely migrate from statically checkable designs
using inheritance to dynamically defined designs using object-composition.
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CircleFactory

createCircle()

1

: DrawStrategy

: ' draw()
Circle I

I N
draw() » Circle BoundsStrategy
bounds() draw() bounds()

1
. 1
radius | bounds()
I
| CircleImp
! [Greteny_]
I

CircleDecorator

Figure 15 Overenthusiastic use of design patterns.

3.2.3. Role of refactorings for design patternsGamma et al. note that a common design
pattern pitfall is overenthusiasm: “Patterns have costs (indirection, complexity) therefore
[one should] design to be as flexible as needed, not as flexible as possible.” The example
from (Gamma et al, 1996) is displayed in figure 15. Instead of creating a siGipk

class, an over-enthusiastic designer ad@gele factory with strategies for each method, a
bridge to aCircle implementation, and &ircle decorator. The design is likely to be more
complex and inefficient than what is actually required. The migration from a s@igite

class to the complex microarchitecture in figure 15 can be viewed as a transformation. This
transformation is in fact automatable with refactoridg#wus, instead of overdesigning, one

can start with a simpl€ircle class and add the Factory Method, Strategy, Bridge, and Dec-
orator design patterns as needed. Refactorings can restructure existing implementations to
make them more flexible, dynamic, and reusable, however, their ability to affect algorithms

is limited. Patterns such as Chain of Responsibility and Memento require that algorithms be
designed with knowledge about the patterns employed. These patterns are thus considered
fundamental to a software design because there is no refactoring enabled evolutionary path
which leads to their use. Refactorings allow a designer to focus on fundamental patterns
when creating a new software design. Patterns supported through refactorings can be added
on an if-needed basis to the current or future design at minimal cost.

3.3. Hot-spot analysis

The hot-spot-driven-approackPree, 1994) identifies which aspects of a framework are
likely to differ from application to application. These aspects are cditiespotsWhen

a data hot-spot is identified, abstract classes are introduced. When a functional hot-spot is
identified, extra methods and classes are introduced.

3.3.1. Data hot-spots. When instance variables between applications are likely to differ,
Pree prescribed the creation of abstract classes. Refactorings have repeatedly demonstrated
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TextDocument

Mailer
Folder
Mailbox

Figure 16 Initial state of mailing system.

the ability to create abstract classes (Opdyke and Johnson, 1993; Tokuda and Batory, 1995;
Roberts et al., 1997). As an example, Pree and Sikora provide a Mailing System case study
(Pree and Sikora, 1995). Figure 16 displays the initial state of its software design. In this
systemJolder cannot be nested, and orllgxtDocumentcan be mailed. Their suggested
design is displayed in figure 17. Under the improved dedigriders can be nested and

any subclass oDesktopltemcan be mailed. Refactorings can automate most of these

changes:

1. Create desktopltenclass usingreate_class(figure 18). Create an abstract method in
Desktopltenfor every public method ifiextDocumentusingdeclare abstract. method;
Desktopltemis to be the interface to all objects that can be mailed.

2. MakeDesktopltema superclass ofextDocumentusinginherit (figure 19).

3. Generalize the link betweedailer and TextDocumentto a link betweenMailer
andDesktopltemusingsubstitute (figure 20). Subclasses Bfesktopltemcan now be

mailed.

Mailer Desktopltem
Folder TextDocument
—(} Mailbox

Figure 17. Final state of mailing system.
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Desktopltem
Mailer TextDocument
Folder
—J Mailbox
Figure 18 Empty TextDocument class created.
Desktopltem
Mailer k>— TextDocument

Folder

1

L Mailbox

Figure 19 TextDocument inherits frorDesktopltem.

Mailer

{

Folder

1

Mailbox

Figure 20 Mailer dependency changed from TextDocumerDésktopltem.

-

Desktopltem

TextDocument
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Mailer DesktopItem
Folder TextDocument
Mailbox

Figure 21 Folder can contain anpesktopltem.

4. Generalize the link betwedrolder and TextDocumentto a link betweeriolder and
Desktopltemusing substitute (figure 21frolder can now contain anpesktopltem

5. This step cannot be automated: add methodBalder that implement the abstract
methods oDesktopltemSuch methods would include the procedures for maltiiger
objects, and would allowolder objects to be treated &esktopltemobjects.

6. MakeFolder a subclass obesktopltemusinginherit (figure 17). AFolder which can
contain éDesktopltemcan now contain anothé&older, and can now be mailed like any

otherDesktopltem.

With the improved desigresktopltemprovides a superclass for adding other types of
media to be mailed. While not all changes to the original design are automatable, most are.

3.3.2. Functional hot-spots. For the case of differing functionality, solutions based on
template and hook methods are prescribed to provide the needed behateonpkate
methodprovides the skeleton for a behavior. ook methods called by the template
method and can be tailored to provide different behaviors. Figure 22 is an example of a
template method and hook method defined in the same class. Different subclaBsas of
override hook method M2() which leads to differing functionality in template method M1()
(figure 23). Pree identifies seven meta patterns for template and hook methods: unification,

ML) "~ -
M2() - -

while (...)
M2();
do...

do special behavior

Figure 22 Template and hook methods in same class.
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T

MIQ "M

M2()

H

M2) -1 do special behavior

L:N recursive uniﬂcatioD

(l :1 recursive uniﬁcation)

( Unification
4 6

i
(l:l connection ) (l:l recursive connection) Cl :N recursive connectioD

Figure 24 Hot-spot meta pattern transitions enabled by refactorings.

1:1 connectionl : N connectionl : 1recursive connectigrl : Nrecursive connection, 1 :

1 recursive unification, antl: N recursive unification (Pree, 1994). Refactorings automate
the introduction of meta patterns into evolving designs. The transitions between patterns
enabled by refactorings are displayed in figure 26 examples, we demonstrate how the
first two transitions might be expressed using refactorings.

Inthe unification composition, both the template and hook methods are located inthe same
class (figure 22). The behavior of the template is changed by overriding the hook method
in a subclass (figure 23). A design with no template or hook methods can be transformed
to use the unification meta pattern (transition 1 in figure 24). To see how this is possible,
consider the class diagram in figure 25 with cladsaving method M1() which calls some
special behavior. A hook method can be added with refactorings in one step:

1. Create a hook method M2() which executes the special behaviorexiagt_code as.
method (figure 22).Extract _codeas method replaces a block of code with a call to a
newly created method which executes the block.

while (...)
Mi “"("" "W do special behavior
do ...

Figure 25 Method M1() calls a special behavior which differs for each application.
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T
while (...)
MI) "M M20)
M2() ---1t-- do ...
H oM do special behavior

Figure 26 Hook class created.

In the new microarchitecture, general behavior is contained in template mettiod
while special behavior is captured by hook metiiad) . To extend the design, subclasses
of T overrideM2() to provide alternative behaviors fiai (). The extended structure can
be added in three steps:

1. Create clashl usingcreate class

2. MakeT a superclass dfl using inherit (figure 26).

3. Move the implementation a¢f2() into H usingpush.down_method (figure 23). This
refactoring preserves the original interfacdobut introduces an abstract metha! )
that is overridden byA.

As a second example, we outline the transition from unification to 1 : 1 connection (tran-
sition 2 in figure 24). Consider the 1:1 connection meta pattern which stores the hook
method in an object owned by the template class (figure 27). Behavior can be changed at
run-time by assigning a hook object with a different behavior to the template class. 1:1
connection can be automated in three steps using the unification pattern (figure 22) as a
starting point.

1. Create clashl usingcreate class
2. Add an instance variabieef of typeH to T with add_variable (figure 28).
3. MoveM2() to classH usingmove.method_acrossobject boundary (figure 27).

MIO .- .. M2O .. .1--,

while (...)
ref->M2()
do ...

do special behavior

Figure 27. 1:1 connection.
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T :I‘Cf H
MIO ..o ..
M2 oo

. + - ¥ do special behavior
while (...)

M2()
do ...

Figure 28 Connection to H object created.

The behavior of template methaod () can now be altered dynamically by pointing to
different hook class objects with different implementation$12f€). Other transitions in
figure 24 have similar descriptions.

3.3.3. Role of refactorings in hot-spot analysisThe hot-spot-driven-approach provides a
comprehensive method for evolving designs to manage change in both data and functionality.
Pree notes that “the seven composition meta patterns repeatedly occur in frameworks.” Thus,
we expect an ongoing need to add meta patterns to evolving designs. The addition of meta
patterns is currently a manual process. Conditions are checked to ensure that a pattern can
be added safely, lines of affected source code are identified, changes are coded, the system is
tested to check for errors, any errors are fixed and the system is retested. Retesting continues
until the expected likelihood of an error is sufficiently low.

This section suggests that most meta patterns can be viewed as transformations from a
simpler design. Refactorings automate the transition between designs granting designers
the freedom to create simple frameworks and add patterns as needed when hot-spots are
identified.

4. Evolving applications.

We selected SEMATECH’s CIM Works and CMU’s Andrew User Interface System as
examples of evolving applications. They were chosen based on availability of source code
with a version history, size, and presence of design changes. The following features make
our study unique:

Replication of design evolution Designs were extracted from two versions of the same
application. The older design became the initial state and the newer design became the
target state. Our objective was to determine if a sequence of refactorings could be applied
to transform the initial state to the target state. By doing so, we would automate changes
that were performed manually by the original application designers. This correspondence
makes comparison of automation versus hand-coding valid and provides us with a key
indicator: how often refactorings could be used.
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Non-trivial applications. Transforming large applications tests refactoring scalability.
Ideas that are effective on small applications of fewer than one thousand lines of code may
ultimately fail for real world applications whose size can exceed one hundred thousand
lines.

Mainstream object-oriented language C++ was chosen as the target language for exper-
imentation. It is by far the most widespread object-oriented programming language for
practical reasons such as backward compatibility with C, portability, availability of third
party compilers and tools, legacy system compatibility, and availability of trained per-
sonnel. It was expected thattG-'s complexity might introduce problems which would
not appear in less popular object-oriented languages. A side benefit of this choice is that
most claims for G-+ can also be made for the increasingly popular Java programming
language.

4.1. Evolving CIM works

Computer Integrated Manufacturing (CIMBramework is an industry-wide initiative to
define a standardized object-oriented framework for writing semiconductor manufactur-
ing execution systems (Stewart, 1995). CIM works is a Windows application created to
demonstrate and test the SEMATECH CIM Framework specification (McGuire, 1997).

Major design changes in CIM Works occur between Version 2 and Version 4. The Version
2 design shown in figure 29 stores data and its graphical representation in the same object.
For example CEquipmentManager contains methods for adding and removing pieces
of equipment to be managed as well as methods for building a GUI menu. The Version
4 design shown in figure 30 separates data and graphics into two class hierarchies. This
separation gave Version 4 the freedom to create different views of the same data as with the
model-view-controller paradigm (Krasner and Pope, 1988).

Version 2 is approximately 11K lines of code. The transformation between designs is
accomplished in nine steps, each of which is realized by applying a sequence of primitive
refactorings:

CFWObject
CNamedEnt

CResource

|CCompIMgr| | CFactlory | ICMovelResl I CPIerson

ICEquipmentManagerl |CPersnMgr| | CMachine |

Figure 29 Version 2 design.
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CFWObject

NamedEnt

R
|ClcCon;ng| IClcFaclmry| ICIcMo\JeResl | CIc]I’erson | | Comp[IVIgr ’ I Fact(iry I l Movellfes | | Pérson I
: : ! i 5 [ F
|CIcEquipM| I(,‘IcPersnMgl ICIcMachincl ! EquipMgr I I PersonMgr I | Machine ]
I I I A

Figure 3Q Version 4 design.

CFWObject

|Cll:Cmang| IClcFacloryI ClcMoveRes

[ I I ]
i

m_objptr

lCIcEqnlpMI CIcPersnMg|  [ClcMachine

LEqulngr

IPersnnMng anchlne ]

m_objptr

T
m_c>}::jp|:x‘l
m_objpty

Figure 31 Connect GUI and data classes.

1. Rename the classes of the original hierarchy to the split hierarchy tesiage class
(The original classes retain the GUI aspects of objects, whereas their corresponding
“split” classes—created in Steps 2 and 4—encapsulate object data).

. Create the concrete data clasfestory, Person Equip-Manager, etc. usingcre-
ate class.

. Add m_objptr instance variables to the concrete GUI classes uathdjvariable.
m_objptr is of the corresponding data class type (figure 31).

. Create abstract data clasBesource CompManager, MovementResourceetc. using
create class.

. Establish inheritance relationships between the abstract data classes and the concrete
data classes usirigherit (figure 32).

. Move non-GUI instance variables and methods from the GUI classes to the data classes
using move.variable_acrossobject boundary and move-methodacrossobject.
boundary. Data is accessed through thebjptr instance variables (figure 33).

. Move common instance variables and method declarations up the data class hierachy
usingpull _up_variable anddeclare abstract method (figure 34).

. Change the type af objptr from a structure to a pointer usistructure_to_pointer.
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CFWObject
A

NamedEnt

|
|ClcComng|

CIcFactory | |ClcMoveRes |Clcl’erson |Cnmngrl l Factory | | MoveRes | Person |
?m_objptrl ? I"A—I l !
l.l.\ T T T
m_obiptr I ! ]
|ClcEquile ClcPcrsnMgl ClcMachine| [E]mngrI PersanMgr] Machine
m_objptr L T
- m_objptr!

m_cobiptr

Figure 32 Create abstract data class hierarchy.

CIcPerson

shift
dept
GetShift()

GetDept() »

2 Person
&
5 shift
g dept
GetShift()
GetDept()

Figure 33 Instance variables and methods moved to data classes.

ComponentMgr

ComponentMgr

status

# IsStopped()
l IsStarting()

EquipmentMgr] | PersonMgr ! ’_L_'
status status : EquipmentMgr| | PersonMgr
IsStopped() IsStopped() | IsStopped( IsStopped()
IsStartin IsStartin ! 3
ing0 Y , IsStarting() IsStarting()

Figure 34 Instance variables and method declarations moved to abstract classes.
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9. Declare the reference between GUI objects and data objects in the abstract classes.
References to data objects are made abstract (figure 30).

These steps were executed by 81 refactorings, resulting in a total of 486 lines of CIM
Works source being modified.

4.2. Evolving the andrew user interface system

The Andrew User Interface SysteAUIS) from CMU is an integrated set of tools that
allow users to create, use, and mail documents and applications containing typographically-
formatted text and embedded objects (Morris et al., 1986). The two versions under study
were Version 6.3 written in C and Version 8.0 converted 4e4€ Version 6.3 stores actions

as function pointers while Version 8.0 supports and recommends creation of a separate
subclass for each action (similar to the Command design paftédnpr ninety classes
using almost 800 actions are affected. The transformation is accomplished in five steps.

. Convert Version 6.3 C structures terG- classes usingtructure _to_class(figure 35).

. Create thdTK andCommand abstract classes usicgeate class

. Establish the inheritance relationships betw&€K and other classes usimgherit.

. Derive command classes for each action upimgedure_to_command Figure 36 dis-
plays the result of transformirRl ayKbdMacro() into aCommandsubclass. The newly
createdPlayKbdMacroCmd contains arExecute() method which calllayKbd-
Macro(). It also contains adnstance() method which returns a unique instance of
the class. Usingnstance() instead ofew to create objects guarantees that a pointer
to aPlayKbdMacroCmd object is unique.

5. Convert procedure pointers to commands ugirggedure_ptr to_command In this

step, the data types for structures using procedure pointers are convertedCtonuse

mand pointers, procedure calls are converted toRisg-ute () methods, and procedure
assignments are converted to Gaetance() methods. Figure 37 displays the transfor-

mation of thebind _Description structure. Theroc instance variable is converted to a

Command pointer.

A WN PP

Observable

[ Path | [ View |

(m ]

Figure 35  Structures converted to classes.
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Command
Execute()

-----p----- %——>

PlayKbdMacroCmd

Execute(...) --4
Instance() ,

|
! [
! 1
! |
! I
¥ I

Instance() {
return unique_instance; }

|
Execute(ATK *s, ...) { !
PlayKbdMacro(s, ...); } 4

Figure 36 Software microarchitecture for Im and Command classes.

bind_Description : bind_Description
procName : procName

doc # doc

void (*proc)(); ! Command *proc;

Figure 37 Convert procedure pointer to Command pointer.

All steps were executed with approximately 800 refactorings resulting in 14K lines of
code changes.

5. Introspection and lessons learned

Our experiments provided a tremendous learning experience in evaluating refactoring tech-
nologies. In the following sections, we present some of the more important lessons that
we learned on refactoring benefits, limitations, and research problems that must be solved
for refactoring technology to succeed. Further discussion is given in Tokuda and Batary

(1999).

5.1. Refactoring benefits

Automating design changesThe most important result of our research is to establish that
refactorings can automate significant design changes involving thousands of lines of code
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in real world application. It is of interest to compare the effort required to perform these
changes manually versus the effort when aided by refactorilgsstimate that the CIM
Works changes would take us two days to implement and debug by hand versus two hours
when aided by refactorings. We estimate that the AUIS changes would require two weeks
to implement and debug by hand versus one day when aided by refactorings.

Reduced testing. A good refactoring implementation can reduce the effort required to
test new designs. When refactorings preserve behavior, only hand coded changes need to
be tested.

Simpler designs.Refactorings reduce the need for overly complex designs. Gamma
et al. note that a common design pattern pitfall is over-enthusiasm: “Patterns have costs
(indirection, complexity) therefore [one should] design to be as flexible as needed, not
as flexible as possible”. Designs which attempt to anticipate too many future extensions
may also be more error prone with less static type checkiRgfactorings are capable of
extending designs in multiple ways. They encourage designers to create lean designs for the
task at hand and to extend those designs with refactorings as new capabilities are needed.

Validation assistance.Enabling condition checks can detect conflicts between a code
level implementation and a desired design change. For example, a programmer may decide
to move an instance variable from a base class to a derived class without realizing that
objects of the base class access the instance variable being moved. Enabling condition
checks will detect this error. Refactorings are capable of detecting errors resulting from a
long series of changes which would be costly to perform and undo manually.

Ease of exploration.Refactorings allow designers to experiment with new designs.
While schema evolutions and design patterns are manually coded into applications today,
it is clear that automating their introduction will allow designers to explore more easily a
design space without major commitments in coding and debugging time.

5.2. Refactoring limitations

Experiments with large applications revealed limitations which were not issues in previous
work on small proof-of-concept programs. We discuss our most important observations to
alert future researchers to the problems that they will face.

Preprocessor DirectivesOur C++ program transformation tool cannot deal with pre-
processor directives because preprocessor directives are not part eftheguage. The
programs in our experiments were preprocessed before being transformed and at that point,
preprocessor information could no longer be recovered. While we believe that workarounds
are possible for the majority of the cases, it is generally not possible to handle all problems
that arise in large software applications.

Conservative enabling conditionsRefactorings have been found to be useful even when
predicated on conservative enabling conditions. For examplankiegit transformation
is conservatively limited to single inheritance systems by Opdyke’s first invariant. While
support for multiple inheritance systems is possible, it was not necessary for transforming
the applications described in this paper or for adding numerous design patterns and hot-spot
meta patterns (Tokuda and Batory, 1999).
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Automated verification of enabling conditions.Most but not all enabling conditions
can be verified automatically. For theherit refactoring, the first five conditions can be
checked automatically (figure 1).

Opdyke identifies a condition which cannot be verified automatically: program behavior
must not be dependent on the size or layout of objects (Opdyke, 1992). Size and layout were
not issues with the two programs transformed in this paper or other programs transformed
in (ToKuda and Batory, 1995; Rober et al., 1997), however, users of refactorings must be
aware of this limitation.

Behavior preservation.Our experiments revealed that preservation of Opdyke’s invari-
ants was not sufficient to guarantee preservation of behavior. Three additional invariants
required for G-+ are:

1. Implementation of pure-virtual functions. If a class is concrete (and thus can be
instantiated), it can not have pure-virtual functions.

2. Maintaining aggregate objects.If a program depends on the aggregate property of an
object, then that property must be preser¥ed.

3. No instantiation side-effects.If a refactoring can change the frequency or order in
which classes are instantiated, then the constructor cannot have any side-effects beyond
initializing the object created.

In light of this discovery, we recognize that refactorings are behavior-preserving due to
good engineering and not because of any mathematical guarantee. It is the responsibility of
the refactoring designer to identify all enabling conditions necessary to ensure that behavior
is preserved. This important issue is explored further in Tokuda (1999).

5.3. Future research

Our work focused on the practicality of applying primitive refactorings to evolving object-
oriented applications. Beyond implementation of required functionality, we identify three
issues which require further research.

Validation. How do we know a refactored program is correct? How do we know any pro-
gram is correct? This is a hard problem in any circumstance. Lacking proofs of correctness
and proofs of behavior preservation, we expect refactoring tools to be like compilers today:
over time, we will learn to trust that the tool makes the correct transformations—until we
have clearly reproducable bugs that tell us otherwise. As languages become simpler (see
Section 5.4), there is hope that more progress can be made.

Granularity of transformations. The refactorings developed for this research were in-
tended to be primitive and composable to perform more complex refactorings. We did not
attempt to minimize the number of refactorings required. In the CIM Works example, the
number of refactorings was large (81) although the conceptual number of transformation
steps was small (8). One way to reduce the number of refactorings would be to provide
larger grain refactorings. In the CIM Works example, the number of refactorings would be
significantly reduced if refactorings to move multiple variables and methods were available.
Similarly for the Andrew example, most of the 800 transformations take place in Step 4—
converting action procedures@mmandsubclasses. A larger grain transformation which
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converted a list of procedures @mmand’s could execute Step 4 in a single transforma-

tion. This would reduce the total number of transformation to fewer than twenty. It is
important to note that the near term goal of our research has been to develop a basis set of
primitive refactorings. Larger grain refactorings up to the size of design patterns may be
more convenient in practice.

Transactional refactorings. A related issue is the notion of what we will call transac-
tional refactorings. Aransactional refactoringcan be decomposed into a composition of
primitive transformations that themselves may not be behavior preserving, but the net ef-
fect of the transactional refactorimgbehavior preserving. Thdelegatemethod across
object.boundary refactoring is an example. Conceptually, it is equivalent tmave
method_acrossobject. boundary (which removes the method entirely from its original
class), followed by @reate.method_acessorwhich reintroduces the method to the origi-
nal class and delegates its execution to the moved method). Individually, these refactorings
cannot be applied in sequence. If clients of the original class reference the target method, the
enabling conditions of thenove method refactoring will prevent the method from being
moved. Only if we consider the net result of both refactorings do we see that the resultant
refactoring is correct.

We dealt with such situations by creatingw refactorings, such agelegatemethod.
However, a better approach will be to define primitive refactorings and to define a series of
these refactorings as an atomic rewrite.

Program families. Transformation systems must recognize that many files may be in-
cluded by multiple programs. When transforming a file used by more than one program,
it is desirable for the transformation system to check enabling conditions for all programs
in which use that file. Otherwise, a file might be transformed safely for one program while
causing another program which uses the same file to break. The situation is further compli-
cated for G-+ by conditional complication flags which imply that different preprocessed
versions of a single file should be considered when checking if a transformation can be
performed safely.

Integration with other tools. Refactorings packaged as individual executables are not
dependent on the presence of other tools. In this form, they can be integrated into most
mainstream development environments because most environments support command-line
access to source code.

Higher levels of integration are still possible. We envision integration with an object-
oriented modeling tool such as Rational R@%avhich would allow many refactorings
to be invoked as operations on a UML diagram. Integration with a source code control
system could allow appropriate files to be checked out, transformed, and checked back in
with comments describing the refactorings. Attempts to transform protected files would
block the refactoring and notify the user. Integration with an IDE such as Microsoft Visual
C++"™ would allow transformed code to be displayed immediately in open windows.

5.4. Implications for Java

Java inherits all of §-+'s refactoring benefits while avoiding many of its limitations. First,
it has no preprocessor which removes a major barrier to a successfuli@plementation.
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Second, it does not use makefiles which simplifies the process of piecing together the source
files to be transformed. Third, code placementis simplified since methods are stored in a file
belonging to the class. Java has no free-floating procedures as with hybrid object-oriented
languages such asiG-. For these reasons coupled with its growing popularity as an internet
language, we believe that Java is the best vehicle for transferring refactoring technology
to the mainstreart Tools are now being developed to aid in this process (Simonyi, 1995;
Baxter and Pidgeon, 1997; Batory et al., 1998).

6. Related work

Griswold developed behavior-preserving transformations for structured programs written
in Scheme (Griswold, 1991). The goal of this system was to assist in the restructuring
of functionally decomposed software. Software architectures developed using the classic
structured software design methodology (Yourdon and Constantine, 1979) are difficult to
restructure because nodes of the structure chart which define the program pass both data
and control information. The presence of control information makes it difficult to relocate
subtrees of the structure chart. As a result, most transformations are limited to the level of
a function or a block of code.

Object-oriented software designs offer greater possibilities for restructuring. Bergstein
defined a small set of object-preserving class transformations which can be applied to
class diagrams (Johnson and Foote, 1988). Lieberherr implemented these transformations
in the Demeter object-oriented software environment (Lieberherr et al., 1991). Example
transformations are deleting useless subclasses and moving instance variables between a
superclass and a subclass.

Opdyke coined the termefactoringto describe a behavior-preserving program trans-
formation for restructuring object-oriented software systems. Refactorings were inspired
by the schema evolutions of Banerjee and Kim (1987), the design principles of Johnson
and Foote (1988) and the design history of the UIUC Choices operating system (Maydany
et al., 1989). An example application of refactorings is the creation of an abstract super-
class (Opdyke, 1992). Refactorings are implemented fes-GTokuda and Batory, 1995;
Scherlis, 1998; Schulz et al., 1998; Tokuda and Batory, 1999) and for Smalltalk (Roberts
etal., 1997). Roberts offers Smalltalk-specific design criteria for a program transformation
tool (Roberts et al., 1997). One criteria which also applies+tetCsoftware is that users
should be allowed to name new entities introduced through transformations.

Refactorings are shown to automate the addition of design patterns to object-oriented
software systems (Tokuda and Batory, 1995; Roberts et al., 1997; Scherlis, 1998; Schulz
et al., 1998; Tokuda and Batory, 1999). Refactorings also support the addition of Pree’s
(Pree, 1994) hot-spot meta patterns (Tokuda and Batory, 1999).

7. Conclusion

There are regular patterns by which designs of object-oriented applications evolve: schema
transformations, design pattern microarchitectures, and the hot-spot-driven-approach. Many
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evolutionary changes can be viewed as program transformations which are automatable with

object-oriented refactorings. Refactorings are superior to hand-coding because they check

enabling conditions to ensure that a change can be made safely, identify all lines of source

code affected by a change, and perform all edits. Refactorings allow design evolution to

occur at the level of a class diagram and leave the code-level details to automation.
Designs should evolve on an if-needed basis:

e “Complex systems that work evolved from simple systems that worked."—Booch
e “Start stupid and evolve."—Beck

The ultimate goal of our research is to provide a mainstream tool that makes editing class
diagrams as easy as editing user interfaces with a GUI editor. This paper has taken three
important steps towards this goal:

e First, we implemented a set of refactorings that can automate a suite of schema transfor-
mations, design patterns, and hot-spot meta patterns. They can reduce or eliminate the
need to identify lines of affected source, to execute changes manually, and to test those
changes.

e Second, we showed that refactorings can scale and be useful on large, real-world appli-
cations. We were able to automate thousands of lines of changes with a general-purpose
set of refactorings.

e Third, while our experiments clearly showed the benefits that could result from a refac-
toring tool, they also revealed the limitations and research problems that remain to be
addressed before refactoring technology can be transitioned beyond academic prototypes.

Given the success of our experiments and the difficulty in managing @Greprocessor
information, Java should be the next target language, as we believe that it holds the greatest
promise for transferring refactoring technology to the mainstream.
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Notes

1. We use a limited definition of the terdesignreferring to the aspect of design reflected in the extended class
diagram notation from Gamma et al. (1995).

2. The seven refactorings which are not supported are: changing the value of a class variable, changing the code
of amethod, changing the default value of an instance variable, changing the inheritance parent of an instance
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variable, changing the inheritance of a method, adding a method, and changing the order of superclasses. The
first three refactorings are not behavior-preserving. The next two are not supported by mainstream object-
oriented programming languages. The sixth (adding a method) cannot be automated. The seventh (changing
the order of superclasses) is not supported because this research focusses on applications without multiple
inheritance.

. A Circle factory is created (Tokuda and Batory, 1995). Strategies are added (Section 3.2). The Bridge pattern

is applied (Section 3.2.2). Finally, a decorator is added (Section 3.2).

. We consider the 1: N connection composition to be fundamental to a design. For this pattern, a template object

is linked to a collection of hook objects. This implies that the template method has knowledge about how to
use multiple hook methods and thus cannot be derived frem thlconnection composition in which the
template method is coded for a single hook method.

. Inthis step, the generalization is made tha€atlon objects point to &esourceobject through the_objptr

instance variable. This requires that casts to the appropriate data class are made whenever data object instance
variables are referenced through GUI objects. For example:

CIcPerson *p = new CIcPerson;

p—>person_ptr->f name = "John";
is transformed to:

CIcPerson p;

((Person *) p->m_objptr)->f name = "John";

It is unclear if this was the correct design decision since the GUI classes are specific to a single data class.
This step was not automated although it would be possible to do so.

. The Command design pattern objectifies an action. The action is triggered by calingarte () method

implemented in each derived class (Gamma et al., 1995).

. This number is large because AUIS used 800 actions implemented as procedures and the conversion of a

procedure to a command required a transformation. More refactorings did not imply more complexity. We
found itwas easier to choose the refactorings for AUIS than for CIM Works because conceptually, the evolution
of AUIS’s design required only five steps.

. Many design patterns use runtime composition versus inheritance as an extension mechanism (Gamma et al.,

1995). The dynamic nature of composition precludes static typechecking.

. Inherit destroys this property since aggregates cannot have supervlasses.
10.

When we began our work, tool support and availability of large Java files were nonexistent. This is no longer
true today.
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