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Overview

Many organisms coordinate their group behavior in time. On a short timescale, group vocalizations,
movements or visual displays can exhibit temporal interdependence. Synchronous behavior has
received significantly more attention than all other forms of animal coordination. Antisynchrony
(i.e., perfect alternation) is produced in nature, but only recently perceptual biases toward
antisynchrony were independently found in human infants and fiddler crabs. Here, these unrelated
experiments are linked and inserted into a broader quantitative framework. Future comparative
research should encompass perception of other forms of coordination across species and
explanatory levels, toward an integrative neuro-evolutionary framework of temporal coordination.

Synchrony: One among Many Forms of Temporal Interaction

Synchrony, when two or more events take place at exactly the same time, is the most ordered
form of temporal coordination (Figures 1A–D, top row). Crickets chorus in synchrony, fireflies
flash likewise, all with millisecond accuracy (Buck and Buck, 1968; Buck, 1988; Sismondo, 1990;
Hartbauer and Römer, 2014). Synchrony does not entail individual intentions to coordinate
but often arises as an epiphenomenal by-product of selfish behavior (Greenfield and Roizen,
1993): Individuals want to be noticed. The ecological, behavioral, and neural bases underpinning
synchronous behavior have been intensively explored and are increasingly understood (Greenfield
et al., 1997; Hartbauer et al., 2005; Fitch, 2015; Iversen et al., 2015).

Yet, synchronous behavior is only one solution to well-coordinated interactions. Many degrees
of coordination separate synchrony, like an orchestra in unison, from independent behavior, like
several musicians each rehearsing alone (Strogatz and Stewart, 1993; McNeill, 1997). However,
perception of all forms of non-synchronous coordination remains mostly unexplored.

Perceptual Biases: What Catches the Eye?

In general, animals show perceptual biases toward particular physical patterns. Here, bias means a
predilection of a species’ sensory system for particular features, which are perceptually conspicuous
to the species. Signallers draw receivers’ attention by sending signals; often these signals simply
exploit receivers’ perceptual biases, rather than advertise good genes and fitness of the signallers
(Ryan, 1998). For instance, several animals exhibit colorful fur or plumage, and simultaneously
their visual perception is driven toward bright colors. In several animal species, a bias toward
red/yellow colors was useful for e.g., finding ripe fruits and was likely also co-opted as a mate
selection device.
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FIGURE 1 | Synthetic representation of synchronous (top row) and antisynchronous (bottom row) coordinated behaviors. Male robotic fiddler crabs wave

their larger claw in (A) synchrony or (E) antisynchrony (Kahn et al., 2014). Similarly, two human adults, one holding an infant, move up, and down to music in (B)

synchrony, as if each was dancing with her own mirror image or (F) antisynchrony, so that one bends her knees while the other stands straight, and vice-versa (Cirelli

et al., 2014). Physical oscillators, like pendulums, can resonate at the same frequency; in addition, (C) their phase delay can be 0, making them synchronous, or (G)

half of the oscillatory period, namely π, corresponding to antisynchrony (Strogatz and Stewart, 1993). Events happening in time can be represented graphically by

plotting the displacement x–be it the movement of a human leg, a crab’s claw or a pendulum–over time t. Plotting time series in this way makes periodic phenomena

readily recognizable by their regularly repeating oscillations. In particular, (D) synchronous phenomena produce similar sinusoidal waves which can be graphically

overlapped, while (H) antisynchronous phenomena also produce similar waves, which can however only be overlapped by (phase) shifting one of the sinusoids over

time (leftwards or rightwards). Key findings and research efforts to date have been focusing on one particular coordination mode: synchrony (Buck and Buck, 1968;

Tuttle and Ryan, 1982; Winfree, 1986; Ermentrout, 1991; Grafe, 1999; Patel et al., 2009; Hasegawa et al., 2011; Merchant et al., 2011; Hattori et al., 2013; Aihara

et al., 2014; Fuhrmann et al., 2014; Gamba et al., 2014; Ravignani, 2014; Ravignani et al., 2014a,b; Large and Gray, 2015; Yu and Tomonaga, 2015). However,

synchronous behavior is only one outcome of coordinated interactions (Morris et al., 1978; Haimoff, 1986; Grafe, 1999; Bermejo and Omedes, 2000; Yosida and

Okanoya, 2005; Mann et al., 2006; Brumm and Slater, 2007; Yosida et al., 2007; Hall, 2009; Ravignani et al., 2013; Aihara et al., 2014; ten Cate, 2014; Hattori et al.,

2015); for instance, several species show antiphonal (constant lag) coordination (Sismondo, 1990; Yosida and Okanoya, 2005; Mann et al., 2006; Yosida et al., 2007;

Inoue et al., 2013).

A similar logic can be applied, possibly for the first
time, to perception of group coordination in the temporal
domain1. Which sensory biases drive animals toward rhythmic
coordination beyond synchrony? Convergent results from child
development, animal behavior, and dynamical systems suggest
antisynchrony may provide a first answer (Figures 1E–H).
Antisynchrony is the closest alternative to synchrony in physical
terms (Figures 1C–G). Perceptually, antisynchrony consists in
perfect alternation, as in a walking march. In other words,
a constant time period separates pairs of antisynchronous
movements. Two new experiments in unrelated disciplines
simultaneously show that organisms are driven toward the same
temporal coordination pattern. Both human infants and crabs
exhibit, among others, a perceptual bias toward antisynchrony.

Crabs are Driven toward Antisynchrony

Male fiddler crabs (Uca mjoebergi) have one claw larger than the
other, which they wave to attract females (Backwell et al., 1998).
Each crab finely times its movements depending on the female

1This hypothesis of a bias toward the outcome of a group behavior differs from
a simple precedence-effect bias toward one individual suggested elsewhere (cf.
Reaney et al., 2008; Kahn et al., 2014).

audience and male competitors. Male fiddler crabs often end up
waving in synchrony (Figure 1A; Backwell et al., 1998).

Ingenious methodologies and carefully designed experiments
have elucidated why temporal interdependence should arise
when individual males compete to be noticed by females. Robotic
replicas of male crabs were programmed to simulate a number
of temporal coordination scenarios, waving in synchrony,
antisynchrony, etc. Actual crab females were then tested on their
willingness to approach individual robotic crabs, or group of
crabs, in different coordination patterns (Reaney et al., 2008).
Since individual timing influences perceived attractiveness,
females’ choices reveal female perceptual biases and preferences
for particular temporal patterns. When presented with two
groups of male crabs, one waving in synchrony, the other in
antisynchrony, females were equally likely to choose between the
two groups (Reaney et al., 2008). Female crabs were also tested
on their willingness to approach individual robotic crabs within
a male group. Crucially, the crab waving in antisynchrony with
the rest of the group (Figure 1E) was one of the favorite among
different timing coordination conditions (Kahn et al., 2014).

Movement alternation granted by antisynchrony might
be particularly effective to obtain females’ attention.
Antisynchrony—a previously neglected mode of coordination—
was finally shown to be as conspicuous as synchrony in a
non-human animal.
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Antisynchrony Triggers Prosociality in
Human Infants

Research on human evolution and behavior has profited in
the last decades from integration of ethology and human
developmental studies (Fitch, 2015; Trainor, 2015). Studying
behavioral traits in culturally-naïve infants, and comparing them
with similar behaviors in other species, niches and environments,
can shed light on human evolution (Hagen and Hammerstein,
2009; Trainor, 2015). It is hence fortunate that cognitive
neuroscientists, mutually unbeknown to animal behavior
researchers, have also just found biases for antisynchrony in
human infants. Temporal movement coordination in human
adults has a well-known social role (Cirelli et al., 2014),
and temporal coordination and sociality have been usually
investigated during synchronous interactions. In particular,
perceptual and attentional biases toward movement synchrony
are present in humans, and synchronous interactions increase
prosocial behaviors, such as cooperation, social cohesion, etc
(Hove and Risen, 2009; Miles et al., 2009; Wiltermuth and Heath,
2009; Kirschner and Tomasello, 2010; Manson et al., 2013; Cirelli
et al., 2014). When adults are asked to tap together, they soon fall
into synchrony or antisynchrony (Knoblich et al., 2011).

Recent experiments in human infants started clarifying the
developmental pathways of perceptual biases for coordination,
adding antisynchrony to the repertoire. 14-month-old infants
were held by an experimenter and exposed to different
interpersonal coordination scenarios. In some of those, the
experimenter would move the infant up and down in synchrony
(Figure 1B), antisynchrony (Figure 1F) or asynchrony (i.e.,
random timing) with another adult moving to music. After being
bobbed in synchrony and antisynchrony with an adult, infants
were more prosocial than after asynchronous movements (Cirelli
et al., 2014). In particular, infants exhibited more spontaneous,
but not delayed, helping behavior: synchrony and antisynchrony
affected early stages of infants’ sensory perception, but ceased
to influence social behavior as soon as infants exchanged gaze
or vocalizations with an adult. This suggests that Cirelli et al.’s
experimental setup (i) tapped into early, possibly evolutionary
ancient neuroethological traits (Trainor, 2015) dating to our
last common ancestor with great apes, or earlier (Fitch, 2009;
Giacoma et al., 2010; Hagmann and Cook, 2010; Dunbar, 2012;
Gamba et al., 2014; Dufour et al., 2015; Large and Gray,
2015; Yu and Tomonaga, 2015), hence their results could help
uncover the phylogenetic bases of rhythm; (ii) engaged human
participants’ subcortical brain structures [such as basal ganglia,
usually involved in perception of rhythmic patterns (Grahn and
Brett, 2007; Kotz and Schmidt-Kassow, 2015)], again suggesting
that preferences for (anti)synchrony are likely to be found in
other animals due to common ancestry.

Human Temporal Coordination: Evolution
and Functions

In human evolutionary history, refined temporal coordination
and perception abilities might predate the origins of music and
speech (Bryant, 2014; Ravignani et al., 2014c). Finely coordinated

dance and music might have initially arisen as a social device,
possibly as a signal of group cohesion (Merker, 2000; Hagen and
Bryant, 2003; Merker et al., 2009; Dunbar, 2012). Now, every
signaling system relies on a perceptual repertoire, which can be
exploited for communication: biases toward particular temporal
coordination patterns, like synchrony and antisynchrony, could
have offered such fertile perceptual substrate for a joint group
signaling system. The hypothesis that (anti)synchrony mediated
group coordination and music origins is supported by another
“evolutionary leftover” found in the auditory domain. Modern
humans prefer syncopated music (Fitch and Rosenfeld, 2007;
Keller and Schubert, 2011), which also provides a sense of
groove (urge to move rhythmically, Janata et al., 2012). Crucially,
syncopated rhythms in music often correspond to musical notes
in antisynchrony with the underlying beat.

A Common Perceptual Bias for
Antisynchrony?

Infants and fiddler crabs are driven toward the same form
of mild asynchrony. A basic perceptual bias for a simple
coordination mode—antisynchrony—might have been a
precursor for behaviors as different as prosociality and mate
selection. (This would be analogous to a single physical trait
exapted by two species for different usages, e.g., humans walk
on legs, harbor seals swim with hind-flippers, and both limb
types evolved from the back legs of our quadruped ancestor).
Why would specifically antisynchrony be exapted, and not other
coordination modes? Antisynchronous movements reunite two
conditions: they follow periods of no waving and, by definition,
are uncluttered by other synchronous movements (Kahn et al.,
2014).

Once this qualitative argument is formulated mathematically,
it can be generalized to any number of oscillators and equals
the problem of evenly spacing interdependent onsets over
time. Antisynchrony is its natural solution for two signallers.
Among all possible phase relationships between oscillators,
antisynchronous movements are minimally cluttered by others
and occupy the sweet spot in time where no other animal has
signaled, or will signal, for a whole half period (i.e., their onsets
are evenly distributed and spaced in time, Figure 1H).

Neural Mechanisms Underlying Signal
Production, Perception, and Biases need
not Coincide

The neural mechanisms for performing and perceiving
coordinated movements in humans and crabs are likely to
differ (Hulse et al., 1984; Hulse and Kline, 1993; Harley et al.,
2002; Hagmann and Cook, 2010; Hasegawa et al., 2011; Sztarker
and Tomsic, 2011). Perception and production of rhythmic
patterns seem to correlate with vocal learning across species
(Patel, 2006, 2008; Patel et al., 2009; Schachner, 2010). Auditory
and motor planning regions of the human cortex are linked
more strongly than in many other species via dorsal auditory
pathway connections (Patel and Iversen, 2014). This would
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explain the extreme flexibility some vocal learning mammals
have in imitating new sounds by readily mapping perceived
vocalizations into orofacial movements.

The neural bases of processing rhythmic information in crabs
should be close to other arthropods. Common ancestry would
suggest that crabs, like crickets or fireflies, use an ‘inflexible’
phase-resettingmechanism to time their movements (like turning
a metronome off and on again). However, crabs appear more
flexible than their insect relatives, decreasing the wave duration
and between-wave pause the closer a female crab approaches
(How et al., 2008). This offers initial support for the hypothesis
that crabs might have a human-like frequency modulation
mechanism (speeding up or slowing down, like a DJmixing songs
with different tempos). This hypothesis can be tested in fiddler
crabs by varying the stimulus rate and adapting a suite of well-
developed experimental paradigms (Repp, 2005; Repp and Su,
2013).

Several animals show antiphonal interactions (Ravignani
et al., 2014b), which at least in a frog species (Hyla japonica)
seem to reach the perfect alternation of antisynchronous
calling (Aihara et al., 2014). However, group production of
antisynchronous signals does not imply its perception. In turn,
perceptual biases for a coordination pattern can only, although
need not, emerge if a particular species already perceives that
pattern.

Future Experiments Across Species:
Dynamical Systems as Roadmap to Test
the Neuropsychology and Genetics of
Perceived Coordination

Perceptual antisynchrony is the first step to uncover the
perception of coordination patterns across species. While
systematic classification of interdependent temporal signaling
in the animal kingdom is ongoing (Ravignani et al.,
2014b), no common measure of (perceived) coordination
complexity exists yet. Such measure would allow ranking
different coordination patterns (synchrony, randomness, non-
synchronous interdependence, etc.) along a neurobiological,
perceptual dimension. The species tested until now seem to
prefer synchrony, antisynchrony or both. Similarly, oscillators
in synchrony and antisynchrony, although corresponding to the
seemingly opposite phenomena of unison and alternation, are
extremely close to each other in physical terms (Figures 1C,G).
Physical measures of coordination complexity, as in dynamical

systems (Winfree, 1986; Strogatz and Stewart, 1993; Strogatz,
2000; Large, 2008), might provide a valuable first approximation
to perceived coordination.

Future behavioral research should test perception of different
coordination patterns across species. Building on behavioral
results, the long term goal will be to uncover the neuro-
(epi)genetics (Lachmann and Jablonka, 1996; Petkov and Jarvis,
2012; Bronfman et al., 2014; Wilkins et al., 2014; Jablonka
and Lamb, 2015) of temporal coordination. Recent evidence
from musicians provides a first molecular and genetic link
between joint coordinated actions and its perception, possibly
transcending individual species. Researchers studied the genes
transcribed after music performance (Kanduri et al., 2015a) and
listening (Kanduri et al., 2015b), finding striking similarities with
genes involved in song perception and production in songbirds.
This suggests that some ancestral biological processes related to
auditory-motor behavior, now crucial for song and speech, were
preserved during 300 million years of independent evolutionary
history (Kanduri et al., 2015a).2 Comparative research will enable
mapping phylogenetic relations between species to the physical
space of coordination patterns they perceive, hence unraveling
the evolutionary history of those traits by homology or analogy
(Tinbergen, 1963; Calvin, 1983; Ravignani et al., 2014a,b; Faunes
et al., 2015).
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