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Abstract

Background: For some SARS-CoV-2 survivors, recovery from the acute phase of the infection has been grueling
with lingering effects. Many of the symptoms characterized as the post-acute sequelae of COVID-19 (PASC) could
have multiple causes or are similarly seen in non-COVID patients. Accurate identification of PASC phenotypes will
be important to guide future research and help the healthcare system focus its efforts and resources on adequately
controlled age- and gender-specific sequelae of a COVID-19 infection.

Methods: In this retrospective electronic health record (EHR) cohort study, we applied a computational framework
for knowledge discovery from clinical data, MLHO, to identify phenotypes that positively associate with a past
positive reverse transcription-polymerase chain reaction (RT-PCR) test for COVID-19. We evaluated the post-test
phenotypes in two temporal windows at 3–6 and 6–9 months after the test and by age and gender. Data from
longitudinal diagnosis records stored in EHRs from Mass General Brigham in the Boston Metropolitan Area was
used for the analyses. Statistical analyses were performed on data from March 2020 to June 2021. Study participants
included over 96 thousand patients who had tested positive or negative for COVID-19 and were not hospitalized.

Results: We identified 33 phenotypes among different age/gender cohorts or time windows that were positively
associated with past SARS-CoV-2 infection. All identified phenotypes were newly recorded in patients’ medical records
2 months or longer after a COVID-19 RT-PCR test in non-hospitalized patients regardless of the test result. Among
these phenotypes, a new diagnosis record for anosmia and dysgeusia (OR 2.60, 95% CI [1.94–3.46]), alopecia (OR 3.09,
95% CI [2.53–3.76]), chest pain (OR 1.27, 95% CI [1.09–1.48]), chronic fatigue syndrome (OR 2.60, 95% CI [1.22–2.10]),
shortness of breath (OR 1.41, 95% CI [1.22–1.64]), pneumonia (OR 1.66, 95% CI [1.28–2.16]), and type 2 diabetes mellitus
(OR 1.41, 95% CI [1.22–1.64]) is one of the most significant indicators of a past COVID-19 infection. Additionally, more
new phenotypes were found with increased confidence among the cohorts who were younger than 65.

Conclusions: The findings of this study confirm many of the post-COVID-19 symptoms and suggest that a variety of
new diagnoses, including new diabetes mellitus and neurological disorder diagnoses, are more common among those
with a history of COVID-19 than those without the infection. Additionally, more than 63% of PASC phenotypes were
observed in patients under 65 years of age, pointing out the importance of vaccination to minimize the risk of
debilitating post-acute sequelae of COVID-19 among younger adults.
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Background
The onslaught of the COVID-19 pandemic in the USA

and around the world was relentless. For many, recovery

from the acute phase of the SARS-CoV-2 infection, the

coronavirus that causes COVID-19, may be grueling with

a debilitating second act. A collection of persistent phys-

ical (e.g., fatigue, dyspnea, chest pain, cough), psycho-

logical (e.g., anxiety, depression, post-traumatic stress

disorder), and neurocognitive (e.g., impaired memory and

concentration) symptoms can appear and last for weeks or

months in patients after acute COVID-19 [1–8]. Many of

the symptoms characterized as the post-acute sequelae of

COVID-19 (PASC) could have multiple causes.

So far, a number of studies have been published on

PASC [1–7, 9, 10], but most have small samples and

case series or rely on self-reports. Carfi et al. assessed

179 hospitalized COVID patients in Italy at an average

of 60 days after the onset of symptoms using a standard

questionnaire [11]. Only 12.6% were completely free of

all COVID-19 symptoms, and 55% had 3 or more symp-

toms. The most common symptoms were fatigue, dys-

pnea, joint pain, and chest pain. Chopra et al. performed

an observational study of 488 patients who were hospi-

talized 60 days after their discharge with a phone survey

[12]. The most common persistent symptoms were

cough, dyspnea, persistent loss of taste or smell, and

worsening difficulty completing activities of daily living.

Huang et al. performed one of the larger cohort studies

where they analyzed 1733 COVID patients discharged

from a hospital in China with a questionnaire at 6

months [13]. They identified fatigue, muscle weakness,

sleep difficulties, anxiety, and depression as the most

common symptoms 6months after the initial diagnosis.

These studies are all case series, focusing only on pa-

tients with COVID-19. Additionally, prior PASC studies

often focus on patients with severe COVID-19 symptoms

after hospitalization. It is unclear whether the identified

persistent symptoms hold true among COVID patients

not hospitalized. Furthermore, many of the published

studies are based on small cohorts (several hundred

COVID-19 patients were analyzed) and relied on self-

reported outcomes which can embody potential biases

due to, for example, exaggeration of symptoms [14].

There have also been a number of less commonly re-

ported symptoms including ocular inflammation [15], car-

diac involvement [16, 17], autonomic instability [18],

recurrent Pseudomonas infections [19], persistent mucous

secretion [20], micro-structural changes to the brain [21],

and Guillain-Barre syndrome [22]. A large cohort analyz-

ing the ICD-10 (the 10th Revision of the International

Statistical Classification of Diseases and Related Health

Problems) diagnoses in the electronic health record be-

tween patients with and without a history of COVID

could help clarify the actual association with the disease.

We present the results from a retrospective cohort study

of over 97,000 patients with an RT-PCR test for COVID-

19 in a Mass General Brigham (MGB) facility. We de-

tected de novo phenotypes that appeared for the first time

in EHRs at two temporal windows of 3–6 and 6–9months

after a COVID-19 test for both COVID-positive and

COVID-negative patients. Leveraging MLHO, a computa-

tional framework developed for knowledge discovery from

electronic health records (EHRs) [23–25] with a validated

utility for studying and modeling post-COVID outcomes

[26, 27] augmented with clinical expertise, we identified

33 phenotypes in different age/gender groups or time win-

dows positively associated with a recent/past SARS-CoV-2

infection. All identified phenotypes were newly recorded

in the patients’ medical records 2 months or longer after a

COVID-19 RT-PCR test in non-hospitalized patients re-

gardless of the test result.

Methods
We utilized longitudinal EHR diagnosis records from all

patients who tested for SARS-CoV-2 infection—reverse

transcription polymerase chain reaction (RT-PCR)—be-

tween March 2020 and June 2021 in a Mass General

Brigham (MGB) facility. We limited the patient cohort

to those who were alive and not hospitalized. To in-

crease the confidence that a patient in our cohort would

likely seek care within MGB in the post-COVID era, we

further narrowed the study population to patients who

had two diagnosis records, 6 months apart, in our elec-

tronic data repositories since 2010. We also excluded pa-

tients who had a diagnosis code referring to past

COVID-19 but having a negative RT-PCR test in the

MGB records due to our inability to approximate the in-

fection date. The use of clinical data in this study was

approved by the MGB Institutional Review Board with a

waiver of informed consent.

Phenotype coding

To construct the feature space, we utilized EHR diagno-

ses recorded in the ICD-9 and ICD-10 codes (the 9th

and 10th Revisions of the International Statistical Classi-

fication of Diseases and Related Health Problems). To

represent the phenotypes for the analyses, we mapped

the ICD-9/10 diagnosis codes to a unique phenotype

code (PheCode) from the phenome-wide association

studies (PheWAS) [28, 29] groups of phenotypes. We

assigned a temporal buffer of 2 months after the RT-

PCR test as a proxy for the acute phase in COVID-19

patients and used the first observation of phenotypes

that were recorded for the first time after the acute

phase (Fig. 1). Using this temporal segmentation, we fur-

ther limited the data, by only using the first observation

of the records (to minimize the problem list repetitions)

and only considered the diagnosis records that for the
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first time appeared in a patient’s medical records 2

months or longer after the RT-PCR test—see Additional

file 1: Fig. S1. As such, the feature space contained all

PheCodes that were recorded for the first time in a pa-

tient’s longitudinal EHR data 2 months or later after the

COVID-19 RT-PCR test, regardless of the test result.

MLHO framework

To robustly identify the phenotypes that are positively as-

sociated with a recent positive test for COVID-19, we ap-

plied a multivariate temporal approach to classify past

RT-PCR test results from the post-test clinical data. The

classification algorithm here is not intended for the pur-

pose of classification. Rather, we performed “postdiction,”

which is the “assertion or deduction about something in

the past,” [30] aiming to identify the features (i.e., pheno-

type) that carry information to make such an assertion

about the past event. To do so, we leveraged the MLHO

framework [26], which includes a suite of computational

algorithms [23, 26] specifically designed for modeling and

phenotyping clinical data. We followed a similar analytic

process used by Estiri et al. [31] that was used to identify

the risk factors for COVID-19 mortality from EHR data.

From the MLHO framework, the computational process

involved applying the minimize sparsity, maximize rele-

vance (MSMR) algorithm [23, 32, 33]; clinical expertise;

and multivariate boosting logistic regression, to compute a

composite confidence score for identifying the phenotypes

that are positively associated with a past RT-PCR test (see

MLHO phenotype selection criteria in the additional file).

All analyses were conducted in R statistical language.

Cohort stratification

To increase specificity, we stratified the analyses by age

and gender in a nested structure. This resulted in the

following strata: (1) all patients, (2) 65 and older, (3)

under 65, (4) 65 and older female, (5) 65 and older male,

(6) under 65 female, and (7) under 65 male. In addition

to stratifying the cohort, we controlled for the age and

gender (in gender-agnostic models) of the patient. For

the phenotypes identified by MLHO in each stratified

model, we trained standard generalized logistic regres-

sion models controlling for age and gender and

extracted multivariate odds ratios (ORs) along with p-

value (Wald’s test) and 95% confidence intervals using a

profiled log-likelihood.

Clinical validation via chart reviews

Due to the known reliability issues of EHR diagnosis re-

cords [33, 34], we validated the phenotypes identified by

MLHO through chart reviews. A clinical expert reviewed

the clinical notes and longitudinal records for a random

sample of five patients for each phenotype identified by

MLHO with an 80-plus confidence score. The chart re-

view required reviewing the clinical notes at the time of

the diagnostic code to determine whether the phenotype

was actually present at the encounter and whether this

was a new symptom or diagnosis since the time of the

COVID encounter. If at least three of the randomly sam-

pled five charts verified the phenotype’s presence and its

recent appearance or diagnosis, then the phenotype was

included in the final analysis.

Results
From over 397,000 patients who tested for COVID-19 in

an MGB facility with a nasal swab, 210,949 met our in-

clusion/exclusion criteria, including 52,491 patients with

positive test results. After applying the approach for

keeping records, 96,025 patients remained in our final

study cohort, which means 45.71% of the outpatient co-

hort who tested for the infection at an MGB facility had

a new phenotype record in their EHRs 2 months or lon-

ger after the RT-PCR test. A total of 22,475 (23.41%) of

these patients were positive for the SARS-CoV-2 virus

(Additional file 1: Fig. S2 and Table S1). After the spars-

ity screening (i.e., removing low-prevalence [< 0.22%]

phenotypes from sub-cohorts), 354 and 334 phenotypes

were evaluated in the full cohorts during the 3–6- and

6–9-month temporal windows.

Overall, MLHO identified 41 phenotypes in different

age/gender groups and/or time windows as positively as-

sociated with a past positive COVID-19 test, with a

MLHO confidence score higher than 80. All identified

phenotypes were newly recorded in the patients’ medical

records 2 months or longer after a COVID-19 RT-PCR

test in non-hospitalized patients regardless of the test

Fig. 1 Study cohort, temporal segmentation, and diagnoses recording. The study evaluated diagnosis records from the post-RT-PCR test from all
patients who tested for COVID-19 at an MGB facility and had reliable EHR data longevity
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result. We performed chart reviews on 215 randomly

sampled patients to validate MLHO’s findings. For

nearly all of the phenotypes, the details and descriptions

provided in the clinical notes matched with the assigned

phenotype for that chart (Additional file 1: Table S2).

For 33 of the phenotypes (Figs. 2 and 3), the majority of

the random samples of notes reviewed were suggestive

that the phenotype was new since the time of COVID.

Accordingly, we removed 8 phenotypes due to the likeli-

hood they were present pre-COVID based on the notes,

despite the use of a new ICD-9/10 record since the

COVID-19 diagnosis. For the 33 phenotypes, multivari-

ate odds ratios (ORs), 95% confidence intervals, and

MLHO’s confidence scores (CSs) are provided below—

also available in Additional file 1: Table S3.

The results demonstrated extremely high confidence

(> 97%) in eleven phenotypes, which in the overall co-

hort and/or one or more sub-cohorts associate with a

positive past COVID-19 infection. Seven were very high

among the entire population in the 3–6-month window.

Alopecia was identified in all iterations of MLHO be-

tween months 3 and 6, in the overall cohort (OR 3.09,

95% CI [2.53–3.76], CS 100). It was also specifically seen

in those younger and older than 65 cohorts and specific-

ally in women both under and over 65. Similarly, a new

diagnosis record of non-specific chest pain was indica-

tive of past COVID-19 infection in the 3–6-month tem-

poral window (OR 1.27, 95% CI [1.09–1.48], CS 100)

and particularly among people under 65 (OR 1.30, 95%

CI [1.08–1.55], CS 100). Anosmia and dysgeusia were

identified in 100% of the MLHO iterations, in the 3–6-

month window (OR 2.60, 95% CI [1.94–3.46], CS 100)

and continued to be important in the 6–9-month win-

dow (OR 2.10, 95% CI [1.40–3.11], CS 100). The pheno-

type was indicative of past positive COVID-19 in those

under 65 and women under 65.

Among other identified phenotypes with 97 and higher

confidence scores, chronic fatigue syndrome was seen in

both the 3–6-month window (OR 2.60, 95% CI [1.22–

2.10], CS 98) and the 6–9-month window (OR 2.03, 95%

CI [1.31–3.11]), appearing more prominent in the pa-

tients less than 65 and women less than 65. Pneumonia,

in the 3–6-month window, had a high confidence score

among the overall population (OR 1.66, 95% CI [1.28–

2.16], CS 99) and those older than 65 (OR 1.92, 95% CI

[1.03–3.46], CS 99). Shortness of breath had high confi-

dence scores in both the 3–6-month window (OR 1.41,

95% CI [1.22–1.64], CS 100) and the 6–9-month window

(OR 1.45, 95% CI [1.09–1.93], CS 96). It also was identi-

fied as having a high confidence score among those

under 65. Finally, palpitations (OR 1.41, 95% CI [1.22–

1.64]) type 2 diabetes mellitus (OR 1.41, 95% CI [1.22–

1.64]) also had high confidence scores both in the 3-6-

month window.

Several phenotypes had very high scores but only

within certain time frames and in certain sub-cohorts,

for example, iron deficiency anemia in the 6–9-month

range for those under 65 (OR 2.02, 95% CI [1.37–2.95],

CS 100) and women under 65 (OR 2.10, 95% CI [1.40–

3.15], CS 100). Men under 65 were identified with pro-

teinuria (OR 3.19, 95% CI [1.72–5.96], CS 100) in the 3–

6-month range and syncope and collapse (OR 4.80, 95%

CI [1.56–13.39], CS 99) in the 6–9-month range.

Among other COVID-19-related phenotypes identified

as indicators of past COVID-19 infection with a 90 to 96

confidence score were a number of sub-groups. In the

3–6-month window, this includes anemia during preg-

nancy in women under 65, chronic kidney disease in the

cohort older than 65 and women over 65, heart failure

with preserved ejection fraction in the cohort older than

65, irregular menstrual cycle in women under 65, neuro-

logical disorders in those under 65, and rash and other

non-specific skin eruptions in men under 65. In the 6–

9-month range phenotypes, with a confidence score in

the 90 to 96 window, this includes anemia of chronic

disease in women 65 and older, disorders of the con-

junctiva in men under 65, dizziness and lightheadedness

in women older than 65, irregular menstrual cycle in the

total cohort, sensorineural hearing loss in women greater

than 65, and vascular dementias for those older than 65

and women older than 65.

Discussion
We identified 33 phenotypes that were indicative of long

COVID among non-hospitalized COVID-19 patients.

Phenotypes such as alopecia, anosmia, fatigue, shortness

of breath, and chest pain have been well documented as

common signs and symptoms of PASC [7, 35, 36]. This

study shows that these phenotypes are some of the earli-

est associations with the syndrome seen in the 3–6-

month window after the initial infection and some of the

most important features for indicating previous COVID-

19 infection. All five of these phenotypes (alopecia, anos-

mia and dysgeusia, shortness of breath, chronic fatigue

syndrome, and non-specific chest pain) were docu-

mented with high confidence in the 3–6-month window.

And while alopecia and non-specific chest pain were not

found with high confidence in the 6–9-month window,

anosmia and chronic fatigue syndrome continued to be

important phenotypes seen in both time periods. Add-

itionally, several phenotypes were identified with simi-

larly high confidence including type II diabetes,

pneumonia, proteinuria, and syncope and collapse.

Interestingly, those aged less than 65 had more new

phenotypes identified with greater confidence than the

cohorts who were older than 65. Over 63% of the identi-

fied long COVID phenotypes were observed in past

COVID-19 patients who were under 65 years old. These
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findings have important implications for younger pa-

tients. Despite having not been hospitalized during the

acute phase, the symptoms of long COVID are found

with high confidence in this younger cohort population.

This gives another reason for young patients to opt for

having the vaccination since the long-term effects of the

disease are clearly not limited to older patients. While

the precise biological causes of the sequelae are still un-

known and under investigation, the enrichment of these

diagnoses among younger cohorts may indicate that the

robustness of the immune response in these patients is

driving some of the post-COVID sequelae. However,

these results should be understood and qualified in the

context that, on average, younger patients who are often

healthier than 65 and older have fewer interactions with

healthcare systems (and thus fewer diagnosis records),

which may lead to greater ease in detecting a signal in

this younger cohort compared to an older cohort.

While the chart review’s primary purpose was to de-

termine if the clinical notes were in agreement with the

ICD-9/10 labels, the reviewer also noted that physicians

consistently attributed two of the phenotypes (alopecia,

and anosmia and dysgeusia) to a previous history of

COVID-19, whereas the physicians’ notes did not

Fig. 2 Phenotypes that are positively associated with a past COVID-19-positive RT-PCR test. Identified post-COVID-19 phenotypes by age and
gender and ordered by MLHO confidence scores (plotted in white font). One hundred means phenotype was identified in 100% of MLHO
iterations. Phenotypes included have been associated with a positive past COVID-19 test with a confidence score higher than 80% in at least
a sub-cohort

Estiri et al. BMC Medicine          (2021) 19:249 Page 5 of 10



specifically identify a connection between the phenotype

and the previous infection for most of the other pheno-

types, even those with high confidence like type 2 dia-

betes or non-specific chest pain. Our model indicates

that even if these phenotypes are not explicitly identified

or recognized by the clinician and patient at the individ-

ual level, many of these unrecognized phenotypes still

have a high confidence score. While an ICD code on its

own does not specify the time of onset, the chart review

helped to confirm that the presented phenotypes were

likely new since COVID-19. The majority of charts

reviewed for each phenotype suggest that the symptoms

or the diagnosis occurred after COVID-19. Our model

identifies the relationships between COVID and a

phenotype, where a healthcare provider and patient may

otherwise miss that relationship.

Several neurological phenotypes (vascular dementia,

dementia, and neurological disorders) were frequently

diagnosed after COVID and appear to have an increased

association with the infection. The neurological disorder

phenotype includes several ICD codes, and in a random

sampling of patients with this phenotype, the majority

had the ICD code “R41.89—other symptoms and signs

involving cognitive function and awareness.” Collect-

ively, these phenotypes suggest ongoing cognitive dys-

function. The earliest reports of acute COVID, such as

Mao’s retrospective analysis of 214 hospitalized patients

in China, described neurological manifestations, includ-

ing cerebrovascular complications, in nearly half of those

with severe disease [37]. Since the acute phase, the se-

quelae for the description of “brain fog” after the diagno-

sis of COVID have been repeatedly described [38, 39].

Al-Aly specifically documents increased memory prob-

lems and strokes [40]. Our model suggests that these

cognitive deficits are ongoing and in some cases may be

so severe they are even lead to an initial formal diagnosis

of dementia at higher rates among those with a history

of COVID. While many of these patients may have

Fig. 3 Temporal presentation of PASC phenotypes 3–6 and 6–9 months post-COVID-19 RT-PCR test. PASC phenotypes are ranked by MLHO
confidence score
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already shown some signs of memory loss, the formal

diagnosis of dementia did not come until after COVID-

19 suggesting that the viral illness may have contributed

to a worsening of their condition and the formal declar-

ation of this diagnosis.

Another important phenotype identified was type 2

diabetes. Several studies have pointed out possible

pathophysiological relationships between COVID-19 and

diabetes [41, 42]. And the increased incidence of a num-

ber of metabolic diseases has been found with those

after a COVID-19 diagnosis [40]. Our study indicates

that the metabolic disorder may be so significant as to

lead to a formal diagnosis of diabetes mellitus.

The disease of the nail phenotype includes a variety of

diagnoses including leukonychia, onycholysis, onycho-

madesis, Mees’ lines, Muehrcke’s lines, and Beau’s lines

all of which are markers of overall well-being and have

been associated with infections and renal or hepatic dys-

function previously. Beau’s lines have specifically been

associated with COVID-19 infections [43, 44]. Our re-

sults suggest this association is widespread and likely a

result of systemic infection including renal injury.

Proteinuria was also identified as having an association

with COVID-19 among male patients less than 65.

COVID-19 has previously been associated with acute

kidney injury [45], and proteinuria is a known surrogate

for kidney disease [46]. The identification of proteinuria

as an association with COVID-19 in the young patient

cohort suggests the insult of COVID-19 to the kidneys

persists months after the infection has resolved.

The MLHO framework appears to be more powerful

than univariate PheWAS. A small number of phenotypes

that had a relatively high unadjusted statistical signifi-

cance (a p-value between 0.01 and 0.001) would have

been dropped in a linear univariate PheWAS after p-

value correction for multiple hypotheses. Two examples

of such phenotypes are palpitations and non-specific

chest pain, both of which have previously been described

as common symptoms of PASC [7, 35, 36].

MLHO’s implementation in this study is similar to the

standard univariate PheWAS [28, 29] as both offer com-

putational solutions for high-throughput association

mining from clinical data. However, a challenge in

standard PheWAS is to find a sensible balance between

adequately applying a correction to p-values in order to

reduce false discovery due to multiple testing and min-

imizing false negatives [47]. Our approach expands the

univariate p-value dependent criteria for identifying

phenome-wide associations to a more comprehensive

and multivariate entropy-based process. MLHO itera-

tively applies joint mutual information, performs sparsity

screening, and uses gradient boosting to characterize the

post-acute sequelae of COVID-19. The iterative process

in MLHO provides means to an interpretable

probabilistic confidence score for each phenotype associ-

ated with a past positive COVID-19 RT-PCR test.

Augmented with clinical expertise (i.e., chart reviews),

MLHO’s computational algorithms avoid a flood of

false-positive discoveries while offering a more robust

probabilistic approach than the standard PheWAS. We

were able to evaluate over 1600 phenotypes and identify

a small number of phenotypes (with confidence scores)

that associate with a past COVID-19 infection. As a re-

sult, and along with the inclusion of COVID-negative

patients, this study rules out some of the phenotype as-

sociations, which were previously identified through

poorly controlled observational data, such as cutaneous

eruptions outside of nail changes and alopecia.

We acknowledge that this study’s findings may present

limitations due to the use of only diagnosis codes, which

can result in missing signs and symptoms that are in

clinical notes and laboratory results. In addition, given

the intensity of the pandemic and spread of misinforma-

tion, EHR data may represent confirmatory bias between

providers and patients. Replicating this study in other in-

stitutions would help elucidate if the clinical phenotypes

seen at MGB reflect true characteristics of PASC or local

healthcare utilization patterns. Additionally, we only in-

cluded diagnoses that were used for the first time at least

2 months after the COVID-positive PCR date. This may

have led to some missed diagnoses that began within 2

months of the start of the acute phase; however, it helps

ensure that the new diagnoses detected were not related

to the acute phase. Future studies can consider modify-

ing this time buffer; however, there will remain a trade-

off between capturing all subsequent diagnoses and in-

creasing the confidence that the diagnoses are not part

of the acute phase of the illness. Finally, we have ex-

cluded hospitalized COVID-19 patients. On the one

hand, it would be difficult to match hospitalized corona-

virus patients during the COVID era with non-COVID

hospitalized patients. On the other hand, the post-

COVID syndrome can still be observed in patients who

were never hospitalized [12, 48–52]. Regardless, future

PASC studies should include hospitalized patients.

Conclusion
The COVID-19 pandemic in the USA raged nearly un-

controlled in 2020. While the exact number of people

afflicted by the post-acute sequelae of SARS-CoV-2 in-

fection is unknown, it represents a significant public

health burden because of the large magnitude of the

COVID-19 spread globally. We identified 33 phenotypes

that were indicative of long COVID among non-

hospitalized COVID-19 patients. Our understanding of

COVID-19 and its chronic sequelae is evolving, and new

risks are unknown. We do not know who might develop

the post-COVID syndrome, how long the symptoms last,
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and whether COVID-19 prompts the presentation of

chronic diseases. Accurate identification of phenotypes

will be important to guide future research and the

healthcare system to focus its efforts and resources on

adequately controlled age- and gender-specific sequelae

of a COVID-19 infection. The ever-increasing adoption

and magnitude of clinical data stored in EHR repositor-

ies over the past decade provide exceptional opportun-

ities for instrumenting healthcare systems to study

evolving pandemic byproducts. EHR data offer a unique

opportunity to understand the post-acute effects that

can follow SARS-CoV-2 infection.
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