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EVOLVING PLANE CURVES BY

CURVATURE IN RELATIVE GEOMETRIES II

Michael E. Gage

and

Yi Li

0. Introduction

In this paper we prove the existence of self-similar solutions to the anisotropic
curve shortening equation.

Theorem 0.1. Given any positive C2 function γ on S1 there exists a solution to
the equation

∂X

∂t
= γ(θ)kN (0.1)

which is self-similar. This means that the evolution shrinks the initial curve without
changing its shape.

In (0.1) X :S1 × [0, ω) → IR2 is the position vector of a family of closed convex
plane curves, kN is the curvature vector, with k being the curvature and N the
inward pointing normal given by N = −(cos θ, sin θ). The weight function γ(θ) =
γ(N) is a function of the normal vector to the curve at each point but does not
depend on position in the plane.

Equation (0.1) has two significant interpretations. It can be seen as the general-
ization of the “curve shortening” problem ([Ga8]) to Minkowski geometry or as a
simplified model of the motion of the interface of a metal crystal as it melts ([An-
Gu],[Ta1] and [Ga8]).

The proof illustrates most of the techniques that have been used recently in
understanding geometric evolution equations as described in [Ha3].

It is not hard to show that the self-similar solutions correspond to positive, 2π
periodic solutions of the equation

d2h

dθ2
+ h =

γ(θ)
h

(0.2)

and that h(θ) is the support function of the suitably normalized self-similar solution.
(This follows from equation (2.1) or (5.2).

This allows us to re-interpret theorem (0.1) as

Corollary 0.2. Every positive, smooth function on the circle γ(θ) can be written
as

γ(θ) = h(
d2h

dθ2
+ h) =

h

k
(0.3)

T t b AMS T X



2 MICHAEL E. GAGE AND YI LI

where h is the support function of the self-similar solution and k = (d
2h
dθ2 + h)−1 is

its curvature.

In effect we solve the ODE (0.2) by reducing it to a related parabolic PDE!
Rather than start with a solution of (0.2) and perturb it to a periodic solution, the
strategy is to start with a periodic and positive function and evolve it to a solution
of (0.2).

These theorems are corollaries of a stronger result.

Theorem7.8. Every convex curve which evolves by equation (0.1) evolves to a
point in finite time and if the family of curves is renormalized to enclose constant
area then each infinite sequence of curves has a convergent subsequence which con-
verges to the shape of a self-similar solution.

This complements the uniqueness results obtained by the first author in [Ga3,
Theorem 4.4, and Corollaries A and B]:

Theorem 0.4. If γ is smooth, strictly positive and symmetric (i.e. γ(v) = γ(−v)
or γ(θ) = γ(θ + π)) then there is a unique self-similar solution to (0.1)and every
renormalized family of curves converges to this shape.

Several related problems remain unsolved:
(1) If γ is not symmetric is there a unique self-similar solution. Is there a

generalization of the Minkowski isoperimetric quotient as described in [Ga8]
which serves as a Liapunov function?

(2) Can one can show that every embedded curve (not just convex curves) flows
to a “round point” under the flow (0.1)? (see [Gr1] for the case when γ is
identically 1).

(3) What is the appropriate generalization of these results to non-smooth func-
tions? This is a particularly intriguing question since it would connect our
result with a series of results by J. Taylor [Ta1] (see also [An-Gu, p377]
which involve flows in which γ is crystalline, that is its Wulff shape is a
polygon.

Here is a synopsis of the paper:
In section 1 we derive evolution equations for the support function h, the cur-

vature k and other geometric quantities of the curves. In section 2 we review the
comparison principle for parabolic evolution equations.

The short time existence result of Angenent, reviewed in section 3 guarantees
a smooth solution for a short time for any initial curve with Hölder continuous
curvature. The solution lasts as long as the curvature of the evolving curve remains
Hölder continuous.

In section 4 we derive a gradient bound for the curvature in terms of its average
value. This means that the maximal solution must last until the curvature becomes
infinite. The computation should be compared to the computation in [Ga2, Lemma
2.1] and the computation of the Harnack inequality for curve shortening [Ha3].

In section 5 we show that the curvature can become infinite only if the enclosed
area decreases to zero (the cusp theorem). Since the area is a linear function of
time, this allows us to define a normalized flow for which the area enclosed by the
curve remains constant. (See also [Ts1] and [An1].) We also derive the entropy
estimate (compare with [Ha3]). We show that the entropy remains bounded for the
normalized flow



EVOLVING PLANE CURVES BY CURVATURE IN RELATIVE GEOMETRIES II 3

In section 6 we derive several geometric estimates which show that an upper
bound on the entropy integral yields lower bounds on the minimum width of the
normalized curve, which in turn yields an upper bound on the diameter and the
length.

The main theorem is proved in section 7 where we derive as monotonicity theorem
for the support function. ¿From this and the gradient estimates we conclude that
the supremum norm of k remains finite. It follows immediately that a subsequence
of the normalized solutions converges to a solution of (0.1) which represents a self-
similar solution.

We wish to thank R. Hamilton for several illuminating conversations.

1. Definitions and notation

Let X(u, t):S1× [0, ω) → IR2 be the position vector of the evolving convex curve.
Then v =

∣∣∂X
∂u

∣∣ is the speed of the parametrization and ds = vdu is the unit of
arclength. The unit tangent vector and unit normal vector are represented by T and
N respectively and used to define the angle θ via the formulae T = (− sin θ, cos θ)
and N = −(cos θ, sin θ). Note that the normal points towards the interior of a curve
traced in the counterclockwise direction. The curvature of the curve is k = ∂θ

∂s
= θs.

We will frequently use subscripts to denote partial derivatives.
The support function is the distance from the origin to the tangent line of the

curve, in other words h = − < X,N >.

Fig 1.
Since the curves are convex the angle θ gives a regular parametrization of the

curve. One can define X(θ(u, t), t) = X(u, t) and the support function h can be
considered either as a function of u or of θ. Beginning in section 4 we will use only
the latter definition. In particular the notation ht will denote the partial derivative
of h keeping θ fixed (i.e. ∂h

∂t

∣∣
θ
).

All of the geometric quantities of interest to us can be expressed in terms of the
support function:

Lemma 1.1.

1
k
= hθθ + h (1.1)

L =
∫ 2π

h dθ (1.2)
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and

A =
1
2

∫ 2π

0

h2 − (hθ)2 dθ (1.3)

where k is the curvature, L the length of the curve, and A the area enclosed by the
curve.

Proof. Equation (1.1) follows from differentiating the definition of h and using the
Frenet formulas. Equation (1.2) follows immediately from (1.1). The final equation
follows from the first two and the representation of area as 2A =

∫
xdy − ydx. See

[Ga1] or any book on convex geometry for more details.

2. Evolution equations and the comparison principle

We reformulate the evolution equation (0.1) as an evolution equation for the
support function h and derive the evolution equations for the other geometric quan-
tities.

Lemma 2.1. The evolution equations for the support function, curvature, length
and area are

ht = −γk (2.1)

kt = k2(γk)θθ + γk3 (2.2)

Lt = −
∫
γk dθ (2.3)

At = −
∫
γ dθ (2.4)

Proof. Intuitively (2.1) is obtained from (0.1) by observing that the distance to
the support line should decrease according to the velocity of the contact point of
the support line and the curve, i.e. at the rate γk where k is the curvature at
the contact point. A more rigorous derivation is to observe that differentiating
Xu = vT and comparing the coefficients of T and N proves that vt = −k2v and
Tt = ksN . From the definition of θ in terms of T and N we observe that this last
equation implies that θt = ks.

The partial derivative with respect to t holding θ fixed is obtained from the
partial derivative holding u fixed via the chain rule

∂X(θ(u, t), t)
∂t

∣∣∣∣
u

=
∂X

∂t

∣∣∣∣
θ

+
∂X

∂θ

∂θ

∂t

∣∣∣∣
u

=
∂X

∂t

∣∣∣∣
θ

+
T

k

∂k

∂s

Finally applying this to the definition of h and observing that, by definition ∂N
∂t

∣∣
θ
=

0 we obtain ∂h
∂t

∣∣
θ
= − < ∂X

∂t

∣∣
θ
, N >= −γk.

This new equation, with the changed parametrization, is equivalent to adding
a tangential component to the velocity vector of the original equation (0.1). The
equivalence is discussed in more detail in [E-G] and also in [An-Gu].

Equations (2.2)—(2.4) are obtained by differentiating equations (1.1)—(1.3) and
using (2.1).
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Proposition 2.2 Comparison theorem for ODE. Let y(t) and z(t) be functions
defined on [0, t2] and satisfying

(1) y′(t) = g(t, y), z′(t) = l(t, z),
(2) g(t, x) > l(t, x) for all t ∈ [0, t2] and
(3) y(0) > z(0)

then y(t) ≥ z(t) for all t ∈ [0, t2].
The same conclusion holds if y(t) and z(t) are Lipschitz functions and for all

t ≥ 0 the forward derivatives satisfy the inequalities

(4) lim infε↘0
y(t+ε)−y(t)

ε
≥ g(t, y) and

(5) lim supε↘0
z(t+ε)−z(t)

ε
≤ l(t, y).

Proof.
Let t1 = sup{t | t ∈ [0, t2] and for all s ≤ t, y(s) ≥ z(s)}. The continuity of y

and z guarantee that y(t1) = z(t1). Using the hypothesis on the forward derivatives
and choosing δ small there exists an ε > 0 such that for all t ∈ [t1, t1 + ε)

y(t)− y(t1)
t− t1 ≥ g(t1, y(t1))− δ ≥ l(t1, y(t1)) + δ ≥ z(t)− z(t1)

t− t1
from which it follows that y(t) ≥ z(t) for t ∈ [t1, t1 + ε) contradicting the definition
of t1.

Corollary 2.3. If y′(t) = g(t, y(t)) and g(t, y) is continuous and Lipshitz in y
then the strict inequalities can be replaced by non-strict inequalities. That is if
g(t, x) ≥ l(t, x) ≥ lim supε↘0

z(t+ε)−z(t)
ε and y(0) ≥ z(0) then y(t) ≥ z(t) for all

positive t.
A similar result holds if z satisfies a well posed differential equation.

Proof. The essential observation is that the solutions to the differential equation
are continuous with respect to the variation of parameters and initial conditions.
In fact let yε(t) satisfy yε(t) = g(t, yε) + ε and yε(0) = y(0) + ε then yε(t) ≥ z(t)
and yε(t) converges uniformly to y(t) on compact subsets, hence y(t) ≥ z(t), for
positive t.

The infimum of a one parameter family of smooth functions is continuous, but
not usually differentiable. It is however Lipshitz and its forward derivative is given
by equation (2.5) below:

Lemma 2.4 (see [Ha1]). If y(t) = supθ∈S1{h(θ, t)} where h(θ, t) is a smooth
function then y(t) is Lipshitz and

lim sup
ε↘0

y(t+ ε)− y(t)
ε

= sup{ht(θ, t) | θ such that h(θ, t) = y(t)}. (2.5)

Proof. For any δ > 0 there is some θ such that for all small ε

y(t+ ε)− y(t)
ε

≥ h(θ, t+ ε)− h(θ, t)
ε

≥ ht(θ, t)− δ.

This proves the lower bound on the forward difference of y
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Let εi be positive sequence converging to zero, then for some choice of θi, y(t+
εi) = h(θi, t+ εi) and

y(t+ εi)− y(t)
εi

≤ h(θi, t+ εi)− h(θi, t)
εi

= ht(θi, ci).

The compactness of S1 and the smoothness of h now imply the upper bound for
the forward derivative of y.

A symmetric result holds for the infimum of a one parameter family of functions.

An easy corollary of these results, typical of the way in which we will use them,
is that

Corollary 2.5. The function kmax(t) = supθ∈S1 k(θ, t) satisfies

kmax(t) ≤ 1(
1

kmax(0)
− 2t

)1/2
(2.6)

and

kmax(t) ≥ 1
(2ω − 2t)1/2

(2.7)

where ω is the time when kmax blows up.

Proof. ¿From equation (2.2) and lemma 2.4 it follows that the forward difference of
kmax(t) is less than or equal to kmax

3. From corollary 2.3 kmax(t) must be less than
the solution of y′ = y3 with initial value y(0) = kmax(0). This proves inequality
(2.6).

For the inequality (2.7) we observe, from corollary 2.3 that once kmax(t) is smaller
than a solution of y′ = y3 it must stay smaller. If kmax(t) ≤ (2ω+δ−2t)−1/2 for any
t then we obtain a contradiction since in this case kmax remains finite at t = ω and
the blowup must occur at a later time. We conclude that kmax(t) ≥ (2ω+δ−2t)−1/2

for all t < ω and for any δ which proves the second inequality.

Remark 2.6. We will write zt(t) even for a Lipshitz function. This should be in-
terpreted as either the limsup or liminf of the forward differences. For example
zt(t) ≥ z(t)2 means that the liminf of the forward differences of z is always greater
than the square of the value of z.

3. Review of short time existence.

The existence of a solution to (0.1) for a short time and the conclusion that
the solution remains smooth (if γ(θ) is smooth) as long as its C2+α norm remains
bounded is proved in S. Angenent’s paper [An1]. It is also a special case of Tso’s
paper on the Gauss curvature flow [Ts1].

Angenent outlines the proof of the following short time existence theorem for
initial curves which have Hölder continuous curvature and which lie on an arbitrary
two manifold. Ω(M) is the space of constant speed parameterized curves onM and
S1(M) is the unit tangent bundle



EVOLVING PLANE CURVES BY CURVATURE IN RELATIVE GEOMETRIES II 7

Theorem 3.1, (Angenent)[An1]. Assume that
Xt = V (T, k)N (3.1)

where V :S1(M)× IR → IR is C1,1 and satisfies ∂V
∂k > 0 for all (T, k) ∈ S1(M)× IR.

Let α0 be a regular curve with Hölder continuous curvature. Then there exists a
unique maximal solution α: [0, tmax) → Ω(M) with initial value α(0) = α0.

Furthermore tmax > 0 and α(t) ∈ C([0, tmax); Ω(M)) and for each t ∈ [0, tmax),
α(t) has continuous curvature and normal velocity and of course satisfies the equa-
tion (3.1).

If V is a Cm+1 function, for some m ≥ 1, then the solution α(t) is a Cm+2+β

curve for any t ∈ (0, tmax), and any 0 < β < 1.

In the simple case we are concerned with M is IR2 and V (T, k) = γ(θ)k, hence
∂V
∂k = γ > 0. Furthermore V is Cm+1 provided γ is Cm+1. Observe that if tmax is
finite then the limit of α(t) as t approaches tmax must be a curve whose curvature
is not Hölder continuous since otherwise one could extend the solution further.

The next point to recall from Angenent’s discussion in [An1] is that the higher
derivatives of the solution exist and are bounded on the compact subsets of (0, tmax).
In fact one obtains ∥∥∥∥ ∂

k+lα

∂tk∂ul

∥∥∥∥
∞

≤ c(t1,M, k, l, γ)t−(k+l)

where α is a solution to (3.1) whose C2+α norm at t = 0 is bounded by M . The
function c is an increasing function ofM and of t1, 0 < t1 < tmax. This means that
even if the initial curve is not C∞ it becomes infinitely smooth instantly provided
that γ(θ) is infinitely smooth, and that if the curvature of each curve α(t) has a
Hölder constant which is uniformly bounded by M for each t in an interval [0, t1)
then all of the higher time and space derivatives of the evolving curve are uniformly
bounded in compact subsets of (0, t1) in terms of M .

In the following sections we show that a Hölder bound on the curvature can be
obtained from more geometric quantities, such as the enclosed area.

4. Gradient estimates

By considering the evolution equation for (log γk)t we are able to derive an
estimate on the second derivative of k in terms of the curvature. This in turn
allows us to estimate the derivative kθ in terms of the average curvature and a
fortiori in terms of the maximum curvature

Lemma 4.1. Let u = (log γk)t =
(γk)t
γk

= k(γk)θθ + γk2 then u satisfies:

ut = γk2uθθ + 2k(γk)θuθ + 2u2 (4.1)

Proof. This is a straight forward calculation. First
ut = kt(γk)θθ + k(γkt)θθ + 2γkkt

Since u =
kt
k

this yields

ut = k ((γk)θθ + γk)
kt
k
+ γkkt + k(γku)θθ

= u2 + γk2u+ k(γk)θθu+ 2k(γk)θuθ + γk2uθθ
which simplifies to (4.1)
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Lemma 4.2. It follows that z(t) = minθ u(θ, t) is a Lipschitz function and satisfies

zt ≥ 2z2 ≥ 0 (4.2)

and therefore

k(γk)θθ + γk2 ≥ z(t) ≥ z(0) = −1
C1 + t

≥ −(C1)−1 for t > 0 (4.3)

for some non-negative constant C1 which depends on the initial conditions on k and
its derivatives.

Remark 4.3. (If we choose C1 = 0 then for positive time the left hand side of
equation (4.3) is bounded independent of the bounds on the initial derivatives of
k.)

Proof. This is a direct application of the comparison and maximum principles de-
scribed in lemma 2.2 together with the fact that the solution to equations of the
form y′ = y2 are of the form y(t) = (C − t)−1.

Lemma 4.4. There is a positive constant εk depending on the curvature of the
initial curve such that k(θ, t) ≥ εk.
Proof.

We have that (kmin)t > (kmin)3 hence in view of the comparison principle and
the fact that the solutions to y′ = y3 are of the form y(t) = ±(C − 2t)−1/2 or

y(t) ≡ 0 we see that k(θ, t) ≥
(

1
(kmin(0))2

− t
)−1/2

which implies the inequality

in the statement with εk = kmin(0).

Corollary 4.5 The Gradient Estimate. We have the following estimate on the
gradient. (See Angenent [An3] for a similar estimate obtained using a different
technique.)

‖(γk)θ‖∞ ≤
∫
γk dθ +

2π
(C1 + t)εk

≤ 2π‖γ‖∞kmax +
2π

(C1 + t)εk
(4.4)

Proof. Let p be a maximum point of γk and proceeding counter clockwise (the
direction of increasing θ) from p to any x in S1 yields

(γk)θ(x)− (γk)θ(p) ≥ −
∫ x

p

γk +
1

(C1 + t)εk
dθ

hence
−(γk)θ(x) ≤

∫
S1
γk dθ +

2π
(C1 + t)εk

.

Similarly, again proceeding counter clockwise,

(γk)θ(p)− (γk)θ(x) ≥ −
∫ p

x

γk +
2π

(C1 + t)εk
dθ

and (4.4) follows.

The gradient bound allows us to estimate the maximum curvature in terms of
integrals of the curvature In particular the following is true:
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Corollary 4.6. There exist constants δ, C1 and C2 which depend only on the
curvature of the initial curve such that

kmax(t) ≤ C1

∫
S1
γk dθ + C2 (4.5)

and if k(θ0, t) = kmax(t) then

kmax

2
≤ k(θ, t) when |θ − θ0| ≤ δ (4.6)

Remark 4.7. We can conclude that the time ω at which the supremum norm of
curvature approaches infinity is the same as tmax (and not some later time) and
that the average curvature of the maximal solution to (0.1) must go to infinity as t
approaches tmax. In the next section we show that ω also coincides with the time
when the area enclosed by the curve reaches zero.

5. The entropy estimate and the area estimate

One could also use equation (4.1) to obtain an upper bound on the value of
umin relative to the time to blowup, however, by integrating u first over S1 one
obtains an upper bound on the average of u relative to the time to blowup which is
more powerful. This is the entropy bound discussed by R. Hamilton in [Ha3]. Let
E(t) = ∫

S1 γ log(γk) dθ be the “entropy”.

Proposition 5.1.

∂E(t)
∂t

=
∫
γ(log γk)t dθ ≤

∫
γ dθ

2
1
ω − t (5.1)

where ω is the time at which the curvature becomes infinite.

Proof. We begin with the following calculation, using the notation of lemma 4.1.

Ett =
(∫
γu

)
t

=
∫
(γk)2uθθ + 2(γk)2u2θ + 2γu2 dθ

=
∫

−2(γk)(γk)θθ
+ 2(γk)2u2θ + 2γu2 dθ

=
∫

−2(γk)2u2θ + 2(γk)2u2θ + 2γu2 dθ

=
∫

2γu2 dθ

≥ 2

(∫
γu dθ

)2

∫
γ dθ

= 2
(Et)2∫
γ dθ

We used equation (4.1) and for the last line the Schwartz inequality. Setting y =∫
γu dθ yields

yt ≥ 2∫
dθ
y2.
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Equation (5.1) now follows from the comparison lemma 2.2 and the fact that the
entropy must be infinite at time t = ω.

The next step is to show that the blow-up time (t = ω) for the curvature is also
when the area enclosed by the curve goes to zero.

A region of zero area cannot be bounded by a simple curve with finite curvature,
so ω is less than or equal to the time at which the area is zero.

That the two are equal is the main result of Tso’s paper [Ts1] (which also proves
an analogous result for Gauss curvature flow in all dimensions). In the case where
γ(θ) = γ(θ+π) the equality follows from theorem 8.1 in Angenent’s paper [An2]. We
will illustrate here that this fact is also the essential content of the “cusp theorem”
(see [Ga-Ha] or [Gr1].)

Consider all numbers β such that the open set {θ | γk > β} is the union of
disjoint intervals Ii whose length is at most π.

Definition 5.2. Let β∗ = sup{β | {θ | γk > β} = ⋃
Ii and |Ii| ≤ π}.

Proposition 5.3 (Cusp theorem). If β∗ ≤ M on [0, t1) with t1 < ∞ then
kmax(t) is uniformly bounded on [0, t1).

Proof outline. (See [Ga-Ha] for an analogous calculation.) Let β < β∗ ≤M . Then
(∫

S1
γ log(γk)

)
t

=
∫

−(γk)2θ + (γk)2 =
∫
S1

−(γk)2θ + (γk − β)2 + 2βγk − β2

Evaluating the integral on the right on each interval |Ii| we find that
∫
Ii
−(γk)2θ+

(γk−β)2 ≤ 0. This follows fromWirtinger’s inequality for intervals because (γk−β)
is zero at the endpoints and each interval has length no more than π. On the
complement of the union of the intervals,

⋃
Ii, we have |γk| ≤ β. Combining these

estimates and using (2.3) proves
(∫

S1
γ log(γk)

)
t

≤ 2β
∫
S1
γk = −2βLt ≤ −2MLt.

Integrating this inequality proves that the entropy E(t) = ∫
γ log(γk) remains

finite on the interval [0, t1).
Using corollary 4.6 and the lower bound on k given in lemma 4.4 we conclude

that kmax(t) remains finite as long as
∫
γ log(γk) is finite. This proves the desired

result.

Proposition 5.4. We have β∗ < ‖γ‖∞L(0)/A, hence from the previous lemma,
as long as the area is strictly greater than zero on a time interval the curvature
remains uniformly bounded.

Proof outline. This is a strictly geometric estimate. (See [Ga-Ha] for a detailed
proof.) There is some interval of length π on which γ(θ)k(θ) ≥ β∗. This implies
that the convex curve α(t) is enclosed in a cigar shaped figure whose area is less
than L(0)‖γ‖∞/β∗.
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Fig 2.

Remark 5.5. The above two propositions prove that A(ω) = 0. Using equation (2.4)
we determine that ω = A(0)R

γ dθ
. Notice that the information given by propositions

5.1 and 5.4 is complementary. The first tells how fast the entropy blows up, while
the second identifies the time of blow-up but doesn’t give a sharp bound on the
rate of blow-up of the entropy.

This suggests that we consider the flow in which the figure is homothetically
expanded so as to keep the enclosed area constant.

Proposition 5.6. Let µ = (2ω − 2t)−1/2. Rescaling the geometric quantities by
magnifying IR2 by µ and replacing time t by τ = −1

2 log(2ω − 2t) transforms the
equations (2.1)—(2.4) into the rescaled equations:

hτ = (µh)τ = −γk + h (5.2)

kτ =
(
k

µ

)
τ

= k
2
(γk)θθ + γk

3 − k (5.3)

Lτ = −
∫
γk dθ + L (5.4)

Aτ = 0 (5.5)

and in fact

A ≡ 1
2

∫
γ dθ (5.6)

The entropy of the normalized flow decreases:

Corollary 5.7 (The normalized entropy estimate).

Eτ (τ) =
(∫
γ log γk dθ

)
τ

≤ 0 (5.7)

and
E(τ) =

∫
γ log γk dθ ≤ CE (5.8)

where CE depends only on the initial curve.

Proof. This calculation follows from (5.1) and the definition of the normalized cur-
vature in equation (5.3).

The gradient estimate for k is:

Corollary 5.8.

‖(γk)θ‖∞(t) ≤
∫
γk dθ +

2π(ω − t)1/2
εk(C1 + t)

≤ 2π‖γ‖∞kmax +
2π(ω − t)1/2
εk(C1 + t)

Remark 5.9. We have determined the time of blow-up of the curvature, but we
have not yet determined its rate. This means that the normalized curvature may
be unbounded as τ goes to infinity. Similarly we have no lower bound on the
normalized curvature, no lower bound on the size of h and no upper bound on h or
the normalized length. In sum we have no control on the shape of the normalized
curve. Once one of these bounds is established (the purpose of the next two sections)
the other bounds follow quickly and the existence of subsequences converging to a
self similar solution is established
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6. Geometry estimates

These elementary geometric inequalities are analogous to the geometric inequali-
ties obtained by R. Hamilton for the Gauss curvature evolution equation and similar
to the estimates obtained by W. Firey [Fi] for the same flow. These estimates de-
pend only on the geometry of the curve. We will apply them to the curves obtained
from the normalized flow.

We first obtain a lower bound on the width of the curve in terms of the upper
bound CE on the entropy. This also implies a lower bound on the inradius of the
curve. From there we obtain upper bounds on the diameter of the normalized curve
and on its length in terms of the area (which remains fixed) and the bound CE on
entropy.

Lemma 6.1. Let w(θ0) be the width in the direction parallel to −N = (cos θ, sin θ).

logw(θ0) = log(h(θ0) + h(θ0 + π)) ≥ Cw(γ)− E
γmin

where Cw depends only upon the anisotropic factor γ.

Remark 6.2. I am indebted to R. Hamilton for showing me the identical estimate
which he had obtained for the Gauss curvature flow.

Proof. First we see that

2w(θ0) =
∫ | sin(θ − θ0)|

k
dθ

since dθ = kds. Dividing by 2π, taking logarithm and using the Jensen inequality
for concave functions we obtain

log
(
w(θ0)
π

)
= log

(∫ | sin(θ − θ0)|
k

dθ

2π

)
≥

∫
log

( | sin(θ − θ0)|
k

)
dθ

2π

hence

2π log(w(θ0)) ≥ 2π log(π) +
∫ 2π

0

log(| sin(θ − θ0)|) dθ −
∫ 2π

0

log k dθ

log(| sin(θ)|) is integrable (in fact its integral is negative and greater than 4π log 2
π
−

2π) and the result follows from estimating the integral of log k in terms of the nor-
malized entropy.

Lemma 6.3. The inradius of a convex curve (that is the radius of the largest circle
inscribed inside the curve) satisfies

rin ≥ 1
3
min
θ
w(θ)

Proof. Let K be a convex curve with inradius 1. If there are only two points of
contact between the inradius circle and the convex boundary then these points must
be antipodal and the minimum width is equal to the inradius
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Otherwise one can find 3 points of contact between the inradius circle and the
convex boundary and the intervals between each pair of contact points are less than
π. Taking tangent lines at each of the points of contact one obtains a triangle with
the same inradius which encloses the original convex body and therefore has greater
minimal width.

This reduces the problem to finding the triangle circumscribing the unit circle
whose minimum width is the largest. The minimum width is clearly the shortest
altitude. Suppose one of the three altitudes of a triangle is strictly smaller than
the other two. Orient the triangle so that this altitude is vertical, then rotate the
points of contact of the other two sides downward on the inradius circle. This clearly
increases the size of the vertical altitude. If the motion is small enough the vertical
altitude is still the shortest, hence the minimum altitude has been increased. This
argument shows that only a triangle with at least two altitudes equal could be a
critical point.

If the triangle has two shortest altitudes equal, place the base connecting the two
vertices of the short altitudes on the bottom as in Figure 3. We see that rotating
the points of contact of the triangle with the circle symmetrically upward we move
the points A and B outward and that the points a and b move monotonically in the
vertical direction. As long as the a and b lie below the points of contact with the
circle this action increases the length of both of the short altitudes while decreasing
the vertical altitude only slightly. This hypothesis is satisfied since the points of a
and b coincide with the points of contact only for the equilateral triangle and since
they move monotonically a and b must lie below the points of contact when the
side altitudes are shorter than the vertical altitude. This proves that the equilateral
triangle is the only candidate for the maximum minimum width among triangles.

The family of triangles is completely described by the three contact points lying
on the circle, and the altitudes and minimum width vary continuously hence there
exists a minimum, which from the above argument must be the equilateral trian-
gle. Calculating the minimum width of the equilateral triangle gives the desired
estimate.

Fig 3.

Lemma 6 4 The diameter of the curve is bounded by its enclosed area divided by
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its minimum width. In addition the diameter bounds the length of the curve.

D ≤ A

minθ w(θ)
L ≤ πD (6.1)

Proof. Choose a line segment which realizes the diameter. The projection onto the
line perpendicular to the line segment is not less than the minimum width. By
connecting the ends of the diameter line segment with points which project into
the boundary of the “shadow” of the convex curve on the perpendicular line we
obtain a quadrilateral enclosed in the convex figure, a quadrilateral with the same
diameter and the same width, whose area is exactly the diameter times the width.
(see Figure 4.)

The second inequality, the isodiametric inequality is standard. (See Santalo
[Sa1].) This completes the proof of the lemma.

Fig 4.

7. The monotonicity theorem and the curvature estimate.

We can now obtain an upper bound for the curvature k for all time. This is equiv-
alent to showing that the unnormalized curvature blows up at a rate proportional
to (ω − t)−1/2.

Let
H(τ, a, b) =

∫
S1
γ log h dθ (7.1)

where h = h(τ, θ, a, b) is the support function, relative to the point (a, b), of a curve
α(τ) which is evolving under the normalized equation.

Lemma 7.1(see [Fi]) Monotonicity Lemma. H evolves according to the equa-
tion:

H(τ, a, b)τ =
∫
S1
γ − γ

2k

h
dθ ≤ 0

Proof. This is a straightforward calculation using (5.2). The inequality follows from
the Schwartz inequality: ∫

γ2k

h

∫
h

k
≥

(∫
γ

)2

and the identities
∫
γ = 2A =

∫
h
k
which are easily derived from (1.1), (1.3) and

(5.5).



EVOLVING PLANE CURVES BY CURVATURE IN RELATIVE GEOMETRIES II 15

Proposition 7.2. Let εin be the minimum value of the inradius of the family of
evolving normalized curves. From the geometric estimates of lemma 6.1, lemma 6.3
and the entropy estimate 5.7 we know that εin is positive.

For any initial curve α0 there is a choice of origin so that H(τ) is uniformly
bounded below by log(εin)

∫
γ dθ for all τ > 0. In addition the evolving normalized

curve remains within some fixed ball.

Proof. Let α0 be our initial curve. Using the continuous dependence of the solutions
h(τ, θ, a, b) on initial conditions we show that it is possible to choose a point (a, b)
within the curve α0 (and hence an initial support function h(0, θ, a, b)) so that the
quantity

∫
γ log h dθ remains greater than log(εin)

∫
γ dθ.

¿From lemma 6.1 and corollary 6.3 the inradius of the normalized curve α(t)
is bounded below for all time by a positive constant εin. Let τn be a fixed se-
quence diverging to infinity. For each τn there is a choice of (an, bn) which makes
h(τn, θ, an, bn) ≥ εin (take (an, bn) to be the coordinates of the center of the inradius
circle). Since H(τ, an, bn) is decreasing we have H(τ, an, bn) ≥ log(εin)

∫
γ dθ for all

τ < τn. The points (an, bn) lie in a compact set and therefore have a subsequence
which converges to (a∞, b∞). Then for any fixed τ and any δ there exists N such
that for n > N we have τn > τ and

H(τ, a∞, b∞) ≥ H(τn, a∞, b∞) ≥ H(τn, an, bn)− δ ≥
(
log(εin)

∫
γ dθ

)
− δ

Since the choice of δ is arbitrary this completes the proof.

Remark 7.3. Hereafter we assume that the choice of origin is one for which the
integral H remains finite for all τ .

Corollary 7.4. For this choice of the origin there are constants hmin > 0 and hmax

such that hmin ≤ h(θ, t) ≤ hmax.

Proof. Since H is bounded below the point (a, b) is enclosed by each convex curve
α(τ) and therefore the support function cannot become larger than the diameter
which is bounded by lemma 6.4.

For the lower bound we first show that the derivative hθ is bounded. Since
hθθ + h = 1/k we have

|hθ| ≤
∫ ∣∣∣∣1k

∣∣∣∣ + |h| dθ ≤ L+ 2πD ≤ 3πD

The derivative bound allows us to conclude that h(θ, τ) ≤ 2hmin(τ) for all θ in
an interval whose size is independent of time. Writing

H(τ) =
∫
{θ|h(θ,τ)<2hmin}

γ logh dθ +
∫
{θ|h(θ,τ)≥2hmin}

γ log h dθ

one sees that the second integral is bounded above in terms of the diameter and
therefore hmin(τ) cannot approach zero without forcing the value of H(τ) to nega-
tive infinity. This completes the proof of the lower bound.
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Theorem 7.5. The normalized curvature k is uniformly bounded for all time.

Proof. There are two components to this proof. The first is the observation that
the growth of kmax(τ) does not depend explicitly on τ . In fact if kmax < b at time τ
then there is a constant 2δ depending only on b but not on τ such that kmax(t) < 2b
for all t ∈ [τ, τ + δ].

This follows from the fact that k satisfies an autonomous equation (5.3) and
from the comparison argument 2.2.

The second ingredient is that the average curvature is frequently small. Indeed
the following monotone sum converges

∞∑
n=0

∫ (n+1)δ

nδ

∫
S1
γ − γ

2k

h
dθ dt = lim

τ→∞H(τ)−H(0) > −∞

and therefore

lim
n→∞

∫ (n+1)δ

nδ

∫
S1
γ − γ

2k

h
dθ dt = 0. (7.2)

Further, from the mean value theorem, there exists ξ ∈ [nδ, (n+ 1)δ] such that

∫ (n+1)δ

nδ

∫
S1
γ − γ

2k

h
dθ dt =

∫
S1
γ − γ

2(θ)k(θ, ξ)
h(θ, ξ)

dθ. (7.3)

¿From (7.2) and (7.3) it follows that for any ε > 0 and all sufficiently large n
there exists exists ξn ∈ [nδ, (n+ 1)δ] such that

1
hmax

∫
γ2(θ)k(θ, ξn) dθ ≤

∫
γ dθ + ε

Using corollary 5.8 it follows that kmax(ξn) < b and that b depends on the initial
curve, but not on τn. The bound on the growth of kmax now implies that kmax(τ) <
2b on [τn, τn + 2δ] ⊇ [(n+ 1)δ, (n+ 2)δ].

This completes the proof.

Now we modify the monotonicity formula above to show convergence. Let

J(t, a, b) =
∫
S1
h

2

θ − h
2
+ 2γ logh dθ (7.4)

where h = h(τ, θ, a, b) is the support function, relative to the point (a, b), of a curve
α(t) which is evolving under the normalized equation.

Lemma 7.6. J(τ, a, b) evolves under the normalized flow according to

Jτ = −2
∫

(h− γk)2
hk

dθ ≤ −2
kmaxhmax

∫
(h− γk)2 dθ ≤ −C

∫
(h− γk)2 dθ. (7.5)

where C depends only upon the initial curve. Further J(τ) ≥ −2A(0)+2 loghmin

∫
γ dθ.

Together these imply that limτ→∞ Jτ = 0.

Proof. This is an easy calculation using (5.3). The second inequality follows from
the bounds in lemma 7.4 and theorem 7.5. The lower bound on J follows from
proposition 7.2 and from equations (1.3) and (5.6).

Remark 7.7. In fact the quantities J and 2H have the same derivatives because
the first two terms of equation (7.4) are twice the area enclosed by the curve which
remains constant. The derivative formulas of lemma 7.6 and lemma 7.1 are alge-
braically equivalent up to a factor of 2
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Theorem 7.8. There exists a self-similar solution to equation (0.1)

Proof.
Let τn be any sequence of times diverging to infinity. k(·, τn) and h(·, τn) are

equicontinuous functions (by proposition 5.8 and the argument in corollary 7.4) and
must therefore contain a converging subsequence. Each converging subsequence, in
view of lemma 7.6, must converge to a solution of the equation h− γk = 0, that is
the equation defining a self-similar solution.
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