
1

Evolving Scheduling Heuristics via Genetic

Programming with Feature Selection in Dynamic

Flexible Job Shop Scheduling
Fangfang Zhang, Student Member, IEEE, Yi Mei, Senior Member, IEEE, Su Nguyen, Member, IEEE,

and Mengjie Zhang, Fellow, IEEE

Abstract—Dynamic flexible job shop scheduling (DFJSS) is a
challenging combinational optimisation problem that takes the
dynamic environment into account. Genetic programming hyper-
heuristics (GPHH) have been widely used to evolve scheduling
heuristics for job shop scheduling. A proper selection of the
terminal set is a critical factor for the success of GPHH. However,
there is a wide range of features that can capture different
characteristics of the job shop state. Moreover, the importance of
a feature is unclear from one scenario to another. The irrelevant
and redundant features may lead to performance limitations.
Feature selection is an important task to select relevant and
complementary features. However, little work has considered
feature selection in GPHH for DFJSS. In this paper, a novel
two-stage GPHH framework with feature selection is designed to
evolve scheduling heuristics only with the selected features for
DFJSS automatically. Meanwhile, individual adaptation strate-
gies are proposed to utilise the information of both the selected
features and the investigated individuals during the feature
selection process. The results show that the proposed algorithm
can successfully achieve more interpretable scheduling heuristics
with fewer unique features and smaller sizes. In addition, the
proposed algorithm can reach comparable scheduling heuristic
quality with much shorter training time.

Index Terms—Feature Selection, Genetic Programming,
Hyper-heuristics, Interpretability, Dynamic Flexible Job Shop
Scheduling.

I. INTRODUCTION

Job shop scheduling (JSS) [1] is an important research

problem which captures practical issues in real-world

scheduling tasks such as manufacturing processes [2], [3]

and cloud computing [4], especially in large-scale production

environments. JSS is to process a number of jobs (each job

has a sequence of operations) by a set of machines, where

each operation can only be processed by a specific machine.

Flexible JSS (FJSS) [5], as an extension of JSS, is closer

to reality. Different from in JSS, an operation in FJSS can

be processed by more than one candidate machine, and the

processing time on each machine is different. In FJSS, two

kinds of decisions need to be made simultaneously. One is

machine assignment (i.e., assign an operation to a machine)

and the other is operation sequencing (i.e., choose the next

operation to be processed when a machine becomes idle).

The authors are with the Evolutionary Computation Research Group at the
School of Engineering and Computer Science, Victoria University of Welling-
ton, Wellington 6140, New Zealand (e-mail: Fangfang.Zhang@ecs.vuw.ac.nz;
Yi.Mei@ecs.vuw.ac.nz; Mengjie.Zhang@ecs.vuw.ac.nz;). Su Nguyen is with
the Centre for Data Analytics and Cognition, La Trobe University, Australia
(e-mail: P.Nguyen4@latrobe.edu.au)

Unlike in JSS and DJSS, dynamic FJSS (DFJSS) aims to

make decisions of both machine assignment and operation

sequencing under a dynamic environment with unpredicted

events such as new job arrivals [6], [7] and machine breakdown

[8], [9]. DFJSS is an NP-hard problem [10] and cannot be

solved efficiently with exact optimisation methods such as

dynamic programming [11] and integer linear programming

[12]. Approximate solution optimisation methods such as sim-

ulated annealing [13], tabu search [14], genetic algorithm [15],

and particle swarm optimisation [16], [17], which aim to

find a near-optimal solution have been applied for static JSS

and FJSS. However, they cannot effectively handle dynamic

environment, which requires real-time response. Scheduling

heuristics such as priority-based dispatching rules [18], are

the most popularly used heuristics for DFJSS. Scheduling

heuristics are used to make real-time decisions based on the

priority values of machines or operations at the decision points.

A scheduling heuristic in DFJSS consists of a routing rule

for machine assignment and a sequencing rule for operation

sequencing [3]. There are some advantages of using scheduling

heuristics. First, scheduling heuristics can make decisions in

real-time, thus can handle dynamic problems well. Second, the

scheduling heuristics can be implemented to real-world appli-

cations easily. Last but not least, domain knowledge can be

easily incorporated with priority-based scheduling heuristics.

However, it is hard to manually design effective rules due to

the complexity of the investigated job shop environment.

Genetic programming (GP), as a hyper-heuristic (GPHH)

method, has been successfully applied to automatically evolve

scheduling heuristics for JSS, including FJSS and DFJSS [7],

[19], [20], [21]. Except for scheduling heuristics, to the best of

our knowledge, there are no other strategies in typical GPHH

related to handling the dynamic features of the problems. A

GP individual is a priority function, typically represented as a

tree. GP evolves a population of such trees using a terminal

set (i.e., the leaf nodes, reflecting the features of the job shop

state) and a function set (i.e., non-leaf nodes, indicating the

operations to combine the features in the priority function).

The terminal set is a critical factor in the success of GPHH

[3]. A compact terminal set can improve the effectiveness of

GPHH. In DFJSS, a wide range of features about the job

shop state (e.g., the processing time of each operation and the

idle time of each machine) can be considered as terminals.

However, the importance of a feature depends on job shop

scenarios and objectives to be optimised. In practice, it is

2

usually unknown which features are useful, which are not

and which are more important than others. Therefore, existing

studies typically place all the possible job shop features in

the terminal set. As a result, the evolved rules tend to have a

large number of different features, making it hard to interpret

the rules [22]. Besides, a large terminal set with redundant

or unrelated features leads to exponentially large and noisy

search space, and negatively affects the capability of GP in

searching the solution space.

To address the above issues, this paper proposes to use fea-

ture selection in GPHH for DFJSS. Feature selection [23] has

been successfully used for different tasks such as classification

[24], [25], [26], clustering [27], and regression [28]. It is noted

that feature selection can not only reduce the search space of

GP but also potentially improve the interpretability of evolved

scheduling heuristics in DFJSS. The fewer features involved

in scheduling heuristics, the easier it is to interpret the rules,

as there are potentially fewer and hopeful less complicated

relationships between the features. The frequency of terminals

has been widely considered in feature selection based on

the assumption that GP can automatically perform feature

selection [29]. However, the embedded feature selection ability

in GP is limited. The redundant branches in GP are likely to

mislead the accuracy of feature selection, which can weaken

the ability of problem-solving, such as the classification accu-

racy in the classification problems [29].

To the best of our knowledge, little is yet known about using

feature selection in the variations of JSS. Feature selection

based on the frequency of terminals was introduced to help

GP to evolve dispatching rules for dynamic JSS in [30]. A

novel feature importance measure instead of frequency was

firstly introduced in [31] to select features for the dynamic

JSS problem. Then, an efficient feature selection was proposed

in [32] based on the feature importance measure in [31].

However, these approaches are only related to dynamic JSS.

The feature selection technique was firstly used for DFJSS

in [33]. In [33], a GPHH approach with feature selection

was proposed for DFJSS, which involves two feature sets.

However, the main drawback in [33] is that the selected

features are only used to guide the behaviour of GP by

mutation operator. It does not change the evolution sufficiently,

which greatly limits the influence of the feature selection. This

points to an important question how to apply the selected

features effectively after obtaining a great feature set. It is

still an important but an unexplored research topic in DFJSS.

The feature selection in GPHH for DFJSS is different from

and more challenging than the traditional machine learning

tasks, as the data is not available and the data should be

generated before applying feature selection. The current state-

of-the-art feature selection approach [32] used a short GP pro-

cess with surrogate and niching techniques to evolve a diverse

set of good GP individuals as the data for feature selection.

Then the features were selected based on their importance to

these individuals. There are two types of information obtained

from the feature selection process. The first is the selected

features, and the second is the promising individuals found

during the feature selection process (i.e., the final population

in this study). Most existing algorithms [34], [35] only use the

first one and re-initialise the population using selected features.

To improve effectiveness, this paper proposes novel algorithms

to employ both types of information. Specifically, individual

adaptation strategies are proposed to utilise the information of

the selected features and examined individuals.

The overall goal of this paper is to develop an effective

feature selection approach with novel individual adaptation

strategies via genetic programming to automatically evolve

more interpretable routing and sequencing rules simultane-

ously for DFJSS efficiently. The proposed algorithms are

expected to help GPHH find more interpretable rules only

with selected features without sacrificing the performance.

Specifically, this work has the following research objectives:

1) Develop a new two-stage GPHH framework to utilise

the information of both the selected features and the ex-

amined individuals during the feature selection process.

2) Propose novel individual adaptation strategies that in-

herit the information of the examined individuals during

the feature selection.

3) Analyse how the proposed algorithms influence the

effectiveness and interpretability of the evolved rules.

4) Analyse how the proposed individual adaptation strate-

gies influence the efficiency of the proposed algorithms.

II. BACKGROUND

A. Dynamic Flexible Job Shop Scheduling

In FJSS problem, n jobs J = {J1, J2, ..., Jn} need to be

processed by m machines M = {M1,M2, ...,Mm}. Each job

Jj has an arrival time at(Ji) and a sequence of operations

Oj = (Oj1, Oj2, ..., Oji). Each operation Oji can only be

processed by one of its optional machines π(Oji) and its

processing time δ(Oji) depends on the machine that processes

it. It indicates that there are two decisions which are routing

decision and sequencing decision in FJSS. In DFJSS, not only

the two decisions need to be made simultaneously, but also the

dynamic events are necessary to be taken into account when

making schedules. This paper focuses on one dynamic event

(i.e., continuously arriving new jobs). That is, the information

of a job is unknown until its arrival time.

B. Genetic Programming Hyper-heuristics for JSS

A hyper-heuristic [36] is a heuristic search method that

seeks to select or generate heuristics to efficiently solve

hard computational search problems. The unique characteristic

is that hyper-heuristic works on heuristic space rather than

solution space. GPHH [37] has been successfully applied

to evolve informative scheduling heuristics for combinational

optimisation problems such as packing [38], timetabling [39],

[40], arc routing [41], and dynamic JSS [42], [43], [44], [45].

At the beginning, a population of individuals with a size of

popsize are randomly initialised. In GP, the fitness of the ith

individual fitnessindi
is evaluated as follows. First, a simula-

tion (training instance) is run with the individual indi to obtain

the schedule Si. Then, the fitness of the individual is assigned

as the objective value (e.g., max-flowtime, mean-flowtime, and

mean-weighted-flowtime) of the obtained schedule Obj(Si).

3

/

+ z

x y

Fig. 1. An example of a GP individual with three features (e.g., x, y and z)
and two arithmetic operators (e.g., + and /).

GP can automatically generate computer programs to solve

problems without rich domain knowledge. An example of a

GP individual [46] with three features (e.g., x, y and z) and two

arithmetic operators (e.g., + and /) can be found in Fig. 1. The

corresponding scheduling heuristic of this individual is x+y
z

,

and it will be used to prioritise the candidates, either machines

or operations. There are some advantages of using GPHH for

JSS, including DFJSS. One is its flexible representation. The

structures of rules are not necessary to be designed in advance.

The other is that the tree-based programs obtained by GP

provide us opportunities to understand the behaviour of the

rules, which is important for real-world applications.

C. Feature Selection

The performance of GP heavily relies on a proper selection

of the terminal set [3]. In the terminal set, features (terminals)

are not equally important. Besides, some features may be

irrelevant, redundant or noisy, and the original features are

typically not informative enough. All of these factors may

lead to various performance limitations. Feature selection is

an effective process for selecting a subset of relevant and

complementary features [26], [47]. Feature selection algo-

rithms are generally classified into three categories [26]: filter

approaches, wrapper approaches, and embedded approaches.

However, there are some challenges which make traditional

feature selection methods not directly applicable in DFJSS.

First, the task (i.e., prioritising operations or machines) in

DFJSS and the training instance are different from the tradi-

tional machine learning tasks. The training data are generated

with the simulation execution in DFJSS while the training

data already exist in the traditional machine learning tasks.

In this case, filter approaches can not be applied since it is

impossible to measure the importance of each feature based on

filter measures such as entropy [48] and Pearson’s correlation

[49]. Second, it is much more computationally expensive if

applying wrapper classifier in DFJSS than that of in traditional

machine tasks. Specifically, running a GP process to obtain a

reliable estimation of the best objective value of a terminal

set is much slower than training a classifier (e.g., decision

tree) in traditional machine tasks. Besides, in most embedded

approaches, GP can handle both the feature selection and the

regression [28], [50] or classification [51] tasks. However, they

are the supervised problems, and feature selection is rarely

used in the variations of JSS.

This paper extends the feature selection framework in [33]

to only use selected features to evolve rules for DFJSS.

In addition, this paper proposes novel individual adaptation

strategies to help GPHH explore more interpretable rules only

with selected features without losing the qualities of the rules.

III. THE PROPOSED ALGORITHM

This section describes the proposed two-stage GP algorithm

for DFJSS. The framework of the proposed algorithm is first

illustrated, followed by the details of its key components.

A. Two-stage Framework

To utilise the information of both the selected features and

investigated individuals during the feature selection process,

this paper proposes a two-stage GP with feature selection and

individual adaptation strategies. We introduce the framework

in [6] with two subpopulations to evolve routing and sequenc-

ing rules simultaneously with the cooperation coevolutionary

strategy for DFJSS. Thus, we can get two selected feature sub-

sets, one for the routing rule, and the other for the sequencing

rule. They are to measure the characteristics of the routing and

sequencing rules, respectively. The flowchart of the two-stage

framework is shown in Fig. 2. In stage 1, the conventional

evaluation, selection and evolutionary operators are used. In

stage 2, the initialisation and mutation are different. The

initialisation adapts the final population of stage 1 as part of

the initial population, and randomly generates the remaining

individuals using the selected features. The mutation operator

generates random sub-trees using the selected features only.

When using the feature selection method proposed in [32],

a diverse set of good individuals are required to achieve high

accuracy of the feature selection. The reason is that the good

individuals in GP can be repeated, choosing all of them may

be biased to specific features. Stage 1 is designed to obtain

a population with such individuals for feature selection. The

output of stage 1 is an informative population. After stage 1

is completed, feature selection is conducted based on the final

population obtained in stage 1.

Stage 2 is developed for making use of the information

(i.e., final population and selected features) obtained in stage

1 to evolve more effective and interpretable rules. This paper

develops a number of novel individual adaptation strategies

to initialise the population in stage 2 that consists only of

the selected features without deteriorating the performance

much. It is noted that the selected features will be used in

two situations in stage 2. One is to generate new individuals

for building a new population during the initialisation process

by the ramped half-and-half method. The other is to generate

a new sub-tree by the grow method with only the selected

features as the terminals to replace a selected subtree of a

parent by mutation. Readers interested in the genetic operators

of GP can refer to [46].

B. Stage 1

Extra feature selection process will make the approach more

computationally expensive because more individual evalua-

tions are needed. To reduce extra computing costs, a niching

based and surrogate assisted method was proposed for feature

selection in [32]. Simply speaking, niching technique main-

tains the diversity of individuals by building different niches

and controlling the number of individuals in each niche. The

method aims to get a diverse set of good individuals quickly

4

Initialisation

Stage 1 Stop?

Population Evaluation

with Niching and

Surrogate

Selection

Reproduction

Crossover

Mutation

Evolution

Feature Selection

Evaluation

Final Population

Reservation

Routing

Feature Set

Sequencing

Feature Set

Stage 2 Stop?

Selection

Reproduction

Crossover

Mutation

Evolution

Initialisation with

Individual Adaptation

End
YesNo Yes No

Stage 1 Stage 2

Fig. 2. The flowchart of two-stage genetic programming with feature selection
and individual adaptation strategies (i.e., the reddish font parts are the main
steps of the proposed algorithm).

for feature selection with surrogates, which is a simplified

version of the original problem by only reducing the number

of jobs. The surrogate technique was designed based on the

assumption that the knowledge of solving simpler or auxiliary

problems can be transferred to the original problems [52]. This

paper applies the idea but explores it to the dynamic flexible

JSS. The process is designed as stage 1 to get a diverse set

of good individuals in this paper. In the original simulation,

there are 5000 jobs and 10 machines. In the surrogate model,

we shorten the simulation to 500 jobs and 5 machines.

C. Feature Selection

This paper applies the feature selection idea in [32]. There

are three main steps in this feature selection method. First,

top ten individuals in the population based on fitness values

are selected as a diverse set of good individuals baseInds.

Second, the importance of each feature is measured according

to its contributions to the fitness of the individuals in baseInds
and an individual in baseInds will vote for a feature if the

feature has contributions to it. Finally, if a feature can get

more than half of the votes, the feature will be selected. The

pseudo-code of feature selection is shown in Algorithm 1.

The Importance of Features. The importance of a feature

f is measured by its contributions to a set of individuals

baseInds (from line 4 to line 11). To calculate the contribution

of a feature f to an individual r (i.e., denoted by Cr
f), the

feature f is first replaced with the constant of one, then the

contribution is calculated as the difference between the fitness

before and after the replacement, as shown in Eq. (1).

Cr
f = fitness(r|f = 1)− fitness(r) (1)

This paper is seeking to minimise the objective value. If Cf >
0, it means the fitness becomes worse without the measured

feature, and the measured feature is an important feature. Thus,

the measured feature can get one vote from the individual r.

Fig. 3 shows an example of a GP individual r with three

features (x, y, and z). To examine the importance of feature x,

x is firstly be replaced with 1, and the contribution of feature

x is defined as Cr
x = fitness(r|x = 1)− fitness(r).

Algorithm 1: Feature selection

1: Input : A diverse set of good individuals (baseInds) from stage 1
Output: The selected features F

2: set F ← {}
3: for i = 1 to |features| do

4: votefi ← 0 // the number of votes for feature fi
5: for j = 1 to |baseInds| do

6: Calculate the contribution Cfi of feature fi
7: ind ← baseIndsj
8: if Cind

fi
> 0 then

9: votefi ← votefi +1
10: end

11: end

12: if votefi > 0.5 ∗ |baseInds| then

13: T ← T ∪ fi
14: end

15: end

16: return F

/

+ z

x y

/

+ z

1 y

r|x=1r

Fig. 3. An example of how to examine the contribution (denoted as Cx) of
a feature x for an individual r.

Feature Selection Decision. This paper makes two exten-

sions of the feature selection method in [32] to fit the DFJSS

problems. First, two sets of individuals obtained from two sub-

populations for evolving routing rules and sequencing rules are

selected, respectively. Second, the feature selection method is

applied for selecting the routing feature set and the sequencing

feature set based on the two sets of individuals, respectively.

Feature f is selected if it makes positive contributions to at

least 50% of the selected individuals baseInds (from line 12

to line 14).

D. Stage 2

Another important task is to inherit the information of the

promising individuals in the final population of stage 1 while

removing the unselected features in stage 2. To this end, we

propose two strategies to adapt the individuals in the final

population of stage 1 to stage 2. The idea is to generate

new individuals with only the selected features but still have

the same or similar behaviour with the promising individuals

obtained in stage 1.

The first individual adaptation strategy is to simply replace

each unselected feature with a constant of one. This can com-

pletely remove the unselected features from the individuals,

while still keeping their structures as much as possible. If a

feature is not selected, it is expected to have little contribution

to a majority of individuals, and thus replacing them by one

would not change the fitness much. A potential drawback is

that the average quality of individuals in the first generation of

stage 2 might not be as well as the last generation of stage 1.

One reason is that the unselected features might still have some

contributions to the quality of the individuals slightly. Another

reason is that replacing a number of unselected features in an

5

New individual
Promising individual

Phenotypic characterisation in decision situation 1

P
h

e
n

o
ty

p
ic

 c
h

a
ra

c
te

ri
sa

ti
o

n

 i
n

 d
e
c
is

io
n

 s
it

u
a

ti
o

n
 2

Fig. 4. The process of mimicking individuals by generating new individuals
only with selected features.

individual by one will change the structure of an individual

a lot, which is more likely to change the behaviour of the

individual in certain ways.

The second individual adaptation strategy is based on the

idea of “mimicking”. Specifically, it randomly generates a

large number of individuals with only the selected features.

For each promising individual in the final population of stage

1, it is replaced by the randomly generated individual that

has the closest behaviour with it. The behaviour is defined

as the phenotypic characterisation [53], which is a numeric

vector. Since the calculation of phenotypic characterisation is

much cheaper than a full fitness evaluation, it is affordable to

generate a large number of individuals for mimicking.

Fig. 4 shows an example of the process of mimick-

ing individuals, where the phenotypic characterisation is 2-

dimensional. Two decision situations are used to generate the

phenotypic characterisation. A decision situation is when a

rule is to make a decision (e.g., a machine becomes idle or an

operation becomes ready). Briefly speaking, the phenotypic

characterisation of a decision is defined as the rank of the

machine or operation selected by an individual in the sorted list

of the benchmark rules (e.g., SPT (shortest processing time)

for sequencing decisions, and WIQ (work in the queue) for

routing decisions). Interested readers to phenotypic character-

isation can find more details in [53]. The stars indicate the

promising individuals in stage 1 that need to be mimicked. A

large number of new individuals (i.e., denoted as circles) are

generated only with the selected features. The new individuals

which are closest to the mimicked individuals will be chosen

to replace the promising stage 1 individuals.

It is noted that it is not always possible to find individuals

with the same behaviour (i.e., the distance between two

individuals equals zero). The new individuals that have the

most similar behaviours with promising individuals so far will

be saved to the new population. For the rest of the elements

(individuals) in the new population which are still empty will

be randomly initialised with selected features. Finally, a new

population only with the selected features is obtained.

It is noted that it is not meaningful to adapt all the individ-

uals obtained from stage 1. Only the “promising” individuals

Fig. 5. The selected promising individuals based on knee-point.

are adapted in this paper. If the number of adapted individuals

is too small, there will be too many randomly generated

individuals, and the performance will be close to purely re-

initialisation. If it is too large, it will bring some noise, and

increase the training time.

This paper identifies the promising individuals using the

knee point, which is a parameter-free approach. The knee point

can be used as a demarcation point. The individuals whose

fitnesses are smaller (i.e., minimising problem) than that of

knee point are selected as promising individuals. An example

can be found in Fig. 5. First, the individuals in the population

are sorted based on fitness values in ascending order, and a

curve related to fitness values is obtained. Second, a line is

generated by connecting the points with the smallest and the

largest fitness value. Then, the distance between each point

on the curve and the line is calculated. The point that has the

largest distance to the line is selected as the knee point, and

the individuals whose fitness value is smaller than that of the

knee point are selected to be adapted. Note that if there is

more than one knee point, the knee point that has the largest

distance to the generated line will be selected.

IV. EXPERIMENT DESIGN

To investigate the effectiveness (the objective value on test

instance), efficiency (the training time) in different scenarios of

proposed individual adaptation strategies, a set of experiments

have been designed.

A. Simulation Model

Simulation is an effective method to investigate complex

problems [54]. The simulated environment in this paper is used

as an experimental model to study factors affecting DFJSS.

This paper assumes that there are 5000 jobs that need to

be processed by ten machines in our simulation. For DFJSS

simulation, new jobs will arrive over time according to a

Poisson process with rate λ. Each job has a different number of

operations that are randomly generated by a uniform discrete

distribution between one and ten. In addition, the importance

of jobs might be different, which are indicated by weights. The

weights of 20%, 60%, and 20% of jobs are set as one, two,

6

TABLE I
THE TERMINAL SET.

Notation Description

NIQ The number of operations in the queue
WIQ Current work in the queue
MWT Waiting time of a machine

PT Processing time of an operation on a specified machine
NPT Median processing time for the next operation
OWT The waiting time of an operation
WKR Median amount of work remaining for a job
NOR The number of operations remaining for a job

W Weight of a job
TIS Time in system

and four, respectively. The processing time of each operation

is assigned by uniform discrete distribution with the range

[1,99]. The number of candidate machines for an operation

follows a uniform discrete distribution between one and ten.

Utilisation level (p) is an essential factor to simulate differ-

ent scenario environments. The bigger the utilisation level, the

busier the job shop. To make sure the accuracy of collected

data, warm-up jobs (first 1000 jobs) are used to get typical

situations occurring in a long-term simulation of a dynamic

job shop system and jobs arrive as a continuous arrival

process. This paper collects data from the next 5000 jobs.

The simulation stops when the 6000th jobs is finished.

B. Parameter Setting

In our experiment, the terminal set of GP is shown in

Table I. The terminals are set as the features that indicate

the characteristics related to machines (e.g., NIQ, WIQ, and

MWT), operations (e.g., PT, NPT, and OWT), and jobs (e.g.,

WKR, NOR, W, and TIS). The function set is {+, −, ∗, /,

max, min}, following the setting in [31], [55]. The arithmetic

operators take two arguments. The “/” operator is protected

division, returning one if divided by zero. The max and min
functions take two arguments and return the maximum and

minimum of their arguments, respectively. The other parameter

settings of GP are shown in Table II.

C. Comparison Design

Five algorithms are taken into comparison in this paper.

The cooperative coevolution genetic programming (CCGP)

[6] (i.e., without feature selection and individual adaptation

strategies) is selected as the baseline algorithm. The algorithm

that was proposed in [33] (CCGP2) is also compared. CCGP2

only applies the selected features in stage 2 by mutation, and it

is used to verify whether mutation operator will affect the per-

formance. The proposed algorithms which incorporate with in-

dividual adaptation strategies are named as CCGP2a(mimic)
(i.e., mimicking the behaviour of promising individuals) and

CCGP2a(rep) (i.e., replacing the unselected features by one

directly). To verify the effectiveness of CCGP2a(mimic) and

CCGP2a(rep), the algorithm (i.e., named as CCGP2a(rand))
that generates new population in stage 2 by randomly initial-

ising all individuals is also compared. This is because using

the selected features to re-initialise the new population in

stage 2 randomly is the most straightforward way to eliminate

unselected features intuitively.

TABLE II
THE PARAMETER SETTING OF GP.

Parameter Value

Number of subpopulations 2
Subpopulation size 512

Method for initialising population ramped-half-and-half
Initial minimum/maximum depth 2 / 6

maximal depth of programs 8
Crossover/Mutation/Reproduction rate 80% / 15% / 5%

Parent selection Tournament selection
with size 7

Number of generations in stage 1 and stage 2 50 / 50
Terminal/non-terminal selection rate 10% / 90%

D. The Measurement for Comparision

In order to verify the effectiveness and efficiency, the

proposed algorithms are tested on six different scenarios. The

scenarios consist of three objectives (e.g., max flowtime, mean

flowtime, and mean weighted flowtime) and two utilisation

levels (e.g., 0.85 and 0.95). For the sake of convenience,

Fmax, Fmean, and WFmean stand for the max flowtime,

mean flowtime, and mean weighted flowtime, respectively. The

objective functions are shown as follows.

• Minimisation Fmax = max{C1, Ci, ..., Cn}

• Minimisation Fmean =
∑

n

i=1
{Ci−ri}

n

• Minimisation WFmean =
∑

n

i=1
wi∗{Ci−ri}

n

where Ci is the completion time of job Ji, ri is the release

time of Ji, and wi is the weight of Ji.
The evolved rule is tested on 50 different test instances

and the average objective value across the 50 test instances

is reported as the test performance of a rule, which can be a

good approximation of the true performance of the rule.

V. RESULTS AND DISCUSSIONS

Wilcoxon signed-rank test with a significance level of 0.05

is used to verify the performance of proposed algorithms.

In the following results, “-”, “+”, and “=” indicate the

corresponding result is significantly better than, worse than

or similar with its counterpart. To be specific, CCGP2 is

compared with CCGP while CCGP2a(rand), CCGP2a(rep),
and CCGP2a(mimic) are compared with CCGP2. It is worth

mentioning that this paper does not focus on the improvement

of effectiveness but on the improvement of achieving more

interpretable rules with fewer unique features and smaller size

without losing the effectiveness.

A. Performance of Evolved Rules

Table III shows the mean and standard deviation of in-

volved five algorithms according to 30 independent runs in

six dynamic flexible scenarios. CCGP2 which only makes

use of selected features by mutation operator achieves similar

performance with CCGP. One possible reason is that the GP

itself can detect important features automatically. The other is

that there is not much difference when only applying selected

features by mutation with a small rate. However, the drawback

is that the evolved rules by CCGP2 still contain unselected

7

TABLE III
THE MEAN (STANDARD DEVIATION) OF THE OBJECTIVE VALUE OF THE FIVE ALGORITHMS OVER 30 INDEPENDENT RUNS FOR SIX DYNAMIC SCENARIOS.

Scenario CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

<Fmax,0.85> 1223.83(41.78) 1225.41(43.51)(=) 1314.87(121.35)(+) 1237.53(81.28)(=) 1238.34(99.27)(=)
<Fmax,0.95> 1959.24(46.63) 1998.09(115.26)(=) 2054.56(204.36)(+) 2032.85(145.16)(=) 2034.08(153.61)(=)
<Fmean,0.85> 385.42(2.65) 384.77(1.32)(=) 387.34(2.23)(=) 385.07(1.24)(=) 385.14(1.87)(=)
<Fmean,0.95> 553.65(7.89) 552.88(6.78)(=) 559.21(8.21)(+) 553.07(6.31)(=) 551.20(6.11)(=)
<WFmean,0.85> 830.74(6.89) 829.58(5.56)(=) 833.02(6.15)(+) 830.11(5.42)(=) 831.51(6.52)(=)
<WFmean,0.95> 1109.89(13.07) 1110.86(12.01)(=) 1112.35(12.91)(=) 1109.58(7.96)(=) 1112.94(14.62)(=)

features. It does not make it easier to interpret the rules since

more features are still involved in the rules.

The performance of CCGP2a(rand) is significantly worse

than that of CCGP in most scenarios. One reason might be that

a completely new population which has worse performance

(i.e., a new start), is generated for stage 2. It is hard to achieve

good performance compared with CCGP (i.e., actually evolved

by 100 generations). CCGP2a(mimic) and CCGP2a(rep)
(i.e., only with selected features) can achieve similar perfor-

mance with CCGP2 in most scenarios. It indicates that the

proposed adaptation strategies are effective to take advantage

of the population information from stage 1.

It is noted that all the algorithms have larger vari-

ances in scenario <Fmax,0.85> and <Fmax,0.95>, espe-

cially the algorithms with feature selection (e.g., CCGP2,

CCGP2a(rand), CCGP2a(rep), and CCGP2a(mimic)). One

possible reason is that max flowtime is more sensitive to the

worst case of processing jobs than mean flowtime. The other

is that the selected features might be not that good for all the

problems which will lead to some outliers.

Fig. 6 shows the convergence curves of the average

objective value on unseen instances of CCGP, CCGP2,

CCGP2a(rand), CCGP2a(rep), and CCGP2a(mimic) ac-

cording to 30 independent runs in different scenarios. In all

scenarios, CCGP2a(mimic), and CCGP2a(rep) can mimic

the behaviours well (i.e., shown at generation 50) that the per-

formance does not decrease too much. CCGP2a(mimic) can

achieve almost the same performance in <Fmax,0.95> in the

following several generations of generation 50 compared with

CCGP2. Compared with CCGP2a(mimic), CCGP2a(rep)
even can get almost the same performance with CCGP2

in all scenarios. This means that CCGP2a(rep) has a more

promising inheritance ability.

In general, the effectivenesses of CCGP2a(mimic) and

CCGP2a(rep) are better than that of CCGP2a(rand). Both

CCGP2a(mimic) and CCGP2a(rep) can inherit the individ-

uals’ information well from stage 1 to stage 2.

B. Rule Size Analysis

The rule size is defined as the number of nodes in this

paper, and the rule with a smaller size is preferred. There are a

number of advantages of evolving smaller rules. First, smaller

rules can save the training time. Second, smaller rules tend

to be more interpretable by decision makers, particularly the

floor operators of the job shop. Third, smaller rules are more

acceptable by decision makers than larger rules due to the less

complexities. Last but not the least, smaller rules are easier to

Fig. 6. The curves of average objective value on test instances of the five
algorithms according to 30 independent runs in different scenarios.

implement to real-world applications, which are more efficient

to make real-time decisions with dynamic events compared

with larger rules.

Fig. 7 and Fig. 8 show the curves of the sizes (i.e., the

mean value of 30 independent runs at each generation) of

routing rules and sequencing rules. Both for routing rules

and sequencing rules, the rule sizes of CCGP2a(mimic) and

CCGP2a(rand) decrease dramatically at the beginning of

stage 2 due to the individual adaptation strategies, especially

the routing rules. It is noted that the size of the routing

rules of CCGP2a(rep) is not that small compared with

CCGP2a(mimic) and CCGP2a(rand). This is because the

structures of the large rules are still kept.

The size of the best routing rules obtained by

CCGP2a(mimic) is smaller than that of other algorithms

in most scenarios (e.g., <Fmax,0.85>, <Fmean,0.85>,

<Fmean,0.95>, <WFmean,0.85>, and <WFmean,0.95>).

However, the size of the best routing rules of CCGP2a(mimic)
is similar with that of other algorithms in <Fmax,0.95>. This

may be because Fmax with a higher utilisation level (i.e.,

0.95) is more difficult to be optimised due to its sensitiveness

to the worst case (i.e., the longest finished time among all

8

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●
● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ●

●
● ●

●

●
●

● ●
●

●
● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

● ●
●

●

● ●

●

●

●

●

●
●

●

●

● ●

● ●
● ●

● ●
●

●
●

●

● ●
●

●

● ●

●
●

● ●●

●

●

●

● ●
● ● ● ●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

● ●
●

● ● ●

● ●

●

●

●
●

●

● ●

● ●

● ● ●
●

● ●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

● ●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
● ●

● ●
●

●

●
●

●

●

●

●

●

● ●

●
●

● ●

●

●

●
●

●

●
●

●

●
●

● ●
●

●
● ● ●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

● ● ●

●

●
●

●

●

●

● ●

●
●

● ●

●

●

●

●
●

● ●

●
●

● ●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

● ● ● ●
● ● ●

●

● ●

● ●

●

●

●

●

●
● ● ●

● ● ●

●

●

●
● ●

●
● ●

● ●
●

●
● ● ●

●

●
●

●

●

●

●
●

●

●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

20

30

40

50

60

70

20

30

40

50

60

70

20

40

60

20

30

40

50

60

70

30

40

50

60

70

20

30

40

50

60

70

Generation

S
iz

e
 o

f
R

o
u

ti
n

g
 R

u
le

● CCGP CCGP
2 CCGP

2a(rand) CCGP
2a(rep) CCGP

2a(mimic)

Fig. 7. The curves of the best routing rule sizes of the population of the five
algorithms according to 30 independent runs in different scenarios.

TABLE IV
THE MEAN (STANDARD DEVIATION) OF THE RULE SIZES OBTAINED BY

CCGP, CCGP2 AND CCGP2a(mimic) OVER 30 INDEPENDENT RUNS

FOR SIX DYNAMIC FLEXIBLE SCENARIOS.

Scenario CCGP CCGP2 CCGP2a(mimic)

<Fmax,0.85> 122.07(30.60) 123.80(26.72) 112.60(25.75)
<Fmax,0.95> 117.27(25.22) 117.27(28.72) 112.27(31.38)
<Fmean,0.85> 115.73(24.91) 125.07(18.18) 108.93(26.32)
<Fmean,0.95> 121.27(17.60) 118.53(28.08) 110.47(22.31)
<WFmean,0.85> 116.87(23.88) 115.67(26.53) 115.73(26.31)
<WFmean,0.95> 127.40(24.40) 125.67(23.84) 121.47(22.80)

jobs). Compared with the curves of the sizes of sequencing

rules, the proposed individual adaptation strategies have a

great impact on the size of routing rules. The sizes of the best

sequencing rules obtained by CCGP2a(mimic) is similar

with that of other algorithms.

Note that routing rule and sequencing rule work together in

DFJSS. It makes sense to take a routing rule and a sequencing

rule as a pair to measure the rule size. This is because a

smaller routing rule and a larger sequencing can have the

same ability for DFJSS compared with a larger routing rule

and a smaller sequencing rule based on our observation.

Based on the analyses as mentioned easier, it turns out that

CCGP2a(mimic) can achieve similar performance with small

rule size. The rule sizes of only three algorithms (e.g., CCGP,

CCGP2, and CCGP2a(mimic)) are further compared.

Table IV shows the mean and standard deviation of the

rule sizes (i.e., routing rule plus sequencing rule) evolved

by CCGP, CCGP2, and CCGP2a(mimic) according to 30

independent runs. It shows that the rule sizes obtained by

these three algorithms are similar. The main difference of the

evolved rules is that the rules evolved by CCGP2a(mimic))

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●
● ●

●
●

●

●

●
● ● ●● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

● ● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

● ●

●

●
●

● ●

●

●

● ●

●

● ●

●

●

●

●

● ●
●

●
● ●

●

●

● ● ●

●

●

●

●

● ● ● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

● ●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

●

●
●

● ●

●

●
● ●

●

●
●

●

●
●

●
●

●

●
●

● ● ●

●

●

●
●

●

●

● ●

●
●

●
●

●

● ●

●

●
●

●
●

● ●
●

● ● ●

●
●

● ●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
● ●

●
● ●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

● ●●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
● ● ●

●

●

●
●

● ● ●
●

●

●
●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

● ●

●

●
●

●

●

●

● ●
●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

● ●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

● ● ●

●
●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

● ●

● ●

●

●

●

●

●
●

●
●

●
● ●

●

●

●
● ●

●
● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
● ●

●

●

●
●

● ●

●

●

●

●

●
● ●

●
● ●

●
●

● ●
●

● ●

● ● ●

● ●
●

●

●
● ● ●

●

●
● ●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

20

30

40

50

10

20

30

40

50

10

20

30

40

50

60

20

30

40

50

60

20

30

40

50

20

40

60

Generation

S
iz

e
 o

f
S

e
q

u
e

n
c

in
g

 R
u

le

● CCGP CCGP
2 CCGP

2a(rand) CCGP
2a(rep) CCGP

2a(mimic)

Fig. 8. The curves of the best sequencing rule sizes of the population of the
five algorithms according to 30 independent runs in different scenarios.

only contain selected features (i.e., fewer features) while the

rules evolved by CCGP and CCGP2 consist of all features

possibly. The rule sizes are further studied in next subsection.

C. Unique Feature Analysis

The number of unique features in the rules is one of the

indicators of the complexity of evolved rules. The unique

feature means the feature that is needed to construct the rules.

The smaller the number, the easier to interpret the rules.

Table V shows the mean (standard deviation) of the number

of unique features in routing rules in different scenarios. There

is no statistical difference between CCGP and CCGP2 related

to the number of unique features in routing rules in all scenar-

ios. This means that applying selected features only to muta-

tion is not an effective way for improving the interpretability of

evolved routing rules. In addition, no matter what kind of indi-

vidual adaptation strategy is used (i.e., CCGP2a(mimic) with

mimicking behaviour strategy, CCGP2a(rep) with replacing

by one strategy and CCGP2a(rand) with 100% randomly ini-

tialisation strategy), the number of unique features in routing

rules are significantly smaller than its counterpart.

Table VI shows the mean (standard deviation) of the number

of unique features in sequencing rules in different scenarios.

For all the algorithms (e.g., CCGP2a(mimic), CCGP2a(rep),
CCGP2a(rand), and CCGP2) that involve feature selection,

the number of unique features in sequencing rules is signifi-

cantly smaller in all scenarios, especially the individual adap-

tation strategies related algorithms (e.g., CCGP2a(mimic),
CCGP2a(rep), and CCGP2a(rand)).

Assuming that the rules evolved by CCGP2a(mimic)) with

fewer features are easier to be simplified by the algebraic

9

TABLE V
THE MEAN (STANDARD DEVIATION) OF THE AVERAGE NUMBER OF UNIQUE FEATURES OF ROUTING RULES OBTAINED BY THE FIVE ALGORITHMS

OVER 30 INDEPENDENT RUNS FOR SIX DYNAMIC FLEXIBLE SCENARIOS.

Scenario CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

<Fmax,0.85> 8.40(1.33) 7.80(1.47) 6.27(1.68)(-) 6.57(1.74)(-) 6.67(1.81)(-)
<Fmax,0.95> 8.67(0.92) 8.37(1.33) 6.73(1.72)(-) 6.83(1.64)(-) 6.70(1.66)(-)
<Fmean,0.85> 8.03(1.03) 7.67(1.03) 5.70(1.62)(-) 5.83(1.46)(-) 5.63(1.52)(-)
<Fmean,0.95> 8.40(1.10) 7.87(1.14) 5.57(1.33)(-) 5.73(1.53)(-) 5.83(1.56)(-)
<WFmean,0.85> 8.27(1.23) 7.93(1.23) 5.60(1.63)(-) 6.17(2.09)(-) 5.70(1.99)(-)
<WFmean,0.95> 8.20(1.13) 7.50(1.57) 5.70(1.47)(-) 5.90(1.73)(-) 5.70(1.99)(-)

TABLE VI
THE MEAN (STANDARD DEVIATION) OF THE AVERAGE NUMBER OF UNIQUE FEATURES OF SEQUENCING RULES OBTAINED BY THE FIVE ALGORITHMS

OVER 30 INDEPENDENT RUNS FOR SIX DYNAMIC FLEXIBLE SCENARIOS.

Scenario CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

<Fmax,0.85> 7.13(1.59) 6.53(1.14)(-) 5.23(1.41)(-) 5.00(1.20)(-) 5.20(1.27)(-)
<Fmax,0.95> 7.40(1.57) 6.53(1.41)(-) 4.97(1.25)(-) 5.03(1.27)(-) 5.17(1.39)(-)
<Fmean,0.85> 6.57(2.10) 5.47(1.36)(-) 3.53(1.07)(-) 3.40(1.00)(-) 3.70(1.06)(-)
<Fmean,0.95> 6.90(1.60) 6.03(1.43)(-) 4.00(1.23)(-) 3.97(1.19)(-) 3.70(0.99)(-)
<WFmean,0.85> 6.53(1.59) 5.17(1.05)(-) 4.00(0.79)(-) 3.93(0.69)(-) 4.00(0.79)(-)
<WFmean,0.95> 6.80(1.52) 5.70(1.47)(-) 4.33(0.92)(-) 4.17(0.95)(-) 4.27(0.87)(-)

TABLE VII
THE MEAN(STANDARD DEVIATION) OF TRAINING TIME (MINUTES) BY THE FIVE ALGORITHMS IN SIX DYNAMIC FLEXIBLE SCENARIOS.

Scenario CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

<Fmax,0.85> 100(17) 96(14)(=) 80(15)(-) 83(13)(-) 75(10)(-)
<Fmax,0.95> 107(15) 111(20)(=) 88(13)(-) 92(15)(-) 88(12)(-)
<Fmean,0.85> 98(12) 99(13)(=) 78(11)(-) 87(12)(-) 77(12)(-)
<Fmean,0.95> 109(15) 108(16)(=) 86(11)(-) 94(16)(-) 85(12)(-)
<WFmean,0.85> 94(11) 98(11)(=) 82(9)(-) 88(15)(=) 83(15)(-)
<WFmean,0.95> 113(16) 109(16)(=) 90(13)(-) 98(16)(-) 88(13)(-)

●

●

●

●

●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

50

100

150

50

100

150

200

80

120

160

50

75

100

125

150

60

90

120

150

40

80

120

160

Algorithm

T
h

e
 S

iz
e

 o
f

S
im

p
li

fi
e

d
 R

u
le

CCGP CCGP
2 CCGP

2a(mimic)

Fig. 9. The violin plot of rule sizes (i.e., routing rule plus sequencing rule)
obtained by CCGP, CCGP2, and CCGP2a(mimic) after simplification
over 30 independent runs in six different scenarios.

transformation. Simplification aims to simplify the compli-

cated expression by some kinds of algebraic operations to

make the evolved rules easier to be interpreted. For example,

given a rule (A - B) / (A - B), it will be simplified as one.

Moreover, the rule A + B + A + A will become 3 * A + B

while the rule A * B / B will be simplified as A.

Fig. 9 shows the violin plot of rule size taking routing and

sequencing rules as a pair obtained by CCGP, CCGP2, and

CCGP2a(mimic) over 30 independent runs in six scenarios.

It shows that the rule sizes of simplified rules evolved by

CCGP2a(mimic) are much smaller than that of CCGP and

CCGP2. It indicates that CCGP2a(mimic) has more potential

to get smaller rules which are important for interpreting rules.

Note that the components produced by basic functions (e.g.,

+, -, *, /) are easier to be simplified than that of generated by

max and min.

Fig. 10 shows the scatter plot of the rule sizes of routing and

sequencing rules before and after simplification. It shows that

the routing rule sizes become much smaller (i.e., move to a

lower position) in all scenarios. In addition, the sequencing

rule sizes tend to be smaller (i.e., move to left position)

compared with the sizes without simplification in all scenarios.

In general, after simplification, CCGP2a(mimic) can

achieve smaller size routing rules and sequencing rules than

that of CCGP and CCGP2.

D. Training Time

Training time is an important criterion to measure the

efficiency of algorithms. Table VII shows the training time

of CCGP, CCGP2, CCGP2a(rand), CCGP2a(rep), and

CCGP2a(mimic). The training time of CCGP2 has no signif-

icant difference compared with CCGP2. It is obvious that the

training time of CCGP2a(rand), CCGP2a(rep) (i.e., in five

10

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

● ●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●
●●

●●
● ●

●

●
●

●

●
●

●
●

●
●

●●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

20 40 60 80 20 40 60 80 100

20 40 60 80 20 40 60 80

0 20 40 60 80 0 25 50 75 100

30

60

90

120

20

40

60

80

25

50

75

25

50

75

25

50

75

25

50

75

The Size of Sequencing Rule

T
h

e
 S

iz
e
 o

f
R

o
u

ti
n

g
 R

u
le

● CCGP
2a(mimic)(before) CCGP

2a(mimic)(after)

Fig. 10. The scatter plot of the rule sizes of routing rules and sequencing
rules before and after simplification obtained by CCGP2a(mimic) over 30
independent runs in six different scenarios.

scenarios), and CCGP2a(mimic) decrease dramatically com-

pared with that of CCGP and CCGP2. The main difference of

training time between them is caused by the individual adapta-

tion strategy. Intuitively, for CCGP2a(rand), CCGP2a(rep)
and CCGP2a(mimic), more training time might be needed

due to the extra algorithm operators. However, it turns out

that the training time of individual adaptation strategies related

algorithms are smaller than that of CCGP and CCGP2,

especially CCGP2a(rand) and CCGP2a(mimic).
When looking at the curve of average rule size in the popu-

lation in Fig. 11, the average rule sizes over the population

of CCGP2a(rand) and CCGP2a(mimic) are smaller than

its counterparts. The reason is that all the individuals in the

population at generation 50 are re-initialised and they have

smaller sizes. The most computationally expensive part is the

evaluation and smaller rules tend to save computational time.

Thus, CCGP2a(rand) and CCGP2a(mimic) can reduce the

computational time significantly.

In general, it is noted that CCGP2a(mimic) is more ef-

ficient even more algorithm operators (e.g., feature selection

and mimicking individuals’ behaviours operations in the algo-

rithm) are involved.

VI. FURTHER ANALYSES

A. Feature Analysis

Fig. 12 and Fig. 13 shows the selected and unselected

features of 30 runs in both sequencing rules and routing rules

in six different scenarios, respectively. For a feature, a bigger

blue area (the larger frequency the corresponding feature is

selected) means the corresponding feature is more important. It

is noted that the selected features of CCGP2, CCGP2a(rand),
CCGP2a(rep), and CCGP2a(mimic) are the same in the

same run (i.e., with same random value) since the evolutionary

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ●

●
● ●

●
● ● ● ● ●

● ●
● ● ● ● ●

● ● ● ●
● ●

●

●

●

●

●

●

●

●
●

●
● ● ● ●

● ●
● ●● ● ● ● ● ●●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●
●

●

●

●

●

●

●

●

●
● ●

●
● ● ● ● ● ● ●● ●

● ● ● ● ●
● ●

●● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ●

● ● ● ●
●

● ● ● ● ●
● ● ● ● ●● ● ● ● ●

● ●
● ● ● ● ● ●

● ● ● ● ● ●
●

● ● ● ● ● ● ●
●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ●● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ●

● ● ● ● ● ●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100
30

50

70

90

110

50

75

100

50

75

100

50

75

100

40

60

80

100

40

60

80

100

120

Generation

A
v
e
ra

g
e
 R

u
le

 S
iz

e
 O

v
e
r

P
o

p
u

la
ti

o
n

● CCGP CCGP
2 CCGP

2a(rand) CCGP
2a(rep) CCGP

2a(mimic)

Fig. 11. The average rule (routing rules plus sequencing rules) sizes over

population of the five algorithms in different scenarios.

processes are the same in stage 1. In each run, both for

sequencing rules and routing rules, the selected features vary

from each other based on the proposed feature selection algo-

rithm. This means that the selected features can be adjusted

adaptively with the proposed two-stage framework and that

the selected features are based on the specific problems (i.e.,

different runs).

For sequencing rules, the top three important features for

scenario <Fmax,0.85> are PT, TIS, and WKR, as shown

in Fig. 12. Except for these three features, NIQ and NOR

are also important in scenario <Fmax,0.95>. Compared with

<Fmax,0.85>, Fig. 12 shows that more features are selected

in scenario <Fmax,0.95>. It might be because a higher

utilisation level makes the problem more difficult to be op-

timised. For minimising mean flowtime (e.g., <Fmean,0.85>
and <Fmean,0.95>), PT and WKR play an important role

(i.e., they are selected in all 30 runs). When taking the mean

weighted flowtime into consideration (e.g., <WFmean,0.85>
and <WFmean,0.95>), except for PT and WKR, W is also

a significant feature. It is consistent with our intuition that

PT (i.e., processing time) and WKR (i.e., median amount of

work remaining for a job) are important factors for flowtime

related objectives. In addition, W is often chosen for minimis-

ing mean weighted flowtime rather than max flowtime and

mean flowtime. It is consistent with our expectation, since

the calculations of mean flowtime and max flowtime do not

involve W at all.

For routing rules, three features which are MWT, OWT, and

WIQ, are significant for evolving routing rules in all scenarios,

as shown in Fig. 13. It is consistent with our intuition that

the machine which has less workload (WIQ) and earlier ready

time (MWT) is preferred, since the new operation has a higher

chance to be processed early. In addition, this paper will

allocate a new operation once it becomes a ready operation

11

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

M
W

T

N
IQ

N
O

R

N
P

T

O
W

T

P
T

T
IS W

W
IQ

W
K

R

M
W

T

N
IQ

N
O

R

N
P

T

O
W

T

P
T

T
IS W

W
IQ

W
K

R

M
W

T

N
IQ

N
O

R

N
P

T

O
W

T

P
T

T
IS W

W
IQ

W
K

R

M
W

T

N
IQ

N
O

R

N
P

T

O
W

T

P
T

T
IS W

W
IQ

W
K

R

M
W

T

N
IQ

N
O

R

N
P

T

O
W

T

P
T

T
IS W

W
IQ

W
K

R

M
W

T

N
IQ

N
O

R

N
P

T

O
W

T

P
T

T
IS W

W
IQ

W
K

R

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

Terminal

R
u

n

Unselected Selected

Fig. 12. Selected and unselected features of sequencing rules of 30 indepen-
dent runs in different scenarios.

(i.e., OWT, the operation waiting time equals zero). OWT

is naturally a very important factor for the routing process

(i.e., kind of indicator). Compared with the selected features

in sequencing rules, more features are used in routing rules

(i.e., more blue areas). It indicates that the evolved routing

rules might be more complex than sequencing rules.

Fig. 14 shows the distributions of test objective values

of the 30 independent runs of CCGP2a(mimic) in scenario

<Fmax,0.85>, categorised by whether each feature is selected

or not in sequencing rules. TIS is not selected in three runs, the

test performance is much worse when it is selected. However,

even NIQ is a relatively important feature (i.e., it is selected

in half runs roughly) and it is not selected in half runs, the test

performance is still very good. It is interesting that WKR is

not selected in three runs, however, WKR has a greater impact

on two runs while it has no effect on one run.

B. Rule Analysis

This paper takes the best routing rule and the corresponding

sequencing rule (i.e., its objective value is 1096.02) achieved

by CCGP2a(mimic) and its corresponding best rules (i.e., the

run with the same random seed) obtained by CCGP2 (i.e.,

its objective value is 1099.61) in scenario <WFmean,0.95>
as an example. This is because the objective in scenario

<WFmean,0.95> is more difficult to be optimised than other

scenarios. It is noted that the smaller the values calculated by

the rules, the more priority the machine or operation has.

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

M
W

T

N
IQ

N
O

R

N
P

T

O
W

T

P
T

T
IS W

W
IQ

W
K

R

M
W

T

N
IQ

N
O

R

N
P

T

O
W

T

P
T

T
IS W

W
IQ

W
K

R

M
W

T

N
IQ

N
O

R

N
P

T

O
W

T

P
T

T
IS W

W
IQ

W
K

R

M
W

T

N
IQ

N
O

R

N
P

T

O
W

T

P
T

T
IS W

W
IQ

W
K

R

M
W

T

N
IQ

N
O

R

N
P

T

O
W

T

P
T

T
IS W

W
IQ

W
K

R

M
W

T

N
IQ

N
O

R

N
P

T

O
W

T

P
T

T
IS W

W
IQ

W
K

R

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

Terminal

R
u

n

Unselected Selected

Fig. 13. Selected and unselected features of routing rules of 30 independent
runs in different scenarios.

For CCGP2, in the examined run, the routing terminal set

consists of NIQ, WIQ, MWT, PT, NPT, OWT, WKR, NOR,

and W (i.e., nine features). There are six features which

are NIQ, WIQ, MWT, PT, WKR, and W, are selected as

sequencing terminal set. For the routing rules obtained by

CCGP2a(mimic), all the features in the routing terminal set

(i.e., seven features, NIQ, WIQ, MWT, PT, OWT, WKR, and

W) are used. When further looking into the sequencing rule

obtained by CCGP2a(mimic), five of them (e.g., NIQ, WIQ,

PT, WKR, and W) are involved. Fewer features are used by

CCGP2a(mimic) compared with CCGP2.

However, the evolved scheduling heuristics obtained by

CCGP2a(mimic) have better test performance than that of

CCGP2. The routing rule obtained by CCGP2a(mimic) can

be simplified, as shown in Eq. (2).

R1 =min{2 ∗NIQ,max(
NIQ ∗ PT

MWT
,

PT ∗WIQ ∗min(WIQ,WKR))}+

NIQ ∗
PT

W
−MWT

(2)

It is obvious that this routing rule is quite small after sim-

plification. In terms of the features related to machines, this

routing rule prefers to choose the machine which has a large

waiting time (i.e., MWT) and a smaller NIQ (i.e., the number

of operations in the queue) and WIQ (i.e., the workload

of machines). In terms of the features of operations, this

routing rule tends to choose the machine which can process

an operation more efficient with a smaller PT (i.e., processing

12

●
●

●
●●

●

● ●● ●

●●

●

●
●●
●

●

●

●

●

●
● ●

●

● ●●●

●
●

●

●

●●

●●● ●

●

●

●
●●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●● ●●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●
●

●

●●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●●● ●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

OWT WKR NOR W TIS

NIQ WIQ MWT PT NPT

FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE

FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

Selected

O
b

je
c

ti
v

e
 V

a
lu

e
 o

n
 T

e
s

t
In

s
ta

n
c

e
s

Fig. 14. The distributions of the test objective values of the 30 independent runs of CCGP2a(mimic) in scenario <Fmax,0.85>, categorised by whether
each feature is selected or not in sequencing rules.

time). In addition, from the perspective of operation, W (i.e.,

weight that used to indicate the importance of operation) is a

constant when choosing a machine. From a machine’s point

of view, the operation which is more important with a larger

W has more priority to select a machine.

The corresponding sequencing rule obtained by

CCGP2a(mimic) is simplified, as shown in Eq. (3).

S1 =
PT +WKR

W

−
W

PT
(W ∗WIQ−W +WIQ)−

W

PT
∗

(W ∗WIQ+WKR+
PT +WKR

W ∗WIQ−W +WKR
)

(3)

It is noted that for all the operation in the queue of a machine,

the machine-related feature such as WIQ (i.e., the workload

of a machine) is the same for all operations. This means that

it is not a vital important feature. This sequencing rule prefers

to choose the operation with smaller PT (i.e., processing time)

and larger W (i.e., weight, the importance of an operation). It

is interesting that this sequencing rule prefers to smaller WKR

(i.e., median amount of work remaining for a job) based on

the first line of S1 while it tends to select the operations with

larger WKR based on the third line of S1 partially. It indicates

that although we can interpret the rules to some extent, it is

still hard to completely understand the behaviour of rules. We

will continue to work on this topic in the future.

The corresponding routing and sequencing rules obtained by

CCGP2, can be simplified as shown in Eq. (4) and Eq. (5),

respectively. The structures of both this routing rule and se-

quencing rule are more complex than that of CCGP2a(mimic)
even after simplification. From the perspective of the compo-

nents, the function max and min are used a lot and nested

inside each other. It is hard to know which component has

played a real role since it relies on multiple factors. It is not

easy to understand it from a human perspective.

R2 =max{NIQ
2
, (NIQ+NPT) ∗min(NIQ,NOR)}

−min(MWT,
WKR

MWT ∗WKR− 1
)

∗max{WKR,−MWT ∗WKR+

NIQ ∗ PT ∗max{WIQ,
min(MWT,PT)

(W+WKR)
}

max{NIQ2, NOR−W+WKR
W

, NIQ+NPT

(min(NIQ,NOR))−1 }
}

(4)

S2 =NIQ(PT −W)(PT +
WKR

W
∗max{PT,

WIQ

W
,

max{WIQ, WKR
W

}

W
}) +max{

WIQ

W 2
,
NIQ

W 2
+WIQ}

∗ (MWT +W +max{
WKR

W 2
, NIQ− 1})

∗
max{WIQ, WKR

W
}

W

(5)

In general, the evolved scheduling heuristics obtained by

CCGP2a(mimic) are more interpretable and effective with a

smaller number of unique features and small rule sizes.

VII. CONCLUSIONS AND FUTURE WORK

The goal of this paper is to develop an effective feature

selection algorithm for evolving more interpretable rules for

DFJSS automatically via GPHH without compromising any

performance. The goal was achieved by proposing a two-

stage framework with novel individual adaptation strategies

that can utilise the information of the selected features and the

investigated individuals in the feature selection process well.

The results shows that the evolved rules by

CCGP2a(mimic) have better interpretability due to fewer

unique features in the rules and smaller rule sizes by

introducing feature selection. This is also verified by the

semantic analyses of the routing and sequencing rules

evolved by CCGP2a(mimic). In terms of training time,

CCGP2a(mimic) is more effective than that of the baseline

13

algorithm by reducing the average rule size over population.

Besides, the smaller rules achieved by CCGP2a(mimic)
can respond to scheduling needs faster in real time due

to its less complexity. In general, the proposed algorithm

CCGP2a(mimic) can efficiently evolve more interpretable

rules automatically without comprising any performance.

Some interesting directions can be further investigated in the

near future. Since the unclear question of interpretability, more

promising measurements for evaluating the interpretability of

obtained scheduling heuristics by GP are worth to be studied.

In addition, this work already shows the ability to obtain

similar performance only with selected features. We would

like to find more promising ways by local search to improve

its performance further.

ACKNOWLEDGMENT

This work was supported in part by the Marsden Fund of New Zealand
Government under Contracts VUW1509 and VUW1614, the Science for
Technological Innovation Challenge (SfTI) fund under grant E3603/2903,
and the MBIE SSIF Fund under Contract VUW RTVU1914. This work of
Fangfang Zhang was supported by China Scholarship Council (CSC)/Victoria
University Scholarship.

REFERENCES

[1] A. S. Manne, “On the job-shop scheduling problem,” Operations Re-

search, vol. 8, no. 2, pp. 219–223, 1960.
[2] C. D. Geiger, R. Uzsoy, and H. Aytuğ, “Rapid modeling and discovery of

priority dispatching rules: An autonomous learning approach,” Journal

of Scheduling, vol. 9, no. 1, pp. 7–34, 2006.
[3] J. C. Tay and N. B. Ho, “Evolving dispatching rules using genetic

programming for solving multi-objective flexible job-shop problems,”
Computers & Industrial Engineering, vol. 54, no. 3, pp. 453–473, 2008.

[4] S. Bennett, S. Nguyen, and M. Zhang, “A hybrid discrete particle swarm
optimisation method for grid computation scheduling,” in Proceedings of

the Congress on Evolutionary Computation. IEEE, 2014, pp. 483–490.
[5] P. Brucker and R. Schlie, “Job-shop scheduling with multi-purpose

machines,” Computing, vol. 45, no. 4, pp. 369–375, 1990.
[6] D. Yska, Y. Mei, and M. Zhang, “Genetic programming hyper-heuristic

with cooperative coevolution for dynamic flexible job shop scheduling,”
in Proceedings of the European Conference on Genetic Programming.
Springer, 2018, pp. 306–321.

[7] F. Zhang, Y. Mei, and M. Zhang, “Genetic programming with multi-tree
representation for dynamic flexible job shop scheduling,” in Proceedings

of the Australasian Joint Conference on Artificial Intelligence. Springer,
2018, pp. 472–484.

[8] J. Xiong, L.-n. Xing, and Y.-w. Chen, “Robust scheduling for multi-
objective flexible job-shop problems with random machine breakdowns,”
International Journal of Production Economics, vol. 141, no. 1, pp. 112–
126, 2013.

[9] J. Park, Y. Mei, S. Nguyen, G. Chen, and M. Zhang, “Investigating
a machine breakdown genetic programming approach for dynamic
job shop scheduling,” in Proceedings of the European Conference on

Genetic Programming. Springer, 2018, pp. 253–270.
[10] Y. N. Sotskov and N. V. Shakhlevich, “Np-hardness of shop-scheduling

problems with three jobs,” Discrete Applied Mathematics, vol. 59, no. 3,
pp. 237–266, 1995.

[11] H. Chen, C. Chu, and J. Proth, “An improvement of the lagrangean
relaxation approach for job shop scheduling: a dynamic programming
method,” IEEE Transactions on Robotics and Automation, vol. 14, no. 5,
pp. 786–795, 1998.

[12] F. Y.-P. Simon et al., “Integer linear programming neural networks
for job-shop scheduling,” in Proceedings of the IEEE International

Conference on Neural Networks. IEEE, 1988, pp. 341–348.
[13] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated

annealing: Theory and applications. Springer, 1987, pp. 7–15.
[14] F. Glover and M. Laguna, “Tabu search,” in Handbook of Combinatorial

Optimization. Springer, 1998, pp. 2093–2229.
[15] G. V. Conroy, “Handbook of genetic algorithms,” The Knowledge

Engineering Review, vol. 6, no. 4, pp. 363–365, 1991.
[16] J. Kennedy, “Particle swarm optimization,” Encyclopedia of Machine

Learning, pp. 760–766, 2010.

[17] K. Chen, F. Zhou, and B. Xue, “Particle swarm optimization for feature
selection with adaptive mechanism and new updating strategy,” in Pro-

ceedings of the Australasian Joint Conference on Artificial Intelligence.
Springer, 2018, pp. 419–431.

[18] M. Durasevic and D. Jakobovic, “A survey of dispatching rules for
the dynamic unrelated machines environment,” Expert Systems with

Applications, vol. 113, pp. 555–569, 2018.

[19] K. Miyashita, “Job-shop scheduling with genetic programming,” in
Proceedings of the 2nd Annual Conference on Genetic and Evolutionary

Computation. Morgan Kaufmann Publishers Inc., 2000, pp. 505–512.

[20] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Genetic program-
ming for evolving due-date assignment models in job shop environ-
ments,” Evolutionary Computation, vol. 22, no. 1, pp. 105–138, 2014.

[21] S. Nguyen, Y. Mei, and M. Zhang, “Genetic programming for production
scheduling: a survey with a unified framework,” Complex & Intelligent

Systems, vol. 3, no. 1, pp. 41–66, 2017.

[22] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
“Explaining explanations: An overview of interpretability of machine
learning,” in Proceedings of the International Conference on Data

Science and Advanced Analytics. IEEE, 2018, pp. 80–89.

[23] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, 2003.

[24] M. Dash and H. Liu, “Feature selection for classification,” Intelligent

Data Analysis, vol. 1, no. 3, pp. 131–156, 1997.

[25] A. K. Uysal, “An improved global feature selection scheme for text
classification,” Expert Systems with Applications, vol. 43, pp. 82–92,
2016.

[26] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary
computation approaches to feature selection,” IEEE Transactions on

Evolutionary Computation, vol. 20, no. 4, pp. 606–626, 2016.

[27] A. Lensen, B. Xue, and M. Zhang, “Particle swarm optimisation
representations for simultaneous clustering and feature selection,” in
Proceedings of the IEEE Symposium Series on Computational Intel-

ligence, 2016, pp. 1–8.

[28] Q. Chen, M. Zhang, and B. Xue, “Feature selection to improve
generalization of genetic programming for high-dimensional symbolic
regression,” IEEE Transactions on Evolutionary Computation, vol. 21,
no. 5, pp. 792–806, 2017.

[29] Q. U. Ain, B. Xue, H. Al-Sahaf, and M. Zhang, “Genetic programming
for feature selection and feature construction in skin cancer image clas-
sification,” in Proceedings of the Pacific Rim International Conference

on Artificial Intelligence, 2018, pp. 732–745.

[30] R. Hunt, Genetic Programming Hyper-heuristics for Job Shop Schedul-

ing. Victoria University of Wellington, 2016.

[31] Y. Mei, M. Zhang, and S. Nguyen, “Feature selection in evolving job
shop dispatching rules with genetic programming,” in Proceedings of the

Genetic and Evolutionary Computation Conference, 2016, pp. 365–372.

[32] Y. Mei, S. Nguyen, B. Xue, and M. Zhang, “An efficient feature selection
algorithm for evolving job shop scheduling rules with genetic pro-
gramming,” IEEE Transactions on Emerging Topics in Computational

Intelligence, vol. 1, no. 5, pp. 339–353, 2017.

[33] F. Zhang, Y. Mei, and M. Zhang, “A two-stage genetic programming
hyper-heuristic approach with feature selection for dynamic flexible
job shop scheduling,” in Proceedings of the Genetic and Evolutionary

Computation Conference. IEEE, 2019, pp. 347–355.

[34] S. Gu, R. Cheng, and Y. Jin, “Feature selection for high-dimensional
classification using a competitive swarm optimizer,” Soft Computing,
vol. 22, no. 3, pp. 811–822, 2018.

[35] G. I. Sayed, A. E. Hassanien, and A. T. Azar, “Feature selection
via a novel chaotic crow search algorithm,” Neural Computing and

Applications, vol. 31, no. 1, pp. 171–188, 2019.

[36] J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang, “Automated design
of production scheduling heuristics: A review,” IEEE Transactions on

Evolutionary Computation, vol. 20, no. 1, pp. 110–124, 2016.

[37] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
J. R. Woodward, “Exploring hyper-heuristic methodologies with genetic
programming,” in Computational Intelligence. Springer, 2009, pp. 177–
201.

[38] E. K. Burke, M. R. Hyde, G. Kendall, and J. R. Woodward, “A genetic
programming hyper-heuristic approach for evolving 2-d strip packing
heuristics,” IEEE Transactions on Evolutionary Computation, vol. 14,
no. 6, pp. 942–958, 2010.

[39] M. B. Bader-El-Den, R. Poli, and S. Fatima, “Evolving timetabling
heuristics using a grammar-based genetic programming hyper-heuristic
framework,” Memetic Computing, vol. 1, no. 3, pp. 205–219, 2009.

14

[40] N. Pillay and W. Banzhaf, “A genetic programming approach to the gen-
eration of hyper-heuristics for the uncapacitated examination timetabling
problem,” in Proceedings of the Portuguese Conference on Aritficial

Intelligence, 2007, pp. 223–234.
[41] M. A. Ardeh, Y. Mei, and M. Zhang, “Genetic programming hyper-

heuristic with knowledge transfer for uncertain capacitated arc routing
problem,” in Proceedings of the Genetic and Evolutionary Computation

Conference Companion, 2019, pp. 334–335.
[42] F. Zhang, Y. Mei, and M. Zhang, “A new representation in genetic

programming for evolving dispatching rules for dynamic flexible job
shop scheduling,” in Proceedings of the European Conference on Evo-

lutionary Computation in Combinatorial Optimization. Springer, 2019,
pp. 33–49.

[43] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Automatic pro-
gramming via iterated local search for dynamic job shop scheduling,”
IEEE Transactions on Cybernetics, vol. 45, no. 1, pp. 1–14, 2015.

[44] M. Durasevic and D. Jakobovic, “Evolving dispatching rules for opti-
mising many-objective criteria in the unrelated machines environment,”
Genetic Programming and Evolvable Machines, vol. 19, no. 1-2, pp.
9–51, 2018.

[45] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Guided subtree selection
for genetic operators in genetic programming for dynamic flexible
job shop scheduling,” in Proceedings of the European Conference on

Genetic Programming. Springer, 2020, pp. 262–278.
[46] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to

genetic programming. Lulu. com, 2008.
[47] K. Chen, F. Zhou, and X. Yuan, “Hybrid particle swarm optimization

with spiral-shaped mechanism for feature selection,” Expert Systems with

Applications, vol. 128, pp. 140–156, 2019.
[48] S. Jurado, À. Nebot, F. Mugica, and N. Avellana, “Hybrid methodologies

for electricity load forecasting: Entropy-based feature selection with
machine learning and soft computing techniques,” Energy, vol. 86, pp.
276–291, 2015.

[49] R. Saidi, W. Bouaguel, and N. Essoussi, “Hybrid feature selection
method based on the genetic algorithm and pearson correlation coeffi-
cient,” in Machine Learning Paradigms: Theory and Application, 2019,
pp. 3–24.

[50] Q. Chen, M. Zhang, and B. Xue, “Structural risk minimization-driven
genetic programming for enhancing generalization in symbolic regres-
sion,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 4,
pp. 703–717, 2019.

[51] K. Nag and N. R. Pal, “A multiobjective genetic programming-based
ensemble for simultaneous feature selection and classification,” IEEE

Transactions on Cybernetics, vol. 46, no. 2, pp. 499–510, 2016.
[52] S. Nguyen, M. Zhang, and K. C. Tan, “Surrogate-assisted genetic pro-

gramming with simplified models for automated design of dispatching
rules,” IEEE Transactions on Cybernetics, vol. 47, no. 9, pp. 2951–2965,
2017.

[53] T. Hildebrandt and J. Branke, “On using surrogates with genetic pro-
gramming,” Evolutionary Computation, vol. 23, no. 3, pp. 343–367,
2015.

[54] J. P. Davis, K. M. Eisenhardt, and C. B. Bingham, “Developing theory
through simulation methods,” Academy of Management Review, vol. 32,
no. 2, pp. 480–499, 2007.

[55] F. Zhang, Y. Mei, and M. Zhang, “Surrogate-assisted genetic program-
ming for dynamic flexible job shop scheduling,” in Proceedings of the

Australasian Joint Conference on Artificial Intelligence. Springer, 2018,
pp. 766–772.

Fangfang Zhang (Student Member, IEEE) received
the B.Sc. and M.Sc. degrees from Shenzhen Uni-
versity, Shenzhen, China, in 2014 and 2017, respec-
tively. She is currently pursuing the Ph.D. degree
in computer science with the School of Engineer-
ing and Computer Science, Victoria University of
Wellington, New Zealand. She has over 20 journal
and conference papers. Her current research interests
include evolutionary computation, hyper-heuristic,
job shop scheduling, and multitasking optimisation.
Miss. Zhang is a member of the IEEE Computational

Intelligence Society and Association for Computing Machinery, and has been
severing as reviewers for top international journals and conferences. She is
also a committee member of the IEEE NZ Central Section.

Yi Mei (M’09-SM’18) is a Senior Lecturer at
the School of Engineering and Computer Science,
Victoria University of Wellington, Wellington, New
Zealand. His research interests include evolutionary
scheduling and combinatorial optimisation, machine
learning, genetic programming, and hyper-heuristics.
He has more than 100 fully referred publications,
including the top journals in EC and Operations
Research such as IEEE TEVC, IEEE TCYB, Evo-
lutionary Computation Journal, European Journal of
Operational Research, ACM Transactions on Math-

ematical Software. He serves as a Vice-Chair of the IEEE CIS Emergent
Technologies Technical Committee, and a member of Intelligent Systems Ap-
plications Technical Committee. He is an Editorial Board Member/Associate
Editor of three International Journals, and a guest editor of a special issue of
the Genetic Programming Evolvable Machine journal. He serves as a reviewer
of over 30 international journals.

Su Nguyen (M’13) received his Ph.D. degree in Ar-
tificial Intelligence and Data Analytics from Victoria
University of Wellington, New Zealand, in 2013.
Nguyen is a Senior Research Fellow and Algorithm
Lead at CDAC, La Trobe University, Australia. His
expertise includes evolutionary computation (EC),
simulation optimization, automated algorithm de-
sign, interfaces of AI/OR, and their applications in
logistics, energy, and transportation. He has 70+
publications in top EC/OR peer-reviewed journals
and conferences and his current research focuses on

novel people-centric artificial intelligence to solve dynamic and uncertain
planning tasks by combining the creativity of evolutionary computation and
power of advanced machine learning algorithms. He was the chair (2014-
2018) of IEEE task force on Evolutionary Scheduling and Combinatorial
Optimisation and is a member of IEEE CIS Data Mining and Big Data
technical committee. He delivered technical tutorials about EC and AI-based
visualisation at Parallel Problem Solving from Nature Conference (2018) and
IEEE World Congress on Computational Intelligence (2020). He served as an
editorial member of Complex and Intelligence Systems and the guest editor
of the special issue on “Automated Design and Adaption of Heuristics for
Scheduling and Combinatorial Optimization” in Genetic Programming and
Evolvable Machines journal.

Mengjie Zhang (M’04-SM’10-F’19) received the
B.E. and M.E. degrees from Artificial Intelligence
Re- search Center, Agricultural University of Hebei,
Baoding, China, and the Ph.D. degree in computer
science from RMIT University, Melbourne, VIC,
Australia, in 1989, 1992, and 2000, respectively. He
is currently Professor of Computer Science, Head
of the Evolutionary Computation Research Group,
and the Associate Dean (Research and Innovation)
in the Faculty of Engineering. His current research
interests include evolutionary computation, particu-

larly genetic programming, particle swarm optimization, and learning classifier
systems with application areas of image analysis, multi-objective optimization,
feature selection and reduction, job shop scheduling, and transfer learning. He
has published over 500 research papers in refereed international journals and
conferences. Prof. Zhang is a Fellow of Royal Society of New Zealand, a
Fellow of IEEE, and an IEEE Distinguished Lecturer. He was the chair of
the IEEE CIS Intelligent Systems and Applications Technical Committee, the
chair for the IEEE CIS Emergent Technologies Technical Committee, the
chair of Evolutionary Computation Technical Committee, and a member of
the IEEE CIS Award Committee. He is a vice-chair of the Task Force on
Evolutionary Computer Vision and Image Processing, and the founding chair
of the IEEE Computational Intelligence Chapter in New Zealand. He is also
a committee member of the IEEE NZ Central Section.

