
Evolving Software Systems for
Self-Adaptation

by

Mehdi Amoui Kalareh

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2012

c© Mehdi Amoui Kalareh 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

There is a strong synergy between the concepts of evolution and adaptation in software
engineering: software adaptation refers to both the current software being adapted and to
the evolution process that leads to the new adapted software. Evolution changes for the
purpose of adaptation are usually made at development or compile time, and are meant to
handle predictable situations in the form of software change requests. On the other hand,
software may also change and adapt itself based on the changes in its environment. Such
adaptive changes are usually dynamic, and are suitable for dealing with unpredictable or
temporary changes in the software’s operating environment.

A promising solution for software adaptation is to develop self-adaptive software sys-
tems that can manage changes dynamically at runtime in a rapid and reliable way. One
of the main advantages of self-adaptive software is its ability to manage the complexity
that stems from highly dynamic and nondeterministic operating environments. If a self-
adaptive software system has been engineered and used properly, it can greatly improve
the cost-effectiveness of software change through its lifespan. However, in practice, many
of the existing approaches towards self-adaptive software are rather expensive and may
increase the overall system complexity, as well as subsequent future maintenance costs.
This means that in many cases, self-adaptive software is not a good solution, because its
development and maintenance costs are not paid off. The situation is even worse in the
case of making current (legacy) systems adaptive.

There are several factors that have an impact on the cost-effectiveness and usability
of self-adaptive software; however the main objective of this thesis is to make a software
system adaptive in a cost-effective way, while keeping the target adaptive software generic,
usable, and evolvable, so as to support future changes. In order to effectively engineer and
use self-adaptive software systems, in this thesis we propose a new conceptual model for
identifying and specifying problem spaces in the context of self-adaptive software systems.
Based on the foundations of this conceptual model, we propose a model-centric approach
for engineering self-adaptive software by designing a generic adaptation framework and
a supporting evolution process. This approach is particularly tailored to facilitate and
simplify the process of evolving and adapting current (legacy) software towards runtime
adaptivity. The conducted case studies reveal the applicability and effectiveness of this
approach in bringing self-adaptive behaviour into non-adaptive applications that essentially
demand adaptive behaviour to sustain.

v

Acknowledgements

First and foremost, I want to thank my supervisor Professor Ladan Tahvildari. I
appreciate all her contributions of time, ideas, and funding to make my Ph.D. experience
productive and stimulating. The joy and enthusiasm she has for research was contagious
and motivational for me, even during tough times in the Ph.D. pursuit.

I wish to thank the members of my dissertation committee: Professor Marin Litoiu,
my external examiner, for having accepted to take the time out of his busy schedule to
read my thesis and provide me with his insightful suggestions; Professor Patrick Lam for
his invaluable comments and feedback on the thesis and traveling from Berkeley to attend
my defense; Professor Kostas Kontogiannis for his inspiring remarks, and also traveling
all the way from Europe to participate my defense session; Professor Michael Godfrey for
his insightful feedback during different stages of my Ph.D.; and Professor Daniel Berry for
serving as a delegate in my defence session.

I would like to express my gratitude to Professor Jürgen Ebert for supporting the GRAF
project with his insightful comments and feedback; and most importantly giving me the
opportunity to do a close collaboration with the Institute for Software Technology (IST)
at the University of Koblenz-Landau, and his kindest support and hospitality during my
stay at Koblenz as a visiting scholar.

I feel very lucky to have been introduced to and have a chance to work with Mahdi
Derakhshanmanesh. Mahdi is a great software engineer and an awesome friend. It was my
pleasure working with him closely, and I am thankful for all the time and effort he has put
on the GRAF project.

I would like to thank all the member of Software Technologies and Applied Research
(STAR) Group for their moral support and valuable feedbacks. In particular, I would like
to thank: Dr. Mazeiar Salehei for his brotherly support and all the brainstorming sessions,
discussions, and memorable times we had together in the past few years. Siavash Mirarab
for being a remarkable friend and supportive, specially in the early days of my graduate
studies at Waterloo. Sen Li, for his friendship and thoughtful support during the long
hours we had in the lab. And Greg O’Grady for his effort on the case studies presented on
this thesis.

I owe an immense debt of gratitude to my family for all their love and encouragement.
To my parents who raised me with love and supported me in all my pursuits. And to
my caring, supportive, encouraging, and patient friend, Niousha, whose faithful support
during the final stages of this Ph.D. is so appreciated. Thank you.

vii

Dedication

To my beloved parents.

ix

Table of Contents

List of Tables xvii

List of Figures xix

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Description . 3

1.3 Research Challenges . 5

1.4 The Approach . 7

1.5 Thesis Contributions . 9

1.6 Thesis Organization . 10

2 Background Concepts and Related Work 13

2.1 Software Evolution . 14

2.1.1 Software Modernization . 15

2.1.2 Software Reengineering . 18

2.1.3 Reverse Engineering . 19

2.1.4 Program Comprehension . 19

2.1.5 Model Transformation . 21

2.1.6 Refactoring . 22

2.1.7 Software-Change Prediction . 23

xi

2.2 Self-Adaptive Software . 24

2.2.1 Architectural Perspective . 24

2.2.2 Enabling Technologies . 27

2.2.3 Adaptation Frameworks . 31

2.3 Engineering Aspects of Self-Adaptive Software 33

2.3.1 Specifying Adaptation Requirements 33

2.3.2 Design-Space Exploration . 37

2.3.3 Retrofitting Adaptivity into Legacy Systems 38

2.4 Summary . 39

3 Conceptual Modeling of Self-Adaptive Software 41

3.1 Conceptualization . 42

3.2 Adaptation Requirements . 45

3.3 A Metamodel for Adaptation Specifications 50

3.3.1 Adaptation Goals . 51

3.3.2 Domain Attributes . 53

3.3.3 Adaptation Actions . 54

3.3.4 Adaptation Policies . 54

3.4 A Metamodel for Adaptability Specifications 55

3.4.1 State Variables . 57

3.4.2 Effecting Styles . 58

3.4.3 Sensing Styles . 63

3.4.4 Adaptability Factors . 63

3.4.5 From Conceptual to Concrete Adaptability Models 64

3.5 Summary . 66

xii

4 A Model-Centric Self-Adaptation Approach 67

4.1 Design Considerations . 71

4.1.1 Model Interpretation for Change Reflection 71

4.1.2 Model Verification . 72

4.1.3 Model Synchronization . 73

4.1.4 Separation of Concerns . 73

4.1.5 Low Coupling to Adaptation Framework 73

4.1.6 Extensibility and Reusability . 74

4.2 Adaptable Software . 74

4.3 Adaptation Framework . 75

4.3.1 Adaptation Middleware Layer . 76

4.3.2 Runtime Model Layer . 77

4.3.3 Adaptation Management Layer . 80

4.3.4 Management Extension Layer . 81

4.4 Runtime Behaviour . 82

4.4.1 Reification and Sensing Use Cases 82

4.4.2 Controlling Use Case . 84

4.4.3 Effecting Use Case . 84

4.4.4 Reflection Use Case . 84

4.5 Realization . 85

4.5.1 Runtime Modeling with the TGraph Approach 86

4.5.2 Model Interpretation and Reflection 86

4.5.3 Tagging Adaptable Elements with Java Annotations 87

4.5.4 Connecting to the Framework using AOP 89

4.5.5 Adaptation Rule Engine . 91

4.5.6 External Adaptation Managers . 91

4.6 Summary . 92

xiii

5 Reengineering Towards Model-Centric Self-Adaptive Software 93

5.1 The Process Model . 95

5.2 Adaptation Requirements Analysis . 99

5.3 System Analysis . 100

5.3.1 Locating Concepts . 101

5.3.2 Comprehending Software Adaptability 103

5.3.3 Comparing Adaptability Models . 105

5.4 Planning . 106

5.4.1 Addressing Variability for Adaptation 108

5.4.2 Deciding on State Variables Access Mechanisms 109

5.4.3 Anticipating Future Changes . 110

5.5 Preparing Adaptable Software . 111

5.5.1 Refactorings . 112

5.5.2 Creational Transformations . 114

5.5.3 Tagging Transformations . 115

5.5.4 Adaptability Transformations . 115

5.6 Runtime Model Generation . 123

5.7 Preparing GRAF . 124

5.7.1 Implementing Adaptation Rules . 124

5.7.2 Advanced Customization . 126

5.8 Integration and Deployment . 129

5.8.1 Startup Configuration . 129

5.8.2 Load-Time Initialization . 129

5.9 Summary . 130

xiv

6 Case Studies 133

6.1 Measures . 134

6.1.1 Evolution Cost . 135

6.1.2 Evolution Effectiveness . 135

6.1.3 Adaptation Cost . 137

6.1.4 Adaptation Effectiveness . 137

6.2 OpenJSIP: A Stand-Alone Telephony Server 137

6.2.1 The Adaptation Requirement . 138

6.2.2 Adaptation Requirements Analysis 139

6.2.3 System Analysis . 139

6.2.4 Planning for Change . 140

6.2.5 Preparing Adaptable OpenJSIP . 140

6.2.6 Results . 143

6.3 Jake2: A Legacy Game Engine . 147

6.3.1 The Adaptation Requirement . 147

6.3.2 Adaptation Requirements Analysis 147

6.3.3 Preparing Adaptable Jake2 . 149

6.3.4 Developing Adaptation Rules . 151

6.3.5 Evaluating GRAF/Jake2 Performance 154

6.4 Discussions on the Obtained Results . 157

6.4.1 The Importance of Having Proper Adaptable Software 157

6.4.2 The Advantages and Disadvantages of GRAF-based SAS 158

6.4.3 The Cost-Effectiveness of the Approach. 159

6.5 Threats to Validity . 159

6.5.1 Internal Validity . 160

6.5.2 External Validity . 161

6.6 Summary . 161

xv

7 Concluding Remarks 163

7.1 Future Research Directions . 167

APPENDICES 171

A Catalogue of Supporting Refactorings 173

B Runtime Model Schema 179

References 185

xvi

List of Tables

2.1 Dimensions Characterizing or Influencing Software Change Mechanisms [30] 16

2.2 List of Common Concepts Used in Aspect-Oriented Programming 29

3.1 Mapping Control Theory Concepts to Self-Adaptive Software Problem Spaces 44

3.2 List of Main Effecting Styles . 58

3.3 List of Identified Adaptability Factors . 65

5.1 List of Minimal Required Adaptability Factors in GRAF Approach 107

5.2 List of Selected Refactorings (RF) . 113

5.3 List of Creational Transformations (CT) 114

5.4 List of Tagging Transformations (TT) . 116

5.5 List of Adaptability Transformations (AT) 116

6.1 Some Statistics on the Selected Case Studies 134

6.2 List of the Measured Product Metrics . 135

6.3 List of the Measured Adaptivity Metrics 136

6.4 List of Adaptability Factors for Compositional and Parameter Adaptation
of OpenJSIP . 140

6.5 Measured Method-Level Metrics for OpenJSIP 144

6.6 Measured Adaptivity Metrics for OpenJSIP 144

6.7 OpenJSIP Stress Testing Results . 145

6.8 List of Alternative Bot behaviours to Adjust Jake2’s Game Experience . . 148

xvii

6.9 Main Components of Jake2 [91] . 149

6.10 Measured Method-Level Metrics for Jake 154

6.11 Measured Adaptivity Metrics for Jake . 154

6.12 Main Characteristics of Jake2 Evaluated Variations 155

6.13 Summery of Memory Benchmark for Jake2 Variations 156

6.14 Impact of Weaving Aspects on First Calls of GameAI.ai checkattack(). . 157

xviii

List of Figures

1.1 Reference Architecture of a Self-adaptive Software (SAS) [98] 4

2.1 Thesis in the Context of Software Evolution 13

2.2 Relationships Among the Presented Software Change Concepts 17

2.3 Architecture of an Adaptation Manager . 27

2.4 Relationships Between Self-* Properties and Quality Factors [162] 36

3.1 Phenomenon Sets in a Self-adaptive Software System 42

3.2 A Typical Feedback Control Architecture [141] 43

3.3 The Four Variable Model (Adapted from Parnas and Madey [149]) and Its
Mapping to the adaptation space . 47

3.4 The Unified Conceptual Model for Controller-based Self-Adaptive Software
Systems . 49

3.5 Coevolution of the Artifacts in the Conceptual Space of SAS 50

3.6 The Adaptation Metamodel . 51

3.7 A Metamodel Representing Adaptability in Software Applications 57

3.8 The Replace Flow Mechanism . 59

3.9 The Switch Flow Mechanism . 60

3.10 The MetaModel for Software Adaptability - Change Flow 61

3.11 The MetaModel for Software Adaptability - Change State 62

3.12 The MetaModel for Software Adaptability - Monitor State 64

xix

4.1 Context Diagram of a Model-Centric SAS [50] 68

4.2 Relationship Among the Abstract and Concrete Entities of a Model-Centric
SAS . 70

4.3 High-Level Component Model of GRAF-Based SAS 71

4.4 The Model-Centric Target Architecture of GRAF-Based SAS [50] 76

4.5 Excerpt of the Runtime Model Schema (MetaModel) 79

4.6 Main Control Flow of GRAF Runtime behaviour 83

5.1 A Generic Process Model for Engineering SAS, Conforming to the Concep-
tual Model Proposed in Chapter 3 . 94

5.2 The Process Model . 98

5.3 Problem of Finding a Mapping from Phenomena in the AD, Which are
Described by the AR’s, to Their Corresponding Phenomena in the AS . . 102

5.4 Modifications Towards Runtime Adaptation 109

6.1 Adaptation Rule for Parameter Adaptation Scenario 142

6.2 Adaptation Rule for Compositional Adaptation Scenario 143

6.3 Comparison Among the Rate of Successful and Failed Calls 146

6.4 UML Activity Diagram Representing the Bot’s Default behaviour 150

6.5 UML Activity Diagram Representing the Bot’s Adapted behaviour for Cloning151

6.6 Box-Plot of Execution Times for GameAI.ai checkattack() 157

B.1 The runtime model consists of state variables and activities 179

B.2 The State Variables Used For Storing Sensed Data 180

B.3 A Detailed View On The Partition Element 180

B.4 The Essential Elements For Modeling Control Flow 180

B.5 The Activity With Related Elements . 181

B.6 Nodes Can Be Connected To Each Other Via A Flow 182

B.7 Data Is Represented As Input And Output 183

xx

Chapter 1

Introduction

“It is not the strongest of the species that survives, nor the most
intelligent, but the one most responsive to change.”

–Charles Darwin

Many engineering solutions are inspired by nature. One of these inspirations is adap-
tation; that is, the way living organisms change their structure and/or behaviour in order
to retain or achieve a better compatibility with their environment [53].

Adaptation can occur either instantly or over time. Organisms may adapt themselves to
changes in their environment as these changes take place. This type of alteration is limited
to an organism’s adaptedness ; that is, the degree to which an organism is able to live and
reproduce in its environment [53]. Thermoregulation and learning are examples of these
kinds of adaptation in living organisms. On the other hand, evolution is a change process
that happens continuously over time throughout generations. The result of evolution is a
new individual that carries most of the properties of its base, to the extent that it remains in
the same class as its base. Evolution happens gradually, and the resulting newer generations
are expected to be better individuals in terms of functionality and quality. Therefore,
adaptation refers to both the current organism being adapted and to the evolutionary
process that leads to the adapted generations. Evolution can result in adaptation, but
not all evolution changes adapt an organism to its surroundings, even though evolution
may increase adaptedness. This phenomenon is known as an organism’s adaptive trait ;
i.e., an aspect of the developmental pattern of the organism that enables or enhances the
probability of that organism’s survival and reproduction [52].

Software engineering as an engineering discipline is the profession of applying scientific
knowledge and utilizing natural laws, in order to design and implement software systems

1

and processes that realize a desired objective and meet specified criteria [168]. Software
engineering has borrowed the concepts of adaptation and evolution from nature. Software
adaptation is a process in which a software system changes its structure and/or behaviour
in order to retain or achieve better compatibility with its environment. Software evolu-
tion is the phenomenon of a software system changing over time, similar to the evolution
of living organisms. However, evolution in the context of software has a slightly different
meaning from its original definition in biology. In software engineering, evolution is usually
accompanied by maintenance, in which the arbitrary nature of evolutionary changes are re-
placed with supervised and goal-oriented ones (e.g., changes for the purpose of adaptation,
known as adaptive maintenance).

Evolution changes for the purpose of adaptation are usually supervised and occur at de-
velopment or compile time due to requirement changes or discovered bugs. These changes
are usually extensive and happen in almost every instance of a system over time, and are
meant to handle predictable situations in the form of software change requests. Evolution-
ary changes are generally stable, but in most cases they are costly and require a significant
amount of time and effort to apply. These changes may also serve as an adaptive trait for
increasing adaptedness in software systems. Adaptedness in software systems describes the
degree to which software is able to operate and evolve in dynamic and new operating en-
vironments. This is a favorable property of software systems that operate in dynamic and
nondeterministic environments. On the other hand, software may also change and adapt
itself according to the changes in its environment. Such adaptive changes are usually dy-
namic: The software changes at runtime based on instant decisions. Therefore, adaptive
changes are suitable for dealing with unpredictable or temporary changes in the software’s
operating environment.

Despite the above differences between evolution and adaptation, there is a strong syn-
ergy between both concepts in software engineering. Similar to living organisms, software
adaptation refers to both the current software being adapted and to the evolution process
that leads to new adapted software, due to an alteration in the requirements or the oper-
ating environment. This thesis elaborates this synergy by proposing a novel engineering
approach realizing the required adaptations in software systems.

1.1 Motivation

As software ages, it should change with time, or else it will not survive [112]. Software
changes can be grouped as follows, based on the purpose that they serve: They may be

2

corrective for fixing bugs, adaptive for adapting the software to new environments, per-
fective for updating the software according to requirements changes, and preventive for
making the software more maintainable [88]. However, software maintenance and evolu-
tion are inevitably costly and time-consuming activities for almost any software-intensive
system. From an economic point of view, system adaptation, on average, soaks up most
of the post-delivery non-corrective software costs (∼ 80% of total post delivery costs are
non-corrective) in the life of a software system [167]. Moreover, a key characteristic of
the maintenance/evolution of large software systems is that change becomes increasingly
difficult and expensive over time [13].

Since the era of software engineering started, many technologies and development
paradigms have been introduced to scope, estimate, control, and improve the predictability
and efficiency of software change [30, 37, 83]. These approaches aim at reducing the cost
of change by either (i) managing the total number of the required changes, (ii) making
software change easier (e.g., creating more flexible and variable software), (iii) reducing
software down-times, and (iv) predicting the change.

A promising solution to reduce the cost of software change is to develop self-adaptive
software (SAS) systems that are able to manage changes dynamically at runtime in a
rapid and reliable way. One of the main advantages of SAS is its ability to manage the
complexity that stems from highly dynamic and nondeterministic operating environments.
Frequently changing user needs or high variability in the amount of available resources are
two possible scenarios in which SAS can reconfigure and continuously optimize itself at
runtime. An adaptive behaviour can replace a normal behaviour in an autonomous way.

In general, a SAS follows a reference architecture that comprises two main subsys-
tems [98]: (i) the adaptation manager (autonomic manager), and (ii) the adaptable soft-
ware (managed element). The adaptation manager acts as an external controller that
observes the adaptable software for changes in its operating states and selects appropriate
adaptive behaviour accordingly. These two subsystems are connected through sensor and
effector interfaces, as shown in Figure 1.1.

.

1.2 Problem Description

A software system has a set of properties, including its internal properties, its input and
output, and the relationships between the inputs and outputs. These properties are cap-
tured in the form of specifications, as the desired properties of the software system. How-

3

Output Input

Adaptation Manager

(Autonomic Manager)

Adaptable Software

(Managed Element)

Sensors

Effectors

Figure 1.1: Reference Architecture of a Self-adaptive Software (SAS) [98]

ever, in reality the operational software may not fully match its specification. Moreover,
as a software system ages, its environment and user needs will change, which will result in
an increase in the deviation of the software’s properties from its desired properties. This
phenomenon is captured by the first law of software evolution by Lehman [112]: “Software
change is inevitable and systems must be continuously adapted.”

In classic software engineering, all required post-delivery changes are handled through
evolution changes that result in a new software system. In the case of self-adaptive software,
some of the required changes can be handled through adaptation changes, which can change
the properties of the software dynamically without generating a new software system. The
adaptation changes impose less cost compared to their equivalent evolution changes, and
are usually invertible.

In case the original software system is not adaptive, we can apply a set of evolution
changes, which serve as adaptive traits that increase the adaptedness of the software sys-
tem. As the environment and/or user needs change, the desired properties of the software
including its adaptedness may change overtime. Hence, evolution changes that introduce
and/or improve adaptedness are not one-time changes: We need continuous evolution to
maintain the desired adaptedness in software.

Each change has a cost. The effectiveness of a change is determined by the degree
to which the change meets its purpose of achieving the desired properties of the software
throughout the software’s lifespan. The objective of systems engineering is to ensure that a
system is designed, built, and operated so that it accomplishes its purpose in a cost-effective
manner. Cost-effectiveness considers both the cost and the effectiveness of a system in the
context of the system objectives.

If a SAS system has been engineered and used properly, it can greatly improve the

4

cost-effectiveness of software change through its lifespan. However, in practice, many of
the existing approaches towards SAS are rather expensive and may increase overall system
complexity, as well as subsequent future maintenance costs. This means that in many
cases SAS is not a good solution, because its development and maintenance costs are not
being paid off. The situation is even worse in the case of making current (legacy) systems
adaptive. Hence, the most important question to be answered is:

“How can we effectively engineer and employ self-adaptive software?”

There are several factors that have an impact on the cost-effectiveness and usability
of self-adaptive software; however, the main objective of this thesis is to make a software
system adaptive in a cost-effective way, while keeping the target adaptive software generic,
usable, and evolvable, so as to support future changes.

1.3 Research Challenges

There are a number of challenges associated with the objectives of this thesis, which are
clustered into the following categories:

Managing the Complexity of Self-Adaptive Software

SAS systems are complex systems to design, build, and maintain; including self-adaptive
and autonomic behaviour into an existing system comes at the price of additional com-
plexity. For many real-world scenarios, this undesired accidental complexity [23] inhibits
the pursuit of runtime adaptivity. The benefit of reducing essential complexity must be
less than the harm of any augmented accidental complexity, which is a problem that many
advanced software-engineering solutions fail to address.

To tackle the complexity issue in the context of SAS, the construction of precise and
accurate models that address the demands of self-adaptive systems is a necessary but hard
task, given highly complex and dynamic nature of SAS systems and their operating en-
vironment [6, 38]. Such models must cover the complete engineering cycle. There is a
need to derive domain-specific models of software, ranging from problem-space models to
support adaptation-requirements specification, to solution-space models that are to be gen-
erated, manipulated, and managed at runtime. These models must embody the adaptive
responsibilities of SAS and serve as a solid basis for further adaptation. However, current

5

metamodels are not well suited for engineering SAS, and fail to unify adaptation aspects
with available knowledge about the operating environment and constituent application
entities.

Preparing Self-Adaptive Software

Another downside of moving towards SAS is that it is costly and hardly possible to make
a software system adaptive without changing the original software. We are interested in
making current systems adaptive and integrating them with high-end technology trends.
However, this is a more demanding process than developing adaptive software from scratch,
because most of the existing and legacy systems are developed based on older technologies
and tools.

Here, the question is how to reengineer software towards adaptability concerns. These
concerns include: (i) having a mechanism to sense any changes in inter or intra software
states, (ii) deciding and selecting the best action for changing a software system in order
to adapt to environment changes, and (iii) having proper effectors to change the software
dynamically at run-time. Nevertheless, there is no generic solution to the mentioned con-
cerns, and hence no clear and solid answer to the following questions: (i) What are the
sensors and effectors? (ii) Where should the sensors and effectors be placed in software?
(iii) When should the sensors be active? (iv) How should required data be sensed, and
desired actions be effected?

Planning for Software Changes

There is no unique way to change software for the purpose of adaptation. Valid solutions
can be a combination of adaptation and evolution changes, and there are tradeoffs between
different solutions. In general, the cost of evolution is higher than adaptation, due to the
fact that evolution results in a new system/sub system, which increases development and
maintenance costs.

Choosing the best approach requires knowledge about changes that might take place in
future. Thus, it is important to predict future changes and estimate the effort required to
perform these changes. Another important concern is how a software system will perform
and react in a new situation or environment. For example, if an upcoming change request
(that is likely to happen in the future) is known at the present time, then the appropriate
behaviour in that situation shall be considered a functional requirement. However, in many
scenarios, this information is not available, or its occurrence is very unlikely, implying that

6

the cost and effort of handling the situation does not payoff. Consequently, for any given
change request, we have to consider that this is not the last change request, and that
similar change requests may be required in future. Yet, we still need to investigate the
possibility and effectiveness of software-change prediction models, and how we can benefit
from them to plan for evolution and adaptation changes.

1.4 The Approach

The mentioned research objectives and problems associated with engineering and using SAS
systems call for a well-defined approach for improving the usability and effectiveness of SAS.
This demand influenced the original idea of this thesis, which was to design and develop
a generic adaptation framework and a supporting evolution process, so as to manage the
complexity of both the final SAS system and the engineering process for constructing it.

Complexity in SAS stems from various sources (e.g., complexity of software, resources,
communication channels, adaptation logic, etc.). In this thesis, we use two approaches to
manage the complexity of SAS: (i) using models to support various stages of the SAS life-
cycle, ranging from models for specifying adaptation requirements to models that are to be
generated, manipulated, and managed at runtime; and (ii) balancing the complexity among
its sources by finding pareto solutions that can minimize the total system complexity.

For this purpose, we initially separate adaptation and adaptability concerns and identify
key conceptual entities in both of the adaptation and adaptability problem spaces. Then
we link these entities together as a unified conceptual model for specifying SAS systems.
This reference model is a composition of domain-specific metamodels that can characterize
and enclose particular aspects of SAS to provide a better understanding of the SAS and
its domain.

Part of the proposed conceptual model is the metamodel for software adaptability. This
metamodel helps developers comprehend and evolve software for adaptability, and assists
in the construction of transformations aimed at adding adaptive behaviours and improv-
ing software adaptability. The metamodel provides new modeling elements for capturing
adaptability properties of software in terms of a set of primitive sensing and effecting styles.

The second part of our approach is to use models of software at runtime for the purpose
of adaptation. In this approach to runtime adaptivity, the software to be controlled at
runtime is the adaptable software. It is connected to a meta-layer, which is the actual
runtime model. Moreover, an adaptation manager controls the adaptable software by
manipulating its runtime model instead of directly operating on the adaptable software.

7

The structure and behaviour of software that is built around this model-centric architecture
can be changed by modifying the models only. In addition, model transformations can
support the implementation of adaptivity by modifying models at runtime.

In collaboration with the Institute for Software Technology at the University of Koblenz-
Landau, Germany, we realize and implement the proposed model-centric adaptation ap-
proach as theGraph-based Runtime Adaptation Framework (GRAF), which utilizes TGraphs
and its accompanying technologies as the enabling technology for modeling and manipulat-
ing a runtime model. GRAF explicitly separates the adaptable software from its runtime
model, so as to isolate adaptivity concerns from the rest of the common business logic. In
addition, the framework supports the separation of supervision and control from the appli-
cation’s core functionality. This is achieved by realizing the adaptation manager externally,
instead of mixing it with the adaptable software itself.

The developed model-centric approach can be applied to creating an SAS by either
(i) developing it from scratch, or (ii) modernizing existing software as a special case of
developing an SAS anew. In this regard, the design of GRAF fulfills the requirements for
an evolution towards self-adaptive software. However, a modernization requires additional
steps to complete a reengineering process for making an original application adaptable.
Therefore, as a part of this thesis, we propose a modernization process that is specially tai-
lored to (re)engineer software systems towards model-centric self-adaptivity. The proposed
approach uses GRAF in conjunction with other techniques and tools.

The modernization process starts by analyzing adaptation requirements and the cur-
rent system and its application domain in order to specify the required adaptability and
adaptation. After the analysis step, we plan for changing the original software and specify
the required evolution changes in the form of program transformations that preserve the
original behaviour of the software when there is no need for adaptation. The process also
includes the preparation of the adaptation manager (i.e., customized GRAF), and its inte-
gration with the evolved software, such that the software can operate independently from
its adaptation manager to provide its original behaviour.

The approach is supported by conducting a number of case studies that serve as a proof
of concept, show by example, how to achieve runtime adaptivity with GRAF, and sketch
the framework’s capabilities for facilitating the modernization of real-world applications
towards a self-adaptive software system in a cost-effective way.

8

1.5 Thesis Contributions

Regarding the objectives of this research work and our approach, the following contribu-
tions are presented in this thesis:

• A Unified (Reference) Conceptual Model for Controller-based SAS: This is a model of
the SAS problem space that identifies key concepts in this problem space and elaborates
their roles in SAS specifications. The reference model particularly considers shared phe-
nomena between the adaptable software, its adaptation manager, and its environment.
Since specifications and architecture impact each other, this contribution also includes
a discussion of solution-space considerations and how the reference model may facilitate
design.

• A Metamodel For Software Adaptability: This metamodel assists developers in compre-
hending and evolving software for adaptability, and assists the construction of transfor-
mations for including adaptive behaviours and improving software adaptability. This
metamodel provides new modeling elements for capturing the adaptability properties of
a software system in terms of a set of primitive sensing and effecting styles.

• A Model-Centric Approach for Self-Adaptation: This approach extends proven approaches
from the domain of model-centric and model-driven development, and enables adaptiv-
ity by creating, managing, and interpreting runtime models of software. The approach
is especially suited for the modernization of current (legacy) applications towards run-
time adaptivity by reducing the changes necessary to make software adaptable. This
approach is first published in [2], and realized as the Graph-based Runtime Adaptation
Framework (GRAF).

• A Methodology to (Re)Engineer Software Towards Model-Centric Self-Adaptivity: This
is a modernization process for evolving software systems towards GRAF-based SAS.
The proposed approach uses GRAF in conjunction with other techniques and tools
to achieve this goal. In this methodology, adaptability specifications and adaptation
specifications are co-evolved to reduce evolution and adaptation costs. Additionally, the
cost of evolution changes are kept minimal by defining the required evolution changes in
the form of behaviour-preserving transformations. The methodology also includes the
steps to prepare and integrate GRAF with the evolved software.

• Case Studies: This thesis presents case study results that show how to achieve runtime
adaptivity with GRAF, and sketch the framework’s capabilities for facilitating the mod-
ernization of real-world applications towards self-adaptive software in a cost-effective

9

way. The case studies also provide some details of the GRAF implementation and evo-
lution process, and examine their usability and performance in real-world applications.

This research has also led to several valuable by-products, which are not directly in the
scope of the defined problem, but can be utilized and used as an extension of this thesis:

• Adaptive Action Selection Technique Using Reinforcement Learning [4]: This contribu-
tion proposes a planning process, and specifically, an action-selection technique based on
Reinforcement Learning to select appropriate actions in highly dynamic environments.

• Temporal Software-Change Prediction Using Neural Networks [5]: This contribution in-
cludes a software-change prediction technique, and a supporting framework, for predict-
ing the occurrence of several future software changes with reasonable performance. This
approach provides a new viewpoint to managers and developers for planning mainte-
nance activities more efficiently. The approach indicates where the changes are likely to
happen, and then adds the time dimension to predict when it may occur.

1.6 Thesis Organization

This document is further organized as follows:

• Chapter 2 describes the related background knowledge for this thesis, and explores re-
lated work, with the aim of putting the thesis in context. The chapter covers three
research fields that form the foundation of this thesis: software maintenance and evolu-
tion, self-adaptive software, and engineering aspects of self-adaptive software.

• Chapter 3 proposes a unified reference model for the SAS problem space by identifying
key concepts in this problem space and elaborating their roles in SAS specifications.
Since specifications and architecture impact each other, we also discuss solution-space
considerations and how the reference model may facilitate design.

• Chapter 4 proposed the model-centric adaptation approach, and elaborates on the con-
cept of model-centric architecture and models at runtime in SAS systems, with an em-
phasis on the design considerations and motivating factors for the approach. Addition-
ally, the chapter gives an overview of the Graph-based Runtime Adaptation Framework
(GRAF) and provides a brief summary of the framework’s runtime behaviour and the
technologies that are involved in the framework’s implementation.

10

• Chapter 5 introduces the proposed modernization process model for evolving current
(legacy) software towards model-centric self-adaptive software.

• Chapter 6 presents the case studies and obtained results.

• Chapter 7 presents the conclusions and discusses future research directions in the area
of evolution and adaptation of model-centric self-adaptive software systems.

• Appendix A is a list of refactorings that are used by the transformations for making an
original application adaptable.

• Appendix B presents the runtime model schema that is used in the current implemen-
tation of GRAF.

11

Chapter 2

Background Concepts and Related
Work

“Make everything as simple as possible, but not simpler.”
–Albert Einstein

As highlighted in the introduction, there is a strong synergy between evolution and
adaptation in software engineering. With the aim of putting this thesis in context, this
chapter presents related concepts from software evolution, self-adaptive software, and en-
gineering aspects of self-adaptive systems that shape the foundations of this thesis. The
relationship between these concepts is depicted in Figure 2.1.

Software
Evolution

Static
Evolution

Dynamic
Evolution

Evolution

Engineering
Self‐Adaptive

Self‐Adaptive
Software

Self Adaptive
Software

Figure 2.1: Thesis in the Context of Software Evolution

As shown in Figure 2.1, in this thesis we benefit from software evolution concepts and
techniques in two different directions: (i) we use dynamic software evolution, model trans-

13

formation, and model generation as a part of our model-centric self-adaptation approach,
and (ii) classic (static) software evolution to support our proposed modernization process
for evolving software systems towards self-adaptation.

The rest of this chapter starts by giving an overview of fundamental concepts in software
evolution and the process of changing software for various purposes. As software evolution
is a broad discipline, this section continues with a focus on the concepts of software evo-
lution that shapes the foundations of this thesis. The relationship between these concepts
and their position in software change is depicted in Figure 2.2. Next, we present basic
principles, properties, and background behind self-adaptive software, and then we elabo-
rate engineering aspects of self-adaptive software. Finally, the closing section highlights
the challenges and obstacles against the objective of this research to effectively engineer
and use self-adaptive software.

2.1 Software Evolution

It is well accepted that the software development process is not a one time task resulting
in perfect software. The first release of software may change during its life-cycle due to
various reasons. Any changes and modifications on initial software are categorized under
software maintenance and evolution, in order to adapt an application to ever-changing user
requirements and operating environment. The necessity and characteristics of software
change are defined as Lehman’s laws of software evolution [112].

Many researchers and practitioners consider software evolution as a preferable sub-
stitute for software maintenance1 [13, 37, 113], as an activity to perform post-delivery
software changes [115], while some others refer to software maintenance as the process of
fixing bugs or performing minor enhancements, and software evolution as coarser grained
structural forms of change that makes the software systems qualitatively easier to main-
tain [188, 196]. In latter perspective, maintenance preserves the structure of the system
with few economic and strategic benefits and evolution allows the system to comply with
broad new requirements and gain whole new capabilities.

From another point of view, software evolution goes beyond software maintenance.
Evolution techniques can be used to perform maintenance tasks such as bug fixing or
any other adaptation within the software’s original feature set. Moreover, evolution can

1Software maintenance as defined in IEEE Standard 14764 [88] is: “The modification of a software
product after delivery to correct faults, to improve performance or other attributes, or to adapt the
product to a modified environment.”

14

also be applied for changing systems in a more substantial way, for instance, to add new
functionalities. With the view of having evolution as a top level activity of any post-release
software change, software evolution can be divided into three categories: maintenance,
modernization, and replacement [167]. Based on the above definition, we can conclude
that software evolves as we maintain it.

Buckley et al. [30] classify various dimensions of software change by characterizing the
mechanisms of change and the factors that influence these mechanisms. These dimensions
subdivide software change into four logical themes: temporal properties (when), object
of change (where), system properties (what) and change support (how). The captured
dimensions, as a taxonomy of software change, are listed in Table 2.1, which can be used
to compare formalisms or processes for software evolution. Among the dimensions listed
in Table 2.1, in this thesis we are specifically interested in the Time of Change dimention,
in which three categories of change become apparent:

• Static: The change concerns the source code of the system. Consequently, the soft-
ware needs to be recompiled for the changes to become available.

• Load-time: The change occurs while software elements are loaded into an executable
system.

• Dynamic: The change occurs during execution of the software.

Static and dynamic adaptations are mapped respectively to compile-time evolution
and load-time/run-time evolution. That is why dynamic adaptation is sometimes called
dynamic evolution.

The rest of this section gives an overview on software modernization and other related
concepts that are utilized in this thesis. The relationship between these concepts and their
position in the context of software evolution is depicted in Figure 2.2.

2.1.1 Software Modernization

Modernization is a type of evolution that involves more extensive changes than mainte-
nance, while conserving a significant portion of the existing system [167]. Modernization
changes can be categorized as either adaptive or perfective maintenance changes according
to the Lientz and Swanson classification [115]. These changes often include restructuring
the system, enhancing and adding new functionality, or modifying software attributes. The
main objective of modernization is adapting the software to support new technologies and

15

Table 2.1: Dimensions Characterizing or Influencing Software Change Mechanisms [30]

Theme Dimension Description

When

Time of Change addresses the when question.

Change History refers to the history of all (sequential or parallel) changes that
have been made to the software.

Change
Frequency

influences the change support mechanisms. Changes to a system
may be performed continuously, periodically, or at arbitrary inter-
vals.

Anticipation refers to the time when the requirements for a software change are
foreseen.

Where

Artifact software artifacts can be subject to change during evolution. These
can range from requirements through architecture and design, to
source code, documentation, configurations and test suites.

Granularity refers to the scale of the artifacts to be changed and can range from
very coarse, through medium, to a very fine degree of granularity.

Impact the impact of a change, ranging from local to system-wide changes.

Change
Propagation

the process of following-up changes in other encapsulated entities
(procedures, modules, classes, packages, etc.).

What

Availability indicates whether the software system has to be continuously avail-
able or not during this evolution.

Activeness refers to reactiveness (changes are driven externally) or proactive-
ness (the system autonomously drives changes to itself) reaction
of the system as the change happens.

Openness refers to an ability of the system for facilitating the inclusion of
extensions.

Safety measures to what extend safety aspects are preserved as the change
happens and if there are built-in provisions for preventing or re-
stricting undesired behaviour at run-time. This dimension ranges
between static and dynamic safety.

How

Degree of
Automation

shows the degree of automation to perform the change, ranging
from automated to partially automated and manual change sup-
port.

Degree of
Formality

ranges from ad-hoc way approaches to changes that are based on
some underlying mathematical formalism.

Change type influences the manner in which the change is performed as either
structural or semantic change.

16

MagicDraw UML, 1−1 C:\Amoui\manuscript\thesis\figures\taxonomy\taxonomy.mdzip taxonomyEvolution 9

Program Comprehension

Model Transformations

Reverse Engineering

Software Evolution

Impact Analysis

ReengineeringModernization

Refactoring

-requries

-can be realized as

-helps in

Figure 2.2: Relationships Among the Presented Software Change Concepts

requirements. Here, the changes are relatively extensive, but the original software still has
business value that must be preserved. Reasons for modernization usually stem from legacy
system brittleness, inflexibility, isolation, non-extensibility, and lack of openness [15].

A complete modernization effort should consider and support the following points of
view [167]: (i) new functional and non-functional requirements, (ii) leading-edge technolo-
gies, devices, protocols, and standards, (iii) maximum reuse of existing assets, and (iv) cost
and effort.

Modernization can be done in either black-box or white-box fashion. This depends
on the required level of system understanding to support the modernization effort [196].
White-box modernization requires knowledge about internals of a system. In white-box
modernization, the code is analyzed and understood in order to identify the change points
and to restructure. This restructuring can be defined as transformations at a same relative
abstraction level. In contrast, black-box modernization abandons the structure and data
flows within the entity, by only focusing on the inputs and outputs, within an operating
context, to understand the system interfaces. Therefore, the black-box approach is usually
not as difficult as white-box modernization. Black-box modernization is often based on
either wrapping or altering the composition of entities. Wrapping is a black-box mod-
ernization because only the interfaces are analyzed, and the system internals are ignored.
Unfortunately, this solution is not always practical and often requires understanding the
software module’s internals, using white-box techniques [167]. This means the modern-
ization might be black-box at one abstraction level, but white-box at a higher level of
abstraction.

17

2.1.2 Software Reengineering

Reengineering, as a form of modernization, is the examination, analysis, and alteration
of an existing software system for its reconstitution in a new form, and the subsequent
implementation of the new form [40]. This may include modifications with respect to new
requirements that are not met by the original system. The process typically encompasses a
combination of other processes such as reverse engineering, re-documentation, restructur-
ing, and translation. The goal is to understand the existing software at different abstraction
levels and then to re-implement it to improve the system’s functionality, performance or
implementation. The objective is to maintain the existing functionality, and prepare for a
functionality to be added later. As stated by the definition, reengineering consists of the
examination and the alteration of a subject system.

As stated by Chikofsky and Cross [40], reengineering generally includes some form
of reverse engineering (to achieve a more abstract description) followed by some form of
forward engineering. In this context, forward engineering is the process of moving from
high-level abstractions and logical, implementation-independent designs, to the physical
implementation of a system. The adjective forward in forward engineering is mainly used to
distinguish classic software engineering process from reverse and reengineering. The main
difference between (forward) engineering and reengineering is that reengineering starts from
an existing implementation. Consequently, for every change to a system, the reengineer
must evaluate whether (parts of) the system need to be restructured (or refactored [65]) or
if they should be implemented from scratch. Here, restructuring generally refers to source
code translation, but it may also entail transformations at the design level.

Although reengineering is not intended to be used for enhancing the functionality of an
existing system, it is often used in preparation for enhancement. Reengineering specifies
the characteristics of the existing system, which can be compared to the specifications of
the desired system. The reengineered target system can be built to easily facilitate the
enhancements. For example, if the desired functional improvement to a legacy system
is dependant on object-oriented properties, the system can be reengineered to support
object-orientation. This reengineering process does not introduce a new functionality in
software and preserve its behaviour, but it allows future modernization tasks that are
object-oriented dependant.

As a part of this research work, we will propose a reengineering process for modernizing
software towards self-adaptivity, in which the reverse engineering activity basically maps to
the act of analyzing and understanding the current software in terms of current adaptabil-
ity, and the forward engineering activity is supported by the set of program transformations
to increase software adaptability.

18

2.1.3 Reverse Engineering

Chikofsky and Cross [40] define software reverse engineering as “the process of analyzing a
subject system to identify the systems components and their inter-relationships and create
representations of the system in another form or at a higher level of abstraction.” Reverse
engineering is a common practice for comprehending software and a process of analyz-
ing software in order to: (i) investigate the systems components and their relationships,
(ii) extract information from source code, and (iii) create abstractions of the system that
describe the underlying system structure and behaviour.

Reverse engineering has two main activities [34]: (i) analyzing software artifacts (includ-
ing analyzing the evolution of software artifacts across their revisions), and (ii) providing
software models that are understandable by humans. Software analysis is usually performed
by tools that take software artifacts as input and extract information that is relevant to
reverse engineering tasks. The analyzers can extract information using static analysis, dy-
namic analysis or a combination of both. The software models are basically abstract views
of software. Several representation paradigms for software models are available in the lit-
erature [58], including logics and logical databases, sets and relations, relational databases,
and graphs. All these different forms of code representation have their advantages and
disadvantages. However, they should be able to query the information base containing
facts populated by analyzers, and to abstract low-level artifacts and reconstruct high-level
information.

During the last decade, various supporting techniques and tools are developed for re-
verse engineering. Canfora et al. [34] provide a list of common and popular tools for reverse
engineering. Such tools and techniques help to: (i) extract facts from source code/bina-
ries, (ii) investigate execution traces or historical data, (iii) query the extracted facts, and
(iv) build high-level views for humans.

2.1.4 Program Comprehension

Program comprehension (program understanding) is the process of acquiring knowledge
about software. This knowledge plays a crucial role in software evolution, as software must
be sufficiently understood before it can be properly modified. Program comprehension is
a long lived concept in software engineering. Numerous theories and approaches towards
program comprehension are available in the literature [45, 156, 195], and are supported
by various comprehension models [194]. These models can be viewed from different per-
spectives [156]. Two main dimensions for categorizing program comprehension techniques
are:

19

• Systematic vs. As-needed: In a systematic approach the maintainer examines the
entire program and works out the interactions between various modules [117]. This
is completed before any attempt is made to modify the program. In contrast, in the
as-needed strategy the maintainer attempts to minimize the amount of study prior
to making a modification. Thus, the maintainer tries to locate the section of the
program which needs to be modified and then commences the modification.

• Top-down vs. Bottom-up: This classification is proposed by Brooks based on the
hypothesis of a mapping between the problem-domain and the solution-domain [25].
Brooks argues that domain knowledge is an important factor in program compre-
hension. He argues that the developer produces these mappings and the maintainer
has to reconstruct them. This duality is described as top-down and bottom-up ap-
proaches. In top-down approach, the comprehension is achieved by setting a certain
hypotheses and then confirming or rejecting them based on evidence. The confirmed
hypotheses are retained, becoming part of the program’s comprehension, while re-
jected hypotheses are discarded. In contrast, bottom-up approach of program com-
prehension is based on understanding fundamental elements and piecing together the
inferred knowledge to deduct new knowledge by combining base elements into rather
larger elements.

Impact Analysis

Impact analysis is a program comprehension activity of identifying the potential conse-
quences, including side effects and ripple effects, of a change, or estimating what needs to
be modified in order to accomplish a change before it has been made [19]. The basic prin-
ciple underlying the need for impact analysis is that a small change in a software system
may affect many other parts of the system, which is known as ripple effect. Two major
class of techniques for impact analysis are [19]:

• Dependency analysis, which involves examining detailed dependency relationships
among program entities. Data flow analysis, control flow analysis, and program
slicing are common practices to support this analysis.

• Traceability analysis, which is the ability to trace between software artifacts generated
and modified during the software product life cycle at various abstraction levels. For
example, it can relate requirements with associated design components, or design
models to source code.

20

Dependency analysis provides detailed information about dependencies in source code
but does little for entities at other abstraction levels. Dependency analysis can be done in a
static or dynamic manner and can target both structure and semantics of software [18, 95].
In contrast, traceability analysis techniques usually take into account the whole range of
documents associated with software, including specifications and design. However, main-
taining traceability information over a system’s life cycle usually requires considerable
effort, and thus is often slighted under the time pressures, which is associated with soft-
ware development and maintenance in most cases. Techniques using information retrieval
methods have been developed to recover traceability links, hypothesizing the consistency
between high-level document terms and source code identifiers and comments [7].

2.1.5 Model Transformation

Models specify abstractions of real-world phenomena, where the abstraction level can vary
and depends on the application domain. Such models are used for a variety of purposes; for
example in software construction, abstract models serve as the basis for transformations
resulting in the generation of (executable) source code. From this perspective, models are
often used during the software development cycle and prior to runtime. Kleppe et al. [105]
provided the following definition for transformation:

“A transformation is the automatic generation of a target model from a source model,
according to a transformation definition. A transformation definition is a set of transfor-
mation rules that together describe how a model in the source language can be transformed
into a model in the target language. A transformation rule is a description of how one or
more constructs in the source language can be transformed into one or more constructs in
the target language.”

Considering the fact that source code is a model[126], this definition also includes pro-
gram transformation, since an act of changing one program into another program is a model
transformation. Model transformations can be applied for a very wide range of applica-
tions such as model driven engineering, reverse engineering, program optimization, code
generation, migration, and many other applications in the domain of software maintenance
and evolution. Due to the wide range of applications and perspectives, several taxonomies
have been proposed for model transformations such as the ones proposed by Mens and Van
Gorp [126], by Czarnecki and Helsen [46], and by Visser [192].

Transformations can be automated by using transformation tools and languages. When
building modeling tools, one needs to model the structure and well-formedness rules of the

21

language in which the models are expressed. Such models are called metamodels [63]. Hav-
ing a precise metamodel is a prerequisite for performing automated model transformations.

There is a multitude of tools and languages available for model transformation. Some
of them are listed in [46]. Among the large list of tools and languages, the most widely
used general-purpose language specification is Query/View/Transformation (QVT) [138].
The QVT specification was proposed by the Object Management Group. It consists of
three languages: QVT Core, QVT Relations and QVT Operational Mappings. Another
famous transformation tool is ATLAS Transformation Language (ATL) [96], which is gen-
erally used to express MDA-style [137] model transformations, based on explicit metamodel
specifications [96]. ATL was created by INRIA2 as an answer to the OMG3’s QVT language
request for proposals. Besides MDA-style transformation languages, several graph transfor-
mation language are available (e.g., GrGen.NET [92], VIATRA2 [190], and GReTL [84]).

This research specifically benefits from GReTL [84], a graph-based general-purpose op-
erational transformation language, for transforming models of software at runtime. GReTL
operations are either specified in plain Java using the GReTL API or in a simple domain-
specific language. GReTL follows the concept of incrementally constructing the target
metamodel together with the target graph.

2.1.6 Refactoring

Program Refactoring is a class of program transformation which is used to improve soft-
ware quality by restructuring it while preserving its behaviour. The term refactoring was
originally introduced by William Opdyke [142]. The main idea is to redistribute classes,
variables and methods across the class hierarchy in order to facilitate future adaptations
and extensions [65].

Refactorings can be done manually or automated at different abstraction levels. Refac-
torings are widely used by developers to improve the quality of an object-oriented code,
and are supported by software tools. Refactorings can be composed to form more com-
plex transformations. Based on object-oriented refactorings, Tokuda and Batory [186]
presented a pragmatic approach for high level object-oriented transformations to design
patterns while preserving software behaviour. In another approach, for higher level trans-
formations, Tahvildari et al. [182] use a catalogue of object-oriented metrics as an indicator
in order to automatically detect where a particular meta-pattern can be applied to improve

2the Institute National de Recherche en Informatique et en Automatique
3Object Management Group

22

software quality using refactoring. In another work, Amoui et al. [3] develop a framework
for automatic software evolution using design pattern transformations. The intelligent
evolution engine is based on Genetic Algorithms and aims to increase software quality by
mapping the problem into a multi-objective optimization problem where the objectives are
set to software quality properties.

2.1.7 Software-Change Prediction

Change prediction plays a key role in effective planning of evolution and adaptation
changes. Software change prediction can be performed for different purposes such as re-
verse engineering and cost estimation [71]. It often determines change-prone entities and
change propagation patterns of a product [197]. A good prediction model can be used for
future resource allocation and cost estimations, as well as specifying where and when main-
tenance/evolution tasks are “better” to start. This issue in large-scale systems is crucial
for early detection of potential changes that may occur in future, and in turn reducing the
costs and the risks of applying those changes.

Most change prediction approaches are based on the analysis of software history, and
its evolution. The information is normally captured from software repositories and/or doc-
umentation [197]. Software change prediction techniques can be classified by two aspects:
what and how they predict. Most of the research works related to the what aspect aim
at [82]: (i) predicting the number of changes, bugs, or faults, or (ii) predicting the probabil-
ity or rate of the change of software entities. On the other hand, the how aspect classifies
prediction models as either stateless or stateful. The former relies only on the current state
of a system, while the latter is based on past history rather than current state.

In addition, time-series prediction for software entities (such as software change/fault
prediction) can be performed through two approaches: mathematical/statistical mod-
els [12, 76, 136], and AI/soft computing techniques [85, 102, 153, 169]. Most of these
works address prediction of quality indicators such as maintainability and reliability.

Independent of prediction technique, predictors play an important role in the effective-
ness of the whole process and quality of outcomes. Prior works have identified important
predictors for software change prediction (e.g., Khoshgoftaar et al. [101], and Mockus et al.
[130]). Suitable predictors should provide appropriate information with minimum possible
prediction error along with a proper level of flexibility to tune prediction techniques.

23

2.2 Self-Adaptive Software

The trend of software evolution and maintenance is moving towards support for dynamic
and runtime evolution [98]. Frequently changing user needs or high variability in the
amount of available resources are only two examples of scenarios in which modern software
must be able to reconfigure and continuously optimize itself at runtime.

The term “Self-adaptive software” was first introduced by the Defense Advanced Re-
search Projects Agency (DARPA) as a software system that is able to evaluate its own
behaviour, and change that behaviour when its evaluation indicates that it is not accom-
plishing what the software is intended to do, or when better functionality or performance
is possible [108]. Another definition is given by Oreizy et al. [144]: “Self-adaptive software
modifies its own behaviour in response to changes in its operating environment. By oper-
ating environment, we mean anything observable by the software system, such as end-user
input, external hardware devices and sensors, or program instrumentation.”

From the definitions above, one can conclude that self-adaptive software should contain
the following characteristics:

• ability to observe changes in its operating environment4.

• ability to detect and diagnose operating environment state transitions and evaluate
its own behaviour.

• ability to alter its own behaviour in order to adapt itself to the new changes.

• support of dynamic behaviour. Its internal and/or external behaviour should be able
to change intentionally and automatically.

2.2.1 Architectural Perspective

Self-adaptive software (SAS) must be self-aware in the sense that it knows at least a
subset of its own structural and behavioural elements. This is an essential property of
SAS, because changes to the state of software need to be observed by a controller that is
able to respond to changes in the software’s operating environment.

Computational reflection, as defined by Maes [122], is a solution for achieving the self-
awareness property [198]. A reflective system is causally connected to a representation

4We assume that software is part of its operating environment.

24

of itself. If the system changes, its self-representation changes accordingly (reification).
Conversely, changes in the self-representation result in changes to the underlying software
(reflection).

In a reflective architecture, the part of software that specifies the business logic and
interacts with the application domain is called the base-layer. It is causally connected to
a meta-layer, which specifies the self-representation aspect of the system. Having a self-
representative meta-layer allows software to reason about its own structure and behaviour
in order to take required actions for its behaviour adjustment.

An important aspect of adaptation is the change granularity. This is often discussed in
terms of two general categories of coarse-grained and fine-grained changes. A remarkable
number of well-known studies in the literature address coarse-grained changes such as ar-
chitectural changes, for instance [39, 145]. Although these changes can be highly effective,
the problem is that they are hard to implement, test, and manage in complex large-scale
distributed systems. This issue is much more difficult under unanticipated conditions.
Fine-grained adaptation has been increasingly used, due to its lower cost, and also due
to the advent of supporting technologies (e.g., dynamic aspect composition). Parameter
adaptation changes are fine-grained, but some resource management actions and the com-
position of dynamic aspects also fall into this category. For instance, Grace et al. [74] use
the fine-grained adaptation of aspect-oriented compositions by changing the cross-cutting
concerns of a subset of entities [56, 77].

Adaptation approaches also differ in how base-layer and meta-layer are specified and
communicate with each other and with other parts of the system. Basically these ap-
proaches can be divided into two main categories: (i) internal approaches, which treat and
realize adaptation requirements as first-level functional properties of software, and (ii) ex-
ternal approaches, which separate adaptation concerns from other functional concerns of
the system. Each approach has its own advantages and disadvantages. This section will
introduce both approaches and argue their benefits and drawbacks.

Internal Approaches

Internal approaches interweave application and adaptation specifications. These approaches
are mainly recognized as programming-based mechanisms for low-level adaptations. In
support of internal approaches, there is a point of view of adaptive applications based on
adaptive programming principles as an extension of object-oriented programming [114]:
“A program should be designed so that the representation of an object can be changed
within certain constraints without affecting the program at all.” By this view, an adap-

25

tive program will be: “A generic process model parameterized by graph constraints which
define compatible structural models (customizers) as parameters of the process model.”
This point of view is similar to reflection and meta-programming. The main advantages
of internal approaches are: (i) testability, due to the expected behaviour of an adaptive
software, (ii) applicability of formal methods approaches and model checking for increasing
the reliability and robustness of the system, and (iii) better performance due to low-level
language support.

The main drawbacks of the internal approaches can be summarized as: (i) limited
support for dynamic adaptation, (ii) lack of scalability for large and complex systems,
(iii) costly reengineering of adaptation requirements, and (iv) limited native support by
programming languages and development tools.

Another interesting set of approaches are those which are considered internal at the
design level, but may be realized as either internal or external at the code level [36].
However, due to the mentioned drawbacks of internal approaches, more attention is given
to external approaches in practice.

External Approaches

External approaches use an external sub-system to control the adaptation of the software
system, similar to classic feedback control systems [28], in which a system can either follow
an open-loop or a closed-loop architecture. An open-loop (i.e., feed forward) system has
an accurate model of its domain and adjusts the control output based on environment
disturbances [141]. The feedback control and its variations, including adaptive control,
inspire software engineers to employ the closed-loop architecture in software systems. The
major merits of external approaches are: (i) adaptation requirements are separated from
functional requirements, (ii) separation of adaptation logic and application business logic,
(iii) increase of reusability, scalability, and maintainability, (iv) support of dynamic adap-
tation, and (v) applicability of artificial intelligence and control theory techniques.

The adaptation manager, as a controller, continuously runs four processes in a closed
loop form: monitoring, analyzing, planning, and executing, as shown in Figure 2.3. Contin-
uous execution of the manager shapes a control loop, which is known as MAPE-loop [87].
The loop is completed by connecting to the adaptable software through the provided sensor
and effector interfaces. Here is a summary of each process depicted in Figure 2.3:

• Monitoring deals with collecting and correlating data from sensors and converts
them to behavioural patterns and symptoms. The monitoring process can be realized
by event correlation, threshold checking, and gauge monitoring.

26

Monitoring Analyzing Planing Executing
PlansSymptomsEvents

States Actions

Adaptable Software

Figure 2.3: Architecture of an Adaptation Manager

• Analyzing is responsible for detecting the symptoms provided by the monitoring
process and also the system’s history to detect when a change needs to be applied.

• Planing determines what needs to be changed and what is the best way to make
such a change. Planing is usually specified as decision models and supported by
decision-making algorithms.

• Executing carries out actions planned by the deciding process. This includes man-
aging non-primitive actions through workflows or mapping actions to dynamic adap-
tation technologies provided by adaptable software.

The next subsection briefly discusses techniques, mechanisms, and technologies that
facilitate the development of adaptive software systems.

2.2.2 Enabling Technologies

There are several available techniques for probing and sensing software applications. Log-
ging is likely the oldest and simplest technique to monitor software. The logs need to be
filtered and analyzed to extract useful information. To assist this process, we can benefit
from log analyzer tools. IBM’s Generic Log Adapter (GLA) and the Log Trace Analyzer
(LTA) [86] are examples of these type of tools. Besides logging, several enterprise standards
and frameworks exist to add monitoring features into software. Application Response Mea-
surement (ARM) is one of these standards [8]. ARM describes a method for integrating
enterprise applications as manageable entities. It comes with an SDK for the Java and
C languages, which enables developers to add sensors for measuring end-to-end parame-
ters. The measurement parameters include application availability, performance, usage,
and end-to-end transaction response time.

Profilers can also assist the monitoring process as either application sensors or mid-
dleware sensors. The Java Virtual Machine Tools Interface (JVMTI) is an example of

27

both an application and middleware profiler for Java applications [179]. JVMTI allows a
program to monitor the applications running in the JVM. It also comes with a set of APIs
for application level monitoring. Instrumenting the application for sensors can be done
at compile time, as in gprof [75], or instrumentation codes can be added to the binary
application as in ATOM [111, 174].

Another powerful management framework for Java is Java Management eXtensions
(JMX), which gives powerful facilities for both sensing and effecting [178]. The JMX
technology, as a management framework included in the Java Development Kit (JDK),
is widely used in Java environments for managing and monitoring resources (e.g., devices
and applications) [178]. In JMX, each resource is instrumented by one Java object called
Managed Bean (MBean). External applications can access MBeans via the JMX MBean
server. MBeans can be accessed to observe the changes, and can be modified in order to
control the application’s behaviour [9].

In contrast to sensors, approaches for effectors are less general and more case specific.
Effectors basically have the nature of action events. The adaptation manager (or the
software itself in case of the internal approach) triggers action events, and software should
follow some structural and behavioural infrastructures to support effectors as action events.

One solution to implement effectors is triggering action events by having appropriate
tuning parameters in software and setting their values (e.g., the Software Tuning Panels for
Autonomic Control (STAC) project, which aims to set tuning parameters as effectors into
legacy software [22]). However, most of the solutions proposed for implementing effectors
try to alter software behaviour by dynamically changing the application data and control
flow (e.g., reflection [122], dynamic aspect weaving [151], and metaobject protocol [104]).

Aspect-Oriented Programming

Aspect orientation is used as a capable solution for developing self-adaptive software sys-
tems. Aspect-Oriented Programming (AOP) is a viable solution for modifying application’s
source code and executables as needed [103]. This is mainly due to the fact that separa-
tion of concerns (adaptation and system functionality) is an important factor in adaptive
systems, which is essentially one of the the main advantages of aspect-oriented design.
Existing AOP languages such as AspectJ [10] or AOP frameworks, like JBoss AOP [93]
hide the implementation complexity of bytecode transformations involved. AOP concepts
can be otherwise implemented using lower level bytecode manipulation libraries such as
ASM [147], BCEL [184] or Javassist [170].

28

Generally, AOP frameworks define two things: a way to implement crosscutting con-
cerns as code snippets, and a programmatic construct, a programming language or a set
of tags, to specify how and where to apply those snippets of code. The terminology varies
from technology to technology but in essence, the same concepts apply. Table 2.2 presents
a brief introduction to AOP terminology, covering the most common AOP concepts.

Table 2.2: List of Common Concepts Used in Aspect-Oriented Programming

Concept Description

Aspect A modularization of a concern that cuts across multiple objects. Aspects
can be implemented as regular classes implementing specific interfaces, or as
simple methods with a predefined signature.

Join Point A point during the execution of a program, such as the beginning or ending
of a method execution.

Advice An action taken by an aspect at a particular join point. Different types of
advice include around, before and after advice.

Pointcut A predicate that matches join points. An advice is associated with a pointcut
expression and runs at any join point matched by the pointcut.

Weaving The process of mixing aspects with other application types or objects to create
an advised object.

Aspect-Oriented Programming (AOP), and more specifically dynamic AOP, facilitates
encapsulating adaptation concerns in the form of aspects through dynamic runtime adap-
tation. It also helps to implement fine-grained adaptation actions at a level lower than
components [77, 161]. Another approach is JAC [150], which uses a wrapping chain that
can dynamically change existing or new join points. AOP can also be used for instrument-
ing sensors as in the IBM BtM (Build to Manage) tool [29].

Middleware

Developing adaptable software is not a straightforward task, because autonomic behaviours
increase software complexity, and might conflict with other non-functional properties. One
of the main goals of this thesis is to develop an infrastructure to make this easier. With
respect to the generic reference architecture for autonomic systems proposed in [98], the
adaptable software may refer to something as narrow as a single module, or as broad as
application containers, middleware, or even operating systems. Therefore, we may consider
an adaptable software as an application or service, in conjunction with its constituent

29

layers. This viewpoint enables us to take advantage of possible sensing and effecting
facilities provided by the application’s operating environment. As an example, the system
load may be monitored from different views through either the operating system’s API or
state parameters (e.g., number of active sessions).

Therefore, there is a range of sensing and effecting mechanisms from case-specific
application-level sensors and effectors to generic sensors and effectors provided by the
application’s operating environment. Having a manageable platform is a great benefit for
the adaptable software, because high-level sensing and effecting mechanisms are usually
more robust, and are realized by systematic solutions. A good platform that supports
manageability should be able to provide a flexible and rich set of sensing and effecting
mechanisms for all application layers. This can be achieved by providing management
facilities, such as APIs, protocols, and standards. Thus, the appropriate platforms for
developing manageable systems should have: (i) capabilities to observe and alter system
states, (ii) load-time configurable modules, (iii) dynamically (runtime) changeable modules,
(iv) well-defined module interfaces, and (v) mechanisms for single-point-of-change adjust-
ment of state variables. Compared to direct application-level mechanisms, platform-level
sensing and effecting mechanisms may add unwanted limitations (e.g., less accurate sensing
data, and coarser-grain effectors) or put extra overhead on the system performance. How-
ever, generally speaking, platform-level adaptation exhibits less coupling between sensors
and effectors and application’s business logic.

Decision Making

The task of analyzing and deciding on the optimal adaptation action to execute, given the
system state and context, is a planning problem [55]: “how do we find an optimal decision
policy to perform adaptation actions for a given (hopefully complete and correct) model
of the system state, a set of available adaptation actions, and a means of evaluating the
result of adaptation actions?”

In general, planning and decision making in self-adaptive software is a special form of
the Action Selection Problem (ASP) in autonomous agents [123] and robotics, especially
behaviour-based robotics [157]. Similarities can be enumerated considering dynamism and
uncertainty of the environment, as well as online decision-making. However, the problem
in software is generally more complex than in robotics. This is mainly because software
behaviour is not obeying physical rules, has more control variables and disturbances, and
more complexity.

Several ideas from behaviour-based robotics seem promising for autonomic software.

30

The majority of existing autonomic managers use a model-based approach for adaptation.
These systems normally utilize a sensor fusion model to capture events and update the
model. The idea of behaviour-based robotics is to use distributed specific task-achieving
modules, called behaviours, and to apply command fusion instead of sensor fusion (e.g.,
subsumption architecture [24]). By this mean, there is no need to develop, maintain and
extend a coherent monolithic model for the autonomic element and its context. More
related to the thesis approach, Salehie et al. use voting mechanism for decision making in
autonomic systems [164].

Recently there has been an increased interest in using machine learning techniques for
software adaptation. In [185], Tesauro presents a hybrid approach that allows reinforce-
ment learning [180] to bootstrap from existing management policies, which substantially
reduces learning time and costliness. He also demonstrates hybrid reinforcement learnings
effectiveness in the context of a simple data-center prototype. Dowiling describes how re-
inforcement learning can be used to coordinate the autonomic components in a distributed
environment [55]. His PhD thesis introduces K-Component, a framework to incorporate
a decentralized set of agents which learn for adaptation. Also, Littman et al. have used
reinforcement learning to address self-healing properties in the domain of network sys-
tems [118], claiming their system is able to learn to efficiently restore network connectivity
after a failure.

2.2.3 Adaptation Frameworks

There are several successful projects related to runtime adaptation frameworks [165]. In
this section, we focus on related projects, frameworks, and technologies, and briefly high-
light their features.

The Rainbow framework [39] uses an abstract architectural model to monitor the run-
time properties of an executing system. Certain components of Rainbow are reusable and
the framework is able to perform model constraint evaluation and adaptation at runtime.
The framework mainly targets architecture-level adaptation, where adaptive behaviour
is achieved by composing components and connectors, instead of handling explicit be-
havioural models. Rainbow assumes that any target system provides system access hooks
for sensing and that developers can use wrappers to add hooks to legacy systems for af-
fecting purposes. Guidelines for introducing such changes are not a focus of this work.

The DiVA project [131] considers the design and runtime phases of adaptation. DiVA
focuses on adaptation at the architectural level and is based on a solid four-dimensional
modeling approach to SAS [64]. At design time, a base model and its variant architecture

31

models are created. These models include invariants and constraints, which can be used
to validate adaptation rules. One of the main focuses of this work is to tackle the issue of
explosion in the number of possible runtime system configurations (modes). The authors
use aspect-oriented modeling to derive a set of modes by weaving aspects into an explicit
model [132]. Finally, the generated modes are then used to adapt the system automatically.

Vogel and Giese [193] propose a model-driven approach which provides multiple archi-
tectural runtime models at different abstraction levels. For instance, more abstract models
are derived from concrete source code models. Subsets of these abstract target models focus
on specific adaptation concerns to simplify autonomic managers, and support separation
of concerns among them. Like DiVA, this research also targets adaptation from an archi-
tectural point of view. Both of these approaches rely on enterprise and component-based
architectures, such as JavaEE, which makes them less suitable for enabling adaptivity in
legacy and standard applications. The presented implementation is based on the mKer-
nel infrastructure [27], which offers comprehensive support for the management of Java
enterprise applications.

TRAP/J [159] enables the addition of new adaptable behaviour to existing Java ap-
plications without requiring changes to the original source code or the virtual machine.
TRAP/J utilizes behavioural reflection and AOP techniques. In this approach, software
developers choose from a subset of existing classes and generate aspects and reflective
classes to derive an adapt-ready version of their original software. TRAP/J focuses on the
technological approach of how to make an existing Java application adaptable. It supports
reification of method invocations, but not the reification of read/write operations on fields.

StarMX [9] is a generic configurable adaptation management framework. It separates
management logic from application logic by using explicit sensing and effecting interfaces.
StarMX has no dependency on application characteristics (e.g., architecture or environ-
ment) or adaptation concerns. Designed for Java-based systems, it incorporates Java
Management Extensions (JMX) technology and is capable of integrating with various pol-
icy/rule engines.

AspectOpenCOM [74] is a reflection-based component framework. In contrast to the
presented related work so far, this technology is focused on the fine-grained adaptation
of already deployed aspects. AspectOpenCOM is implemented in Java, and the authors
present a case study illustrating the performance benefits of their fine-grained approach to
adaptation in the context of aspect composition. This research is not related to runtime
models, but provides lower-level facilities to be used in AOP-based runtime adaptation in
general.

32

2.3 Engineering Aspects of Self-Adaptive Software

To engineer a software system, a collection of requirements is needed to address various
functional and non-functional characteristics of the desired system. According to Berry
et al., there are four levels of requirements engineering for and in dynamic adaptive sys-
tems [14]: (i) by humans, to describe the general behaviour of the system; (ii) by the
system itself, to determine when it needs to adapt and what behaviour to adapt; (iii) by
humans, to decide when, how, and where the system is going to adapt itself; and (iv) by
humans, to carry out research about adaptation mechanisms.

In complementary research, Goldsby et al. propose new levels of requirements that
reify the original levels to describe requirements modeling work done by adaptive software
developers [72]. They identify four types of developers: (i) the system developer, (ii) the
adaptation scenario developer, (iii) the adaptation infrastructure developer, and (iv) the
adaptive software research community. Each level corresponds to the work of a different
type of developer to construct goal models specifying their requirements.

As engineering SAS is a broad topic, this section only focuses on those aspects that are
used in this thesis.

2.3.1 Specifying Adaptation Requirements

There are a number of research works on requirements specification of adaptive software.
Sitou and Spanfelner present a model-based requirements engineering approach to system-
atically analyze and specify both system behaviour and adaptation behaviour, starting from
customer and business needs [172]. In this research, the authors present the RE-CAWAR
approach, which is a methodology that aims to augment the requirements engineering pro-
cess for context aware and adaptive systems. The core of the methodology is an integrated
model of the usage context. In another work, Salifu et al. present a problem oriented
approach to represent and reason about contextual variability, and assess its impact on
adaptation requirements. This approach extracts and specifies concerns about sensing
and effecting behaviours that can detect changes and adapt in response. They encode
monitoring and switching problems into propositional logic constraints [166].

Regarding formal approaches, a survey by Bradbury et al. [21] describes numerous re-
search efforts to formally specify dynamically adaptive programs. Graph-based approaches
model the dynamic architecture of adaptive programs, as graph transformations (e.g.,
Taentzer et al. [181]). A few efforts have formally specified the behavioural changes of
adaptive programs, including those that use process algebras to specify the behaviour of

33

adaptive programs (e.g., Allen et al. [1], Kramer and Magee [107], and Canal et al. [33]).
In another work, Zang and Cheng use temporal logic to specify adaptive program seman-
tics [200]. They model an adaptive software as the composition of a finite number of
steady-state programs and the adaptations among these programs. It assumes that adap-
tive properties of each program have already been specified with a Linear Temporal Logic
(LTL) formula. They introduce the Adapt operator-extended LTL (A-LTL), an extension
to LTL for specifying an adaptation from one program to another. These specifications are
further specified with the KAOS methodology [48] to provide a graphical wrapper to the
formal A-LTL specifications of the semantics, in order to achieve a goal-oriented specifica-
tion [26]. Another research by the same authors introduces an approach to create formal
models for the behaviour of adaptive programs based on high-level requirements, and to
verify and validate the adaptive models [199]. They have also described how to use these
models to generate executable adaptive programs.

The adaptation manager is described by several processes. Although these processes
are named differently in the literature, they basically refer to roughly similar behaviours
towards adaptation (e.g., see [51] [165]). We can classify adaptation specifications, for each
process of the MAPE-loop (as illustrated in Figure 2.3):

• Monitoring specifications describe the association between sensors and entities that
hold adaptation related data. These specifications deal with what, when, and how
attributes should be collected from sensors? The sensed value may lie in a different
space from that attribute, in which case a transducer module may be required to
transform attribute values Figure 3.2. Kokar et al. [106] also mention a similar
module, called QoS, that uses the feedback-control architecture in the SAS domain.

• Analyzing specifications describe the links between attributes and goals. In fact, the
analyzing process defines the semantics of error-level calculations in the feedback-
control architecture. The analyzing process addresses the question of how much has
the adaptable software deviated from its goals? Depending on the goals, designers
may use simple threshold functions or goal analysis techniques to realize analyzing
specifications.

• Planning specifications describe the core part of the adaptation logic (i.e., the control
law). Theses specifications relate to error levels in classic control systems [141]; that
is the difference between attributes and goals and to actions. There are a number of
ways to express adaptation logic, such as state charts, Petri nets, or temporal logic.

• Executing specifications are related only to the action metamodel and describe the
association between effectors and actions. For both monitoring and executing specifi-

34

cations, the relationships between sensors and actions are considered, for the purpose
of determining a particular state, and defining new actions, respectively.

The above four specifications tell apart the adaptation mechanism. Numerous tech-
niques and algorithms can be employed for the design and implementation of adaptation
mechanisms [165]. Lightstone discusses a few of the foundational techniques for solving
self-management problems, such as expert systems, tradeoff elimination, static and online
optimization, control theory, and correlation modeling [116].

Self-* Properties

SAS adapt itself to its operating environment according to its adaptation specification.
Adaptivity properties are often known as self-* properties [165]. One of the well-known
sets of self-* properties are self-configuring, self-healing, self-optimizing, self-protecting,
and four other underlying properties of self-awareness, context-awareness, openness, and
anticipatory. Self-* properties in conjunction with other Non-Functional Requirementss
(NFRs) shape a goal model for software adaptability.

Each self-* goal is an aggregation of other goals. Self-* properties, as goals of self-
adaptive software, are highly related to quality factors of software and especially to well-
known non-functional requirements such as usability, reliability, supportability, and main-
tainability. For analyzing the relationships among self-* properties and NFRs, IBM pro-
posed a set of self-* properties called self-CHOPs, along with their relations to quality
factors in the ISO9126 quality model. This set consists of the aforementioned eight major
and minor properties [67]. The relationships between these properties and quality factors
is depicted in Figure 2.4.

In fact, most of the existing self-* properties, including self-CHOPs, can be expressed
as NFRs. This is mainly because these properties strongly address non-functional con-
cerns of a software system. Self-healing addresses fault/failure, self-protecting deals with
security, and self-optimizing mainly relates to performance. Self-configuring is basically an
underlying property of other properties, but generally addresses context changes, which
are mostly non-functional. However, properties may contradict each other and in many
scenarios we cannot find an optimal solution that satisfies all properties to their best. In
these scenarios, there is a need of a multi-objective approach to find a pareto optimal
solution.

There is an extensive body of research for modeling NFRs as goals, mainly softgoals.
For example, a NFR framework [41] gives a systematic approach to build and use Softgoal

35

Self-Configuring
Reliability

Efficiency

Maintainability

Usability

Functionality

Self-Healing

Self-Optimizing

Self-Protecting

Self-Awarness

Openness

Context-Awareness

Portability
Anticipatory

M
a

jo
r P

ro
p

e
rtie

s
Q

u
a
li

ty
 F

a
c
to

rs
M

in
o

r P
ro

p
e

rtie
s

Figure 2.4: Relationships Between Self-* Properties and Quality Factors [162]

Interdependency Graphs (SIG), which can be used for goal modeling in self-adaptive soft-
ware [110]. Based on SIG model, Subramanian and Chung [176] propose a treat software
adaptability requirements as a goal to be achieved during development.

Software Adaptability

Software adaptability, as the main non-functional property of an adaptable software, is the
ability of an application to alter its behaviour according to changes in its environment.
This change can be either controlled by an external agent (another software or a manager)
or by the software itself. In addition, both internal and external approaches require a
mechanism in order to detect any state transitions in their operating environment. For
example, Subramanian and Chung model software adaptability as NFR [176]. Through
this approach, consideration of design alternatives, analysis of tradeoffs, and rationaliza-
tion of design decisions are all carried out in relation to the stated goals. They also provide
a tool to support developing adaptable architectures using NFR softgoals [177] as a part
of a POMSAA (Process-Oriented Metrics for Software Architecture Adaptability) frame-
work [42]. POMSAA aims to provide numeric scores representing the adaptability of a
software architecture as well as the intuitions behind these scores, utilizing SIG.

Treating software adaptability as a NFR requires an evaluation technique to analyze
the software for possible flaws against adaptability. Subramanian and Chung introduce two

36

high level metrics to measure the adaptability of software [175]. They define an Element
Adaptability Index (EAI) for each software unit. EAI is set to 1 for adaptable elements
and 0 for non-adaptable elements. EAI can be measured at different levels of software
granularity. Based on EAI, the two metrics of Architecture Adaptability Index (AAI) and
Software Adaptability Index (SAI) are calculated. In another work, Liu and Wang present
two more metrics to evaluate the degree of adaptability [119]. These two metrics are
mainly based on impact analysis of the whole architecture or architecture elements under
a change requirement or adaptability scenario. These two metrics are Impact On the
Software Architecture (IOSA) and Adaptability Degree of Software Architecture (ADSA).
Recently Tarvainen introduced Adaptability Evaluation Method (AEM) [183], that provides
a structural adaptability evaluation method at the architecture level. Measuring AEM can
help to improve architecture and decision making for alternate candidate architectures.

2.3.2 Design-Space Exploration

There is a spectrum of how adaptation takes place in self-adaptive software from static
evolution to totally dynamic evolution [144]. For instance, one solution to static evolution
for the purpose of runtime adaptation is having conditional expressions that combine the
adaptation specification with the application specification. This approach provides limited
but robust adaptation, since adaptation requirements are considered as software require-
ments. In addition, static adaptation may be realized by extending existing programming
languages/systems [20, 83], or defining new adaptation languages [56].

On the other side of the spectrum are the dynamic techniques. These techniques can
handle unforseen changes in the operating environment and provide a clearer separation
of software-adaptation concerns. Dynamic adaptation is also categorized as weak or strong
or even a combination of both [125, 163]. Weak adaptation or parameter adaptation in-
volves changing the software parameters and variables to alter the program behaviour,
while strong adaptation deals with more extensive changes in software, like changing al-
gorithmic or structural parts of the software system. Dynamic adaptation can also be
either fine-grained or coarse-grained [74]. The finer the adaptation, the lesser the required
change in the software in order to alter its behaviour. However, there is always a trade off
between cost, performance, and quality. Although fine-grained adaptation appears to be
more powerful, it might be too expensive to have a fully dynamic fine-grain adaptation.
Moreover, in many cases, coarse-grain adaptation (e.g. add, remove or substitute system
components) is sufficient.

37

2.3.3 Retrofitting Adaptivity into Legacy Systems

For incorporating self-adaptivity into a legacy software system, there is a need for a evolu-
tionary process for modernizing existing software into self-adaptive software as a three-step
procedure: (i) preparing adaptable software by evolving the original software, (ii) develop-
ing or preparing an adaptation manager to observe and control the adaptable software, and
(iii) integrating the two subsystems that are developed in the previous steps. Through-
out this process, we have to initially analyze software (program understanding), which
includes evaluating the current software in terms of adaptability, and identifying missing
or conflicting adaptability properties in software entities. Next, we have to find a set of
potential solutions to detected problems. This step is followed by a set of transformations
to prepare the adaptable software. Finally, the last step is a forward engineering process,
which involves testing the adaptable software, integrating it with the adaptation manager,
and deployment.

There are several attempts to renovate and retrofit legacy systems into adaptive sys-
tems. Kaiser et al. propose an approach for renovating legacy software to adaptive software
by adding a closed loop software controller [148]. Their approach, Kinesthetics eXtreme
(KX), consists of adding sensors and effectors to reconfigure running software. It has a
similar reference architecture to that of [98, 144]. The sensors and effectors are pro-
gram specific, but they utilize generic adaptation engines. In another work, Merideth
and Narasimhanwe investigate how to retrofit network applications to add support for
autonomic reconfiguration [128]. They explore how to retrofit pre-existing networked ap-
plications. As a case study, they retrofit a popular open-source intrusion detection system
to enable it to reconfigure itself, using online program updates and information about its
environment.

In another research, Muztaba Fuad et al. tries to inject self-organizing and self-healing
properties into Java programs [146]. This approach is limited to Java byte-code trans-
formations. The byte code is analyzed and additional code is injected to automatically
recover from failures such as network or processor failure. The transformations are basi-
cally try-catch code wrappers to control application flow in case of failure. It also takes
care of state variables by saving them at specified application checkpoints.

Another simple and operational approach is STAC by Dancy and Cordy [47]. STAC
is an automatic transformation tool for re-architecting legacy software systems in order to
facilitate autonomic control. It transforms software by exposing controllable variables in an
external management control panel. The supporting transformations are developed using
the TXL [44] tool for the Java language. The most recent update of the STAC project
automates the discovery of software tuning parameters [22]. In this phase, the authors

38

create a catalogue of different types of tuning parameters in a set of open source software
and organize them into a taxonomy. For each member of the taxonomy, they identify a
source code pattern, used to find similar tuning parameters in other software.

2.4 Summary

This chapter presented a comprehensive review of supporting concepts for this thesis in
the context of software adaptation. We also review the state of the art of concept and
the related research works. The concepts were software evolution, self-adaptive software
systems, and engineering aspects of self-adaptive software.

Upcoming chapters will discuss how the developed concepts, frameworks, and process
models utilizes the discussed concepts and the state of the art techniques to tackle the
problem of evolving software towards adaptivity in a unified manner.

39

Chapter 3

Conceptual Modeling of
Self-Adaptive Software

“Optimism is an occupational hazard of programming: feedback is the
treatment.”
–Kent Beck

The use of simplified abstract models through finding generic solutions and decisions
is a common general strategy for dealing with complexity in software engineering [120].
Models specify abstractions of real-world phenomena, the abstraction level can vary and
depends on the application. Models are used for a variety of purposes and are used during
different stages of the software life-cycle. For example, in software construction, abstract
models serve as the basis for software design and development. During software evolution,
appropriate models of software can assist in understanding the software, and serve as the
basis for model transformations that result in the generation of the evolved software.

One of the main challenges in engineering self-adaptive software systems is defining
the problem space, and ultimately, setting the scope of a software solution based on an
understanding of what will be built, as well as domain knowledge and a conceptualization
of how information will flow through the solution. Moreover, maintaining self-adaptive
software or migrating non-adaptive software systems to behave in an adaptive manner
demand a comprehensive understanding of the internals of the software at hand. Such an
understanding can be obtained with the help of appropriate domain-specific models of the
software. Difficulties arise especially in the area of model-centric runtime adaptation, where
models of software need to be generated, manipulated, and managed at runtime [69, 131].

41

As discussed in the following chapter, providing conceptual models of the problem
space of self-adaptive software is essential to understanding the required solution, and how
adaptation changes must be implemented and positioned in self-adaptive software.

3.1 Conceptualization

A software system interacts with an abstract world and affects it by changing some phenom-
ena [89]. A phenomenon is any observable occurrence in the world that is shared between
the software system and its domain. Figure 3.1 presents a Venn diagram, representing an
abstract model of the self-adaptive software (SAS) based on Jackson’s conceptual view of
phenomena and phenomenon sets [79, 89]. This diagram models each of the application
domain (AD), adaptable software (AS), and adaptation manager (AM) as a phenomenon
set. The AD, AS, and AM abbreviations will be used through the rest of this chapter.

Adaptation
Manager

(AM)

Adaptable
Software

(AS)

Application
Domain

(AD)

Shared via Sensors/Effectors

on AD

Shared via Sensors/Effectors

 on AS

Shared via Inputs/outputs of a

Self-Adaptive Software

B C

D

A

SAS := AM U AS
A:= AD ⋂ AS
B:= AM ⋂ AD
C:= AM ⋂ AS
D:= AD ⋂ AM ⋂ AS

Figure 3.1: Phenomenon Sets in a Self-adaptive Software System

In Figure 3.1, the intersections of phenomenon sets correspond to the sets of shared
phenomena between these entities. There are four intersection sets corresponding to the
shared phenomena. Set A contains the shared phenomena between AD and AS that
are shared through the input and output interfaces of the SAS. Set B contains shared
phenomena sensed from and effected to the application domain. Set C are phenomena
shared via sensor and effector interfaces exposed by the adaptable software. Finally, set
D contains those phenomena that are shared between AD and AS and are exposed to

42

AM. Phenomena set D is especially important in the feedback-control architecture model,
where the adaptation manager (controller) is dependant on the system’s output.

The problem space of the SAS can be partitioned into two spaces: adaptation and
adaptability. In the former space, the AS operating in its AD is controlled by the system
(i.e., AM). In the latter space, the system (i.e., AS) interacts with the AM and AD.
This explicit partitioning of problem spaces leads us to the architecture of a control-based
self-adaptive software, which is composed of an explicit external adaptation manager (i.e.,
controller) and an adaptable software (i.e., controlled plant).

The possibility of generalizing and modeling SAS as a control system is also beneficial in
the conceptual modeling of SAS, as many models and formalisms are available for various
types of control systems. Hence, we create a mapping from control theory concepts to
SAS problem spaces, following the model of a feedback control system, as illustrated in
Figure 3.21.

Controller Controlled plant

Transducer

Reference
input

 Disturbance

Control
command

+
-

Error
level

Measured
output

Figure 3.2: A Typical Feedback Control Architecture [141]

The result of this mapping is listed in Table 3.1. The first column of Table 3.1 includes
the entities in a feedback control system with an external controller. The corresponding
terms in self-adaptive software are listed in the two right columns for each of the adaptation
and adaptability problem spaces. In this conceptual mapping, the adaptation manager
covers the entities in the dotted box shown in Figure 3.2; that is, the controller, the
transducer and the error evaluator. The reference input maps to the adaptation goal, which
is used to determine the Error level. Error level is a significant property in the feedback
loop and represents a the threshold of error (deviation from goals) to take an (adaptive)
action, known as goal denial level in adaptation space. The main AM inputs include

1This model represents the basic feedback control system. More complex control system models used
in software (e.g., as an adaptive control system) are identified by Kokar et al. [106]

43

Table 3.1: Mapping Control Theory Concepts to Self-Adaptive Software Problem Spaces

Control theory Adaptation Space Adaptability Space

Controlled Plant Adaptable Software System

Controller System Adaptation Manager

Transducer Data Processors –

Environment Adaptable Software +
(Application Domain)

Application Domain

Disturbance – Change

Control Law Adaptation Policy –

Error Level Goal denial level –

Reference Input Part of system input data
(i.e., Adaptation Goal)

–

Measured Output Part of system input data
(i.e Domain Attribute)

Part of system output data
(via Sensor Interface)

Control Command System output data
(i.e Adaptation Action)

Part of system input data
(via Effector Interface)

the adaptation goals and the measured output from the AS. Moreover, the disturbance
input might be also provided for the adaptation manager, which is basically the change in
the operating environment of AS. Using disturbance input data essentially adds the feed-
forward property to the model. A part of the AS, according to adaptation requirements,
needs to be sensed as measured output. Adaptation logic is the main part of behaviour
specifications for the AM, and it is similar to control law.

Regarding system inputs, the input data includes reference input and measured output.
The first two sets are the inputs and outputs of the software, which are transformed from
monitored and controlled variables in the adaptable software and its environment. As
noted before, the important point is that in a self-adaptive software system, the adaptable
software and its environment together form the environment of the adaptation manager.
On the other hand, the inputs for the adaptable software are an aggregation of the inputs
from the AD and the adaptation actions from the AM.

For a controller, the output set includes control commands for the actuators. In self-
adaptive software, the output data consists of selected actions for specific effectors. A
simple example of such an action is increasing or decreasing a variable. These actions are
ways that the adaptation manager can change the controlled variables.

44

3.2 Adaptation Requirements

The requirements of a system describe what is expected from the system in terms of its
effects on its environment [89]. Functional requirements specify the desired changes to those
phenomena of the AD that are shared with the system through input and output interfaces.
The system observes a change in the AD ’s phenomena via an input interface, and in
turn changes some shared phenomena via an output interface. In contrast, non-functional
requirements specify changes to phenomena that are either (i) part of the AD, but are
not shared phenomena and are changed as a side-effect of the application’s behaviour
(e.g., performance requirements and quality of service requirements), or (ii) part of other
domains (e.g., business domain, test domain, and process domain).

Based on these requirements, engineers analyze the boundaries of a software system
with its environment and develop specifications. Specifications describe the system to be
built, which must fit and interact with its environment. In [89], Jackson describes the
relation between requirements, specifications, and application domain as:

D,S ⊢ R (3.1)

Here, D denotes the underlying properties of the application domain and S is the
properties of the system to be built. The argument is that the operation of a system with
properties S in a domain with properties D will result in properties R. Now, if we consider
R as the required properties identified by the requirements, then the problem is to specify
a system with properties S (Specifications) in a way that if it operates in a domain with
properties D, it would satisfy R.

The next step is to build the specified system, considering its platform and operat-
ing environment. Jackson describes the relationship between a software system and its
specification as:

C, P ⊢ S (3.2)

where C denotes the properties of the computer, including its hardware description, op-
erating system, and the semantics of the programming language in which the software is
written, and P denotes properties of the software. Executing the software will result in
properties S (i.e., the software’s specifications). Here, the software engineering problem is
to build a software system with properties P that satisfies the specification S, given an
operating platform with properties C. In classic software engineering, we assume that the

45

domain (D) and the operating environment (C) are fixed, and the problem is to find an
appropriate specification (S) and to build software (P) according to this specification.

In SAS, a class of requirements, known as adaptation requirements (AR), captures what
the system should do maintain quality at an acceptable level in almost all (even unforseen)
situations. This means that the domain D and the operating environment C are not
necessarily fixed and might change over time. Such situations may be because of external
system attacks, new working environments, system failures, high system loads, or many
other events that impact the system. The common characteristic of these situations is that
we do not know what is exactly going to happen, or when it will happen. Adaptation
requirements basically define system objectives in terms of phenomena in the original
software’s domain space (i.e., application domain), based on domain knowledge related to
the presumed environment facts and the relationships among phenomena in the different
problem spaces. In other words, adaptation requirements describe the adaptive behaviours
of a system from the user’s perspective. If adaptive behaviour has an impact on the output,
then the adaptation requirements are considered functional. Otherwise they are considered
non-functional.

Adaptation requirements are part of the system requirements (RAdaptation ⊂ R). Recall
the definition of SAS, as a system that is able to (i) recognize changes in its domain,
(ii) determine the required changes to be made to itself based on changes in its domain,
and (iii) apply changes to itself to generate an alternative system behaviour [176]. We
notice that this definition refers to phenomena in the SAS that are to be affected by
alternate behaviours of the system. In a control-based SAS, such phenomena are within
the AS.

From the AM ’s perspective, adaptation requirements can be treated as functional re-
quirements for developing an AM as an independent sub-system, to monitor and control
these phenomena in the AS. The four-variable model 2 proposed by Parnas and Madey
[149] can be used to express this perspective. Figure 3.3 presents a mapping from the
original four-variable model to the adaptation space. The adaptation space highlights key
entities of the adaptation problem space and AM as its solution software system. In this
mapping, monitored variables are a set of phenomena in the AS and AD that are to be
shared with the AM via sensors. Moreover, the output data are a set of phenomena in the
AM that are to be shared with the AS via effectors.

On the other hand, AM interacts with its world (AD ∪ AS) via sensor and effector
interfaces on the AS and the AD, as denoted by phenomena sets B and C in Figure 3.1,

2Four variable sets are: monitored variables, input data, output data, and controlled variables.

46

Enviro-

ment

Enviro-

ment
Software

Output

devices

Input

devices

Monitored

variables
Controlled

variables

Output

data
Input

data

Adaptable

Software

Adaptable

Software

Adaptation

Manager
EffectorsSensors

Monitored

variables
Controlled

variables

Output

data
Input

data

Figure 3.3: The Four Variable Model (Adapted from Parnas and Madey [149]) and Its
Mapping to the adaptation space

respectively. The desired behaviour of an AM in its interaction with this joined domain
can be formulated as:

(AD ∪ AS), SAdaptation ⊢ RAdaptation (3.3)

However, the joined application domain (AD ∪ AS) includes an unexplored shared
phenomena set (C − B), from Figure 3.1, which holds part of the knowledge required
to construct the AM. This set holds phenomena that are required to be exposed and
shared via sensors and effectors applied to the AS. There are two ways to model this
phenomena set: (i) considering sensors and effectors as part of the AS and capturing their
properties as SAdaptability, where SAdaptability ⊂ SAS, and (ii) considering them as part of
the operating-environment properties of the AM, and capturing their properties as CS−E,
where CS−E ⊂ CAM . Here and through the rest of this thesis, we follow the first approach,
because the second approach prevents us from specifying changes to be made to the original
software, in order to make it adaptable in the case of migrating current systems towards
SAS.

Assuming that a software system fully complies to its specification, we can substitute
the system (program and computer) by its specification. Considering sensors and effectors
as part of the AS and capture their properties as SAdaptability, where SAdaptability ⊂ SAS,
we can conclude that SSoftware ∪ SAdaptability = SAS. As a result, we can reformulate
Equation 3.3 as:

AD, (SSoftware ∪ SAdaptability), SAdaptation ⊢ RAdaptation (3.4)

47

If we completely decoupled sensors and effectors that are exclusively specified by SAdaptability,
we will have:

AD,SSoftware, SAdaptability, SAdaptation ⊢ RAdaptation (3.5)

and if Software is operational in the AD, we can rephrase Equation 3.5 as:

(AD ∪ Software), SAdaptability, SAdaptation ⊢ RAdaptation (3.6)

Therefore, AR implicitly holds two distinct sets of information: (i) requirements for sen-
sor and effector interfaces to be provided by the AS (i.e., SAdaptability), and (ii) functional
requirements to construct the AM (i.e., SAdaptation). This duality matches the adaptability
and adaptation problems spaces as the former addresses adaptable software and how adapt-
ability is specified, and the latter deals with the adaptation manager and how adaptation
specifications are determined. We believe that both problem spaces (and their correspond-
ing specifications) are equally important in the engineering process of SAS. Adaptation
specifications describe how states and actions are defined and used to specify the AM ’s
functionality. The adaptability specifications focus on specifying the required sensors and
effectors from the AS ’s view.

However, a single, unified conceptual model of SAS is preferred as the spaces are not
disjoint. Having such a unified view will enable system designers and developers to de-
termine the boundaries of their subsystems and how the AS and the AM should interact
with each other. As we will see in Chapter 5, this unified view is critically important for
the problem of migrating current systems towards SAS. We present such a unified concep-
tual model of control-based self-adaptive software in Figure 3.4. This model captures the
requirements of adaptability and adaptation problem spaces in two sets of specifications,
including main entities of each space and their relationships.

In Figure 3.4, adaptation requirements are specified in a form of adaptation spec-
ifications and adaptability specifications. Adaptation specification describes functional
requirements of the adaptation manager in a form of goals, actions, and attributes, and
the relationship among these entities. Each attribute hold a shared phenomenon from the
adaptability space that are shared via different interfaces (sensors) on the AS, its operat-
ing environment, or their interfaces (i.e., software’s input/output interface). On the other
hand, adaptability specification describe the required sensor and effector interfaces to be
exposed by the AS. Here, we consider the sensors and the effectors part of the AS, but
other sensors and effectors may also be provided by the environment that directly share
software output, or environment state with the AM.

48

MagicDraw UML, 1−1 C:\Amoui\manuscript\thesis\figures\refrenceModel.mdzip refrenceModel 27−Sep−201

Adaptation
Requirement

Adaptation
Manager

Adaptable
Software

Operating
Environment

Adaptability
Specification

Adaptation
Specification

Shared
Environment

 State

Effectors Sensors

Shared
Software

Output

Attribute

Goal

Shared
Software

 State

Action

shared by

shared by

Operate in

observe

specify

specify
specify

control

shared by

<<derive>>

shared by

<<derive>>

observe

Figure 3.4: The Unified Conceptual Model for Controller-based Self-Adaptive Software
Systems

In case where the current software is not adaptable and the solution demands an ex-
ternal adaptation manager, then the main problem is to derive adaptability specifications
in such a way that balances the evolution cost of changing the AS and developing the
AM, against the adaptation cost and effectiveness. In this sense, the synergy between the
adaptability and adaptation problem and solution spaces can be treated as a co-evolution
relationship; here, the problem is to come up with the fittest adaptability and adaptation
specification models for maintaining model integrity and distilling the models, as abstractly
shown in Figure 3.5. This figure basically shows how a change in one space can result in
a change in other spaces. For example, a new adaptation policy may require a sensor data
that is not currently available. This will affect the adaptability specification, as the adapt-
able software have is required to include the sensor. Adaptable software (in the solution
space) will be changed to include the new sensor and accordingly the adaptation manger
needs to be adjusted to use the new sensor.

49

Adaptation Manager Adaptable Software

Adaptation Specification Adaptability Specification

Problem Space

Solution Space

Adaptation Space Adaptability Space

Figure 3.5: Coevolution of the Artifacts in the Conceptual Space of SAS

The application of adaptability and adaptation specifications is similar to the specifi-
cation pattern introduced by Evans and Fowler [62]. The original pattern mainly serves
as an analysis pattern that captures how people think about a domain, and as a design
pattern suited to some system tasks. The following sections extend this view by elaborat-
ing these two specifications. Since specifications and design decisions impact each other in
engineering SAS, whenever it is necessary, we note architectural and design considerations.

3.3 A Metamodel for Adaptation Specifications

An adaptation specification must cover two aspects: (i) a specification of interfaces to
and from the adaptation manager, and (ii) a behavioural specification of the adaptation
manager that associates inputs (i.e., adaptation actions and adaptation goals) to outputs
(i.e., adaptation actions). Figure 3.6 illustrates the adaptation metamodel that can be
used to specify the adaptation problem space. This metamodel includes domain attributes,
adaptation actions, adaptation goals, and adaptation policies.

The rest of this section describes goals, attributes, and actions, as the key entities in
the input and output sets, and the adaptation policies.

50

MagicDraw UML, 1−1 C:\Amoui\manuscript\thesis\figures\adaptability_MM\adaptability_MM.mdzip adapta

-Type

Adaptation Policy

-Type
-Range
-Source
-Controllability

Domain Attribute

-Priority
-Type
-SatisfactionCriteria
-TracingParameters

...

Adaptation Goal

-PreCondition : Set
-Type
-PostCondition : Set
-Parameter : Set
-Subaction : Set

...

Adaptation Action

SensorEffector plan analyze

0..*

-subaction

satisfy

0..*

deny

0..*

execute monitoranalyze

Figure 3.6: The Adaptation Metamodel

3.3.1 Adaptation Goals

Goals play the role of a reference for adjusting system behaviour. The use of goals in
this context does not mean that we necessarily need to have a goal-oriented approach
and should define explicit goal entities during development or at runtime. Recalling the
equivalent concept in control theory, a goal generally means a reference input that serves as
the basis for evaluation. The goal notion is necessary for specifying the error level (deviation
from the goals). In this way, the conventional open-loop nature of the software’s mapping
of inputs to outputs, is changing to the closed-loop mapping of inputs to outputs, which
takes an error level into account. Appropriate adaptation actions can vary based on the
measured error level. For example, if the system load is slightly higher than the acceptable
range, this is most probably due to higher user requests. However, if the load is much
higher than the expected error level, it can be an indication of external system denial of
service attack.

Adaptation goals are often linked to quality attributes such as performance and secu-
rity [191, 162]. Kokar et al. [106] also point out that software output by itself is often
not useful for the controller in the software domain, and needs to be transformed into a
quality of service level; it is implied that the quality attributes of the adaptable software
determine the error level.

This thesis does not address the elicitation or derivation of adaptation goals. Such goals
are either derived from the adaptable software requirements or elicited from stakeholders.

51

In the former case, a goal may be the runtime presentation of an adaptable-software goal
or a secondary goal defining conditions on an adaptable-software goal. For instance, a
secondary goal can be defined to prevent the failure of another goal, or to insure its satis-
faction for a specific period of time. Moreover, stakeholders might specify some adaptation
goals, or quality goals might be defined for the adaptation manager (e.g., the adaptable
software should continue its work if the adaptation manager fails).

Similar to goal-oriented requirements engineering [189] adaptation goals are not inde-
pendent from each other and there may be several goal hierarchies for each goal. However,
depending on how the adaptation manager needs to be operated, goal dependencies need
to be refined and prioritized. For example, adaptation goals can shape a hierarchial model
decomposed down from qualitative to quantitative goals. High-level quality goals (e.g.,
achieving an acceptable level of performance) are decomposed into low-level goals that are
related directly to domain attributes (i.e., leaf goals). “Minimizing response time” and
“having 80% resource utilization” are two examples of leaf goals.

In the proposed adaptation metamodel (see Figure 3.6), an adaptation goal has a prior-
ity, which represents the importance of a goal in relation to other adaptation goals. There
are a number of classifications of adaptation goals [48, 135]. The choice of classification
depends on the adaptation mechanism and how it utilizes goals and their models. A com-
prehensive goal taxonomy is defined by KAOS, which covers two dimensions [48]: (i) goal
patterns: achieve, cease, maintain, avoid, and optimize; and (ii) goal categories: satis-
faction goal, information goal, robustness goal, consistency goal, safety goal, and privacy
goal.

Satisfaction criteria (aka fit criterion [189]) specify how the adaptation manager can
determine whether a goal has been satisfied. Satisfaction criteria are associated with
the link between goals and attributes. In the feedback control, an error is characterized
by the difference between the reference input and measured output. Goal satisfaction
or satisfaction level can define this error in SAS. In the simplest form, a goal can be a
threshold, and the associated error can be the difference between the measured output and
the threshold. For a non-leaf goal gi, the satisfaction statement is based on the satisfaction
of its subgoals, while for a leaf-goal, satisfaction depends only on the satisfaction criteria
between the goal and its attribute(s).

Tracing parameters specify when and how often goal satisfaction should be evaluated.
Such parameters may be different for each goal depending on the goal’s probability of
change, its priority, and the attributes related to the goal. For secondary goals, satisfac-
tion criteria depend on other goals. For example, the failure of or the number of failures
of a goal may deny a secondary goal. Secondary goals can be defined as awareness re-

52

quirements [173], adaptation goals in FLAGS [11], or secondary security goals [80]. The
relationship between goals and actions is presented as the GoalImpact association class
(discussed in Subsection 3.3.3).

3.3.2 Domain Attributes

Attributes are inputs to the adaptation manager from sensors. As Figure 3.4 illustrates,
these attributes include measured outputs from the adaptable software, environment states,
or internal states of the adaptable software. Attributes can be either linked to runtime
models of the adaptable software (e.g., architecture model) or directly linked to sensors
instrumented for adaptation.

Domain attributes include monitored variables of the adaptation manager. These at-
tributes may come from the adaptable software or its context. In the former case, attributes
can be either linked to runtime models of adaptable software (e.g., architecture model) or
may be directly linked to sensors instrumented for adaptation. The attribute space may
consist of models which include adaptable software attributes or context variables.

Domain attributes provide a source of data for creating various models to be used by
the adaptation manager, such as configuration models, state models, and context models.
These models use different combinations of self and context attributes to represent the
system status. If each state is represented by a set of tuples, different spaces can be
defined based on the category of attributes, such as a general state space.

Each attribute has a type (e.g., time) and a source, which can be from a component or
model belonging to the adaptable software (e.g., failed/working state, and buffer length), or
its environment (e.g., number of active users). The controllability field determines whether
the attribute is under system control. We assume that an environment attribute cannot
be controlled directly. However, it might be possible to indirectly change these attributes.
For example, admission control actions can decrease the number of user requests to a web
application.

The attribute may also have some meta information. The sensing mode (synchronous
or asynchronous), monitoring period, and other required specifications are some of these
parameters. For example, importance specifies how critical this attribute is for adaptation.
Based on the level of awareness, the adaptation manager may need to monitor different
sets of attributes. It can take any of the values in {critical, regular, optional}.

53

3.3.3 Adaptation Actions

An adaptation action is basically a transition from a source variant of adaptable software
to a target variant. An adaptation action can be modeled in various ways; such a model
at least includes the action’s preconditions, where it will be applied, what it changes, and
its impact on goals or attributes.

The impact of domain attributes and adaptation goals are formalized in the form of
a precondition and a postcondition. A precondition is a condition or predicate that must
always be true just prior to the execution of an action. It can be a specific condition
under which the action is applicable, or a constraint attributed to effectors. Satisfying
this condition is mandatory for executing an action. For example, video content should be
available for users before applying a ‘disable video’ action. In a sense, a precondition is a
domain precondition that is independent of the relationships between the action and other
entities. A postcondition is a condition that must be true just after the execution of an
action. A postcondition can be used for verification and validation purposes, in the form
of assertions that reflect the expected impact of an action on other entities.

Adaptation actions can be simple or composite. A composite action can manipulate
several effectors or perform some conditional sequences. Composite actions can be defined
as transitions between these configurations or system states [189]. On the other hand, an
adaptation change can be considered as an activity that is a composition of actions chained
together in order to form plans. For example, restarting a component may be planned as a
sequence of storing the component state, undeploying the component, redeploying it, and
restoring its state. Actions can be parameterized too. Action parameters can be used to
fine-tune adaptation changes.

Besides the above properties, additional information may be gathered and stored about
actions. Examples include the history of action execution, the latest execution of an action,
and the failure/success of previous executions.

3.3.4 Adaptation Policies

As discussed by Kephart and Walsh, an SAS matches the definition of rational agents [99]:
“A rational agent is any entity that perceives and acts upon its environment, selecting
actions that, on the basis of information from sensors and built-in knowledge, are expected
to maximize the agents objective.”

The behaviour of a rational agent is described by action, goal, or utility-function poli-
cies [99]. Policies compose elements of the behavioural specification of the adaptation

54

manager. Regardless of how policies are expressed, they are based upon the notions of
states and actions [158]. Policies describe the relationship between the states and actions
needed for a rational agent to achieve a goal. Selecting the adaptation actions depends on
the desired adaptation goals and properties. A rational agent observes the current state,
and performs an action accordingly to make a transition to a new state.

In general, for action-based (rule-based) policies, developing adaptation logic is as
straightforward as coding required pairs of state-action policies that provide complete
coverage of the state-action set. The state-action pair policies can be directly described
with temporal [109] or propositional logic [97]. In contrast, goal-based and utility-function
based polices are used in cases where specifying a complete state-action set is infeasible or
costly; such cases arise for several reasons, such as: (i) a large state space, (ii) dynamic
environments that may introduce new states, and (iii) a lack of knowledge regarding the
effect of the selected action (it cannot be assured that the action contributes to achieving
the desired goals). An intelligent adaptation manager can be used in these cases. It is also
possible to infer the best action based on history (experience), for dynamically creating
a mapping between states and actions. For example, an adaptation manager that uses
reinforcement learning [180] can partially observe the state space, and accordingly select
the best possible action based on its experience [185].

3.4 A Metamodel for Adaptability Specifications

Software adaptability consists of two dual properties: observability and controllability.
Software is observable if its state can be determined by its output. Software can be
partially observable if only part of its state space is observable. Moreover, software is
controllable if it can be set to any desired state (from the current state) within a finite
time. Hence, the mechanisms for supporting adaptability in software applications can be
classified as the ones that enable observability and the ones that enable controllability.
Therefore, Sadaptability can be defined as observability and controllability properties added
to the original software properties by introducing and exposing sensors and effectors.

The interaction between the AM and the AS in Figure 3.1, as a part of the AM ’s appli-
cation domain, is through sensor and effector interfaces. Sensor and effector interfaces pro-
vide the required observability by exposing additional (direct) output that represents the
software state, and the required controllability by exposing additional input that changes
software state. The sensor interface serves as the AM input channel for observing any
changes in the application, and the effector interface controls the application’s behaviour

55

when needed. These are the same shared phenomena in the AS that are shared with the
AM, and we are interested in specifying them via adaptability specifications.

If a perfect mapping from the AD to the AS exists, we can satisfy the AR by exclusively
specifying the sensor and effector interfaces between the AS and the AM. Otherwise, we
cannot completely satisfy the AR by solely effecting the AS. In the case of having a perfect
mapping, we can redefine the AS as:

Given a set of ARs, a software system is considered as an AS if and only if it exposes
the required monitoring data via its sensor interface, and exposes the required effecting
operations via its effector interface.

To engineer the AS for a given AR, we can either develop a new software application
from scratch, or retrofit a legacy software system to comply with the required adaptability
specifications. The AR may change over time; a changed AR might require additional
sensors and effectors, which can be added to the AS by a set of evolution and maintenance
changes. In all cases, if the candidate software for self-adaptation is maintainable and
reusable, it will be easier to change it and hence it can be retrofitted to an AS more easily.

Our approach to specify software adaptability is based on identifying a set of sensing
styles and effecting styles. In this approach, each required sensor and effector in the AS
is categorized as one or more styles. Each style can be realized by various techniques and
enabling technologies. However, regardless of the techniques used, a style is composed
of a set of abstract elements that we call adaptability factors. In addition, sensors and
effectors can access and share state variables, too. These state variables are also part of
the adaptability specifications and we capture them as adaptability factors.

Our approach for expressing adaptability specifications is based on investigations on
sensing and effecting styles and their composing adaptability factors. Hence, our proposed
adaptability specifications describes software adaptability in terms of the adaptability fac-
tors needed for enabling the required sensor and effector interfaces. The top-level view of
the meta model for software adaptability is presented in Figure 3.7, which will be elab-
orated further throughout this section and be captured in Figure 3.10, Figure 3.11, and
Figure 3.12 . In this metamodel, the adaptable software exhibits and exposes a set of
sensors and effectors. Each sensor and effector is a realization of one or more sensing or
effecting styles. The adaptable software software also has a set of state variables that
can be monitored or controlled by the sensors and effectors (directly or indirectly). Each
sensor and effector is composed of a set of adaptability factors. As we will discuss through
the rest of this section, sensing and effecting styles in conjunction with their composing
adaptability factors are the core elements of the metamodel for adaptability.

56

<<Adaptability Factor>>

State Variable

Adaptable Software

Adaptability Factor

EffectorSensor

1..* 1..*

0..*0..*

-controlled by

0..*

-monitored by

0..*

-is a 0..1

-has 0..*

Figure 3.7: A Metamodel Representing Adaptability in Software Applications

3.4.1 State Variables

State variables play an essential role in adaptable software [133]. Some state variables
represent the application’s states, while others represent the operating environment’s states
(e.g., time and buffer size). However, not every state variable contributes to self-adaptation,
even if the variable can be modified dynamically. The proper set of feasible state variables
should be deliberately selected during the development of a self-adaptive software system.

State variables are divided into the two categories of controllable and non-controllable
variables. A non-controllable variable may represent a phenomenon that is not directly
manageable (such as response time), or may represent a disturbance (such as user traffic).
Sometimes, an attribute may not be measurable directly, such as performance. Therefore,
proxy attributes like response time and throughput are required for measuring performance.

Capturing perceptive state variables in software models increase our insight about the
feasibility of observing and controlling these variables. For example, in a multi-threaded
application, two or more threads might share a single state variable. Controlling the
state of such an application by altering the value of this kind of state variable is not
straightforward, as we may introduce inconsistencies, race conditions, or even deadlocks.
Thus, depicting state variables can help us to identify those variables that can be feasibly
and safely observed and controlled for the purpose of adaptation.

57

3.4.2 Effecting Styles

Adaptation is based on change and variability, and the adaptation manager needs effectors
to apply changes to the adaptable software. Our approach for analyzing effecting styles is
based on the control-flow analysis of object-oriented applications, as shown in Table 3.2.

Table 3.2: List of Main Effecting Styles

Changes Name Description

Flow Replace Block Replace a code block with its alternative.

Select Block Alternate control flow between a code block and its
alternative blocks.

State Change State Set software state by either setting state variables di-
rectly, or through state variable accessor methods, or
other state definers.

This classification has two distinct sets of effecting styles for what we are effecting:
i) those that alter an application’s behaviour via structural changes in the application’s
control flow (Flow), and ii) those that preserve the application’s flow, while modifying
the application’s operating states in order to attain a plausible behaviour (State). This
classification matches two general approaches for implementing software adaptations: pa-
rameter adaptation for behavioural changes, and compositional adaptation for structural
changes [125]. Concerning when the effects take place, we distinguish two distinct sets of
effecting styles for runtime (dynamic) and pre-runtime (static) adaptation [125].

Replace Block

This effecting style replaces a block of control flow with another block at runtime. To
implement this mechanism, we should have well-defined interfaces at cutoff points. The
mechanism also demands support for dynamic binding, such as the program’s ability to
bind and unbind components (or modules) at runtime. The granularity level of this mecha-
nism depends on the programming-language features and the application’s container. This
effecting styles can be realized by meta-class and meta-object reflective models at vari-
ous abstraction levels [35]. Replace Block can be supported by language-based dynamic
compositional techniques (e.g., reflection in Java, and function pointers in C/C++), or
middleware-based approaches (e.g., dynamic aspect weaving, and dynamic EJB deploy-
ment in JavaEE) [125].

58

1

4

3.1

2

(a)

Block Entry Point

Block Exit Point

1

4

3.2

2

(b)

1

4

2

(c)

1

4

2

1.1

(d)

Block Entry Point

Block Exit Point

Block Entry Point

Block Exit Point

Default Action Alternative Action

Figure 3.8: The Replace Flow Mechanism

Figure 3.8 illustrates three possible usages of the replace block. Figure 3.8.a represents a
flow graph of an application. With the support of dynamic module binding, the adaptation
manager should be able to replace node 3.1 with 3.2 as shown in Figure 3.8.b. Node 3.2
has to satisfy the required contracts (pre-conditions and post-conditions) at the starting
(and ending) cutoff points of module 3.1.

Null actions are default or alternative actions that do nothing during program execution.
We can make use of null actions to add or remove real actions. Figure 3.8.c shows the
replacement of node 3.2 by a null action. Furthermore, we can also replace a null action
(at a single cutoff point) by a new flow as demonstrated in Figure 3.8.d, by adding node
1.1 between the node 1 and 2 in Figure 3.8.c.

Select Block

This style redirects the program’s default flow to an alternative flow at a turning point.
A turning point is a branch in the control flow with a well-defined decision criteria. The
decision criterion is a logical expression that navigates the runtime flow to an appropriate
path between the default and alternative actions.

59

1

3

2

1

3

2

1.1

2.a

Turning Point [Decision Criteria?a:b]

[a]
[b]

Default Action Alternative Action

(a) (b)

Default Action

Turning Point

Figure 3.9: The Switch Flow Mechanism

Figure 5.4 uses a simple example to illustrate the switch flow style. Figure 5.4.a rep-
resents the flow graph of a non-adaptable software application with a detected missing
turning point at flow < 1, 2 >, and a single default action of node 2. In Figure 5.4.b,
the same graph is augmented by an alternative action at the turning point, at node 1.1.
The decision criteria of node 1.1 can be set to select either the default action at node 2,
or the new alternative action, at node 2.a. If the decision criteria is set in such a way
that makes the alternative action unreachable, the adaptable software will behave like the
original software. However, the adaptation manager can control the application’s flow by
adjusting the decision criteria.

Change State

Each state variable has zero to many definer and user statements. Definers aim to change
an application’s behaviour by resetting the application’s state. On the other hand, the
change-state style may benefit from user statements for observing the application’s state,
and checking consistency before altering the state variables.

The change state style does not modify the application’s control flow and it can be
added to software without prior flow analysis. However, the style should be used with

60

<<Adaptability Factor>>

Condition

<<Adaptability Factor>>

Turning Point

<<Adaptability Factor>>

Alternative Block

<<Adaptability Factor>>

Alternative Action

<<Adaptability Factor>>

Entry Point

<<Adaptability Factor>>

Default Action

<<Adaptability Factor>>

Default Block

<<Adaptability Factor>>

Exit Point

<<Effector>>

Select Block

Effector

<<Effector>>

Replace Block

Change Block

Block Action

1

0..*

1

0..*0..*

1..*

1

1

Swappable

0..*

Swappable

1

1

1

11 1..*

Figure 3.10: The MetaModel for Software Adaptability - Change Flow

61

care in case that state variables are scattered throughout the application. Multi-state
definers and users may lead to inconsist application behaviours, or cause the system to
become uncontrollable. An example of a runtime adaptation approach for altering state
variables uses setter and getter methods is tuning parameters [47]. These methods can
be exposed through an interface for easy access by external controllers. This approach is
straightforward due to the minimal required changes in the application.

Structural effecting styles (i.e., replace block and select block) may also benefit from
change state to include external effecting actions. We can expose the decision criteria
of the switch flow technique as a state variable, and control this variable via its definer.
Additionally, replace flow and its enabling techniques, such as structural reflection, can
utilize structural effecting styles to change the value of the meta-layer’s state variables.

<<Adaptability Factor>>

State Variable

<<Adaptability Factor>>

State Definer

<<Effector>>

Indirect Access

<<Effector>>

Direct Access
Change State

Effector

1 0..*

1 1..*

Figure 3.11: The MetaModel for Software Adaptability - Change State

Change state can also set the starting state of a module by adjusting its configuration
variables. Configuration will be carried out only once at startup time. Note that the
modules can be deployed and started dynamically by utilizing other effecting styles, which
requires appropriate state initialization.

62

3.4.3 Sensing Styles

In deterministic software, we can understand an application’s behaviour by observing its
state [133, 47]. However, this procedure is not always feasible, as most state variables are
implicit and hidden from the external viewers of the system.

For example, Garlan et al. propose a sensing style for architecture-based self-repair
systems [68]. The focus of this work is on monitoring and detecting run-time violations
from architecture styles. Moreover, Shaw et al. present a feedback control architecture
that can be mapped to this sensing style [133]. In this architecture, the sensors are only
used to observe the current state of the executing system.

The common property of all these approaches is using a style to observe states of the
software at runtime. However, an adaptation manager might control adaptable software by
mining its historical data (past sates), or predicting its future states. Unfortunately, these
styles (or any other potential styles) are not mature enough to be classified as a separate
sensing style in our metamodel. Hence, we classify all of them as a unified sensing style.

Monitor State

Observing software for changes in itself (or in its domain) is achievable through monitoring
states or monitoring the invocation of the actions that can possibly change states (i.e.,
state definers). Analogously to change state, in monitor state, not every state variable is
observable in the application’s behaviour, and state variables should be carefully selected
for observation, so as to prevent unwanted overhead on system performance.

Entities that support monitor state are the state definer and user methods (e.g., set-
ter and getter) of the state variables. Monitor State can be used to implement diverse
observing techniques, as listed in [165]. For example, logging is a sensing style that can
be implemented as a set of state user methods that expose the system’s time and state
variables selected from a specific location of the system.

3.4.4 Adaptability Factors

Adaptability factors are abstract composing elements of effecting styles and sensing styles.
We investigate each primitive style for its set of adaptability factors. A complete list of
the captured adaptability factors is given in Table 3.3.

In adaptable software, there is no difference between the default action and alternative
action at runtime. However, we consider them as distinct adaptability factors in Table 3.3.

63

<<Adaptability Factor>>

State Variable

<<Adaptability Factor>>

State Definer

<<Adaptability Factor>>

State User

M onitor State <<Sensor>>

Indirect Monitor

<<Sensor>>

Direct Monitor

Sensor

1

0..*

0..* 1..*

0..*

1..*0..*

Figure 3.12: The MetaModel for Software Adaptability - Monitor State

This separation, which is also reflected in our metamodel, holds information on software
commonality and variability [43]. This meta-information can be used by adaptation man-
agers for commonality and variability (SCV) analysis, and to increase the understanding of
the control flows by setting apart those actions that are added by the evolution processes
for achieving adaptability.

3.4.5 From Conceptual to Concrete Adaptability Models

The proposed metamodel for software adaptability is comprehensive in terms of its ca-
pability to cover all types of effecting styles and sensing styles. This metamodel can be
used to design and implement software adaptability. One way to achieve this goal is to ex-
press adaptability specifications by a modeling language. Such a domain specific language
for modeling software adaptability should include new modeling elements for describing
sensing and effecting styles as a set of adaptability factors.

An adaptability model can be specified as an extension of existing software models, as
long as we can extend the existing metamodels with concepts for expressing the properties
of software adaptability. The two most common abstraction levels are at: (i) the code-

64

Table 3.3: List of Identified Adaptability Factors

Adaptability Factor Description

Default Block A code block which implements the non-adaptable behaviour

Alternative Block A substitute code block that implements adaptive behaviours

Default Action An action of a non-adaptable application

Alternative Action A substitute action, taken to adapt the program

Turning Point A branching point in a program flow for switching between default
and alternative actions

Condition A logical expression to be evaluated at a Turning Point to choose
appropriate actions

Entry Point An ending point of an activity block that can be replaced with
another activity

Exit Point A starting point of an activity block that can be replaced with
another activity.

State Variable The current state of an application

State Definer An operation that defines a value for a state variable.

State User An operation that uses a value for a state variable.

level in which adaptability is expressed in terms of either direct annotators of the source
code [2], extensor of the programming language, or domain specific languages; and (ii) the
design-level, in which adaptability is expressed by existing behavioral and structural design
models (e.g., UML activity diagrams and class diagrams).

Each abstraction level has advantages and disadvantages. The code-level does not
require design-model extraction; it also keeps the adaptability model within the source
code, which reduces maintenance costs and the chance of introducing inconsistencies as
software evolves. The design-level approach specifies adaptability at a higher abstraction
level, which is beneficial for large and complex systems, because unwanted source-code
complexities are avoided, and because both platform-specific and platform-independent
specifications of adaptability can be expressed. However, the design-level approach requires
an updated version of the models to be extended and tagged.

Adaptability entities are not explicitly expressed in current software models; to express
such entities modeling languages can be extended to include sensing and effecting styles and
their composing adaptability factors. Because sensing and effecting styles deal with both
behavioural and structural aspects of software, the extended languages are also required

65

to support the modeling of both aspects. For example, UML and its metamodel can be
extended and used as a modeling notation for expressing software adaptability factors via
profiling. UML profiles allow the specification of new stereotypes, tagged values, and con-
straints [140]. They can be applied to UML-diagram elements for expressing adaptability
concerns.

3.5 Summary

As discussed in this chapter, the problem domain of self-adaptive software is divided into
the two main problems of adaptation and adaptability. Given a set of adaptation re-
quirements, specifications need to be defined for the adaptable software (i.e., adaptability
specifications) and the adaptation manager (i.e., adaptation specifications). The concep-
tual model and the metamodels described, assist requirements engineers in understanding
the SAS domain, and in specifying the adaptation manager and adaptable software based
on the shared phenomena of their associated domains.

However, the proposed conceptual model is not an architecture model for SAS. For
example, compared to the IBM Autonomic Computing reference architecture [98], this
model is more generic, in the sense that it addresses the problem space with regards to
architectures as an abstraction of the solution space. In the Autonomic Computing model,
the interfaces between the adaptation manager and the application domain do not exist.
In other words, its adaptation manager only has shared phenomena with the adaptable
software, but does not share any phenomena with the domain. Hence, for open-loop
control, the sensor and effector interfaces should be exclusively specified based on the
shared phenomena between the adaptation manager and the adaptable software.

In the next chapter, we will propose a model-centric self-adaptation approach, which
aims at reducing the complexity of engineering and maintaining control-based SAS, by
observing and controlling partial and customized adaptability models of the software at
runtime instead of directly managing adaptable software. The approach is realized in a
generic and systematic manner, as a framework called GRAF. Using GRAF, what we
reify from the adaptable software as state variables is observable via querying the runtime
model, and what we reflect is controllable via transforming the runtime model.

66

Chapter 4

A Model-Centric Self-Adaptation
Approach

“...with proper design, the features come cheaply. This approach is
arduous, but continues to succeed.”

–Dennis Ritchie

The complexity of SAS manifests itself in all composing elements of the system: the
application domain, adaptable software, adaptation manager, and communication inter-
faces. Different solutions for enabling adaptivity in software systems can affect the level
of complexity of each of these entities in different ways. For example, external approaches
to SAS naturally increase the communication complexity of the system because of the
communication channels between the adaptation manager and the adaptable software. In
contrast, following internal approaches can inversely affect the quality of the final system
due to the high coupling between the adaptation logic and application’s business logic.
For many real-world scenarios, this undesired accidental complexity [23] detracts from the
advantages of moving towards self-adaptivity.

The use of simplified and more abstract models is a common general strategy for dealing
with complexity in software engineering by finding generic solutions and decisions [120].
Models specify abstractions of real-world phenomena in such a way that the entities and
relationships among them are simplified; the abstraction level can vary and depends on
the application domain. Such models are used for a variety of purposes; for example, in
software construction, abstract models serve as the basis for transformations resulting in
the generation of (executable) source code. From this perspective, models are often used
during the software development cycle and prior to runtime.

67

In the model-centric approach to runtime adaptivity, models of software need to be
generated, manipulated, and managed at runtime [69, 131]. These models, known as
runtime models, serve as meta-layers for software in a reflective architecture. Moreover, an
adaptation manager controls the adaptable software by manipulating its runtime model
instead of directly operating on the adaptable software. This reflective architecture model
is sketched in the context diagram illustrated in Figure 4.1.

To achieve adaptivity, the state of the adaptable software is propagated to its runtime
model first (reification). These changes are then observed by the adaptation manager
(sensing). Subsequently, the adaptation manager plans and selects adjusting actions (con-
trolling) and adapts the runtime model accordingly (effecting). Finally, changes made to
the runtime models are propagated back into the adaptable software (reflection). The
structure and behavior of software that is built around this model-centric architecture can
be changed by modifying only the models. In addition, model transformations can support
the implementation of adaptivity by modifying models at runtime.

The runtime model in a model-centric approach represents a connection domain [89]
between the adaptable software and its adaptation manager, with respect to the reference
architecture of an SAS [98]: the run-time model offers a specific view of the software’s
core functionality and contains (i) behavior descriptions for adaptation purposes, as well
as (ii) parts of the adaptable software’s state.

According to M. Jackson, there are three approaches for dealing with the runtime
model as a connection domain [89]: (i) ignoring the runtime model, and dealing directly
with the adaptable software, (ii) treating the runtime model as if it was itself the domain
of interest, and (iii) recognizing that the runtime model and the domains it is representing
(the adaptable software and its application domain) are both important.

Figure 4.1: Context Diagram of a Model-Centric SAS [50]

68

The first approach represents the classical view of self-adaptive software, where the
adaptable software is directly connected to and controlled by its adaptation manager, as
in Equation 3.3. However, in the second approach, the adaptation manager interacts with
and controls the runtime model directly. This is a common practice in recent approaches
for creating self-adaptive software (e.g., [132, 39]). This approach highlights the role of
runtime model (RM) and enables us to rephrase Equation 3.3 as:

RM,SAdaptation ⊢ RAdaptation (4.1)

Equation 4.1 is valid at runtime, and requires that the runtime model is constructed and
maintained independently. specifically, in the case of migrating existing software towards
runtime adaptivity, the second approach is not sufficient; in this case, we consider the third
approach: the original software cannot be ignored, because establishing proper relation-
ships between the adaptable software and its runtime model is a significant sub-problem.
One solution to this sub-problem is to explicitly maintain the relationship between the
adaptable software and its runtime model. In this approach, a software system is con-
sidered adaptable if there exists a runtime model of the system that is observable and
controllable by an adaptation manager. When migrating existing software towards adap-
tivity, the adaptable software is derived from existing software that contains the business
logic. In an alternative scenario where self-adaptive software is to be constructed from
scratch, the adaptable software is replaced by a subsystem that merely provides basic
functionality to be used as building blocks during construction.

Figure 4.2 illustrates how the runtime model fits between the adaptable software and
its adaptation manager, and sketches the relationship among the adaptation specification,
the adaptability specification, and the main components of a model-centric SAS.

Here, the shared phenomena between adaptable software and adaptation manager are
the states and the actions, and the elements of the runtime model are abstractions meaning-
ful in software that their roles and interactions reflect the adaptation workflow. Domain
attributes, which are to be observed by adaptation manager, represent the state of the
software or its application domain. Moreover, adaptation actions in the model-centric
adaptation are applied to a runtime model instead of directly to the adaptable software;
this means that the action specifications in the adaptation manager remain the same, but
the executing specifications are changed.

Although model-centric approaches to runtime adaptation seem promising; creating,
managing, verifying, reflecting, and keeping the consistency of runtime models adds addi-
tional complexity and overhead to the system. This drawback can put the usability and

69

derive

specify

Adaptable
Software

Adaptation
Manager

Runtime Model
Application

Domain

representoperate in

control

observe

is a Variant of

Adaptation Model

Adaptation

Requirements

Adaptability Model

derive

is a partial model of

Figure 4.2: Relationship Among the Abstract and Concrete Entities of a Model-Centric
SAS

cost-benefit ratio of model-centric approaches to SAS under question. In order to tackle
this problem, adaptation frameworks that are specially tailored to contain and manage
models at runtime can be used to reduce the complexity of using models at runtime and
enhance the efficiency of model-centric approaches.

Following model-centric approach to achieve runtime adaptivity, we designed and devel-
oped the Graph-based Runtime Adaptation Framework (GRAF). GRAF is a model-centric
adaptation framework that explicitly separates the adaptable software from its runtime
model to isolate adaptivity concerns from the rest of the business logic. The framework
supports the separation of supervision and control from the application’s core functionality
by realizing the adaptation manager externally, instead of mixing it with the adaptable
software itself.

We present the structural and behavioural architecture model of GRAF. The design
of GRAF’s architecture is based on the reference architecture for self-adaptive software,
which consists of a controller and the controlled plant, as discussed in Chapter 3. Following
this architecture, the overall structure of a GRAF-based SAS is separated into two main
subsystems: (i) the adaptation framework and (ii) the adaptable software. as shown in
Figure 4.3 high-level component model. Both subsystems communicate with each other
via predefined interfaces. In this approach, the adaptation manager’s input and output
data are respectively encoded as model queries and transformations on the runtime model.

70

Adaptable Software

StateVar
Sync

StateVar

Interpretation

Point
Action

Graph-based Runtime Adaptation Framework

(GRAF) External

Management

Figure 4.3: High-Level Component Model of GRAF-Based SAS

4.1 Design Considerations

Before describing the framework’s architecture and runtime behaviour in detail, we first
introduce the main design considerations of GRAF.

4.1.1 Model Interpretation for Change Reflection

Given that the meta-layer is available as a model, the process of reflecting, i.e., injecting
changes from the meta-layer into the base layer, can be done in several ways and using
different techniques. For instance, software components can be composed at runtime [39,
193] or functionality can be adjusted using dynamic aspect weaving [74].

GRAF combines the concepts of having a reflective architecture with the interpretation
of models at runtime, thereby following an approach to building generic software that is
based on composing components that depend on models to describe the variable parts of
the system. Such explicit models are then interpreted at runtime by a generic and stable
core.

The meta-case tool KOGGE is an example of software constructed around this mecha-
nism [59]. Motivated by its flexibility, we decided to follow a model interpretation approach
for GRAF as well. Hence, the main way of achieving adaptivity in this research is by redi-
recting the adaptable software’s control flow to a model interpreter component at points
where the need for adaptivity is expected.

Besides achieving adaptation by adjusting program variable values, the main way of
achieving adaptivity in this research is by redirecting the adaptable software’s control
flow to a model interpreter component at points where the need for adaptivity is expected.

71

When such an interpretation point in the control flow is reached during the execution of the
adaptable software, the model interpreter executes an associated behaviour, as described
in the runtime model. Therefore, transforming behaviour descriptions that are stored in
the runtime model results in adapted program behaviour.

4.1.2 Model Verification

In a model-centric SAS system, the runtime model is transformed from a source to a target
model at runtime. The changes between these two models specify the adjustments to be
made to the adaptable software. Prior to reflecting them, it is important to verify the
current runtime model after it is changed to ensure that certain properties hold.

Model verification at runtime is crucial, because a broken runtime model will likely
result in faulty and undesired behaviour of the dependent adaptable software, or will
eventually lead to a crash of the whole SASS. This concern is addressed in three different
ways:

First, the runtime model is restricted by a schema (meta-model), which is itself a model,
that formally describes the allowed modeling elements and their relationships. A runtime
model can thus be checked in terms of conformance to its schema - that is, it is possible
to verify its correctness with respect to abstract syntax. More complex context-sensitive
constraints can be additionally defined by using a suitable constraint language. Similarly,
a runtime model can be checked against these restrictions.

Second, the adapting transformations carry pre- and postconditions to be checked be-
fore and after execution. This supports the formal verification of possible and impossible
runtime model states for a given set of transformations. This is important, because the
adaptable software may not be changed under certain conditions and the set of potentially
possible adaptation steps must be limited to the desired ones. Moreover, the effects and
interactions among adaptation steps become transparent and may be better understood,
especially in the context of maintaining an SAS.

Finally, in the case that the runtime model is transformed and, as a result, becomes
invalid with respect to its schema or additional constraints and invariants, it is essential to
allow rolling back any changes that led to this new model state. Obviously, the adaptable
software’s functionality must not be negatively affected by this recovery process.

72

4.1.3 Model Synchronization

In model-centric SAS, the runtime model is a shared resource between the adaptation man-
ager and adaptable software, and the parallel execution of the adaptation manager and the
adaptable software may lead to inconsistent runtime models. Resolving consistency issues
in a model-centric SAS increases the accidental complexity. On the other hand, complete
serialization of the adaptation loop with the application control flow can negatively affect
the performance of the model-centric approach to runtime adaptation. Hence, one of the
main challenges for supporting adaptation frameworks is to manage runtime models and
their consistency with only minor overhead in memory and execution performance.

4.1.4 Separation of Concerns

Separating application logic from adaptation logic is an important design concern for self-
adaptive software systems. This includes: (i) adaptation knowledge represented by at-
tribute, action, and goal spaces, and (ii) adaptation mechanism implementation and other
helper modules such as a policy engine which interpret and execute adaptation logic.

Similar to separation of concerns as a general principle in software design, this issue has
tremendous impacts on the maintainability, extensibility, and testability of an adaptation
manager. From another point of view, due to the fact that SAS mainly emphasizes quality
requirements, the specification and control of these requirements have been separated from
the functional parts of the application.

4.1.5 Low Coupling to Adaptation Framework

Assume that some software already exists and shall be evolved towards an adaptive system.
In the case that no adaptation was performed at runtime, the resulting SAS has to perform
the same functionality as the non-migrated legacy system. An obvious strategy towards
this goal is to make as little changes as possible to the legacy system. Furthermore, the
changed source code needs to be clearly marked. All changes to existing code must preserve
the original behaviour. To further reduce the risk of undesired changes as a side effect of
the migration to SAS, our goal was to limit the coupling between the adaptable software
and the adaptation framework.

We decided to automate the needed binding between the adaptable software and GRAF
for reifying and reflecting changes to and from the runtime model by using code injection
mechanisms of aspect-oriented programming. Changes in the application are marked using

73

predefined annotations. The connection to GRAF is then realized by aspects, i.e., code
that is also provided by the framework and that is woven into the compiled source code of
the adaptable software. The spots for injection are pre-determined using generic pointcut
expressions that are based on the annotations. In addition, an initial runtime model is also
generated automatically from these annotations.

4.1.6 Extensibility and Reusability

In the design and development of an adaptation manager, modularity and reusability
are important. Modularity eases the development of the adaptation processes, and also
enables the adaptation manager to use external pre-built modules like policy engines for
implementing processes. On the other hand, reusability enables us to use patterns for
designing the adaptation model/mechanism and common modules for implementing them.

To address these two concerns, GRAF represents several composition patterns for de-
signing the adaptation model and corresponding mechanisms.

4.2 Adaptable Software

The main property of the adaptable software is that it can interact with GRAF via
predefined interfaces. There are four different interfaces, as illustrated in Figure 4.4:
(i) StateVar, (ii) SyncStateVar, (iii) InterpretationPoint, and (iv) Action. The main
task of these interfaces is to allow access to data and to expose building blocks for describ-
ing behaviour within the target domain of the adaptable software’s business logic. The
functionality of each interface from a high-level perspective is as follows:

• The StateVar interface is responsible for exposing state variables to GRAF or any
other external adaptation manager. A state variable is a data field inside the adapt-
able software that contains information to be observed by GRAF. In essence, this
interface exposes data that represents a part of the adaptable software’s state. GRAF
observes this state and may react to its changes.

• The SyncStateVar interface is an extension of StateVar, which in addition to ex-
posing state information, allows the modification of the state. This enables GRAF to
change the state of the adaptable software by adjusting its exposed state variables.
The name of this interface is derived from the fact that the value of state variables

74

within the adaptable software is synchronized with, and in fact overridden by, data
that is computed by GRAF and stored in the runtime model.

• The InterpretationPoint interface exposes points in the control flow of the adapt-
able software, such as the entry points of method calls. These are points in the
adaptable software at which behavioural variability is needed. By exposing such
interpretation points, a predefined section of the adaptable software’s runtime be-
haviour can be replaced by some alternative behaviour that is constructed by GRAF.
This alternative behaviour is executed by interpretation, which also inspires the name
of this interface.

• The Action interface exposes a set of elementary building blocks to be used for
constructing behaviour descriptions in the runtime model. As soon as the control
flow of the adaptable software reaches a point that was exposed to GRAF via the
InterpretationPoint interface, an alternative behaviour may be available. This
behaviour is composed by GRAF using actions. During the interpretation of the be-
haviour, the involved actions are called. In the context of modernization, actions that
exist in the code are called default actions, and actions added to achieve adaptivity
are called alternative actions.

Existing program elements of adaptable software, such as classes and methods or data
fields, are considered to be the original elements. In order to build an adaptable software,
original elements that hold phenomena to be shared with the adaptation manager need to
be modified. If no such element represents the required shared phenomena in the software,
new elements are added. These modified or added elements that are needed for achieving
adaptability are called adaptable elements.

4.3 Adaptation Framework

The core components of GRAF are organized into four layers: (i) adaptation middleware,
(ii) runtime model, (iii) adaptation management, and (iv) management extension.

The adaptation framework also provides an external management interface, which sup-
ports externally managing subsystems.

Throughout this section, we introduce each layer and its constituent components in
terms of their functionality, tasks, and responsibilities. This section focuses on giving a
structural view of GRAF, although some dynamic aspects are discussed as well.

75

Model InterpreterState Variable Adapters

Rule Engine

Adaptation Management Layer

Runtime Model Layer

Middleware Layer

Model Manager

Adaptation
Rules

Schema &
Constraints

Graph-based Runtime Adaptation Framework (GRAF)

Adaptable Software

Legend:

Component

Uses

Repository

StateVar
Sync

StateVar

Interpretation

Point
Action

Model
History

Interface

Management

Extension Layer

Runtime
Model

Management

Facades
External
Management

Subsystem

External

Manager

Adaptable
Elements

Original

Elements

Program
Element

Figure 4.4: The Model-Centric Target Architecture of GRAF-Based SAS [50]

4.3.1 Adaptation Middleware Layer

The adaptation middleware is responsible for simplifying the connection of adaptable soft-
ware to GRAF. Hence, the components in this layer are connected to the provided interfaces
of the adaptable software.

State Variable Adapters

The framework offers a set of type-specific state variable adapters for passing data from
state variables in the adaptable software to GRAF (StateVar interface). Similarly, when-
ever GRAF computes new values for a state variable, this data must be made available
to the adaptable software (SyncStateVar interface). For the purpose of adjusting the
adaptable software, the state variable adapters enable parameter adaptation.

76

Model Interpreter

For adapting behaviour and not just pure data, GRAF enables providing an alternative
behaviour description to replace parts of the adaptable software’s behaviour at predefined
points in its control flow. The model interpreter component is responsible for enabling this
functionality. The model interpreter is connected to the InterpretationPoint interface
and is invoked at runtime, whenever a method that can be adapted is entered. If there
is an alternative behaviour proposed by the framework, the model interpreter executes
this description, which is a composition of elementary actions provided via the Action

interface. For the purpose of adjusting the adaptable software, the model interpreter
enables compositional adaptation.

4.3.2 Runtime Model Layer

At the heart of GRAF is the runtime model layer. It is essentially a meta-layer that enables
runtime adaptivity.

Model Manager

In order to handle the runtime meta-layer in a uniform way, the model manager is respon-
sible for all interactions with the three repositories (Schema and Constraints, Runtime
Model, and Model History) located at the runtime model layer. The repository access
operations offered by the model manager can be categorized into query and transforma-
tion operations. Both the adaptation middleware and the adaptation management layers
contain components that interact with the runtime model layer via the model manager.

Runtime Model

The runtime model is a repository, or more specifically a model, that represents: (i) parts
of the adaptable software’s state, and (ii) a collection of behaviour descriptions.

The language for expressing runtime models can vary. In the current implementation of
GRAF, behaviour is modeled using a subset of UML activity diagrams, where each Action

element corresponds to an action that must be provided by the adaptable software.

The software state is modeled by counterparts for each state variable in the adaptable
software. This part of the runtime model is glued to the adaptable software via the state

77

variable adapters described earlier. The behavioural part of the runtime model is used by
the model interpreter. Each behaviour description is bound to an interpretation point and
can then be executed.

The runtime model changes over time, first, due to values it receives from the state
variable adapters, and second, due to its transformation by the adaptation managers.
Generally speaking, the adaptable software is indirectly adapted. Its adaptivity-specific
meta-layer, the runtime model, gets transformed first, and due to the causal connection that
is established via the adaptation middleware, the adaptable software is finally adjusted.

A default runtime model can be generated for an existing adaptable software. GRAF
has a model generator tool that reads the compiled source code of the adaptable software
and generates a default runtime model for it. The model contains counterparts for each
state variable, as well as behaviour descriptions for interpretation points.

Schema and Constraints

A runtime model schema describes the allowed model elements for a runtime model in
GRAF. An excerpt of this schema is shown in Figure 4.5 and is expressed using the con-
crete syntax of UML class diagrams. The schema consists of elements that represent state
variables as well as a subset of UML activity diagrams for modeling behaviour. By de-
fault, the runtime model schema defines model elements such as InitialNode, FinalNode,
OpaqueAction, and Flow, which are very similar to those of the UML Superstructure de-
fined by the OMG [78]. The full runtime model schema contains a nearly complete model
of the abstract syntax for UML activity diagrams and covers state variables for the most
frequently used primitive data types.

The schema defines the most fundamental constraints on any possible runtime model.
More specifically, a syntactically valid runtime model conforms to its schema. It is possi-
ble to express constraints at (i) the schema-level and (ii) the model-level. The first con-
straint type is embedded into the schema and assures certain properties; for example, ”the
declaringElementId field of an Action element may not be empty”. Such constraints are
independent from the domain of the adaptable software.

The second constraint type allow users to specify domain-specific constraints; for exam-
ple, ”only specific values are valid for a given state variable”, or ”a sequence of OpaqueAction
elements with certain names may not exist”. These constraints are enforced by either adap-
tation requirements or the adaptable software. GRAF provides infrastructures to modify
(add/remove/change) these constraints at runtime as needed.

78

Figure 4.5: Excerpt of the Runtime Model Schema (MetaModel)

Model History

Given that the runtime model is transformed over time to adjust the adaptable software,
there can be situations where past state(s) can be useful for adaptation management. The
model history supports exactly that by offering versions of the runtime model that capture
how the model has changed over time. The model history can be queried similarly to the
runtime model itself. Sample use cases for the model history includes:

• Identification of alternating sequences of runtime model states due to a transforma-
tion.

• Identification of patterns in state variable values for prediction.

• Detection of invalid state variable values according to constraints.

Note that not only an autonomic adaptation manager can use the model history. Human
administrators may choose to debug the self-adaptive software as well by using specialized
views on the runtime model, supported by data mining approaches that operate on the
model’s history data; using this approach, observed states of the runtime model can be
used to derive and predict potential future states.

79

4.3.3 Adaptation Management Layer

Up to now we described most of GRAF’s components but did not state where the actual
adaptation is performed. The adaptation management layer represents the adaptation
manager shown in Figure 4.1 and contains a rule engine and a repository of adaptation
rules. This layer is extensible and is designed to support any adaptation managers that
implement the provided interfaces.

Rule Engine

The rule engine is responsible for (i) monitoring the runtime model, (ii) analyzing its
change, (iii) planning a sequence of adjustments, and finally (iv) executing the plan via
the model manager. Hence, the rule engine performs the MAPE-loop [87].

In the context of GRAF, monitoring potentially involves listening to a set of change
events triggered by the model manager. For each event, the rule engine querying the
runtime model must analyze the situation and determine the current state of the system;
at this point, the planner produces a plan, which is actually a compound transformation
to be applied to the runtime model. Such a transformation can change any part of the
runtime model, such as state variable values or behaviour descriptions.

Adaptation Rules

We assume that adaptation requirements can be used to derive a set of adaptation rules.
Developing adaptation rules is an essential part of creating self-adaptive software based on
GRAF. All adaptation rules are stored in a central repository that can be accessed by the
rule engine as well as by human administrators. A single adaptation rule is therefore an
Event-Condition-Action (ECA) rule with the following structure:

ON Event IF Condition THEN Action

• Event: Some change in the runtime model (e.g., a change to a state variable value).

• Condition: A boolean expression that is specified as a query on the runtime model.
The condition specifies the current state of the system. The state of the system
proposes a list of valid actions to be taken. The planner as a part of the rule engine
will select the best action or a list of actions to be executed.

80

• Action: The actual change to be made to the runtime model in the form of a trans-
formation. Each action can be enriched with pre- and post-conditions for verification
and validation purposes.

As discussed in Subsection 3.3.4, adaptation managers are rational agents, and their
behaviour can be expressed by describing the relationship between the states and actions
needed to achieve adaptation goals. Although selecting the adaptation actions depends on
the desired adaptation goals and properties, an adaptation manager, as a rational agent,
observes the current state, and performs an action accordingly to make a transition to a
new state. Therefore, the propositional logic nature of ECA rules is expressive enough,
but not necessarily optimized, to describe the behaviour of adaptation managers.

4.3.4 Management Extension Layer

This layer is composed of a set of facade components and APIs. Themanagement extension
exposes an external management interface via a set of managed Java beans, called MBeans.
They are bound to their corresponding components in each layer and are responsible for:
(i) providing service access to GRAF, (ii) providing the external configuration of GRAF
and its subsystems, (iii) serving as an observer for monitoring changes to the runtime
model and providing notifications for its listeners using the events that the model manager
raises when the runtime model changes, (iv) providing an interface to query and transform
runtime models (via the model manager), which can also be used to add and update the
application’s domain (operating environment) state variables of the runtime models, and
(v) providing access to the internal adaptation manager and adaptation rules, for the
purpose of modifying adaptation rules at runtime.

The management extension layer also provides an API set that allows GRAF to act
as a service, which can be activated and deactivated on the fly. In this case, the whole
framework can be viewed as a wrapper service for adaptable software. This service provides
dynamic access to the adaptable software’s runtime model, allowing it to be observed and
controlled from external resources.

External Manager

GRAF is able to accept external managers via the the external management interface.
These components can extend the core functionalities of the framework or be used to
observe and control a GRAF-based SAS externally. For instance, external adaptation

81

managers like StarMX [9] can connect to GRAF to query and transform the runtime
model.

Moreover, manual interaction with an SAS system is feasible via well-designed user
interfaces. Possible access methods range from text-based command line interfaces to
remotely controlled and web-based applications. These control panels can be used for
administration tasks, such as monitoring the operating state of the SAS and controlling
its behaviour manually.

4.4 Runtime Behaviour

After introducing the overall structure and the features of GRAF, we describe the frame-
work’s behaviour at runtime, covering five main use cases. Subsequently, we give a descrip-
tion of these use cases in the form of activities, using the unified diagram in Figure 4.6.
The first two activities are illustrated together though, because of their tight interaction.

Here, we deliberately ignore all possible alternative flows and exceptions that might
occur during the adaptation. The main idea is to show the control flow of GRAF under
typical conditions.

4.4.1 Reification and Sensing Use Cases

The reification involves the propagation of changed state variable values from the adaptable
software to the runtime model. This results in the sensing use case that is notifying the
rule engine.

Assuming application-level adaptation as discussed in [165], changes are reflected by
the state of the adaptable software and thus can be sensed through its variables and fields.

The first use case starts with a change to the adaptable software and its data as the
system communicates with its operating environment. If the changed variable is an instru-
mented Java field that is exposed via the StateVar or SyncStateVar interfaces, a state
variable adapter of GRAF takes care of sending the updated value to the model man-
ager, which decides whether the propagated value should be stored in the runtime model.
Finally, the model manager notifies the rule engine whenever the model changes.

82

Continue executing
business logic

Continue executing
business logic

Execute original
code block

 (contains default
behavior)

Continue

executing
business logic

@StateVar def
@SyncStateVar def

@SyncStateVar use

@InterpretationPoint

Rule Engine
observes change in

Runtime Model

Rule Engine
analyzes the change

Rule Engine plans a
sequence of actions

Rule Engine sends
the action list to

Model Manager for
execution

<<structured>>

For each action:

Rollback changes to
Runtime Model and
inform Rule Engine

Verify post-conditions
and constraints on

Runtime Model

Execute the Adaptation
Rules's transformation

on Runtime Model

Select

next action

 Is verification
successful?

Model Manager checks
pre-conditions of the

action

Model Manager sends
a change event to the

Rule Engine

Model Manager
receives data and
performs sanity

checks

Model Manager
writes value to the

Runtime Model

Model Manager
discard

changed value

Value is not redundant
and it passed

constraint checks?

Are pre-conditions
met?

Stare Variable
Adapter update the
value of changed

syncStateVars

Interpreter loads
associated

behavioral model

Interpreter checks if
behavior is default

Interpreter
executes the

behavioral model

State Variable
Adapter redirects

data to Model
Manager

Is behavior
Default?

Runtime Model Layer Adaptation Management LayerAdaptation Middleware LayerAdaptable Software

Reification and Sensing

Effecting

Controlling

Reflection

 [yes]

 [no]

 [no]

 [no] [yes]

 [yes]

 [yes]

 [no]

Figure 4.6: Main Control Flow of GRAF Runtime behaviour

83

4.4.2 Controlling Use Case

The IBM vision of autonomic computing introduces the MAPE-loop for external software
control as a four step process: (i) monitoring, (ii) analyzing, (iii) planning, and (iv) exe-
cuting [98].

The controlling use case of GRAF is essentially the MAPE-loop. The rule engine
analyzes the changes, as soon as it receives a signal from the model manager. Then, it
plans for the best possible set of actions (transformations) to be executed on the runtime
model, considering the repository of available adaptation rules and based on its planning
strategies. Optionally, the rule engine may use the runtime model and it’s change history
by querying them via the model manager for a more detailed evaluation, e.g., taking past
adaptation steps into account. In the last step, the rule engine triggers the invocation of
the action part of the adaptation rules (transformations) on the runtime model.

4.4.3 Effecting Use Case

The effecting use case of GRAF involves a transformation of the runtime model that is
based on the adaptation rules selected by the rule engine in reaction to changes in the
adaptable software.

First, the model manager checks the precondition of the adaptation rule on the runtime
model. If it evaluates to false, the adaptation rule is ignored; otherwise, the adaptation
rule’s transformation is executed. Next, the model manager checks and verifies the run-
time model against the schema and its constraints, as well as the adaptation rules’s post-
conditions. In the case of any conflicts and constraint violations upon the the executed
transformation, the model manager rolls back all of the changes and notifies the rule en-
gine to take another action. If the executed transformation is valid, the runtime model is
successfully adapted to the new environment, based on the existing adaptation rules and
given model constraints.

4.4.4 Reflection Use Case

The reflection use case of GRAF is responsible for an actual behaviour change in the man-
aged adaptable software. Two different adaptation techniques are supported: (i) adapta-
tion via parameter values, and (ii) adaptation via interpretation of a behavioural model.

84

Adaptation via State Variables

State variables can be setup so that their changes are reflected back to the adaptable soft-
ware. For this mechanism to work, the corresponding variable of the adaptable application
must be exposed to GRAF via the SyncStateVar interface. If the runtime model repre-
sentation of such a state variable is changed by an adaptation rule, then the adaptable
software becomes aware of the new value whenever the variable is used in the adaptable
software.

Adaptation via Model Interpretation

GRAF supports the modeling of behaviour, currently using a subset of UML activity
diagrams. The model interpreter executes an activity at specific points in the adaptable
elements’ control flow.

During the execution of some method of the adaptable software that is exposed to
GRAF via the InterpretationPoint interface, the model interpreter is invoked and loads
the associated behavioural model. If the model describes default behaviour, there is no
need for adaptation and the interpreter returns this information so that the adaptable
element executes the existing default code block in the adaptable software. Otherwise, the
corresponding part of the behavioural model is changed to describe something other than
the default behaviour, and the interpreter executes the behavioural model.

Each action used in the behavioural model is associated with methods in the adaptable
software via the Action interface, and the interpreter can invoke these methods. The
adaptable software keeps executing after returning from the potentially adapted method.

4.5 Realization

So far we have introduced the architecture for a GRAF-based SASS in terms of its static
structure and its runtime behaviour. In this section, we describe a prototypical implemen-
tation and the technologies involved.

GRAF is implemented in Java and can be utilized by standard or enterprise Java
applications for the purpose of runtime adaptation. In this section, we follow a bottom
up approach and introduce the technologies used to create the functionality related to
each subsystem and layer. However, we discuss only one possible way of realizing such an
adaptation framework. A more detailed description on the presented techniques can be
found in [49].

85

4.5.1 Runtime Modeling with the TGraph Approach

We implemented the runtime model layer using the JGraLab API for processing TGraphs ;
i.e., typed, attributed, ordered, and directed graphs. JGraLab can create Java source code
based on meta-models (schemas). The generated classes can be used in custom applications
to utilize TGraphs as a data structure. JGraLab can create and manipulate TGraphs at
runtime.

The runtime model can be queried using theGraph Repository Query Language (GReQL)
[57] and it can be transformed using the Graph Repository Transformation Language
(GReTL) [84]. Furthermore, query and transform operations can also be realized using
a lower level Java API that operates directly on the runtime model.

This API is auto-generated for the runtime model schema, which we describe via UML
class diagrams using the IBM Rational Software Architect 7.5 [155]. An exported XML
Metadata Interchange (XMI) 1 representation of the schema model is then processed by
JGraLab tools to generate the mentioned Java API.

4.5.2 Model Interpretation and Reflection

The model interpreter walks along the paths of an activity diagram that describes the
behaviour to be executed at an interpretation point. Hooks for model interpretation are
injected into the bytecode of classes containing methods that are tagged as
@InterpretationPoint.

Each Action element of the behaviour, modeled by the activity diagram, has a trace
link to a method in the adaptable software that actually implements the functionality. The
model interpreter uses information such as a fully qualified name to invoke methods via
Java’s built-in reflection mechanism.

To enable or disable the execution of the model interpreter, an activity model has a
boolean interpret attribute that specifies, whether the behaviour description shall be
interpreted. Initially, this flag is only set to true in cases when the described behaviour in
the runtime model does not match the default one. We consider the default behaviour to
be the same as already implemented by the adaptable software at a given interpretation
point. This means that if the model manager states that the behavioural model described
default behaviour, no changes to the adaptable software’s control flow are made, but its

1The XML Metadata Interchange (XMI) is an Object Management Group (OMG) standard for ex-
changing metadata information via Extensible Markup Language (XML) [139].

86

source code is executed as normal. Otherwise, the model interpreter actually changes the
control flow by executing the associated part of the behavioural model. The original body
is skipped, and the resulting value of the interpretation run is returned.

Hence, with respect to its implemented default behaviour, the adaptable software be-
haves similarly in terms of execution performance if we remove the additional check of the
interpret flag. This is an essential requirement that stems from the focus on moderniza-
tion towards runtime adaptivity.

Finally, the value of interpret can be modified during the preparation phase; for ex-
ample, by the model generator, from adaptation rules, or even during a manual refinement
phase of the runtime model. This makes it possible to fully rely on model interpretation
only. This may be desired in scenarios, in which an SAS is being developed from scratch,
where even default behaviour is modeled based on more generic methods.

4.5.3 Tagging Adaptable Elements with Java Annotations

As GRAF is mainly designed to facilitate evolving software system towards adaptivity, the
main goal is to maintain the changes required to make software adaptable. The functional
characteristics of the software must not change when it is decoupled from the framework.
The adaptable software communicates with GRAF via a set of interfaces. In order to
minimize the amount of source-code changes, instead of implementing real Java interfaces
in each adaptable element, we decided to implement them in another way.

For each interface type, GRAF offers a corresponding Java annotation that has the
same name. We make use of Java’s common meta-annotations to set up each custom
annotation type, such that it is applicable only to the Java element that it is intended
for. For instance, there is a @StateVar annotation and it is only applicable to member
variables (@Target(ElementType.FIELD)). Furthermore, the annotations are set up to be
readable at runtime using Java’s built-in reflection mechanisms
(@Retention(RetentionPolicy.RUNTIME)).

In summary, the following annotations are offered by GRAF: (i) @StateVar,
(ii) @SyncStateVar, (iii) @InterpretationPoint, and (iv) @Action. Adaptable (pro-
gram) elements are marked in the source code using one of these annotations. This added
meta-data is then used for binding the adaptable software to GRAF using aspect-oriented
programming (AOP) techniques. Additionally, these annotations are used for generating
an initial version of the runtime model.

87

@StateVar

Variables in adaptable software representing state variables as a part of the Monitor State
sensing style are annotated as @StateVar. Changes in this data field will be propagated
to GRAF’s runtime model. Listing 4.1 shows an example where a integer value represents
number of active users.

1 @StateVar
2 pr i va te i n t numberOfAct iveUser s ;

Listing 4.1: Use Of The @Statevar Annotation

@SyncStateVar

State variables that are part of the Change State Effecting Style are annotated as
@SyncStateVar. The difference between these synchronized (sync) state variables, and
state variables annotated by @StateVar is that if an adaptation manager computes a
different value and sets it in the runtime model, this value will be written back to the
adaptable software. Listing 4.2 shows an example where a boolean field is exposed for
controlling by the adaptation manager. That way, code in the adaptable software can be
written to depend on externally tuned data.

1 @SyncStateVar
2 pr i va te boolean blockNewUsers ;

Listing 4.2: Use Of The @Statevar Annotation

@InterpretationPoint

Methods representing Default Blocks in the adaptable software are annotated as
@InterpretationPoint. Such a method is associated to a part of the behavioural model by
a unique identifier. We refer to the beginning of the tagged method itself as interpretation
point. If the linked part of the behavioural model changes to something else than the
default behaviour, the actual body of the annotated method is replaced, and a sequence
of different actions is executed, as configured in the behavioural model. Listing 4.3 shows
an example, where the registration of new users shall be adaptable at runtime.

88

1 @ I n t e r p r e t a t i o nP o i n t
2 pr i va te void r e g i s t e r U s e r E n t r y () {
3 // C a l l the d e f a u l t a c t i o n .
4 r e g i s t e r C o n n e c t i n gU s e r () ;
5 }

Listing 4.3: Use Of The @Interpretationpoint Annotation

@Action

Methods of the adaptable software that are building blocks of the behavioural model are
annotated as @Action, which can be composed to model complex behaviour. In other
word, these actions are composing elements of the methods (activities) annotated as
@InterpretationPoint. The actions representing the default behaviour of adaptable soft-
ware have an identifier that specifies the associated interpretation point, as there can be
multiple interpretation points per class. Listing 4.4 shows an example for an action that
blocks new users. In a simple scenario where a simple one-to-one replacement of function-
ality at an interpretation point is performed, an action can be executed, instead of the
default behaviour.

1 @Action (i n t e r p r e t a t i o nP o i n tK e y=”package . ClassName . r e g i s t e r U s e r E n t r y ”)
2 pr i va te void r e g i s t e r C o n n e c t i n gU s e r () {
3 // R e g i s t e r new u s e r s .
4 }

Listing 4.4: Use Of The @Action Annotation For Default Behaviour

4.5.4 Connecting to the Framework using AOP

One of our main goals is to assure loose coupling between the adaptable software and the
adaptation framework. To achieve this, the adaptation middleware layer, with its set of
state variable adapters, and the model interpreter are glued to the adaptable software using
AOP, together with the proposed Java annotations.

GRAF uses JBoss AOP [93], an aspect-oriented framework written in Java. JBoss
AOP can be used stand-alone in any Java programming environment, or tightly integrated
with the JBoss application server [94]. The described approach can also be implemented

89

using the static AOP compiler of JBoss AOP, or AspectJ [10], to inject the advice code at
compile time. The decision to use JBoss AOP was due to its support for dynamic AOP
and its good integration with JBossAS, which makes it feasible to integrate GRAF with
enterprise Java applications.

GRAF offers a set of generic pointcut expressions that use the GRAF-specific Java
annotations. Furthermore, generic advice code is injected into the bytecode of the compiled
Java classes that represent or contain adaptable elements. For example, there are pointcut
expressions that match all Java fields annotated as @StateVar. There is specific advice
code for each type of state variable (e.g., int or Integer). The advice code is part of the
state variable adapters. Currently, GRAF implements state variable adapters for Java’s
primitive data types and their corresponding reference types. An example extract of a
pointcut expression is shown in Listing 4.5.

1 <a sp e c t name=” I n t e g e r R e i f i c a t o r A d a p t e r ” c l a s s=” g r a f . midd leware . a dap t e r s .
r e i f i c a t i o n . imp l . I n t e g e r S t a t eV a r i a b l eAd a p t e r ” scope=”PER CLASS”/>

2

3 <b ind p o i n t c u t=”
4 s e t (i n t ∗−>@gra f . i n s t r umen t a t i o n . a nno t a t i o n s . S ta teVar) OR
5 s e t (i n t ∗−>@gra f . i n s t r umen t a t i o n . a nno t a t i o n s . SyncStateVar) OR
6 s e t (I n t e g e r ∗−>@gra f . i n s t r umen t a t i o n . a nno t a t i o n s . S ta teVar) OR
7 s e t (I n t e g e r ∗−>@gra f . i n s t r umen t a t i o n . a nno t a t i o n s . SyncStateVar) ”>
8 <ad v i c e name=” toRunt imeModelAdvice ” a sp e c t=” I n t e g e r R e i f i c a t o r A d a p t e r ”/>
9 </ b ind>

Listing 4.5: Pointcut Expression For Propagating Integer Values To The Runtime Model
On Write Access (Set) Of @Statevar And @Syncstatevar Fields

Each state variable adapter contains an advice that is injected (i) whenever an an-
notated Java field is used (read-access), or (ii) when it is defined (write-access). This
enables injecting the necessary code for propagating state variable values from the adapt-
able software to the runtime model ((@StateVar) and @SyncStateVar), as well the other
way around (@SyncStateVar), at class load time. The @Action annotation is not used
for code injection in the described way. It is mainly used for gathering information about
available default and alternative actions when generating a default runtime model, as well
as for implementing model interpretation.

90

4.5.5 Adaptation Rule Engine

GRAF embeds an internal adaptation manager in a form of a rule engine that utilizes first-
order logic predicates (adaptation rules) for planning. This rule engine is easy to use and
sufficient for many adaption demands and runs concurrently with the rest of the system.
It also provides basic mechanisms for adding or removing rules that are represented by the
provided interface for adding adaptation rules. The rules can be also viewed and modified
at runtime using the provided management extensions.

This event-based adaptation manager implements a provided generic adaptation man-
ager interface and provides a simple way of executing a set of adaptation rules via model
manager. The rule engine checks the conditions of an each adaptation rule by querying
the runtime model through model manager. If the query evaluates to true, the action part
of the rule becomes a candidate for execution. The model manager validates the list of
candidates and executes the action (transformation), if pre- and post-conditions are met.

4.5.6 External Adaptation Managers

The internal rule engine might be inefficient or incapable of selecting the best possible
actions when the application domain is non-deterministic or when software behaviour is
highly complex with numerous control variables. In such complex scenarios, the demanded
adaptation rule is not trivial, or there might be a conflict between the candidate rules
which do not allow adaptation managers to take plausible decision to select the best valid
action according to the observed state of the system.

As an alternative solution to the internal rule engine, machine learning techniques can
be used as a candidate solution for decision making and planning of SAS. As a proof on
concept, a solution for the planning process of adaptation managers based on reinforcement
learning is developed, and the results are published in [4]. This reinforcement learning
based solution explores the action space and learns which actions are more suitable for the
system state. Machine learning techniques can be advantages in the scenarios in which
there is a pattern (trend) in the changes occurring the domain. In other words, the rule
engine is not programmed to deal with each instance of the change to be happened in
future, but it can co-relate similar situations and can learn what is a best action to take
in each situation.

91

4.6 Summary

In this chapter, we proposed our model-centric runtime adaptation approach. We presented
how, in this approach, runtime models can be considered as connection domains to reduce
the complexity of engineering and maintaining an SAS by providing partial and customized
representations of the software, tailored to suit the needs of adaptation. We realized this
approach by the Graph-based Runtime Adaptation Framework (GRAF), which supports
model-centric runtime adaptivity based on a combination of querying, transforming, and
interpreting behavioral models, as well as state variables, which are causally connected to
a software application.

A notable strength of GRAF, which distinguishes it from other adaptation frameworks
(e.g., [69, 131, 193, 16]), lies in its ability to support method-level compositional adaptation
by interpreting runtime models that are not necessarily at the same abstraction level and
expressiveness of the base-layer they are representing. Moreover, GRAF’s approach to
runtime adaptivity reduces the risk of moving towards self-adaptive software systems.

The next chapter proposes a methodology and a process model to reduce the cost and
effort of (re)engineering self-adaptive software systems by minimizing the required changes
to make software adaptable without breaking the default functionality.

92

Chapter 5

Reengineering Towards
Model-Centric Self-Adaptive
Software

“A complex system that works is invariably found to have evolved from a
simple system that works.”

–John Gall

It is a well accepted fact that software systems need to constantly adapt in order to
be sustainable [112]. The goal of moving towards SAS is to reduce the risk of dealing
with future changes. In classic software engineering, adaptive changes are non-corrective
changes, which can possibly decrease the cost and effort for subsequent changes. From this
perspective, moving towards SAS can be viewed as a preventive software change.

In general, a SAS is a control system in which adaptable software is the controlled plant
and the adaptation manager is the controller. Adaptable software exposes monitoring and
sensing data via its sensor interface, and receives control action commands as a set of
effecting actions through its effector interface. This synergy is captured by Kephart and
Chess as a reference architecture for self-adaptive software systems [98].

In general, engineering controller-based self-adaptive software (SAS) is a three-fold
problem of (i) constructing an adaptable software that is observable and controllable,
(ii) constructing an adaptation manager for observing and controlling the adaptable soft-
ware, and (iii) integrating both subsystems into a control system. This is a classic software
construction problem, in which we have to develop two sub-systems that interact with each

93

Requirements
Specification

Input/
Output

Process Artifact FlowLegend:

Adaptation
Requirements

Adaptation
Specification

Adaptability
Specification

Preparing
Adaptation
Manager

Preparing
Adaptable
Software

Adaptation
Manager

Adaptable
Software

Integration

Self-Adaptive
Software

Original
Software

Figure 5.1: A Generic Process Model for Engineering SAS, Conforming to the Conceptual
Model Proposed in Chapter 3

other. The process model for building such a system can benefit from a number of suc-
cessful software methodologies available today. Due to the increasing demand for adaptive
systems, and the high costs of developing them from scratch, reengineering current systems
into adaptive ones is inevitable.

Considering the conceptual model of SAS problem spaces, discussed in Chapter 3,
the process of migrating existing software systems towards SAS can be considered as a
process of deriving adaptation and adaptability specifications. Such a process follows two
separate paths towards preparing the adaptable software and the adaptation manager, and
integrates these components, as illustrated in Figure 5.1. The activities involved in such
a process are well known in the field of software evolution and maintenance, and include
tasks related to reverse engineering, program comprehension, impact analysis, and change
propagation. However, evolution towards SAS also involves other less familiar concerns,
such as:

• Preservation of original behaviour: The migrated SAS must maintain its original be-
haviour; that is, if no adaptation is performed at runtime, the SAS must function the
same as the software system prior to modernization.

• Separation of concerns: The types of changes to be made to the original software
(made for the purpose of introducing adaptivity properties) must be kept as separate
as possible. Also, such changes should be realized in the form of external components
that are loosely coupled with the legacy system.

94

• Identification of adaptability factors: Locating software application fragments that may
be involved in runtime adaptation steps requires a good knowledge of the software
system and the adaptation requirements.

• Efficient (cost-effective) evolution process: The changes to be made to the current
software must be kept minimal and cost effective. The types of changes, as well as a
systematic procedure for performing each change, must be known in advance.

In order to tackle the above concerns regarding evolution towards SAS, there is a need
for a process model that is especially tailored for migrating software systems towards self-
adaptivity. In the previous chapter, we introduced GRAF, which provides the required
infra-structure and features for supporting such an evolution process. The architecture of
GRAF exhibits a loosely-coupled causal connection between the adaptable software and
the rest of the framework; this makes GRAF a suitable solution for enabling the efficient
incorporation of runtime-adaptivity into existing nonadaptive software systems.

This chapter proposes a reengineering process model for the purpose of preparing and
building SAS, for given adaptation requirements, by migrating current (non-adaptive) soft-
ware. The proposed approach uses GRAF in conjunction with other techniques and tools
for achieving this goal. The main objectives of the proposed process are to: (i) reduce
the risks and complexities that are normally associated with the modernization of legacy
software towards adaptability, and their integration with adaptation managers, (ii) specify
the required evolution changes in the form of program transformations, and (iii) preserve
the original behaviour of a software system when there is no need for adaptation.

The rest of this chapter describes the process model and provides guidelines on how
to assess the associated risks, and to evaluate the effectiveness and fitness of the process
model for supporting software changes.

5.1 The Process Model

In Chapter 3, we proposed a conceptual model of the adaptation and adaptability problem
spaces to be used for specifying adaptation requirements. We also described how adaptation
requirements can be treated as functional system requirements for developing a controller
software known as an adaptation manager (AM), and how adaptable software (AS) can be
developed based on adaptability specifications, so as to provide the required sensors and
effectors.

95

Recall from Section 3.2 that we can derive adaptation and adaptability specifications
from adaptation requirements:

(AD ∪ Software), SAdaptability, SAdaptation ⊢ RAdaptation (5.1)

Moreover, in Chapter 4 we introduced a runtime model as a connection domain in a
model-centric approach, which represents AD ∪ AS and serves as the domain for AM :

RM,SAdaptation ⊢ RAdaptation (5.2)

In GRAF the runtime model is generated, embodied, and maintained by the framework;
that is, in the adaptation problem space, the problem of developing the adaptation manager
is reduced to the development of appropriate policies (i.e., adaptation rules) for managing
the runtime model. Hence, in case of GRAF we have

CGRAF , PAdaptation ⊢ SAdaptation (5.3)

in which PAdaptation is a set of adaptation policies, because the adaptation manager and its
rule engine (adaptation mechanism) are parts of the framework and are provided by GRAF.
The adaptation policies in the current implementation of GRAF are in the form of ECA
adaptation rules running on an embedded rule engine of GRAF, and satisfy SAdaptation by
executing queries and transformations on the runtime model. Also, CGRAF is customizable
and can be modified to fit specific adaptation needs.

On the other hand, we also need to prepare adaptable software that complies with
adaptability specifications. In case of migrating non-adaptive software systems towards
runtime adaptability, we start with an operational software that is developed based on a
set of specifications (i.e., SSoftware). Any changes to be made on to the software in order to
make it adaptable are woven with the current software, and as a result, the original program
P will be evolved into a new program P ′ that satisfies a set of adaptability specifications
(i.e., SAdaptability). In other words, we will have

C, P ′ ⊢ {SAdaptability, SSoftware} (5.4)

Here P ′ = P + ε, where P denotes the properties of the original software and ε denotes
the deviation from the original property set. The deviation can be from both functional or
non-functional properties of the original software. However, any deviation from the original

96

functional properties should be prohibited, as SAS must preserve the original behaviour
of the non-adaptive software, and the adaptive behaviour should be only triggered by
the adaptation manager as required by the adaptation specifications. This means that
ideally, ε includes a new set of non-functional properties regarding software observability
and controllability. In practice, other non-functional properties can be also affected to
some degree; for example, the performance and complexity of the evolved software may be
affected as we move towards adaptable software.

Hence, a practical modernization process towards adaptable software has to guarantee
that the original behaviour of the software remains intact and deviations from major (and
important) non-functional properties do not negatively impact the quality of the new sys-
tem. One approach for achieving this goal is to allow all types of changes in the software
and to perform regression tests to make sure that the original properties are preserved.
Although this is a feasible approach, many legacy systems do not have complete (and au-
tomated) test cases to be checked as the system evolves, which makes this approach rather
costly and impractical.

The second approach is to have an evolution process, in which evolution changes are
limited by a set of transformations that maintain the original behaviour of the software.
This is the approach followed in our proposed process model, in which the adaptable
software is the refactored version of the original software. Having transformations in the
form of refactorings will guarantee that the functional properties are maintained and only
non-functional properties will be affected; hence, for the functional properties we can have
P ′ ≃ P . Therefore, using GRAF and its infrastructure for adding sensors and effectors
dynamically shifts deviations in the satisfactions of non-functional properties from the
program to the computer. Equation 5.4 can be reformulated as

CGRAF , P
′ ⊢ {SAdaptability, SSoftware} (5.5)

in which P ′ ≃ P and CGRAF ensures the integration and operation of adaptable software
with GRAF. In a nutshell, in the GRAF approach, software adaptability is achieved by
transforming the original software elements into adaptable elements that are exposed via
sensor and effector interfaces, and are constituent elements of the runtime model. By using
this approach and defining the required evolution changes towards adaptability as a set of
transformations, we argue that software is evolvable towards adaptability, if there exists a
sequence of refactorings from the original software to the required adaptable software.

97

A
d

a
p
ta

ti
o

n

R
e
q
u

ir
e
m

e
n
ts

A
n

a
ly

s
is

S
y
s
te

m
 A

n
a

ly
s
is

A
d

v
a

n
c
e

d

C
u

s
to

m
iz

a
ti
o

n

S
o

ft
w

a
re

R
u

n
ti
m

e

M
o

d
e

l

G
e

n
e

ra
ti
o

n

P
la

n
n

in
g

T
ra

n
s
fo

rm
a
ti
o
n

In
te

g
ra

ti
o
n
 /

D
e

p
lo

y
m

e
n

t

Im
p
le

m
e

n
ti
n
g

A
d
a
p

ta
ti
o
n

 R
u
le

s

A
d
a

p
ta

ti
o

n
 M

o
d

e
l

-P
o
lic

ie
s

-A
c
ti
o
n
s

-A
tt

ri
b
u

te
s

-G
o

a
ls

A
d

a
p
ta

ti
o

n
 M

o
d

e
l

L
is

t
o

f:

T
u

n
a
b

le
 p

a
ra

m
e

te
rs

D
o

m
a

in
 s

e
n

s
o

rs

c
o
n

s
tr

a
in

ts

L
is

t
o

f:

D
o

m
a

in
 s

e
n

s
o

rs

R
e

q
u

ir
e

m
e

n
ts

 S
p

e
c

if
ic

a
ti

o
n

P
re

p
a

ri
n

g
 G

R
A

F

R
u

n
ti
m

e
 m

o
d

e
l

L
is

t
o

f
L
o

c
a
te

d

A
d
a

p
ta

b
ili

ty
 f

a
c
to

rs
:

-
B

lo
c
k
s

-
S

y
n
c
 s

ta
t

v
a

r

-
S

ta
t

v
a

r

A
d

a
p
ta

b
ili

ty

T
ra

n
s
fo

rm
a
ti
o
n
s

S
c
h
e

m
a

(C
h

a
n

g
e
 p

la
n

)

L
is

t
o

f:

S
e

n
s
o

rs
 /

 E
ff

e
c
to

rs

P
re

p
a

ri
n

g
 A

d
a

p
ta

b
le

 S
o

ft
w

a
re

A
d

a
p

ta
ti

o
n

R

e
q

u
ir

e
m

e
n

ts

S
e

lf
-A

d
a

p
ti

v
e

S

o
ft

w
a

re

G
R

A
F

C
u
s
to

m
iz

e
d

G
R

A
F

A
d
a

p
ta

b
le

S
o

ft
w

a
re

A
d

a
p
ta

b
ili

ty
 M

o
d
e

l

In
p

u
t/

O
u

tp
u

t

P
ro

c
e

s
s

D
a

ta
 F

lo
w

L
e

g
e

n
d

R
e
p

o
s
it
o

ry

F
ig
u
re

5.
2:

T
h
e
P
ro
ce
ss

M
o
d
el

98

Based on the above definitions and design considerations, our process model for building
GRAF-based model-centric SAS is illustrated in Figure 5.2. The proposed process model
uses the domain-driven design approach [61], which advocates a deep connection between
the software implementation and an evolving model of the core business concepts. The
inputs of the proposed process model are original software, the set of adaptation require-
ments, and GRAF; and its outputs are the adaptable software, and a customized GRAF
that is able to control the adaptable software.

The modernization of current systems towards adaptivity requires additional steps in
terms of program comprehension and necessary transformations of the original application.
Hence, the process incorporates an additional analysis step for investigating and extracting
adaptability artifacts in the original software. In addition, the preparation of the adaptable
software is based on a set of transformations for adding the required adaptability. The
upcoming sections will elaborate this process model in detail and highlight the challenges
associated with each step.

5.2 Adaptation Requirements Analysis

The order of capturing and modeling entities in the adaptation and adaptability problem
spaces is debatable. This is mainly because of the dependencies among these spaces. In
the proposed process model, given a set of adaptation requirements, the initial step is to
derive the adaptation specification model. This model is used as input for system analysis,
and is later on used to construct the adaptation manager. However, the overlap between
adaptation requirements analysis and system analysis varies as the process progresses:
initially, there is very little analysis done on the application domain and software, and the
majority of the effort goes toward gathering1 and modeling requirements.

The adaptation manager in GRAF inherits its behavioural model from the framework.
Therefore, the behaviour specifications of the adaptation model of GRAF-based SAS are
adaptation policies; these policies are to be implemented as event-condition-action (ECA)
rules (adaptation rules) that specify exactly what to do in a given state. In this case,
the adaptation behaviour is essentially compiled as a set of adaptation rules in the form
of logical predicates. Adaptation rules can be used to check deviations from adaptation
goals, or to trigger appropriate actions.

1In this thesis, we assume that the adaptation requirements are provided as the starting point for
engineering SAS, and the process of elicitation or derivation of adaptation requirements from stakeholders
or system artifacts is beyond the scope of this thesis.

99

The event and condition parts of each adaptation rule require a set of domain attributes.
These domain attributes are used to determine the state of the application or that of its
operating environment. Adaptation rules also have an action part, which are to be executed
by effectors on the adaptable software. At this stage, the effectors are not yet explored;
however, we are concerned with the expected result of executing actions via appropriate
effectors. This means that after executing the selected action, the software should exhibit
the adaptive behaviour required. However, the means by which the requested behaviour
is achieved is not defined at this stage, before analyzing the software’s internals. The pre
and post conditions of each action are also represented in terms of domain attributes, the
value of which must be also available to the adaptation manager.

The details involved in engineering adaptation requirements is beyond the scope of
this thesis. However, there are a number of well-established requirements engineering ap-
proaches (e.g., KAOS by van Lamsweerde [189]) that are helpful in eliciting and specifying
adaptation policies. Among them, the quality-driven framework for engineering an adap-
tation manger (QFeam) by Salehei [160] best fits our goals for elicitating and analyzing
adaptation requirements. QFeam is mainly designed for engineering the planning process
(i.e., detecting and decision making) of SAS and includes an adaptation requirements anal-
ysis sub-process for modeling the entities of the adaptation problem space; specifically,
the process supports modeling, the adaptation goals, domain attributes and adaptation
actions, all of which can be used for specifying the initial adaptation model of a given set
of adaptation requirements in our process model.

Adaptation modeling results in an initial model of the required sensors and effectors to
be provided by the adaptable software and the application domain. This model is subject
to change before a finalized runtime model is developed.

5.3 System Analysis

When migrating software towards runtime adaptivity, analyzing the system to be changed is
a mandatory step towards gaining a clear understanding of the software and its application
domain. Moreover, in the adaptation problem space, this process can be also viewed
as a part of the domain-analysis procedure for providing domain knowledge to support
adaptation requirements analysis process.

During this process, the developer analyzes the software with regards to the developed
adaptation model, and identifies the concepts that are required to be monitored by sensors
and controlled by effectors. These concepts are then match to relevant software elements as

100

the required adaptability factors. If the required concepts cannot be identified or matched
to software elements, they should either be shared by the application domain, or the
adaptation model needs to be adjusted to meet the new domain constraints. For the
identified factors, an additional analysis step is required for investigating the feasibility
of runtime adaptation with respect to their exposure and change. Finally, we match the
concepts to adaptability factors of the adaptability model by creating traceability links
between them.

The result of the software analysis step is a preliminary software-adaptability model in
the form of a list of located default block, state variable, and Sync State Variable adapt-
ability factors. In the case that sensors (and possibly effectors) over an application domain
are needed, an additional list is allocated to these sensors and effectors. Implementing
external sensors and effectors that can directly monitor and effect the application domain
is beyond the scope of the modernization process; however, during system analysis, we
develop and maintain a list of these sensors and effectors, because the implementation of
the adaptation manager will depend on them, and external management interfaces must
be provided by GRAF to support them.

5.3.1 Locating Concepts

A software system operates in the application domain. The behaviour and interaction of
this system with its domain can be observed and controlled in different ways. This is why
the placement of sensors, effectors, and phenomena are critically important in any control
system, including control-based SAS. The location of these items determines whether an
open-loop or closed-loop control system is used, and whether a domain model is needed.
For example, if we can only observe the application’s input, we need a model of the software
system to determine the system’s output givem the observed input. In control systems,
the controller only has access to the system’s output, hence, the plant is observable only if
we can determine its state from the system’s output [141]. Therefore, in cases where the
software is not naturally observable, a practical solution is to use sensor data as additional
output data in determining the system’s state.

In order to observe a change in software’s operating environment, by monitoring the
software, we have to make sure that the software can observe the change happening in
its application domain. If the change is not propagated to the software, there will be no
way to observe that change from within software, unless phenomena that store change
information are shared with the software. In other words, a change that does not alter the
application’s state cannot be observed by the adaptation manager. A similar argument can

101

be made for controllability: a change should alter the output (i.e., it should be observed
from the world, for both functional and non-functional properties); otherwise, the change
is useless. Therefore, it is essential to create a mapping between the phenomena in the AD,
which are described by the AR, and the corresponding phenomena in the AS, as abstractly
illustrated in Figure 5.3. A possible solution is to explore this unknown space (from a
user’s perspective), and to identify shared phenomena between the software and the AM
by creating a mapping from shared phenomena in the application domain to the ones in
the original software.

Application

Domain

Original

Software

Adaptation

Engine (AE)

Adaptive Software

Requirements Perspective

A
d

a
p

ta
ti

o
n

 E
n

g
in

e
’s

P
e
rs

p
e
c
ti

v
e

S
e
lf

C
o

n
te

x
t

SelfContext

Figure 5.3: Problem of Finding a Mapping from Phenomena in the AD, Which are De-
scribed by the AR’s, to Their Corresponding Phenomena in the AS

The following example demonstrates the idea of mapping phenomena from the AD to
those in the AS. An AR of a sample Internet Protocol Television (IPTV) application might
be to “alter service quality in the case of high system load”. In this situation, the AD ’s
phenomena to be observed by the AM is “system load”, and the AD phenomena to be
effected is “service quality”. Moreover, in the AS, the two AD ’s phenomena might be
represented by (i.e., mapped to) the “Number Of Active Sessions” and “Service Type”
state variables. These two variables are phenomena in the AS, and can be shared with the
AM through sensor and effector interfaces.

As in GRAF, state variables are reified to and reflected from the runtime model to
provide parameter adaptation. Compositional adaptation is achieved by composing and

102

interpreting activities at runtime. The concepts to be identifies at this stage are the
default block and state variable adaptability factors for the required sensors and effectors.
Therefore, further analysis is required to comprehend the feasibility of sharing each concept,
and the impact of changing the identified adaptability factors.

5.3.2 Comprehending Software Adaptability

A software system possibly includes concepts that are required by the adaptation manager
but cannot be provided by the software, for example, due to the high costs of the changes
required for including them. The whole change cycle can be viewed as a co-evolution change
problem between the software and its adaptation manager, where the goal is to come up
with the specification that best satisfies the adaptation requirements. As described in Sub-
section 3.4.2, application-level adaptation is either achieved by changing the application’s
control flow or its state. Moreover, to observe the changes in the operating environment
and software, we have to monitor the changes in the application state. Therefore, this
step can be divided into two parts, one for comprehending each of the application’s state
variables and control flow.

State Variable Analysis

We have to analyze the related state variables of a software system in order to comprehend:

• Which elements of the software are affected by changes in the environment, including
the changes in control flow? These elements reflect the changes in the environment,
but they are not necessarily part of the software’s input/output phenomena.

• Among these elements, which variables (or sets of variables) represent state transition
as the change takes place?

• What are the initial states of adaptation scenarios?

• What are the type, range (coverage), change frequency, aliases (i.e., other variables
that hold the same state information), and accessor methods?

• When does the change become observable? This is highly dependant on the nature
of the change to be observed; in most cases, the change is observable as it happens
in the environment. However, there are other scenarios in which the occurrence of a
change can be predicted based on the trend of other changes. In some other cases,
it takes time to for a change to the affect system state.

103

Control Flow Analysis

For analyzing the impact of changes and identifying code blocks (default blocks) that are
responsible for providing the desired behaviour, we have to determine:

• The effect of the change on the system’s behaviour.

• Whether the change in behaviour is stateful. That is, in the case that the change
subsides, will the system regain its expected behaviour.

• Whether the change alters the application’s control flow

• The impact of the change on response time at different levels; e.g., end-to-end method
and data access.

• The impact of the change on system resources.

• The relationship between non-adaptive and adaptive behaviour.

• Which elements are involved in providing the required adaptive behaviours.

• Whether it is possible to reuse the constituent elements for the purpose of switch
behaviours.

• In case of reuse, whether we need to re-orchestrate the constituent elements, or just
adjust them properly.

These analysis steps will also reveal information regarding the variation degree, pre and
post requirements for the activation and operation of each sensor and effector, and other
constraints and invariants associated with each software element related to adaptation.
Employing this domain knowledge into the development process of the adaptation manager
is crucial for the performance and stability of the final system.

However, for some missing adaptability factors, it might be impossible (e.g., due to
the high costs of change) to create a mapping. In these cases, we have to modify the list
of adaptability factors. Changing the list of adaptability factors results in a change in
the adaptation specifications, which are the interface specifications between the adaptable
software and the adaptation manager. Finally, the change will be propagated to the adap-
tation model and the adaptation manager. This basically means that adaptation manager
must evolve in order to fit an adaptable software that can be feasibly prepared.

104

For example, assume the adaptation requirement of reducing the response time of a
feature implemented by a set of methods. The problem is that no software element holds
data regarding response times. Here, a possible solution is to add a new member-variable
reponseTimeX and set its value by measuring the difference between the method’s start-
time and end-time as shown in Listing 5.1.

1 pub l i c c l a s s A {
2 @StateVar
3 long reponseTimeX = 0 ;
4 pr i va te void methodX () { // . . .
5 long cu r r en tT ime = System . c u r r e n tT im eM i l l i s () ;
6 // . . . method body
7 reponseTimeX = System . c u r r e n tT im eM i l l i s () − cu r r entT ime ;
8 }
9 }

Listing 5.1: Making Data Explicit to be Used as State Variable

By aggregating the response time for all methods that implement the feature, plus other
delays to be estimated by the software and domain model, we can estimate the required
end-to-end response time. Although this solution does not provide the response time from
a user’s point of view (i.e., end-to-end response time), it provides a proxy for this data
by locating, mapping, and sharing a set of phenomena in the software. If we can adjust
adaptation policies to accept and utilize this data instead of the specified one, we can have
successfully map from a application domain phenomena to software elements.

5.3.3 Comparing Adaptability Models

In the GRAF approach, there is no need to match the complete list of adaptability factors
(see Table 3.3). Some of the factors will be automatically matched according to their
dependencies with other factors. The required adaptability factors are listed in Table 5.1.
Based on how an adaptability factor is supported by the current software elements, it is
marked as being either missing, available, located, or tagged :

• Missing factors require the introduction of additional elements.

• Located factors are software elements that can serve as an adaptability factor, but
must be modified to do so.

105

• Available factors are those that are assigned to existing program elements.

• Tagged factors are available factors that are annotated, so to be exposed and shared
by GRAF.

For missing adaptability factors, new software elements must be introduced at several
levels of granularity. Since GRAF supports adaptation on the basis of member variables
and methods, new software elements have to be introduced at this level. The system
analysis sub-process answers the questions of “what we currently have” in terms of the
required adaptability in current software, and “what we can have”. This sub-process also
gives a plan for preparing the target system for the next step, which answer the questions
of “how we can have the required adaptability factors”. The next section describes how to
plan for changing a software system to provide located and missing adaptability factors.

5.4 Planning

The outcome of system analysis is a list of located default block, state variable, and sync
state variable adaptability factors. Each of these located factors can be realized by different
sensing and effecting styles. As discussed in Subsection 3.4.5, each style has advantages
and disadvantages, and the choice of style has to be made on a case by case basis.

Considering adaptation requirements as a set of change requests, in all scenarios, there
is more than one way to satisfy the required adaptive behaviour by changing the software.
Different combinations of sensors and effectors can be used to fulfil the same change request,
and in some cases, the only feasible option is to change the software statically as a classic
adaptive-maintenance change. The system designer must investigate alternative solutions
and their pros and cons, and select the most appropriate change plan.

In general, three important factors play key roles in the quality of software change:
precision, performance and flexibility. Moreover, another important factor that affects
software change is the cost and effort required for performing the change. These properties
form a multi-criteria optimization problem, as there is always a trade-off among these
properties. Each valid solution has a different impact on these non-functional properties,
each with a unique set of advantages, disadvantages, and risks associated with different
stages of the software life-cycle. By evaluating the tradeoffs, and by checking application’s
mission and its non-functional requirements, a developer must select the best solution. For
example, a design decision has to be made on the binding time for performing software

106

Table 5.1: List of Minimal Required Adaptability Factors in GRAF Approach

Change Adaptability Factor Matched

Element

Req. Reason

Flow Replace Block::Default Block Method Yes

Replace Block::Alternative Block Method No Composed and interpreted
by GRAF

Replace Block::Default Action Method Yes

Replace Block::Alternative Action Method Yes

Replace Block::Turning Point Conditional
Exp.

No Part of Default Block, ex-
tracted or created automat-
ically by GRAF

Replace Block::Condition Variable No Part of Default Block, ex-
tracted or created automat-
ically by GRAF

Select Block::Default Block Code Block Yes

Select Block::Alternative Block Code Block Yes

Select Block::Default Action Method No Part of Default Block

Select Block::Alternative Action Method No Part of Alternative Block

Select Block::Turning Point Conditional
Exp.

Yes

Select Block::Condition Variable Yes

State Direct Change::State Variable Variable Yes

Indirect Change::State Variable Variable No Use Direct Change instead

Indirect Change::State Definer Method No Use Direct Change instead

Direct Monitor::State Variable Variable Yes

Indirect Monitor::State Variable Variable No Use Direct Monitor instead

Indirect Monitor::State Definer Method No Use Direct Monitor instead

Indirect Monitor::State User Method No Use Direct Monitor instead

107

change; whether, the instrumentation and activation of sensors is performed statically or
dynamically.

The variety of design options for each sensor and effector calls for a planning process
to (i) investigate alternative solutions, (ii) select the optimum solution, (iii) explore the
possible design patterns than can be used to improve software quality and to facilitate the
transformations, and (iv) prepare a minimal set of changes that provide all of the required
sensors and effectors. The rest of this section gives an overview of the main design decision,
that need to be made at this stage of the modernization process. The result of this planning
process is a list of all software elements that have to be changed to meet the specifications
of the desired adaptability model.

5.4.1 Addressing Variability for Adaptation

Variability in runtime behaviour is generally achieved by either parameter adaptation or
compositional adaptation [125]. In parameter adaptation, all of the code segments required
for providing the required adaptive behaviours are available and already coded in the
software. In this approach, variation is achieved by setting a control parameter to select
the desired behaviour (or setting) among the available choices. This approach requires
the interpretation of the behaviour, because of all the required semantics are compiled
into the program. On the other hand, compositional adaptation allows adaptive behaviour
to be generated and composed dynamically at runtime. This gives more flexibility as
the composing elements can be put together in different valid compositions. However,
this approach requires code generation or interpretation at runtime, because each valid
composition negatively impacts adaptation performance. In our adaptability model, the
replace block effector style supports compositional adaptation and select block style applies
to parameter adaptation. However, select block has to be paired with a state-variable
control style, so as to model and expose the decision criteria as a sync state variable.

Figure 5.4(a) represents the flow graph of a non-adaptable software application, with
a missing alternative action for replacing the default behaviour provided, with the avail-
able default action at node 2. After adding the missing alternative action, the actions
can be swapped following one of the parameter-adaptation or compositional adaptation
approaches.

In parameter adaptation, the application’s control flow can be redirected to an alterna-
tive action. This is done at a turning point, which is a branch in the control flow with a
well-defined decision criterion. This condition is realized using a synchronized state vari-
able that can be tuned by GRAF. In Figure 5.4(b), the original graph is augmented by an

108

1

3

2

1

3

2

1.1

2.a

Turning Point

[SyncStateVar?a:b]

[a]
[b]

Default

Action

Alternative

Action

(a)
Original

Flow

(b)
Parameter
Adaptation

Default
Action

1

3

2

(c)
Compositional

Adaptation

Default
Action

2.a

Alternative

Action

Interpretation Point

D
e

fa
u

lt

A
c

ti
v

it
y

Figure 5.4: Modifications Towards Runtime Adaptation

alternative action at the turning point (node 1.1). The value of the state variable at node
1.1 can be adjusted by the adaptation framework to select either the default action (node
2) or the new alternative action (node 2.a).

For compositional adaptation, the adaptation framework replaces a block of the adapt-
able software’s control flow with the execution of the alternative behaviour at runtime.
Figure 5.4(c) illustrates how this change takes place. The rule engine is able to replace
node 2 with node 2.a in a behaviour description that is part of the runtime model. Node
2.a has to satisfy the pre-conditions and post-conditions of node 2. Here, the located de-
fault block adaptability factor has to be extracted as a new method. This factor is bound
to an activity in the behavioural model that describes the actions to be executed using
the available actions. At runtime, model interpretation takes place when the control flow
reaches the interpretation point.

5.4.2 Deciding on State Variables Access Mechanisms

GRAF provides direct access to SyncStateVars variables. Using this approach, any field
variable can be denoted as a state variable, which can be set at runtime. However, in some
situations, direct access is not the best solution and can even be considered as a bad code

109

smell. For example, (i) changes to the exposed state variable may be only desirable during
a limited time period (e.g., after class construction, for the purpose of self-configuration),
(ii) the state variable can be a one-time mutable attribute that cannot be declared final,
or (iii) the tuning of the state variable is part of the compositional adaptation. In these
scenarios, or other similar cases, access to state variables should be limited. One solution
is to have additional policies to check for these constraints as part of the pre-conditions for
each action; another solution is to implement the constraints as model-level constraints in a
runtime model schema. There is also a third approach, which is to not expose the attribute
directly as a SyncStateVar, but to provide indirect access to it by encapsulating it with
accessor methods. The advantage of this solution is that when the data and behaviour
that uses the attribute are clustered together, it is easier to change the code, because
the changed code is in one place rather than scattered throughout the program (within
different methods that also define the state).

The same argument and solution also applies to direct and indirect state monitoring.
There are several reasons for limiting the state monitoring process. For example, (i) the
application may be in a transient state and we may need to temporarily stop the sensing
process, (ii) we may need to sense the state during behaviour interpretation, or (iii) we
may need to enable/disable sensors selectively based on their location in the code.

5.4.3 Anticipating Future Changes

Planning for evolution towards SAS should not be done only to address current adaptation
needs, but should be also extended to support changes that might happen in the future.
Hence, a clear vision is needed for changes that will happen in the future. The risk of
moving towards SAS will not pay off if there is no visibility about potential upcoming
changes. For example, consider a scenario in which the rate of environmental changes
that demand an adaptive behaviour is either too low or too high: if the probability of the
change is extremely low, the development and maintenance costs for having SAS will not
pay off in the long term; and if the change is too frequent, it might be more appropriate
to statically evolve the software to support the change, and forbid adaptation costs.

It may be impossible to predict upcoming change requests for a new software. However,
in the case of legacy software and software systems that have lived for years, this prediction
is possible with an acceptable accuracy by considering historical data associated with
software change. A possible way to make such a prediction is to analyze the software
repository and to identify change patterns and models that support change prediction. We
realize this solution as the Neural Network-based Temporal Change Prediction (NNTCP)

110

framework [5]. The framework indicates “where” the changes are likely to happen (i.e., hot
spots) in the software, and then adds the time dimension to predict “when” the changes
may occur. This information can be used to estimate the rate of future required changes in
software, so as to support managers and developers in planning evolution and adaptation
activities more efficiently.

The approach uses the history log of software changes from a software repository to
measure applicable development metrics. The metrics are fed into an artificial neural
network that estimates the future change date of a given entity. More details on the
framework, including the conducted case studies for the proof of concept, are given in [5].

5.5 Preparing Adaptable Software

At this stage, we will evolve source code such that its elements can be clearly mapped
to their relevant adaptability factors. As the change plan suggests, missing factors shall
be included in the software, and to be usable, the located factors will require changes
in the software. These evolutionary changes are transformations of the original software
that enable establishing a complete mapping between the correlated elements, where the
transformations preserve the default behaviour of the software.

The transformations are defined in a hierarchial model, allowing us to implement com-
plex transformations as a composition of basic refactorings. The refactorings are trans-
formations of the program, which are a manipulation of source code that preserves the
program’s behaviour [142]. The refactorings (and the analysis preceding them) require
a programmatically manipulable representation of the developed system, and since they
are behaviour preserving, their composition as complex transformations is necessarily be-
haviour preserving. Adaptability transformations also use creational transformations to
add missing software elements (i.e., adaptability factors), that are required by sensors and
effectors.

Moreover, the quality and performance of adaptable software can be further enhanced
by using several design patterns. The application of these design patterns can be supported
by transformations too, which is extensively addressed in the literature [100, 127, 186].
Thus, in this research, we only discuss adaptability transformations for incorporating sen-
sor and effector styles in software. For other transformations, we provide references to
sources that describe them, while remarking on their optional application in adaptability
transformations.

111

5.5.1 Refactorings

The refactorings used to support our transformations are proper functions without side
effects on the program to include missing and located adaptability factors. These basic
refactorings are classic and part of available refactoring suites [65, 127], which are also
automated and supported by transformation tools and languages [127, 134]. Table 5.2
shows a list of the 25 refactorings, used to support Adaptability Transformations. The
list contains a selection of refactorings from Refactoring: Improving the Design of Existing
Code book by M. Fowler [65], and one refactoring, Convert Local Variable to Field, which
is a refactoring introduced since Eclipse 3.4 to support extracting field variables [60]. Ap-
pendix A gives a brief description to each refactoring. The refactorings are labeled with
an ID, and are grouped into three categories:

• Primitive: refactorings that shape the main transformation process of adaptability
transformations.

• Supporting : refactorings that provide infrastructure for other refactorings and trans-
formations.

• Improving : refactorings whose usage is optional, but which can be used to improve
the quality of sensors and effectors.

As with the listed refactorings, the transformation process can also benefit from refac-
torings to patterns [100] to impose design patterns which directly or indirectly contribute to
adaptability by addressing the problems and difficulties associated with including sensors
and effectors. However, some of these design patterns (e.g., Micro Kernel) are high-level,
making them only applicable to creating software from scratch. Some other patterns are
technology and platform dependent (e.g. Declarative Component Configuration, Compo-
nent Configurator, and Activator). Although applying these patterns is not impossible on
legacy software, the changes to prepare the required infrastructures are extensive and in
most cases not cost effective. Thus, in our modernization process, we only consider the
refactorings listed in Table 5.2.

Meanwhile, other applicable design patterns and their supporting transformations can
assist developers to: (i) increase software maintainability to facilitate current and future
evolution changes, and (ii) contribute to performance or flexibility of adaptation changes,
can be used to extend the provided list of refactorings. For example the Visitor pattern can
be used to create a concrete instance of a visitable object for each data type in conditional
by creating a concrete instance of a Visitor class that encapsulates logic of each conditional.

112

Table 5.2: List of Selected Refactorings (RF)

Category ID Name

Primitive RF3 Encapsulate Field

RF5 Extract Method

RF20 Replace Temp with Query

RF21 Separate Query from Modifier

RF23 Substitute Algorithm

Supporting RF7 Inline Temp

RF8 Introduce Assertion

RF9 Introduce Explaining Variable (Extract Local Variable)

RF13 Reduce Scope of Variable

RF16 Replace Exception with Test

RF17 Replace Method with Method Object

RF22 Split Temporary Variable

RF24 Convert Local Variable to Field

Improving RF1 Consolidate Conditional Expression

RF2 Consolidate Duplicate Conditional Fragments

RF4 Decompose Conditional

RF6 Form Template Method

RF10 Introduce Parameter Object

RF11 Parameterize Method

RF12 Preserve Whole Object

RF14 Replace Array with Object

RF15 Replace Conditional with Polymorphism

RF18 Replace Nested Conditional with Guard Clauses

RF19 Replace Parameter with Explicit Methods

113

Alternatively, we can use the Strategy pattern to define a family of algorithms, encapsulate
each one, and make them interchangeable at runtime via Select Block and Change State
effectors. Strategy lets the algorithm vary independently from the clients using it, by
capturing the abstraction in an interface and moving implementation details to derived
classes. Another option is to combine the State pattern with Change State and Monitor
State by allowing an object to alter its behaviour when its internal state changes.

5.5.2 Creational Transformations

Along with basic refactorings, we also need a new set of transformations for adding missing
adaptability factors. These transformations are additive and have a creational nature,
which means that they all add a specific code block to the application. The location of
missing factors depend on the location of the associated sensors and effectors. Each helper
function is specified by its name, return type, argument types, and provides a brief textual
description of its purpose. Table 5.3 shows the complete list of creational transformations
used to prepare adaptable software.

Table 5.3: List of Creational Transformations (CT)

ID Name Adaptability Factor

CT1 addBranch(block) SelectBlock::TurningPoint

CT2 addBlock(entrypoint, exitpoint) SelectBlock::AlternativeBlock

CT3 addField(class, identifier, type, modifiers, initial
Value)

SelectBlock::Condition
DirectMonitor::StateVariable

CT4 addMethod(class, identifier, type, modifiers, pa-
rameters)

ReplaceBlock::AlternativeAction

• addField and addMethod creational transformations basically add new member vari-
ables and member functions to a specified class. Their implementation is pro-
gramming language dependant, but for all object-oriented languages the process is
straightforward.

• addBlock surrounds a set of statements with appropriate keywords or literals to form
a block. In Java the block is defined by enclosing the code in {}. Local variables
defined inside {} are not known outside the block, though they are allocated when
the method starts, not when the block is entered. This means during addBlock we
may need a refactoring to move variable definitions out of the block.

114

• addBranch() adds a branch at the starting point of a block, clones the block in
all branch legs, and sets the condition expression. An alternate implementation is
to just add the block to one of the branch legs and set the condition accordingly
to always navigate the flow to it. The implementation of this transformation is
based on conditional constructs to selectively alter the control flow based on some
condition. Most structural programming languages support different types of IF and
SWITCH conditional statements (a.k.a. Selection statements) for this purpose. Here,
we use the If-Else Construct, but the transformation can be customized to use other
conditional statements as well. The if-else statement provides a selection control
structure to execute a section of code if and only if an explicit run-time condition
is met. The condition is an expression which evaluates to a boolean value, that is,
either true or false.

5.5.3 Tagging Transformations

Tagging elements with annotations allow us to create traceability links between adaptabil-
ity factors (composing elements of the adaptability model) and software elements. GRAF
also needs a mapping between runtime model elements and their respective source code
elements to initialize its runtime model. This initial runtime model is also generated
from annotated software elements. The connection between adaptability factors and the
predefined sensor and effector interfaces of GRAF (see Section 4.2) is established by in-
strumenting the program elements by Java annotations. The annotated elements of the
adaptable software will be automatically wrapped by appropriate aspect code to expose
the interfaces.

We annotate matched elements for later instrumentation using custom Java annota-
tions. The actual instrumentation is performed at load-time of classes, using dynamic
AOP. Each source code annotation is used for load-time instrumentation according to an
AOP pointcut, which will be used to inject either state variable adapters or the model
interpreter hooks into Java classes. The implementation details are discussed in Subsec-
tion 4.5.4.

5.5.4 Adaptability Transformations

GRAF approach uses a set of high-level transformations to enable each type of sensing and
effecting styles. The goal of using adaptability transformations is to remove the burden of
tedious and error prone code reorganization from the developer by providing a systematic

115

Table 5.4: List of Tagging Transformations (TT)

ID Annotation Adaptability Factor

TT1 @InterpretationPoint ReplaceBlock::DefaultBlock

TT2 @action(default) ReplaceBlock::DefaultAction

TT3 @action ReplaceBlock::AlternativeAction
IndirectAccess::StateDefiner
IndirectMonitor::StateUser

TT4 @SyncStateVar SelectBlock::Condition
DirectAccess::StateVariable

TT5 @StateVar DirectMonitor::StateVariable

guideline on how to use Refactorings, Creational Transformations, and Tagging Transfor-
mations to prepare adaptable software. The list of Adaptability Transformations, and their
composing transformations is shown in Table 5.5.

Table 5.5: List of Adaptability Transformations (AT)

ID Name Composing Transformations

AT1 Add Replace Block Effector {CT4} {TT1, TT2, TT3} {RF3, RF5, RF6, RF7, RF10,
RF12, RF13, RF16, RF17, RF20, RF23}

AT2 Add Select Block Effector {CT1, CT2, CT3} {TT4} {RF1, RF2, RF4, RF13, RF15,
RF18, RF19, RF23}

AT3 Add Change State Effector {TT4} {RF9, RF14, RF22, RF24}

AT4 Add Monitor State Sensor {CT3} {TT5} {RF5, RF8, RF9, RF14, RF21, RF22}

The presented adaptability transformations are able to add all sensors and effectors
required by GRAF based on the sensing and effecting styles. Each of the adaptability
transformations has the following structure:

• Requires: They must hold in order to be able to apply the transformation.

• Transformation Composition: Formalizes adaptability transformations as regular
expressions. Each transformation has three sub-expression corresponding to preparation,
main, and refinement processes. The complete transformation is a conjunction of all
three sub-expressions. The following standard operations are used to construct the
regular expressions:

116

– ‘|’ for boolean “or” that separates alternatives (e.g., gray|grey can match “gray” or
“grey”).

– ‘(’ ‘)’ for grouping and to define the scope and precedence of the operators (e.g.,
gray—grey and gr(a|e)y are equivalent patterns, which both describe the set of
”gray” and ”grey”).

– Quantifiers after a token or group to specify how often such preceding element is
allowed to occur:

◦ ‘?’ indicates there is zero or one of the preceding element (e.g., colou?r matches
both “color” and “colour”).

◦ ‘∗’ indicates there is zero or more of the preceding element (e.g., ab∗c matches
“ac”, “abc”, “abbc”, “abbbc”, and so on).

◦ ‘+’ indicates there is one or more of the preceding element (e.g., ab+c matches
“abc”, “abbc”, “abbbc”, and so on, but not “ac”).

• Preparation Process: list of supporter transformations to be done if applicable to
prepare program elements for the main transformation process.

• Main Process: This is a concise, step-by-step description on how to carry out and
implement transformations.

• Refinement Process: Set of optional refactorings to improve the quality of the trans-
formed elements.

• Considerations: There are several consideration that has to be taken into account
before, during, and after the transformation process that are listed in this section.

AT1: Add Replace Block Effector

Requires A located block (i.e., default block) that implements the default behaviour that
has to be changed at runtime.

Transformation Composition

• Preparation: ((RF7)|(RF13)|(RF16)|(RF17))
∗

• Main: (RF3)(TT1)((RF3)|(RF5))
∗(RF20)

∗((RF3)(TT2))
+((CT4)(RF23)(TT3))

∗

• Refinement: ((RF6)|(RF10)|(RF12))
∗

117

Preparation Process

• RF7: Remove temp variables that are assigned to once with a simple expression by
replacing all references with their defining expression.

• RF13: Reduce the scope of the variables that are defined and used inside the block,
which have a scope that is larger than where it is used. This refactoring can possibly
reduce the number of the parameters required for default actions.

• RF16: Remove the exceptions that are thrown from within the block by substituting
them with test expressions.

• RF17: If the block is long and uses local variables in such a way that you cannot
apply Extract Method, then turn the method into its own object so that all the local
variables would become fields on that object.

Main Process

1. RF3: Extract block as a new method.

2. TT1: Tag the new method with @InterpretationPoint.

3. RF3 or RF5: Substitute assignments with setter() method calls.

4. RF20: Replace temp variables with query method calls.

5. RF3: Extract composing actions of the block as new methods, if there is a set of
consequent actions that resemble a meaningful behaviour (i.e., actions).

6. TT2: Tag all extracted actions with @action(default).

7. CT4: Add missing alternative actions for each default action.

8. RF23: Change the body of the alternative actions according to their corresponding
default action.

9. TT3: Tag all alternative actions with @action.

118

Refinement Process

• RF6: Break down the method body as a set of composing action blocks and decision
nodes.

• RF10 or RF12: Reduce number of parameters passed to a default action and all its
related alternative actions.

Considerations

• Each alternative action’s contract must conform to its corresponding default action’s
contract.

• RF12 (refinement process) requires that alternative actions to be refactored are not
in use (they are not borrowed from other parts of program).

AT2: Add Select Block Effector

Requires A located block (i.e., default block) that implements the default behaviour that
has to be changed at runtime.

Transformation Composition

• Preparation: (RF13)
∗

• Main: (CT2)((CT3)(TT4)(CT1)(RF23))
+

• Refinement: ((RF1)|(RF2)|(RF4)|(RF15)|(RF18))
∗|(RF19)

Preparation Process

• RF13: Reduce the scope of the variables that are defined and used inside the block,
which have a scope that is larger than where they are used. This refactoring may
reduce the number of the parameters required for default actions.

119

Main Process

1. CT2: Add the located block.

2. For all required alternative behaviours of the located block:

(a) CT3: Add a new boolean field variable and initialize it to true.

(b) TT4: Tag the added variable as a SyncStateVar.

(c) CT1: Add a branch for the located block, with its conditional expression set to
the added SyncStateVar.

(d) RF23: Change the body of the else block as required.

Refinement Process

• RF1: Combine and merge branches with the same result (same behaviour) into a
single conditional expression.

• RF2: Remove clone codes by moving out the same fragment of code repeated in all
branches of a conditional expression.

• RF4: Simplify the conditional by extracting methods from the condition, then part,
and else parts.

• RF15: Replace Conditional with polymorphism by moving each branch of the condi-
tional to an overriding method in a subclass. Make the original method abstract.

• RF18: If there is more than one alternative block, then replace nested conditional
with Guard Clauses to clarify the default path of execution.

• RF19: This refactoring can be used to convert parameter adaptation provided by an
Select Block to compositional adaptation using Replace Block.

Considerations

• alternative blocks must be unreachable in the default application’s control flow. This
guarantees that in the case that no adaptation is required, the application will pre-
serve its default behaviour.

120

• In most cases, it is favorable to locate minimal code blocks holding default and alter-
native behaviour. However, if the code is scattered, we have to do other refactorings
to reorder the code (if possible) and exclude code segments that are not part of the
behaviour.

AT3: Add Change State Effector

Requires The state variable is located and available.

Transformation Composition

• Preparation: (RF9)?(RF22)
∗(RF24)?

• Main: (TT4)

• Refinement: (RF14)

Preparation Process

• RF9: If the state variable is implicitly represented by an expression (e.g., expressions
in conditionals), then extract a local variable.

• RF22: Split temp variables that temporarily hold the state to be observed and
changed.

• RF24: If the located variable is local then convert it to a field variable.

Main Process

1. TT4: Tag the Field variable with @SyncStateVar.

Refinement Process

• RF14: If several elements of an array are tagged as SyncStateVar, then replace the ar-
ray with an object, tag it with SyncStateVar, and remove previous tags on individual
elements of the new object.

121

Considerations None.

AT4: Add Monitor State Sensor

Requires The state variable is located.

Transformation Composition

• Preparation: (RF8)?(RF9)?(RF22)
∗

• Main: ((RF21)?(CT3)(RF5))?(TT5)

• Refinement: (RF14)

Preparation Process

• RF8: If the value of the required state variable is implicitly hold by a section of code,
then make the assumption explicit with an assertion. The result of the assertion
represents the value of the required state variable.

• RF9: If the state variable is implicitly represented by an expression (e.g., expressions
in conditionals), then extract a local variable.

• RF22: Split temp variables that temporarily hold the state to be observed and
changed.

Main Process

1. If the located state variable is not available.

(a) CT3: Add a new field variable, and initialize it to the value it should represent.

(b) Update the value of the added state variable at the located locations in the
code.

i. RF21: If the expressions to compute the state have side effects, try to
separate them into two methods, and separate queries from modifiers.

ii. RF5: In case the expression has more than one statement, then extract the
expression as a new method, and assign the return value to the added field
variable.

2. TT5: Tag the located variable as an @StateVar.

122

Refinement Process

• RF14: If several elements of array are tagged as an @StateVar, then replace the
array with an object, tag it with @StateVar, and remove previous tags on individual
elements of the new object.

Considerations

• Initializing the value of the variable in Step 1 of the main transformation process may
need additional method calls to retrieve the required state data. As adding a method
call is not a refactoring and adds new statements, it is mandatory to make sure that
the added expression to compute the value of the state variable has no impact on
the application’s behaviour (e.g., no variable definition) [129]. This step is basically
considered to import the state of the operating environment (e.g., middleware) into
the application. For example the code may include function calls to get the state of
the JVM, current time, CPU usage, and etc.

After preparing the adaptable software and tagging the required adaptability factors,
the next step is to generate its runtime model to be used by GRAF. However, the model
generation step is optional, as the model can be generated at load-time initialization (see
Subsection 5.8.2). But, as the initial runtime model will only change as the adaptable
software evolves, this step can be done off-line for performance improvements.

5.6 Runtime Model Generation

GRAF needs a runtime model that is specific to the adaptable software. The runtime
model in GRAF contains the state variables but also a behavioral model. This runtime
model can be generated from annotations in the source code of the adaptable software. For
each annotated program element, a corresponding representation in the runtime model is
created, which can be done automatically upon SAS startup.

The model generator of GRAF supports two ways for setting up the runtime model and
essentially creating the runtime model graph: (i) by inspecting Java class files of the adapt-
able software using reflection, or (ii) by loading an existing runtime model. To support the
use of GRAF in a modernization context, we need to create an initial version of the runtime
model from compiled class files of the adaptable software by using embedded annotations.

123

We refer to the runtime model’s TGraph representation as the RuntimeModelGraph. The
RuntimeModel, then, is an encapsulating component within GRAF. This TGraph can then
be queried and transformed at runtime.

The current implementation of the model generation process is straightforward. Its
input is the root directory of the adaptable software’s compiled Java class files and a file
name for saving the runtime model. The output of this process is the generated runtime
model (TGraph). First, all available classes are loaded from the input directory recursively.
For each class, the following steps are performed:

1. Load the class by name using Java reflection.

2. For each field annotated as @StateVar or @SyncStateVar, create a corresponding
StateVariable vertex.

3. For each method annotated as @InterpretationPoint, create a corresponding
Activity vertex.

4. For each method annotated as @Action, create a corresponding OpaqueAction vertex.

5. Setup the activity model with an InitialNode, a FinalNode and the default action
in between to represent the original behaviour.

Optionally, the runtime model can be generated without starting the SAS. The model
can be stored persistently in a TG file that can be passed to GRAF at startup. Pre-
processing steps can be introduced to adjust and refine the initially generated runtime
model; for example, the default behaviour representation can be manipulated.

5.7 Preparing GRAF

This section describes how to prepare a customized version of GRAF based on the specified
adaptation model.

5.7.1 Implementing Adaptation Rules

The internal adaptation manager of GRAF uses event-condition-action rules that specify
what to do given a specific state. In this case, rational behaviour is essentially compiled as

124

a set of adaptation rules in a form of logical predicates. Currently, adaptation rules need to
be programmed in Java. However, GRAF-based SAS can be also managed externally. This
allows the GRAF-based system to utilize goal-based and utility-function policies. Based
on the chosen external adaptation manager and derived policies, other types of runtime
models, such as state charts and petri nets, can be used to model the system’s adaptation
needs. Based on the adaptation policies and prepared adaptable software, the creation of
adaptation rules involves the following steps:

• Step 1: Pick an adaptation requirement.

• Step 2: Choose from a set of identified candidates the state variables that can be
used to determine when the adaptation rule shall be applied.

• Step 3: Choose from the set of identified candidates the methods that are marked
as interpretation point and that need to be adjusted. In the case of parameter
adaptation, this is the getter method for the respective state variable.

• Step 4: Identify the value range of state variables in which adaptation needs to be
performed for each of the chosen state variables.

• Step 5: Choose from the set of available alternate actions the ones that can support
the adaptation.

• Step 6: Write the concrete adaptation rule for GRAF by:

– encoding the condition as queries on the state variables, and

– encoding actions as transformations of the runtime model.

Adaptation rules are implementations of the IAdaptationRule interface of GRAF, in
the form of Event-Condition-Action (ECA) rules. The rule engine is notified of events
by the model manager and iterates over the subscribed adaptation rules for the triggered
event. A Java template for writing an adaptation rule is illustrated in Listing 5.2.

1 pub l i c c l a s s SampleRule extends Abs t r a c tAdap t a t i onRu l e {
2 pub l i c SampleRule () {
3 super () ;
4

5 // Sp e c i f y the s e l e c t i o n c o n d i t i o n .
6 t h i s . c o n d i t i o n = new GReQLQueryImpl (”Boolean Exp r e s s i o n ”) ;
7

125

8 // Sp e c i f y the pre−and post−c o n d i t i o n s .
9 IQuery p r eCond i t i o n = new GReQLQueryImpl (”Boolean Exp r e s s i o n ”) ;

10 IQuery po s tCond i t i o n = new GReQLQueryImpl (”Boolean Exp r e s s i o n ”) ;
11

12 // Sp e c i f y the t r a n s f o rma t i o n o f the TGraph .
13 t h i s . a c t i o n = new Abs t r a c tT r an s f o rma t i on (p r eCond i t i on , p o s tCond i t i o n) {
14 @Over r ide
15 pub l i c boolean ex e cu t e () {
16 // Use t h i s h e l p e r to ge t a node to s t a r t t r a n s f o rma t i o n .
17 QueryHe lper qh = ModelManagerImpl . i n s t a n c e () . ge tQue ryHe lpe r () ;
18 // Wri te some t r a n s f o rma t i o n u s i n g the gene r a t ed API .
19 // Return t rue , i f model changed , o t h e rw i s e f a l s e .
20 return f a l s e ;
21 }
22 } ;
23 }
24 }

Listing 5.2: Template For Writing An Adaptation Rule

The condition is a query in a form of a GReQL expression, to be evaluated on the
runtime model by the model manager. The action is represented by the ITransformation
interface. GRAF provides an abstract implementation for users of the framework with the
AbstractTransformation class. The preCondition and postCondition fields are used
by the AbstractModelManager for further filtering before execution, as well as to make
sure that the outcome of the adaptation rule is the expected one after the transformation.
Some simple transformations are wrapped in the TransformationHelper, which can be
also obtained from the ModelManagerImpl instance. Other transformations can be defined
as either GReTL statements or implemented using the Java API, provided by JGraLab.

5.7.2 Advanced Customization

Beside implementing adaptation rules, in most cases there is no need to modify and cus-
tomize GRAF. However, the extensible and customizable architecture of GRAF allows
developers to change and customize GRAF as needed. In this section, we will describe
how to extend and customize the runtime model schema, adaptation manager, and mid-
dleware adapters of GRAF. We try to avoid implementation details and describe the cus-
tomization in a more abstract way. However, more details on GRAF implementation and
customization is available in [49].

126

Customizing Runtime Model Schema

The runtime model conforms to a schema (meta-model). The default schema is imple-
mented using the IBM Rational Software Architect (RSA), as UML Class Diagrams. This
schema is illustrated in Appendix B. Different views (diagrams) are used to create the full
schema. As the current realization of GRAF uses UML Activity Diagrams for modeling
behavior at the runtime model level, the runtime model schema must express their abstract
syntax. Furthermore, state variables are used to store exposed data from the adaptable
software. Accordingly, every runtime model is composed of a set of StateVariable ver-
tices and by a set of Activity vertices. These are the individual UML Activity models to
be interpreted at an associated interpretation point.

Generally, there is no need to change and modify the runtime model schema. The
schema for these models is available and can be customized as needed. Upon changing the
schema, we need to regenerate the API to work with the runtime models to be generated
and conformed to the new schema. Based on the runtime model schema, this Java API set
is generated automatically using JGraLab tools. The Java classes in the generated API are
the types that represent vertex- and edge-types of runtime models (TGraphs) that conform
to the runtime model schema. This API can be used to (i) transform the runtime model,
(ii) create types that hold the result of a GReQL query, or (iii) query the runtime model
in plain Java, without GReQL.

Customizing the Adaptation Manager

The internal adaptation manager and its rule engine can be substituted for more intelligent
and powerful adaption managers, such as the one presented in [4]. This goal is achievable
in two ways: (i) internally, by extending the available abstract adaptation manager and
adaptation rules, or (ii) externally, by connecting external adaptation manager via the
provided external management interface. The general interface for adaptation management
in GRAF is the IAdaptationManager interface, which can be used to implement adaptation
managers.

Customizing Adapters

GRAF provides (i) a set of adapters for propagating (reifying) values to state variables in
the runtime model, and (ii) a generic adapter for interpreting the behavioral model. These
adapters are responsible for the proper communication between the adaptable software

127

and the framework. All middleware adapters implement the provided middleware adapter
interface. For propagating values from Java fields (@StateVar) to the runtime model as
well as for receiving values from it (@SyncStateVar), an abstract class is implemented
first. The implementation includes basic checks for errors and catches common exceptions
that can happen during the synchronization of values (e.g., a corresponding vertex is not
found in the runtime model). The provided abstract class for state variable adapters offers
two abstract methods, that are called from within the same class, in a form of a template
method, which is also used as an AOP advice during the binding step of instrumentation.
When the advice code is invoked, it calls its associated template method first, which
has to implement the actual propagation of the value, according to the Java field’s type.
Every adapter implements this method. Similarly, a generic Interpretation Point adapter is
provided by GRAF and its advice code is used in a similar way to state variable adapters.

Listing 5.3 contains a sample implementation of the template method for integer data
types. Using a helper method also provided by the abstract base class, the Java API that
was generated from the runtime-model-schema project is used to get a reference to the
associated IntegerType vertex in the runtime model.

1 @Over r ide
2 protected Object toRuntimeModelAdviceBody (F i e l dW r i t e I n v o c a t i o n i n v o c a t i o n)

throws Throwable {
3 // Get the c o r r e c t node from the model by i d .
4 S t a t eV a r i a b l e sv = g e t S t a t eV a r i a b l e F o r I n v o c a t i o n (i n v o c a t i o n) ;
5

6 // Add any c u s t om i z a t i o n s f o r data mod i f i c a t i o n , f i l t r a t i o n , c onve r s i on ,
e t c .

7 // . . .
8 // Now the data i s r eady to be pas sed to the runt ime model .
9

10 // Change the v a l u e i n the runt ime model .
11 ((I n t ege rType) sv . g e t t y p e ())
12 . s e t v a l u e ((I n t e g e r) i n v o c a t i o n . ge tVa lue ()) ;
13

14 return i n v o c a t i o n . i nvokeNext () ;
15 }

Listing 5.3: Implemented Template Method In Integerstatevariableadapter

128

5.8 Integration and Deployment

This process is responsible for merging and integrating the three system elements (adapt-
able software, Adaptation Rule Repository, Model Constraint Repository) that are pre-
pared by the previous steps of the modernization process. The Integration process can be
split into the startup configuration and the load-time initialization phases.

5.8.1 Startup Configuration

When using GRAF, users of the framework need to configure the startup of their appli-
cation. The configuration consists of two steps: (i) initializing an instance of GRAF, and
(ii) initializing an instance of the instrumented application.

In the first step, we need the paths of:

• The adaptable software (source or binary),

• Adaptation rules, and

• Constraints.

In the second step, there are two parameters that must be passed to glue the application
to the framework:

• The path to the JBossAOP library.

• The path to an XML file that configures the AOP pointcuts for reification and
interpretation.

5.8.2 Load-Time Initialization

Starting the GRAF as described in Subsection 5.8.1 invokes a chain of initialization steps
that are automatically performed behind the scenes. When an instance of GRAF is created,
the following steps need to be executed to make sure the framework can operate as expected.
The GRAF implementation performs them automatically and users of the framework do
not need to manually configure them. Yet, in cases where an extension or configuration of
GRAF becomes necessary, developers should be aware of the initialization procedure. The
required steps are as follows:

129

• Set up all of the GRAF components:

– Generate the runtime model based on the annotated source code.

– Create and link the model interpreter to the created runtime model.

– Create the default rule engine.

– Register the rule engine as an observer of the rule engine via the model manager.

• Add adaptation rules to the rule repository. Sample code behind this step is sketched
in Listing 5.4.

1 Adapta t i onRu l e a r = new LoadBalanceRu le () ;
2 GRAFFactory . i n s t a n c e () . getAdaptat ionManagementLayer () . g e tRu l eR epo s i t o r y

() . add (a r) ;

Listing 5.4: Adaptation Rule Setup Snippet

• Add model constraints to the constraint repository. Sample code behind this step is
sketched in Listing 5.5.

1 Mode lCons t r a i n t mc = new NoDub l i c a t e sCon s t r a i n t () ;
2 GRAFFactory . i n s t a n c e () . getRunt imeMode lLayer () . g e t C o n s t r a i n t R e p o s i t o r y ()

. add (mc) ;

Listing 5.5: Runtime Model Constraint Setup Snippet

Certain system elements of GRAF perform lazy loading, such as the repositories. Ob-
jects will be created when first needed. Furthermore, each layer is implemented as a
singleton, providing access to only those internal components which are meant to be used
by other layers.

5.9 Summary

In this chapter, we proposed a modernization process model for a systematic evolution of
the original software towards model-centric self-adaptive software. The process is devel-
oped on top of the conceptual model proposed in Chapter 3 and the developed model

130

centric adaptation framework, GRAF. The process starts by specifying adaptation and
adaptability problem spaces, and modeling the adaptation and adaptability separately.
These two models served as basis for two separate paths to prepare adaptable software,
and the adaptation manager. The process is iterative, which means as we progress through
the process we update and adjust specifications and design models as required. Changes
in adaptation and adaptability spaces may demand a change in the other space, which
shapes a co-evolutionary problem to build adaptation manager and adaptable software as
two artifacts that are interacting with each other via an abstract connection domain, the
runtime model.

The architecture of GRAF exhibits a loosely coupled integration between adaptation
manager and adaptable software based on the proposed sensing and effecting styles. It
help us to minimize the required evolution changes to be made on software to a set of
adaptability transformations to include missing adaptability factors in software. These
transformations can be defined as a sequence of refactoring changes that preserve the
original behaviour of software when there is no need for adaptation. This is extremely
important for a modernization process, since one of the major common drawbacks of mov-
ing towards self-adaptive systems was the complexity and error-proneness of the required
changes to make software adaptable.

After describing the modernization process, an assessment is required to determine the
applicability of our proposed approach on real world cases and applications. That is the
goal of the next chapter, applying the proposed approach on a set of case studies as a proof
of concept.

131

Chapter 6

Case Studies

“Inside every large program, there is a small program trying to get out.”
–C.A.R. Hoare

Case studies are an essential research methodology for applied disciplines [54]. Regard-
less of how a case study is used, be it for theory building or theory testing, it is a process
of scholarly inquiry and exploration whose underlying purpose is to create new knowledge.
As a proof of concept, and in order to put the approach of this thesis into practice, we
performed a number of case studies in order to address the following research questions:

• RQ1: What is the impact of different preparation techniques for adaptable software
(for the same adaptation requirements) on the performance of SAS?

• RQ2: What are the benefits and drawbacks of a GRAF-based SAS system?

• RQ3: Is the proposed modernization process capable of evolving software for self-
adaptation in a cost-effective manner?

The case studies were conducted on two real-world Java-based software systems, be-
longing to two different application domains that can greatly benefit from self-adaptation:
Internet telephony, and computer games. Table 6.1 summarizes the properties of the se-
lected software for both case studies.

The first case study aims to answer RQ1 by demonstrating the importance of planning.
Throughout this case study we exemplify how various versions of an adaptable software can
be prepared for a fixed set of requirements, demonstrating the effectiveness of the proposed

133

Table 6.1: Some Statistics on the Selected Case Studies

System Domain Version License Language LOC

OpenJSIP [143] Telephony 0.0.4 GNU GPL Java 6K

Jake2 [91] Game Engine 0.9.5 GNU GPL Java 126K

model-centric approach, and GRAF’s ability to support both parameter and compositional
adaptation in a simple scenario within the voice-over-IP (VoIP) domain.

The second case study is mainly designed for answering RQ2 by describing the more
complex scenario of making a legacy game engine self-adaptive. The main focus of this
case study is on analyzing the cost and overhead of adaptation via using and managing
models at runtime in the GRAF approach.

Moreover, both of the conducted case studies serve to demonstrate the applicability
and cost-effectiveness of the modernization process in answer to RQ3. Throughout the
case studies, we follow the modernization steps taken for preparing adaptive version of
both systems.

For each case study we present: (i) the design of the case studies, (ii) the system setups,
and (iii) the experiments and their results. However, before describing the case studies, we
give an overview of the measures we used for evaluating the quality and cost-effectiveness
of our approach. In addition, the case studies are followed by two discussion sections
targeting the research questions and the threats to validity of the case studies.

6.1 Measures

The exact measurement of cost and effectiveness in software systems is one of the major
software engineering challenge, which is beyond the scope of this thesis. However, in order
to address the research questions of our case studies, and addressing the objectives of this
thesis we use a simplification of the general forms to measure the cost and effectiveness of
adaptation and evolution changes. The rest of this section, will describe the measures used
in our case studies, and the rationale for selecting them and a discussion on their ability
to measure the variables under study.

134

6.1.1 Evolution Cost

Evolution cost is combination of the effort to perform the change and the effort to maintain
it. In GRAF approach evolution changes are divided into 1. preparing the adaptable
software via adaptability transformations, as described in Section 5.5, and 2. preparing
the customized version of GRAF. In order to measure the required effort for change, we
use product metrics. Among product metrics, software size is thought to be reflective of
complexity, development effort and reliability of software, which is commonly used by many
well-known cost estimation and prediction models (e.g., Basic COCOMO and COCOMO
II) [17]. Moreover, complexity is directly related to software reliability, so representing
complexity is also important. Thus, we measure the McCabe’s Cyclomatic Complexity
metric for measuring the complexity of added or modified methods. Table 6.2 lists these
product metrics.

Table 6.2: List of the Measured Product Metrics
Metric Description

Cyclomatic Complexity (CC) [124] counts the number of code conditions giving an indication
of how complex the program is.

Executable Statements (EXEC) This metric counts the number of executable statements.

Non-Comment Lines of Code
(NCLOC)

This metric counts all the lines that do not contain com-
ments or blank lines.

Along with the product metrics, we define and measure a set of metrics that represent
different aspect of software adaptivity. Table 6.3 lists the defined metrics to measure and
provides a brief description for each metrics. Using these metrics to measure software cost
is similar to using function points for measuring the effort and cost of software changes [17].

On top of the measured metrics, test coverage metrics are a way of estimating fault
and reliability by performing tests on software products, based on the assumption that
software reliability is an indicator of the required future changes.

6.1.2 Evolution Effectiveness

In order to measure the effectiveness of the modernization process, we need to measure
if the required adaptability is provided by the evolved software (i.e., adaptable software).
Software is considered adaptable if and only if it exposes the required monitoring data via
its sensor interface, and exposes the required effecting operations via its effector interface.

135

Table 6.3: List of the Measured Adaptivity Metrics

Metric Description

Number of Adaptation Rules
(NAR)

The number of adaptation rules.

Number of Annotations (NAN) Number of exposed adaptability factors via annotations.

Number of Effectors (NOE) The number of exposed effectors.

Number of Sensors (NOS) The number of exposed sensors.

Number of Queries (NQ) Total number of GreQL queries for all adaptation rules.

Number of Transformations (NT) Total number of transformations (GreTL & JGraLab) for
all adaptation rules.

Software Adaptability Degree
(SAD)

Measure the required software adaptability by counting
the number of adaptation goals that their required sen-
sors and effectors are provided by the software system.

Similar to other non-functional properties, adaptability is not a binary property and
any software has some degrees of adaptability. To have synergy with other quality prop-
erties and their corresponding non-functional metrics, we define a new quality metric,
Software Adaptability Degree (SAD), to measure software adaptability. SAD is an indica-
tor of the application’s adaptability regarding the given adaptability specifications. To be
more precise, SAD can be defined as follow:

• Let AS(S,E) be an Adaptable Software where S 6= ∅ is the set of sensors exposed
through a sensor interface, and E 6= ∅ is the set of effectors exposed through an
effector interface.

• Let Gk(Yk, Uk) be an Adaptation Goal, where Yk is a set of sensors required by Gk to
detect a symptom, and Uk is a set of possible effectors to be triggered by a selected
action in Gk.

• Let AM(Y, U) be an Adaptation Manager to control the set of adaptation goals
{G1, . . . , Gk}, where Y =

⋃z

k=1
Yk is the set of all required sensors by a sensor

interface, and U =
⋃z

k=1
Uk is the set of all exposed effectors through an effector

interface.

• Let SAD(x) be the Adaptability Degree of software x(S,E), where SAD(x) = |G|
and G = {∀i Gi(Yi, Ui)|Yi ⊂ S ∧ Ui ⊂ E}.

136

Given AS(S,E) and AM(Y, U), SAD(AS) = max(SAD) if and only if Y ⊂ S and
U ⊂ E. SAD is a top level software adaptability metric for measuring the effectiveness
of evolution processes to make software adaptable. In other words, SAD measures to
what extend the prepared software satisfies observability and controllability requirements
demanded by the adaptation manager.

6.1.3 Adaptation Cost

In this case study, we measure the following two important factors as an indicator of
adaptation overhead, proposed by Salehei [160]:

• Resource overhead of the adaptation mechanism.

• Mean-Time-To-Adapt (MTTA) as an indicator of mechanism performance.

In the conducted case studies, our measure for adaptation cost is set to monitoring the
resource usage and resource allocation of the systems under test and method level profiling
to compute the execution times.

6.1.4 Adaptation Effectiveness

Evaluating the effectiveness of the adaptation process is measured as a function of where
takes into account the number of times the adaptation goals have been denied or satisfied, or
how much goals were deviated from their activation criteria [160]. However, in the absence
of explicit goals, for attribute-action coupling mechanisms, we can use utility values for
evaluating the adaptation effectiveness.

Therefore, measuring adaptation effectiveness is completely case dependant based on
the defined adaptation goals. In our case studies, we defined a utility function for evaluating
the system reliability. However, the effectiveness of the adaptation in the second case study
(user satisfaction) is completely user dependant, and cannot be measured qualitatively.

6.2 OpenJSIP: A Stand-Alone Telephony Server

Several researchers have mentioned telecommunication as a promising domain for the ap-
plication of an SAS (e.g., [145]). For the first case study, we selected OpenJSIP [143], a

137

stand-alone open-source Java SIP server for voice over IP calls. OpenJSIP provides three
distributed services: Proxy, Registrar, and Location Service, and is based on JainSIP [90],
the standardized Java interface to the Session Initiation Protocol (SIP) for desktop and
server applications.

Throughout this section, we present the steps performed to evolve OpenJSIP towards
runtime adaptivity using GRAF. We also compare the behaviour of the target system to
the original system and demonstrate the ability of the evolved software to fulfill a given
adaptation requirement.

6.2.1 The Adaptation Requirement

Software reliability is defined as [121] “the probability of failure-free software operation
for a specified period of time in a specified environment”. Reliability is one of the most
important Quality of Service (QoS) properties for enterprise systems such as telephony.
Poor reliability can strongly affect the user’s satisfaction when the system shows unexpected
behaviour that in turn can have a negative impact on its business value. Thus, we set our
adaptation requirement for this case study as:

• AR: The system shall adapt its behaviour to maintain its reliability under extreme
system loads.

We simplify the adaptation effectiveness measurement (i.e., maintaining reliability)
by assuming that resource saturation under extreme loads is the only root of failure in
OpenJSIP; this means that no failures due to bugs or underlying layers such as the physical,
network, and operating system layers are taken into account. Regarding this assumption,
OpenJSIP either succeeds or fails in handling calls, so we define reliability as the percentage
of successfully handled calls.

Successfully Handled Calls = Serviced Calls+ Rejected Calls (6.1)

and we define system’s Failure Rate as the percentage of failures within the test period,
divided by the total time a function of successfully handled calls:

Failure Rate = 100 ∗ (1−
Serviced Calls+ Rejected Calls

Total Calls
) (6.2)

Note that in under this definition, rejecting a call is not the best action and shall be
selected only when necessary. It is the role of the adaptation manager to analyze the
situation and to choose the most appropriate action.

138

6.2.2 Adaptation Requirements Analysis

Here our adaptation goal is to increase the reliability, which we will measure by the de-
fined utility function, as defined in Equation 6.2. In order to satisfy AR, we decided to
intentionally reject (not service) the calls, when the system load is high, and switch back
to the normal service mode when the system load is reduced. Intentionally rejecting the
calls will prevent system overload, which can result in abnormal system behaviour and/or
request timeouts. Therefore, we will need a domain attribute to sense the system load, and
an adaptation action to reject the calls. This can be shown in a form of the following two
action-rule policies:

• P1: IF load is high THEN reject new registrations.

• P2: IF load is low THEN service new registrations.

Our goal in this case study is to follow to separate paths for implementing adaptivity
for satisfying P1 and P2 at the application-level: (i) compositional adaptation: adding or
removing a filter method, which rejects calls that originate from new registrars, or (ii) pa-
rameter adaptation: performing a static structural change by adding a conditional state-
ment in the source code and dynamically controlling the application’s flow by externally
tuning the decision criteria at this turning point.

6.2.3 System Analysis

We analyzed OpenJSIP and identified the required adaptability factors in its source code
and mapped them to their supporting program elements. We comprehended and inves-
tigated the source code manually. The adaptability factors locate the pointcuts to be
instrumented and to be exposed to GRAF. The list of potentially needed adaptability fac-
tors for parameter as well as compositional adaptation is presented in Table 6.4, together
with their availability status in the source code.

This step is similar to classic concept location and impact analysis procedure, which
is extensively addressed in the domain of software evolution and maintenance. We per-
form the concept location manually. However, concept location tools and techniques (e.g.,
JRipples [31]) and [70]) may be used instead to facilitate this step.

139

Table 6.4: List of Adaptability Factors for Compositional and Parameter Adaptation of
OpenJSIP

ID Type Status Description

AF1 StateVar located Monitor the server load.

AF2 Action(Alternative) missing Reject new registrations.

AF3 Action(Default) located Allow new registrations.

AF4 InterpretationPoint missing Redirect flow of control.

AF5 SyncStateVar missing Switch between AF2 and AF3.

6.2.4 Planning for Change

We need AF1 for reifying the server load in both approaches to achieving adaptivity. We
have two possible options for implementing adaptivity: providing AF4 for compositional
adaptation, or AF5 for parameter adaptation.

In the first case, AF2 is an additional action that rejects incoming register messages
to the proxy, and AF3 performs the connection for incoming registration requests, which
is the implemented default behaviour. AF4 is the definition of the interpretation point in
OpenJSIP’s control flow, at which register events shall be either accepted or rejected. To
cover the second approach, AF5 is a synchronized state variable that needs to be used as
the condition to toggle between accepting or blocking the register events.

6.2.5 Preparing Adaptable OpenJSIP

Independent of the technique used for effecting the system at runtime, we need to pro-
vide the system’s load. Necessary modifications to the class Proxy are shown in List-
ing 6.1. We use the number of current server transaction and define a state variable named
currentSrvTrans that represents AF1. This variable is kept up to date using the added
helper method updateCurrentSrvTrans().

1 pub l i c c l a s s Proxy {
2 @StateVar
3 pr i va te s t a t i c i n t cu r r e n tS r vT r an s ;
4

5 pub l i c void upda t e cu r r en tS r vT ran s () {
6 B i g I n t e g e r tempSrvTrans = (B i g I n t e g e r) snmpAss i s t an t . ge tSnmpIntege r (

SNMP OID NUM SERVER TRANSACTIONS) . ge tVa lue () ;

140

7 cu r r e n tS r vT r an s = tempSrvTrans . i n tVa l u e () ;
8 }
9 }

Listing 6.1: Exposing the System Load, Measured in Current Server Transactions

Scenario I: Parameter Adaptation

To achieve parameter adaptation, AF5 is used at a turning point to tune its decision criteria,
so as to switch between the default behaviour (AF3) and the new alternative action (AF4).
Listing 6.2 shows a snapshot of this change. In order to preserve the default behaviour of
OpenJSIP in the no-adaptation case, we initialize the value of blockRequests to false.

1 pub l i c c l a s s Proxy {
2 @SyncStateVar
3 pr i va te s t a t i c boolean b l o ckReque s t s = f a l s e ;
4

5 pr i va te void p roce s s I n com ingReque s t (f i n a l RequestEvent r eque s tEv en t) {
6 // b l o ckReque s t s v a l u e i s s e t from model .
7 i f (method . e qu a l s (Request . REGISTER) && b lo ckReque s t s) {
8 // P2 : Re j e c t message and r e t u r n .
9 }

10 e l s e {
11 // P3 : Othe rw i s e p r o c e s s messages .
12 }
13 }
14 }

Listing 6.2: Using a Tunable Synchronized State Variable

The value of blockRequests is controlled by the rule engine using an adaptation rule
graphically shown in Figure 6.1. The adaptation rule makes use of types, defined at the
runtime model schema level. State variables from the runtime model’s structural model
are resolved by name. The condition of the rule depends on the current state of blocking
as well as on the amount of server transactions. The latter value depends on the system
that executes the proxy, as well as on the saturation point of OpenJSIP for handling
transactions.

141

Toggle blockRequests
SyncStateVar

blockRequests
SyncStateVar

currentSrvTrans
StateVar

Evaluate

Condition

blockRequests.value == false && currentSrvTrans.value > 3000

blockRequests.value == true && currentSrvTrans.value < 2500

Input/

Output

Transformation

Legend:

Figure 6.1: Adaptation Rule for Parameter Adaptation Scenario

Scenario II: Compositional Adaptation

Another possibility for implementing adaptivity is by separating behaviour in the form of
two separate actions, one for accepting (AF2) and one for rejecting calls (AF3). Depending
on the orchestration of actions as defined in the behaviour description (UML activity) for
the interpretation method, messages are accepted or blocked. The necessary code template
is shown in Listing 6.3.

1 pub l i c c l a s s Proxy {
2 @ I n t e r p r e t a t i o nP o i n t
3 pr i va te void p roce s s I n com ingReque s t (RequestEvent r eque s tEv en t) {
4 a c c e p tR eg i s t e rR equ e s t (r e que s tEv en t) ;
5 }
6

7 @Action (i n t e r p r e t a t i o nP o i n tK e y = ” o p e n j s i p . p roxy . Proxy .
p r o c e s s I n com ingReque s t ”)

8 pr i va te void proces s IncomingReques tBody (f i n a l RequestEvent r eque s tEv en t) {
9 // Accept i ng r e g i s t r a t i o n message .

10 }
11

12 @Action ()
13 pr i va te void dropRequest (f i n a l RequestEvent r eque s tEv en t) {
14 // R e j e c t i n g r e g i s t r a t i o n message .
15 }
16 }

Listing 6.3: Setup of an Interpretation Point and Two Actions

If the runtime model is not transformed, the body of processIncomingRequest() is
executed. Otherwise, the model interpreter executes the associated behaviour in the model.

142

Insert the Reject Calls
Alternative Action

blockRequests
SyncStateVar

currentSrvTrans
StateVar

Evaluate

Condition

blockRequests.value == false && currentSrvTrans.value > 3000

blockRequests.value == true && currentSrvTrans.value < 2500

Input/

Output

Transformation

Legend:

Insert the Accept Calls
Default Action

Figure 6.2: Adaptation Rule for Compositional Adaptation Scenario

The call to the interpreter is hidden from the developer. The code is generic and injected
using AOP. Figure 6.2 shows the corresponding adaptation rule.

The measured product metrics for the original and two prepared adaptable versions of
OpenJSip are presented in Table 6.5. Here, both adaptable versions include a new added
method, updateCurrentSrvTrans(), to get current load. This method is called in appro-
priate place in the processRequest()method to update the added state variable, using the
Add Monitor State Sensor adaptability transformation. For the parameter adaptation the
processIncomingRequest() is changed to include the alternative flow (branch) by apply-
ing the Add Select Block Effector transformation, while for the compositional adaptation,
the body of processIncomingRequest() is extracted as processIncomingRequestBody()
and new alternative methods are added accordingly, following the Add Replace Block Ef-
fector transformation.

Table 6.6 presents the measured adaptability metrics for the two prepared adaptable
versions of OpenJSIP. As both versions fully address the required adaptation goals their
SAD value is 1. Here, the main difference is in the number of annotations (NAN) for
both versions, as the compositional adaptation version due to the separation of default
and alternative actions has more adaptable elements.

6.2.6 Results

We tested both of the evolved versions of OpenJSIP and the original system in a simulated
environment. Our goal was to study the applicability of our approach and to evaluate the
performance of the adaptive systems in various conditions. To achieve this goal, we set
up a local network with two workstations, one dedicated to a server, and one for two SIP
traffic generators. We generated client traffic using SIPp [171]. All systems were tested
under identical conditions.

143

Table 6.5: Measured Method-Level Metrics for OpenJSIP

System Method CC NCLOC EXEC

Original main(String[]) 8 59 15

Parameter main(String[]) 8 72 17

Compositional main(String[]) 8 72 17

Original processIncomingRequest(RequestEvent) 13 280 3

Parameter processIncomingRequest(RequestEvent) 14 289 3

Compositional processIncomingRequest(RequestEvent) 1 1 0

Original processRequest(RequestEvent) 2 17 2

Parameter processRequest(RequestEvent) 2 22 2

Compositional processRequest(RequestEvent) 2 22 2

Compositional updateCurrentSrvTrans() 1 3 1

Parameter updateCurrentSrvTrans() 1 3 1

Compositional dropRequest(RequestEvent) 1 5 0

Compositional processIncomingRequestBody(RequestEvent) 13 280 3

Table 6.6: Measured Adaptivity Metrics for OpenJSIP

System NAR NAN NOE NOS NQ NT SAD

Parameter Adaptation 2 2 1 1 6 2 1

Compositional Adaptation 2 5 1 1 6 2 1

The main testing scenario was as follows: we generated unique callers and callees at
various calling rates. All clients try to register their ID’s at the server (callees first). Then,
each caller tries to call a predefined callee by sending an INVITE message to the server.
The server looks for the callee and if the callee is available, it informs the caller to establish
the call. The caller holds the line for 20 seconds and then tries to terminate the call by
sending a BYE message to the server. Both sides terminate the call when they receive an
ACK from the server. The clients keep generating traffic at different rates, i.e, calls per
second (CPS), for a total time of 5 minutes.

Prior to starting the stress tests, we had to detect the saturation point of OpenJSIP on
the computers used. We tested the original system with an increasing traffic and observed
18CPS as the limit with around 3000 server transactions. This threshold was used to adjust
the adaptation rules’ conditions.

144

Table 6.7: OpenJSIP Stress Testing Results
N.: Normal, P.A.: Parameter Adaptation, C.A.: Compositional Adaptation

CPS System Reg. Attempt % Suc. Reg. % Suc. Call

AVG STDEV AVG STDEV AVG STDEV

6 Original 3593.53 4.27 100.00 0.00 100.00 0.00

Parameter 3593.80 3.86 100.00 0.00 99.89 0.01

Method 3598.53 4.82 100.00 0.00 99.94 0.01

20 Original 11981.00 0.00 88.31 0.00 85.56 0.00

Parameter 11983.67 5.51 89.41 3.79 91.59 4.02

Compositional 11980.67 15.04 85.64 7.01 90.30 6.62

40 Original 23968.33 37.53 59.43 1.04 56.53 1.04

Parameter 24021.67 46.37 49.74 9.09 78.52 3.73

Compositional 23967.67 22.01 47.13 6.95 75.77 2.99

Dyn Original 13786.33 2.31 74.45 1.09 76.68 0.64

Parameter 13786.00 7.94 69.13 10.98 87.44 11.49

Compositional 13798.33 35.23 68.70 8.57 86.63 14.80

CPS System % Suc. End %Handled Failure Rate %Gain

AVG STDEV AVG STDEV AVG STDEV

6 Original 99.94 0.01 100.00 0.00 0.00 0.00 0.00

Parameter 100.00 0.00 99.97 0.01 0.02 0.00 -0.02

Compositional 100.00 0.00 99.97 0.01 0.02 0.00 -0.02

20 Original 96.69 0.00 79.08 1.15 19.45 0.62 0.00

Parameter 96.51 1.38 88.04 4.13 10.38 2.98 9.07

Compositional 93.26 2.80 81.63 8.10 16.79 6.29 2.65

40 Original 70.25 0.71 41.81 1.45 56.60 0.83 0.00

Parameter 92.06 11.40 83.79 8.55 15.97 8.70 40.64

Compositional 91.02 6.08 79.20 3.08 20.53 3.53 36.07

Dyn Original 87.20 1.34 61.55 2.32 37.51 0.20 0.00

Parameter 96.39 7.64 86.15 10.10 13.53 9.61 23.98

Compositional 94.72 1.69 84.43 7.66 15.23 7.16 22.28

145

Figure 6.3: Comparison Among the Rate of Successful and Failed Calls

We tested the adaptive systems at four different rates of traffic: (i) 6CPS for normal
load traffic, which is 1/3 of the original system’s boundary, (ii) 20CPS for high load traffic,
which is just above the threshold level, (iii) 40CPS for extreme load, and (iv) a dynamic
load sequence of 10, 20, 40, 30, and 15CPS for one minute each.

The results are shown in Table 6.7. They reveal that the adaptive behaviour improves
the system’s ability to handle more messages successfully. The first row in Table 6.7
shows the system’s performance at 6CPS. The adaptive approaches perform identical to
the original system. OpenJSIP did not reach its saturation point and all established calls
are ended successfully with a BYE message (Suc. End).

The heavier the load gets, the more effective the adaptive behaviour becomes. At
20CPS, around the point of high load, we can see minor improvements in the lightweight
parameter adaptation approach, but the number of handled messages for the compositional
adaptation drop below that of the original application. We attribute this drop to the added
overhead for transforming and interpreting the activity.

The advantage of adaptation becomes clear in the case of the extreme load of 40CPS.
A more detailed overview of the performance gain at this extreme load is presented in

146

Figure 6.3. Although our approach of blocking new incoming registrations under high load
is a simple one, OpenJSIP is now able to handle nearly twice the amount of messages com-
pared to its non-adaptive version. Again, parameter adaptation performs slightly better
than compositional adaptation in our implementation.

6.3 Jake2: A Legacy Game Engine

Providing the best quality of service and performance is crucial in modern games [152],
and gamers are always eager to be challenged by more intelligent computer opponents.
We believe that computer games can extensively benefit from autonomic computing and
runtime adaptation. Thus, we selected the Jake2 legacy game engine as our second case
study to demonstrate how to use GRAF for enabling model-centric adaptation. Jake2 [91]
is a Java port of the GPL release of the Quake II game engine, a classic first person shooter
game that was originally written in C and released in 1997.

6.3.1 The Adaptation Requirement

In Jake2, a player is able to select the game’s difficulty level as the game starts. Naturally,
players improve their performance as they spend more time playing the game. However, the
game’s difficulty level is fixed unless the player restarts the game, and because the system
is not getting any feedback regarding the player’s performance, the game might become
too easy or too hard for the player. Hence, we set our main adaptation requirement as
follows:

• AR′: As the game progresses, the computer-controlled artificially intelligent enemies
(bots) should adapt their behaviour according to the performance of the human player.

6.3.2 Adaptation Requirements Analysis

This requirement can be achieved by altering the way bots play the game; thus, we need to
change the behavioural model of bots at runtime. Four candidate alternative behaviours
to satisfy AR′ are:

• Approaching Enemy Differently: use different path algorithms for approaching the
enemy. For example, instead of running straight towards the target position, the bot

147

could start strafing left and right to be harder to hit by a player. This adaptation
can be used to make the game harder for good players.

• Adaptive Weapon Selection: instead of a fixed weapon, the bot can adaptively select
the most appropriate weapon. For example, set the attack state randomly to either
missile or melee, or always use a melee weapon, even when far away to reduce the
game difficulty.

• Cloning and Morphing: the bot creates clones of itself. We can consider a number of
clones, and cool-down times. Clones can be initialized by setting their current and
max health, weapons, and ammo.

• Morphing: the bot re-spawns itself as a stronger/weaker bot. New bots states can be
also initialized by a set of provided state variables, such as current and max health,
weapons, and ammo.

Each behaviour is adjustable by tunable parameters. Due to the similarities in speci-
fication, modeling, and implementation of the alternate behaviours, this study focuses on
two selected adaptive behaviours: cloning and morphing as listed in Table 6.8

Table 6.8: List of Alternative Bot behaviours to Adjust Jake2’s Game Experience

behaviour Parameters Description

Cloning numberOfClones,
cooldown

The bot creates clones of itself.

Morphing botID, botState The bot re-spawns itself as a
stronger/weaker bot.

Given the list of alternative behaviours, we specify AR′ by the following adaptation
policies:

• P1: IF the player’s performance is bad THEN stick to default attack.

• P2: IF the player’s performance is good and default behaviour is in place THEN enable
cloning xor enable morphing.

• P3: IF the player’s performance is supreme THEN enable morphing and cloning.

Here, the parameters to indicate bad, good, or supreme performance are adjustable.
The performance of the player changes as the game difficulty varies or as time elapses.

148

6.3.3 Preparing Adaptable Jake2

We explored the original source code of Jake2 and located the elements that implement the
bot behaviour, based on the state variables that carry information about the performance
of human players. Top level modules (packages) of Jake2 are listed in Table 6.9. Further-
more, we studied the jake2.game package, which implements all game logic (triggers, bots,
weapons, elevators, explosions, secrets, etc.). The jake2.game.GameAI class contains a set
of methods that implement the intelligent behaviour of bots. We investigated its methods
to determine how the bots perceive, decide, and react in their world.

Table 6.9: Main Components of Jake2 [91]

Package Description and Content

client Contains all visual effects, key handling, screen drawing, message parsing, etc.
common common support functionality (e.g., filesystem, config variables).
game all game logic (e.g., triggers, bots, weapons, elevators, explosions, secrets).
install the jake2 installer.
renderer 3D graphics displays.
server world handling, movement, physics, game control, communication.
sound sound implementations and a sound driver.
sys methods dealing with the operating system (e.g., network, keyboard handling).
util 3d maths, generic utility methods.

In Jake2, every bot is always standing or running. As a bot perceives a target, its state
changes from idle to attack. This transition is implemented by calling
GameAI.ai checkattack(). We used UML activity diagrams during the program compre-
hension step, because this representation is close to the behavioural model representation
in GRAF (see Figure 4.5).

A bot runs towards his next target without firing and checks if the target is dead or
not. If it is dead, the bot tries to find a new target. Otherwise, it will show its hostile
animation and update its own knowledge about the distance to the target. If the target is
still available and visible, the bot tries to attack in various ways.

In first person shooter games, a basic indicator of a player’s performance is the rate of
killing enemy bots. We decided to monitor the amount of killed monsters per game session.
This data is stored in the level locals t class, a structure that is cleared when each
map is entered, and is read/written to a save-file for persistency. The killed monsters

149

integer field of this class is the only state variable and represents the total number of killed
monsters. We annotated this field as @StateVar.

Furthermore, we needed to change GameAI.ai checkattack() in order to modify the
behaviour of bots, so we exposed this method by annotating it as @InterpretationPoint.
In GRAF, each action in the behavioural model maps to a unique method in code. There-
fore, we refactored the original ai checkattack() method and extracted a set of new
actions from its body. Because the required actions to perform morphing and cloning
were missing, we added two alternative actions to GameAI, namely ai tryClone() and
ai tryMorph(). We annotated each of the extracted methods and the two new ones as
@Action.

Figure 6.4: UML Activity Diagram Representing the Bot’s Default behaviour

Figure 6.4 illustrates an excerpt of the runtime model, which represents the default
attack behaviour for bots. We use the concrete syntax of UML activity diagrams here.
The internal representation of the actual TGraph derived from this model conforms to
the runtime model schema. The activity’s name matches the name of the method that
is annotated as @InterpretationPoint. Furthermore, it is set to be not interpreted, as
noted in Figure 6.4 by a UML comment, because UML activities have no properties.

Finally, the two floating actions Try Cloning and Try Morphing represent the alterna-
tive actions that can be used within this behaviour description. The second annotation in
this figure denotes the declaringElement attribute of the Action vertex, which is used

150

by the model interpreter to invoke an actual method of the adaptable software. This
meta-data is only shown for one action here.

6.3.4 Developing Adaptation Rules

In this section, we discuss, by example, the adaptation rule that is responsible for cloning.
Figure 6.5 illustrates the outcome of the transformation and shows the changes to the
default behaviour.

Figure 6.5: UML Activity Diagram Representing the Bot’s Adapted behaviour for Cloning

The transformation redirects the outgoing edge of Update Knowledge to point to Try
Cloning, so that it does not connect to the second DecisionNode vertex any more. A new
edge is created to connect Try Cloning to a new, third DecisionNode vertex, where the
output of Try Cloning is checked using a simple GReQL expression. These expressions can
make use of the names of OutputPin vertices (shown in the schema, but hidden in this
example view). For the case where the cloning was successful, the third decision node is
connected to the FinalNode vertex. Otherwise, bots should check for a missile or melee
attack as before.

Listing 6.4 illustrates an extract of the adaptation rule with a condition to check the
condition for evaluating player’s performance. Here the condition will be evaluated to true

151

if the player has killed more than 10 bots. Although, the selected rule is a simple one and
may not fully reflect player’s in game performance, the rationale to present this rule is to
show a simple GreQL query and how it is implemented as a part of the adaptation rule.

1 pub l i c c l a s s C l on i n gS t a r tRu l e extends Abs t r a c tAdap t a t i onRu l e {
2

3 pr i va te s t a t i c f i n a l S t r i n g ADAPTED behaviour NAME = ” jak e2 . game . GameAI .
a i c h e c k a t t a c k ” ;

4 pr i va te s t a t i c f i n a l S t r i n g TIME TO CLONE VAR = ” jake2 . game .
l e v e l l o c a l s t . k i l l e d m o n s t e r s ” ;

5

6 pub l i c C l on i n gS t a r tRu l e () {
7 super () ;
8

9 // S e l e c t t h i s r u l e a f t e r 10 bot s a r e k i l l e d
10 t h i s . c o n d i t i o n = new GReQLQueryImpl (
11 ” e x i s t s k i l l e d : V{ s t a t e . S t a t eV a r i a b l e } , ”
12 + ” k i l l T y p e : V{ s t a t e . L i t e r a l I n t e g e r } @ ”
13 + ” k i l l e d −−>{s t a t e . HasValue} k i l l T y p e and ”
14 + ” k i l l e d . name = \”” + TIME TO CLONE VAR
15 + ”\” and k i l l T y p e . v a l u e > 10”) ;
16 // . . .
17 }
18 }

Listing 6.4: Sample GreQL query to check the condition for evaluating player’s score

Listing 6.5 illustrates an extract of the adaptation rule’s action to add cloning of ene-
mies. After defining the name of the transformation and the needed schema elements are
imported in line 3. This transformation works in-place and is structured as MatchReplace
pattern <== modelElements. modelElements is a set of runtime model elements selected
using a GReQL query. The pattern is then executed on the result of this query, which se-
lects vertices and edges (From), defines restrictions on their relationships and attribute
values (With) and returns the result (reportSet). Following a graph grammar-like ap-
proach, the pattern defines how to match and replace elements in this result set to achieve
the described adaptation of the activity model.

The measured product metrics for the original and adaptable version of Jake2 is pre-
sented in Table 6.10. The methods added to the original version of Jake are the result of
the decomposing the original checkattack() method into its composing actions, by ap-
plying the Add Replace Block Effector transformation. Here, the only included alternative

152

1 t r a n s f o rma t i o n C l o n i n gS t a r tT r an s f o rma t i o n ;
2

3 impor t b ehav i ou r . ∗ ;
4

5 MatchReplace
6

7 (’ $.ms ’) <−−{’$. f r 1 ’} (’ $. f1 ’) −−>{’$. t1 ’}
8 (’ $. tc ’) ,
9 (’ theE lement ($. t c <>−−{HasOutputPin }) ’ | name = ’” c loneOutP in ” ’)

10 <−−{behav i ou r . From} (b ehav i ou r . Flow) −−>{behav i ou r . To}
11 dn (behav i ou r . Dec i s ionNode | name = ’” Return OR Try M i s s i l e ” ’)
12 <−−{behav i ou r . From} (b ehav i ou r . Flow | gua rdCond i t i on = ’” u s i n g c loneOutP in :

c loneOutP in = t r u e ” ’) −−>{behav i ou r . To}
13 (’ theE lement (V{Fina lNode }) ’) ,
14 dn <−−{behav i ou r . From} (b ehav i ou r . Flow | gua rdCond i t i on = ’” u s i n g

c loneOutP in : c loneOutP in = f a l s e ” ’) −−>{behav i ou r . To} (’ $. tm ’)
15

16 <==
17

18 from
19 midd l eS tu f f , t r yM i s s i l e , t r yC l o n e : V{OpaqueAction } ,
20 mi s s i l eOu tP i n : V{OutputPin } , decNode : V{Dec i s ionNode } ,
21 f l ow1 : V{Flow } ,
22 from1 : theE lement (edgesFrom{From}(f l ow1)) ,
23 to1 : theE lement (edgesFrom{To}(f l ow1))
24 with
25 t r yC l o n e . name = ” a i t r y C l o n e ”
26 and m i d d l e S t u f f . name = ’ a i m i d d l e S t u f f ’
27 and t r yM i s s i l e . name = ’ a i t r yM i s s i l e ’
28 and t r yM i s s i l e <>−−{HasOutputPin} mi s s i l eOu tP i n
29 and m i d d l e S t u f f <−from1−− f l ow1 −−to1−> t r yM i s s i l e
30 and m i s s i l eOu tP i n <−−{From} & {Flow} −−>{To} decNode
31 r e p o r t S e t
32 r e c (ms : m idd l eS tu f f , tm : t r yM i s s i l e , t c : t r yC lone , f 1 : f low1 , f r 1 :

from1 , t1 : to1)
33 end ;

Listing 6.5: Excerpt of GReTL Transformation in Adaptation Rule for Cloning
Functionality

153

action is cloning, which is consists of a main method, doClone(), and a helper method
tryClone(). Moreover, Table 6.11 presents the measured adaptability metrics for the
prepared adaptable version of Jake.

Table 6.10: Measured Method-Level Metrics for Jake
System Method CC NCLOC EXEC

Original jake2.game.GameAI.ai checkattack(edict t, float) 23 77 30

Adaptable jake2.game.GameAI.ai checkattack(edict t, float) 7 13 1

Adaptable jake2.game.GameAI.ai checkIfAtCombatPoint(edict t,
float)

8 20 5

Adaptable jake2.game.GameAI.ai checkIfDead(edict t, float) 8 19 1

Adaptable jake2.game.GameAI.ai checkVisibility(edict t, float) 1 1 0

Adaptable jake2.game.GameAI.ai defaultCheckAttack(edict t,
float)

1 1 0

Adaptable jake2.game.GameAI.ai findNewTarget(edict t, float) 4 16 8

Adaptable jake2.game.GameAI.ai middleStuff(edict t, float) 2 13 9

Adaptable jake2.game.GameAI.ai tryMelee(edict t, float) 2 5 1

Adaptable jake2.game.GameAI.ai tryMissile(edict t, float) 2 5 1

Cloning jake2.game.GameAI.ai doClone(edict t, float) 2 22 14

Cloning jake2.game.GameAI.ai tryClone(edict t, float) 5 14 4

Table 6.11: Measured Adaptivity Metrics for Jake

System NAR NAN NOE NOS NQ NT SAD

Adaptive Jake 4 12 1 1 6 2 1

6.3.5 Evaluating GRAF/Jake2 Performance

To investigate the usability of GRAF for enabling runtime adaptivity in Jake2, we prepared
five system variations:

• S0: The original version of Jake2.

• S1: the refactored and annotated version of S0 as described in Subsection 6.3.3.

154

• S2: S1 integrated with GRAF. Aspect codes are woven at annotations. There are
no adaptation rules, which means that the default behaviour is always in effect. The
default behaviour is achieved by executing the original source code.

• S3: Similar to S2, but the default behaviour is achieved by interpreting the default
runtime model and skipping the original implementation.

• S4: Adaptation rules and model constraints are added to S3. GRAF transforms and
interprets the bot behaviour.

Comparing S1 (original version) to the various adaptive versions of Jake2 allow us to
measure the overhead of the refactorings for preparing the actions, aspect weaving, runtime
model, model interpretation, and adaptation rules. Table 6.12 summarizes the difference
among of the all variants.

Table 6.12: Main Characteristics of Jake2 Evaluated Variations

Characteristic
ID

S0 S1 S2 S3 S4

Actions & Annotations - x x x x

Start GRAF & Runtime Model - - x x x

Interpretation & Reflection - - - x x

Adaptation Rules - - - - x

All of the experiments were run on an Intel Core 2 Duo E8400 workstation with 4.0GB
DDR2 memory, running MS Windows XP Professional 32-bit SP3 and Java Platform,
Standard Edition 6. We used JConsole (from Oracle JDK 6), the Eclipse Test and Per-
formance Tools Platform 4.7.1 [187], and Fraps 3.2.6 [66] for the purpose of profiling and
benchmarking Jake2 variations.

In executing each variation, we waited for one minute for the game’s start menu to load,
and started a new game with the default settings and with beginner difficulty. Following
a fixed path, we played the game for 2 more minutes before returning back to the spawn
location in the game.

Memory Utilization

Investigating the utilized resources among different variations of Jake2 can help us to study
the usability and scalability of GRAF. Table 6.13 summarizes the memory utilization of

155

each variation and the total number of classes loaded. The results for S0 and S1 are almost
identical, which indicates that we can safely replace the original software with its adaptable
version from this perspective.

Table 6.13: Summery of Memory Benchmark for Jake2 Variations

Metric
ID

S0 S1 S2 S3 S4

Max Used (MB) 98.2 98.8 170.5 165.9 171.0

Max Committed 112.4 112.4 213.6 213.1 215.2

Loaded Classes 3799 3799 5648 5660 5754

As we integrated and started GRAF in S2, S3, and S4, we observed a constant increase
in memory utilization. There was an average of 72% increase in the total amount of used
memory (heap and non-heap), 30% increase in the maximum committed memory, and 50%
increase in the total number of loaded classes.

In conclusion, in the case of using Jake2 with GRAF, we had a quite significant, over-
head in memory use as we moved from non-adaptive variations to the self-adaptive ones.
However, model interpretation and the adaptation rules did not add a significant memory
overhead. Loading the JGraLab libraries as well as the Java representation of the runtime
model are the main causes for this increase in memory usage.

Execution Performance

All variations exhibited a similar overall game performance: 46 ± 1 average CPU% and
67 ± 1 frames per second. This means that the memory overhead of using GRAF and
runtime adaptation did not affect the overall gaming experience.

We further investigate the execution performance of the GameAI class and specifically
ai checkattack() as summarized in the box-plot of Figure 6.6. The evaluation results
reveal that the adaptable Jake2 variant (S1) containing the refactored ai checkattack()

method has an almost identical performance as compared to S0. S2 has a slight overhead
upon GRAF startup, and when the annotated elements are wrapped by aspect code. The
execution times are higher, but still within a acceptable range, in S3 and S4.

In these two adaptive versions, the desired behaviour of the bots was achieved via
interpretation. S4 has higher upper quartile than S3, because the alternative behaviour
model in S4 also performs bot cloning. Additionally, there are more upper overlays in S4

156

0.2

1

5

S0 S1 S2 S3 S4

ms

0.008

0.04

Figure 6.6: Box-Plot of Execution Times for GameAI.ai checkattack()

Table 6.14: Impact of Weaving Aspects on First Calls of GameAI.ai checkattack().

S0 S1 S2 S3 S4

First Call Execution Time (ms) 1.5 1.4 94.8 172.9 141.6

because the adaptation rule is enabled and occasionally transforms the runtime model.
Another observation is the overhead of dynamically weaving the aspect code, as shown in
Table 6.14, which only affects the first call to each annotated program element. However,
this can be prohibited by weaving the aspect code offline.

6.4 Discussions on the Obtained Results

The following sections provide the relevant answers for each of the research questions.

6.4.1 The Importance of Having Proper Adaptable Software

The hypothesis associated with RQ1 is: (H1) Given a specific adaptation requirement, the
prepared adaptable software plays an important role in the performance of the final SAS.
To test this hypothesis, we performed the OpenJSIP case study, in which we prepared two
different adaptable versions of the original application.

The results demonstrate that both implementations provide the requested adaptive be-
haviour of rejecting new registrations. Both scenarios do not change the system’s behaviour

157

at normal levels of load and are even able to significantly improve the performance under
high loads.

Compositional adaptation is the more flexible approach for implementing adaptivity,
because the system’s behaviour can be controlled by the runtime model’s behavioural
model; however, this approach adds some overhead. In contrast, parameter adaptation
seems more suitable for cases that do not require highly dynamic structural change at
runtime. Parameter adaptation has less overhead on system performance, mainly due to
the fact that part of the structural change is done during the evolution process at the
source code level, and no explicit model interpretation is needed.

Our behaviour model is kept simple in the OpenJSIP case study, but more complex
behaviour including sequences of actions and decision points could be used to describe
complex behaviour based on composition of Adaptive Actions.

6.4.2 The Advantages and Disadvantages of GRAF-based SAS

The hypothesis associated with RQ2 is: (H2) the model-centric architecture of GRAF
supports developing and maintaining complex SAS systems. The second case study, Jake,
was mainly designed to validate this hypothesis. Fulfilling runtime adaptation was more
complex than in the first case study, which allowed us to evaluate our approach more
extensively.

An advantage of the adaptation framework is that it has a clear structure and its
components are well defined in terms of their responsibilities and tasks. Additionally, inte-
grating GRAF with adaptable software is just a matter of marking program elements with
one of the provided annotation types. The instrumentation and the binding is transparent
to developers. Furthermore, an initial version of the runtime model is generated automat-
ically, which reduces the amount of manual modeling work to be done, and additionally
ensures that naming conventions are followed.

On the down side, developing adaptation rules is not easy, because this task requires
knowledge about the actions provided by the adaptable software. Furthermore, the de-
veloper must be familiar with GReQL and GReTL in this implementation of GRAF. Not
surprisingly, the lack of proper debugging facilities showed up as a fundamental problem.
During the development of adaptation rules, adequate visualizations of the runtime model,
as well as illustration techniques for maintaining the relationships and interplay between
adaptation rules and their effect on the runtime model was missing.

Finally, it must be noted that the clear separation of concerns between the ways of

158

(i) creating software that is made adaptable by modifying existing software, and (ii) de-
veloping adaptation rules and constraints with minor knowledge about the adaptable soft-
ware’s internals, is a clear advantage. Major disadvantages resulted from the lack of tailored
tool support and are not directly related to GRAF’s design.

6.4.3 The Cost-Effectiveness of the Approach.

The hypothesis associated with RQ3 is: (H3) the proposed model-centric approach, and
its supporting modernization process are capable of evolving software for self-adaptation in
a cost-effective manner. To test this hypothesis, we modernize the original source code of
both case studies by following the steps of our modernization process.

We successfully evolve both case studies towards GRAF-based SAS, and to evaluate
cost-effectiveness, we demonstrate reuse and ease-of-use of adaptability transformations
with GRAF. We show that following the modernization framework in conjunction with
GRAF provides common and reusable infrastructures, which are flexible to customize to
make a system self-adaptive. In effect, GRAF saves engineers time and development effort
to add and evolve self-adaptation capabilities to a target system. To show effort sav-
ings, we demonstrate how developers can prepare adaptable software by applying adapt-
ability transformations and preparing GRAF by including the required adaptation rules.
As adaptability transformations are basically composed from a set of classic refactoring,
preparing adaptable software can be automated for further improvement of the approach
cost-effectiveness. Having refactorings instead of arbitrary evolution changes reduce the
cost of change and improves the quality of software [65].

In order to check the future maintenance cost of the prepared applications, we measured
a set of product metrics, as well as the proposed adaptivity metrics and the results show
that the added complexity, and size is not significant compared to the project size.

6.5 Threats to Validity

As we discuss GRAF’s qualities based on experiences gathered from case studies, it is
important to describe the possible threats to validity as well as ways to prevent their
occurrence. Several factors could influence the results of the two studies and hence, could
affect our inferences. Therefore, we cover internal and external validity.

159

6.5.1 Internal Validity

The threats in this regard are mono-operation and mono-method biases. Regarding the
results of the performance measurements, the used/developed tools for collecting data can
potentially have defects or affect the performance results themselves. Efforts to restrict this
threat were mitigated by considering various profiling tools, applying them to several case
studies, and studying their impact on the results. In addition, only widely used software
was used, such as JConsole, a JMX-compliant monitoring tool that is shipped with the
official Java development kit.

For Jake2, we tried to reproduce the exact game scenario for each experiment. However,
this was not fully achieved due to the game’s random nature. One solution to face this
threat would be to use customized test maps as well as a scripted player that follows a
pre-defined path automatically. Moreover, eliminating any randomness could be achieved
by using pseudo-random generators with fixed seeds. However, this threat does not apply
to OpenJSIP, as the calls are deterministically generated using the SIPp traffic generator.

Neither of the case studies were performed in an embedded and real-time environment,
which may effect the measured performance results. Furthermore, the JVM provides dy-
namic memory management and garbage collection, which can affect the software’s perfor-
mance as well. For instance, the captured memory utilization results may be influenced.
We manually triggered the garbage collection and used averaging to tackle this threat. We
preferred a more realistic environment over an isolated and rather artificial one, but still,
we minimized the number of background processes when running each case study.

Another known internal threat is our measure for evaluating the cost of evolution
changes. In general, measuring the evolution cost is challenging and itself is a costly process,
which constitutes measurement of the effort required to fulfill all the sub-processes of the
modernization process model (see Figure 5.2). However, in this research the conducted
case studies were especially selected, analyzed, and designed towards the goals of our
case studies. These case studies were also used for the purpose of testing and debugging
the implementation of GRAF. That was the main reason to select and measure product
metrics, which are widely used in software cost-estimation models [17]. This simplification
can be considered as an internal threat to the validity of our results. In order to reduce or
eliminate this threat, we need to conduct a set of empirical analysis on a number of case
studies selected from different domains, and ask candidate developers (with or without
domain and system knowledge) to modernize the selected systems towards GRAF-based
SAS, and measuring the exact amount of time spend to fully modernize each system under
study and make it operational.

160

6.5.2 External Validity

Common threats to external validity are related to mono-operation and mono-method
biases. We demonstrate the results of two case studies here to reduce this threat, but more
experience is needed to be able to widely generalize our results.

We believe that the selected scenarios are detailed enough to show a reasonably complex
behavioural model. However, each case study is limited to a single adaptation requirement,
and more complex situations with possibly contradictory adaptation rules were not covered.
Nonetheless, we considered several candidate solutions to achieve the adaptation goal for
each case study. In addition, each solution can be realized differently. Two candidate
scenarios, parameter and compositional adaptation, were presented for OpenJSIP.

Other legacy software with different characteristics, e.g., mission and safety critical
systems, may be subject to different adaptation concerns, and the overhead of integrating
and using GRAF may differ. Controlling this threat can be achieved by applying additional
empirical studies using various software projects, preferably from different domains and on
a set of different hardware systems.

6.6 Summary

The goal of this chapter was to put the proposed approach and GRAF into action. The
main objective was to check the usability and cost effectiveness of the approach on a set of
real-world case studies. For each case study we used the proposed modernization process
to make self-adaptive version of the original systems. We run each evolved software and
evaluate its ability and effectiveness to satisfy given adaptation requirements. The results
of the case studies supports in favor of the applicability and effectiveness of the thesis
approach. There also exists a number of threats to the validity of the case studies, and we
tried to highlight them and give a solution to reduce or eliminate them as a part of the
discussion section.

It is noteworthy that although we captured and presented some detailed performance
results in our case studies, benchmarking was not the main objective here. Therefore,
instead of performing syntectical analysis in isolated test environments, we tried to simulate
more realistic test environments for both case studies.

It is also notable to mention that the initial challenge in these experiments was the lack
of a commonly used testbed or benchmark, and a considerable amount of time was spent
on selecting case studies and preparing the platform to apply the adaptation. This part

161

of the work has been accomplished collaboratively with Mahdi Derakhshanmanesh from
Institute for Software Technology at the University of Koblenz-Landau and Greg O’Grady
from the Software Technologies Applied Research Laboratory (Star Lab) at the University
of Waterloo.

162

Chapter 7

Concluding Remarks

“Adapt or perish, now as ever, is nature’s inexorable imperative.”
H. G. Wells

In order to effectively engineer and use self-adaptive software systems, in this thesis we
proposed a new conceptual model for identifying and specifying problem spaces in the
context of self-adaptive software systems. Based on the foundations of this conceptual
model, we utilized the concept of model-centric adaptation, and proposed a novel model-
centric approach for engineering self-adaptive software by designing the architecture of a
generic adaptation framework and an evolution process to support it all together. This
approach is tailored to facilitate and simplify the process of evolving and adapting current
(legacy) software towards runtime adaptivity, and the conducted empirical studies reveals
the applicability and effectiveness of this approach to bring self-adaptive behaviour into
non-adaptive applications that essentially demand adaptive behaviour to survive. This
thesis addresses the main research challenges towards its objectives as follow:

• Specifying Adaptation Requirements: As discussed throughout the thesis, the self-adaptive
software problem domain can be divided into the two main problems of adaptation and
adaptability. Given a set of adaptation requirements, specifications need to be defined
for the adaptable software (i.e., adaptability specifications) and the adaptation man-
ager (i.e., adaptation specifications). The conceptual model and detailed metamodels
presented assist requirements engineers in understanding the SAS domain better, and
in specifying each of these subsystems based on the shared phenomena of their associ-
ated domains. Although we do not consider this conceptual model as an architecture

163

model for addressing the solution-space concerns of self-adaptive software, due to its
tight connection with existing software phenomena, it can also serve as a design model.
For example, compared to the IBM autonomic computing reference architecture [98],
this model is more generic. In the autonomic computing model, the interfaces between
the adaptation manager and its application domain do not exist. In other words, the
adaptation manager only has shared phenomena with the adaptable software, but does
not share any phenomena with its domain. Hence, in the case of open-loop control,
the sensor and effector interfaces should be exclusively specified based on the shared
phenomena between the adaptation manager and the adaptable software.

• Managing the Complexity of Self-Adaptive Software: To tackle the complexity issue in
the context of SAS systems, the construction of precise and accurate models of software
that address the demands of self-adaptive systems is a necessary but hard task, given
their highly complex and dynamic nature. Difficulties arise especially in the area of
model-centric runtime adaptation, where models need to be generated, manipulated,
and managed at runtime. In theory, model-centric approaches are able to reduce the
complexity of engineering and maintaining an SAS, by providing partial and customized
representations of the software, tailored to suit the needs of adaptation. However, in
practice, creating, managing, verifying, reflecting, and maintaining the consistency of
runtime models adds additional complexity and overhead to the system, which hinders
the usability and cost-benefit ratio of model-centric approaches to self-adaptive software.
This phenomenon conforms to Lehman’s second law of software evolution: “as software
system is changed, its complexity increases and become more difficult to evolve unless
work is done to maintain or reduce complexity” [112]. Using adaptation frameworks
that are specifically tailored to contain and manage models at runtime can partially
reduce the complexity of using models at runtime, and enhance the efficiency of model-
centric approaches. Consequently, the proposed concept of having adaptability models
for specifying runtime models, using an extensible metamodel, can greatly facilitate the
program comprehension step of migrating legacy systems towards runtime adaptivity.

• Preparing Self-Adaptive Software: In this thesis, we gave an overview of how our graph-
based runtime adaptation framework (GRAF) supports model-centric runtime adaptivity
based on a combination of querying, transforming, and interpreting the behavioral mod-
els and state variables that are causally connected to a software application. Another
strength of GRAF that distinguishes it from other adaptation frameworks is its ability
to support method-level compositional adaptation by interpreting runtime models that
are not necessarily at the same abstraction level and expressiveness of the base-layer
that they represent. By minimizing the required changes to make software adaptable

164

without breaking the default functionality, GRAF reduces the risk of moving towards
self-adaptive software systems. Consequently, the proposed concept of having adaptabil-
ity models to specify runtime models, with a flexible metamodel, can greatly facilitate the
program comprehension and concept location step of migrating legacy systems towards
runtime adaptivity.

• Planning for Software Changes: From our perspective, the use of models at runtime is
a natural extension of using models at design or compile time. Note however, that the
requirements for models at each phase of these binding times are different, for example,
with respect to performance requirements. For instance, model sizes and processing
times for queries and transformations become especially important at runtime, particu-
larly when applied under real-time constraints. The above perspective combines classic
software maintenance and evolution with dynamic evolution for the purpose of adapta-
tion. Hence, the modernization process (as in classic software maintenance) for creating
an adaptable software is not separate from run-time adaptation. Having such a uni-
fied view of the complete engineering process was one of the main motivations of this
research.

In order to evaluate the proposed approach for evolving software systems towards self-
adaptation, a set of empirical studies were conducted on two real-world scenarios, from
two diverse domains that can greatly benefit from self-adaptation. The main objectives
of the conducted case studies are to examine the applicability and effectiveness of the
proposed modernization process, the performance and usability of GRAF, and the tradeoffs
among different change plans for a unique set of adaptation requirements. The following
conclusions can be drawn from the case studies:

• Adaptability transformations can produce adaptable software from the original soft-
ware.

• The separation of concerns between the ways of (i) creating software that is made
adaptable by modifying existing software, and (ii) developing adaptation rules and
constraints with limited knowledge about the adaptable software’s internals, is a clear
advantage.

• Given a specific adaptation requirement, the prepared adaptable software plays an
important role in the quality of the final SAS system.

• There is a performance overhead associated with using GRAF to perform model-
centric runtime adaption. However, the major part of this overhead does not increase
with the size of the adaptable software or the complexity of the required adaptation.

165

• Activity models can accurately and effectively represent the behavioural model of
the software at runtime, and their interpretation can be done almost as fast as the
execution of their matching binary code.

• Compositional adaptation is more flexible than parameter adaptation for the pur-
pose of implementing adaptivity, because the system’s behavior can be controlled
by the runtime model’s behavioral model; however, this approach adds some over-
head. In contrast, parameter adaptation seems more suitable for cases that do not
require highly dynamic structural changes at runtime. Parameter adaptation has less
overhead on system performance.

This research is a step towards establishing a cost-effective process for (re)engineering
self-adaptive software systems. Some assumptions and limitations were taken to narrow
the scope of this thesis, and the boundaries of the proposed approach. The most important
ones are the following:

• The proposed conceptual model is developed based on control-based self-adaptive
software, which is the most common approach for self-adaptation.

• We assume that adaptation requirements are provided as the starting point for en-
gineering SAS. However, a complete engineering cycle starts with the elicitation or
derivation of adaptation requirements from stakeholders or system artifacts.

• Using GRAF, the adaptation changes are checked against set of model-level and
application-level constraints and invariants. However, these checks do not necessarily
cover all existing invariants and constraints.

• The modernization process and GRAF are designed for object-oriented Java ap-
plications. They also assume that the application’s source code is accessible and
modifiable. However, this assumption is not valid for many legacy systems.

• Formulating adaptation impacts for the purpose of verification and validation is cur-
rently realized as a set of queries on the runtime model. However, this procedure can
be done by static/dynamic analysis, and through some rigorous tests of the software.
This task is particularly significant in engineering SAS, but is out of the scope of this
thesis.

166

7.1 Future Research Directions

Self-adaptive software has a long way to go to be mature and trustable, and many challenges
apply to the theoretical and practical aspects of engineering these systems. We see a
number of interesting directions which could improve the engineering process to achieve
self-adaptation. Based on the contributions of this thesis and critical review of current
research state of the art, here we name few notable topics together with ideas and visions
for future research directions:

Verification and Validation

One interesting future direction is to support model validation. The validation of trans-
formed models can be done by getting feedback from the adaptable software and its oper-
ating environment, after the completion of the adaptation cycle. A cycle is complete when
the transformed runtime model is reflected, and the application behavior has changed ac-
cordingly. The results of this behavior alternation can again be captured by the runtime
model during the feedback loop. Trends can be calculated using utility-functions or met-
rics for computing distances from the current state to the desired ones, as formulated by
adaptation goals.

Self-Organizing Software Systems

As the trend of modern software is moving towards large scale distributed systems such as
cloud computing, we believe that this work, and model-centric adaptation in general, can
serve as a foundation for self-organizing systems that can be used in such environments.
An external manager can serve as an adapter to connect multiple GRAF-based systems to
build a network of self-adaptive software systems. Such a network can be used to create
self-organizing systems. Each individual software can share its runtime model, as a clear
and consistent representation of itself and its context, with other software. Several designs
and algorithms can be developed to efficiently handle a large set of runtime models. These
models may also contradict with each other; resolving these conflicts in large scale software
domains is an interesting problem to solve. General awareness of the possible actions (as
transformations) that each software is able to do, and deciding to choose the best set
of actions (a sequence of transformations on disparate software) is another challenging
research direction.

167

Measuring and Benchmarking (Self-)Adaptive Software Systems

There is a need for a metrics suite that is able to provide a better understanding of
software adaptability that serve as a base for more comprehensive assessment of software
adaptability such as: (i) availability of sensors and effectors according to self-* properties
requirements (each self-* property may require a specific set of sensors and effectors),
(ii) quality of sensors, and (iii) efficiency of effectors. In this thesis, we proposed Software
Adaptability Degree (SAD), a top level metric to measure software adaptability, and more
detailed metrics can be also defined based on the sensors and effectors, their composing
adaptability factors, and elements that are supporting them in software. Specially, in case
of migrating current software systems towards adaptability, these metrics can be used to
measure the effectiveness of evolution processes by representing the extent of which the
application satisfies the adaptation requirements. More detailed metrics can be also defined
based on the sensors and effectors, their composing adaptability factors, and elements that
are supporting them in software, especially, in case of migrating current software systems
towards adaptability.

Also, there is a need of well-defined benchmarks and case studies in the domain of
self-adaptive software systems. Quality benchmarks and measures can greatly improve the
ongoing research on these systems and can be used for a fair comparison of adaptation
frameworks, techniques, and tools.

Perspective of Intelligent and Adaptive Adaptation Managers

In [4], we show how machine learning can be used in decision making of SAS. This approach
is proposed to tackle the action selection problem with the aid of reinforcement learning
algorithms. This work demonstrates reinforcement learning as a good technique to tackle
the problem of action selection in SAS, and can be extended to an actual implementation
to be integrated with GRAF. More experiments with other benchmarks could be performed
and the technique could be compared to other works from literature. In terms of improving
the performance of the model there are also many opportunities. One could use other
methods of reinforcement learning such as Monte Carlo or Q-Learning [180]. Moreover, the
parameters of the algorithm could be adjusted, and better mechanisms of multi-objective
action selection could be examined.

168

Identifying design patterns for self-adaptive software

Several architecture styles, design principles, and coding rules have been developed for
adaptive and autonomic systems. These design principles are usually presented as ar-
chitecture or design patterns [73, 154]. On the other hand, many design patterns from
relevant disciplines are applicable, such as distributed computing [32] and fault tolerant
software [81]. Putting all these patterns together, investigating more patterns, and pre-
senting them as a unified pattern language is an interesting and valued future research
direction in the area of engineering self-adaptive systems.

The initial step to develop a comprehensive pattern language for engineering self-
adaptive software systems can be shaped based on the the proposed conceptual model
of self-adaptive software. Such a pattern language will be similar to the language de-
veloped by Buschmann et al. [32] in POSA (Pattern-Oriented Software Architecture) for
architectural patterns in distributed computing domain, in which they defined a domain
model as the root of their language. However, a more diverse set of architectural styles
and design patterns is needed to serve as a guideline for engineering self-adaptive software
systems.

Design and Development of a Toolchain

Tools to supporting engineering self-adaptive software can divided into (i) development
tools, and (ii) maintenance tools. In terms of preparing software to make it adaptable,
tools are needed for viewing those parts of the implementation at a granularity that is
sufficient, e.g at the method signature level. Such a view can be integrated into software
development tools, and annotations for marking software elements (to expose the four in-
terfaces to GRAF) can be added via context menus. Furthermore, the adaptability trans-
formations can be (semi-)automated using available refactoring tools, script languages, and
development environments.

Moreover, queries and transformations are at the heart of this technology. Embedding
queries (GReQL) into the Java code is not optimal and writing transformation rules (both
GreTL and JGraLab rules) is tedious at the moment. We envision two possible solutions at
this point. First, we can develop a domain specific language for writing the most common
transformation tasks (together with helper methods for GReQL queries). Second, we can
try to offer a fully model-centric approach, where developers see a visual model, edit it
and record their steps in terms of add/change/remove operations on elements as described
by the runtime model schema. The recorded sequence is the normalized (maybe manually
in the beginning) and is transformed to an implementation of the model transformation

169

in Java. An exchange format is desirable in this case. For instance, we need to provide a
simple way for developers (users of GRAF) to create and modify adaptation rules. One way
is to implement extensions to popular software development environments (e.g., Eclipse),
so that wizards help with the creation of boilerplate code. Syntax highlighting and code
completion is also helpful.

Various Behavioral Model Types

The current implementation of GRAF uses a subset of UML activity diagrams for modeling
the behavior of software routines. This decision decision suits our objectives, as we mainly
target application-level fine-grain adaptation by orchestrating methods rather than coarse-
grain adaptation (e.g, component and service composition) at higher abstraction levels.
Nevertheless, we are sure that other forms of modeling behavior can be useful for achieving
adaptivity for software. Possibly candidates can be petri nets, state charts, or feature
models. In all cases, a replacement or even just an adjustment of the runtime model (that
is, its schema) involves the adjustment of the model interpreter as well, as the runtime
model schema describes the syntax, and the model interpreter encodes a description of
semantics.

Native Code Interoperability

Developed based on Java technologies, GRAF inevitably has stronger support for modern
object-oriented applications. To introduce the benefit of adaptivity and modernization
process to true legacy systems, we need to experiment with binding the framework to soft-
ware that was developed using languages that do not rely on a virtual machine. Prominent
examples are C code, as well as COBOL. Using the Java Native Interface (JNI), we can
attempt to play with non-adaptive software and make it adaptive using GRAF.

In this scenario, we will need to change the implementation of the interfaces as well as
the way we do the binding of the framework to the adaptable software once it is prepared.
In cases where no Aspect-Oriented Programming (AOP) is supported, code generation may
be considered. Moreover, analyzing the impact of coupling a managed software system to
native code in terms of its execution/runtime performance and memory allocation charac-
teristics needs to be investigated, as the feasibility of such an approach will be most likely
questioned by system programmers.

170

APPENDICES

171

Appendix A

Catalogue of Supporting Refactorings

RF1: Consolidate Conditional Expression

Problem: You have a sequence of conditional tests with the same result.

Solution: Combine them into a single conditional expression and extract it.

RF2: Consolidate Duplicate Conditional Fragments

Problem: The same fragment of code is in all branches of a conditional expression.

Solution: Move it outside of the expression.

RF3: Encapsulate Field

Problem: There is a public field.

Solution: Make it private and provide accessors.

RF4: Decompose Conditional

Problem: You have a complicated conditional statement.

Solution: Extract methods from the condition, then part, and else parts.

173

RF5: Extract Method

Problem: You have a code fragment that can be grouped together.

Solution: Turn the fragment into a method whose name explains the purpose of the
method.

RF6: Form Template Method

Problem: You have two methods in subclasses that perform similar steps in the same
order, yet the steps are different.

Solution: Get the steps into methods with the same signature, so that the original meth-
ods become the same. Then you can pull them up.

RF7: Inline Temp

Problem: You have a temp that is assigned to once with a simple expression, and the
temp is getting in the way of other refactorings.

Solution: Replace all references to that temp with the expression.

RF8: Introduce Assertion

Problem: A section of code assumes something about the state of the program.

Solution: Make the assumption explicit with an assertion.

RF9: Introduce Explaining Variable

Problem: You have a complicated expression.

Solution: Put the result of the expression, or parts of the expression, in a temporary
variable with a name that explains the purpose.

RF10: Introduce Parameter Object

174

Problem: You have a group of parameters that naturally go together.

Solution: Replace them with an object.

RF11: Parameterize Method

Problem: Several methods do similar things but with different values contained in the
method body.

Solution: Create one method that uses a parameter for the different values.

RF12: Preserve Whole Object

Problem: You are getting several values from an object and passing these values as pa-
rameters in a method call.

Solution: Send the whole object instead.

RF13: Reduce Scope of Variable

Problem: You have a local variable declared in a scope that is larger than where it is
used.

Solution: Reduce the scope of the variable so that it is only visible in the scope where it
is used.

RF14: Replace Array with Object

Problem: You have an array in which certain elements mean different things.

Solution: Replace the array with an object that has a field for each element.

RF15: Replace Conditional with Polymorphism

Problem: You have a conditional that chooses different behavior depending on the type
of an object.

175

Solution: Move each branch of the conditional to an overriding method in a subclass.
Make the original method abstract.

RF16: Replace Exception with Test

Problem: You are throwing an exception on a condition the caller could have checked
first.

Solution: Change the caller to make the test first.

RF17: Replace Method with Method Object

Problem: You have a long method that uses local variables in such a way that you cannot
apply Extract Method.

Solution: Turn the method into its own object so that all the local variables become fields
on that object. You can then decompose the method into other methods on the same
object.

RF18: Replace Nested Conditional with Guard Clauses

Problem: A method has conditional behaviour that does not make clear what the normal
path of execution is.

Solution: Use Guard Clauses for all the special cases.

RF19: Replace Parameter with Explicit Methods

Problem: You have a method that runs different code depending on the values of an
enumerated parameter.

Solution: Create a separate method for each value of the parameter. Note: This trans-
formation can be used to convert parameter adaptation to compositional adaptation

RF20: Replace Temp with Query

176

Problem: You are using a temporary variable to hold the result of an expression.

Solution: Extract the expression into a method. Replace all references to the temp with
the expression. The new method can then be used in other methods.

RF21: Separate Query from Modifier

Problem: You have a method that returns a value but also changes the state of an object.

Solution: Create two methods, one for the query and one for the modification.

RF22: Split Temporary Variable

Problem: You have a temporary variable assigned to more than once, but is not a loop
variable nor a collecting temporary variable.

Solution: Make a separate temporary variable for each assignment.

RF23: Substitute Algorithm

Problem: You want to replace an algorithm with one that is clearer.

Solution: Replace the body of the method with the new algorithm.

RF24: Convert Local Variable to Field

Problem: You have local variable and you want to access it as a class member variable.

Solution: Turn a local variable into a field. If the variable is initialized on creation, then
the operation moves the initialization to the new field’s declaration or to the class’s
constructors.

177

Appendix B

Runtime Model Schema

Figure B.1: The runtime model consists of state variables and activities

179

Figure B.2: The State Variables Used For Storing Sensed Data

Figure B.3: A Detailed View On The Partition Element

Figure B.4: The Essential Elements For Modeling Control Flow

180

F
ig
u
re

B
.5
:
T
h
e
A
ct
iv
it
y
W

it
h
R
el
at
ed

E
le
m
en
ts

181

F
ig
u
re

B
.6
:
N
o
d
es

C
an

B
e
C
on

n
ec
te
d
T
o
E
ac
h
O
th
er

V
ia

A
F
lo
w

182

Figure B.7: Data Is Represented As Input And Output

183

References

[1] Robert Allen, Rmi Douence, and David Garlan. Specifying and analyzing dynamic
software architectures. In Proceedings of the 1st International Conference on Funda-
mental Approaches to Software Engineering, pages 21–37, 1998. 34

[2] Mehdi Amoui, Mahdi Derakhshanmanesh, Jürgen Ebert, and Ladan Tahvildari.
Software evolution towards model-centric runtime adaptivity. In Proceedings of the
15th European Conference on Software Maintenance and Reengineering, pages 89–92,
2011. 9, 65

[3] Mehdi Amoui, Siavash Mirarab, Sepand Ansari, and Caro Lucas. A genetic algorithm
approach to design evolution using design pattern transformations. International
Journal of Information Technology and Intelligent Computing, 1(2):235–244, 2006.
23

[4] Mehdi Amoui, Mazeiar Salehie, Siavash Mirarab, and Ladan Tahvildari. Adaptive
action selection in autonomic software using reinforcement learning. Autonomic and
Autonomous Systems, International Conference on, 0:175–181, 2008. 10, 91, 127,
168

[5] Mehdi Amoui, Mazeiar Salehie, and Ladan Tahvildari. Temporal software change
prediction using neural networks. International Journal of Software Engineering and
Knowledge Engineering, 19(7):995–1014, 2009. 10, 111

[6] Jesper Andersson, Rogério de Lemos, Sam Malek, and Danny Weyns. Modeling di-
mensions of self-adaptive software systems. In Software Engineering for Self-Adaptive
Systems, volume 5525 of Lecture notes in Computer Science, pages 27–47. 2009. 5

[7] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Ettore
Merlo. Recovering traceability links between code and documentation. Software
Engineering, IEEE Transactions on Software, 28(10):970 – 983, 2002. 21

185

[8] ARM: Application Response Measurement. http://www.opengroup.org/tech/

management/arm/, 2011. 27

[9] Reza Asadollahi, Maziar Salehie, and Ladan Tahvildari. Starmx: A framework for
developing self-managing java-based systems. In Proceedings of Software Engineering
for Adaptive and Self-Managing Systems, pages 58–67, 2009. 28, 32, 82

[10] AspectJ: Crosscutting Objects for Better Modularity. http://www.eclipse.org/

aspectj/, 2012. 28, 90

[11] Luciano Baresi, Liliana Pasquale, and Paola Spoletini. Fuzzy goals for requirements-
driven adaptation. In Proceedings of 18th IEEE International Conference on Re-
quirements Engineering, pages 125–134, 2010. 53

[12] Robert Bell. Predicting the location and number of faults in large software systems.
IEEE Tranaction Software Engineering, 31(4):340–355, 2005. 23

[13] Keith Bennett and Vaclav Rajlich. Software maintenance and evolution: A roadmap.
In Proceedings of the Conference on the Future of Software Engineering, pages 73–87,
2000. 3, 14

[14] Daniel Berry, Betty Cheng, and Ji Zhang. The four levels of requirements engi-
neering for and in dynamic adaptive systems. In 11th International Workshop on
Requirements Engineering Foundation for Software Quality, pages 95–100, 2005. 33

[15] Jesús Bisbal, Deirdre Lawless, Bing Wu, and Jane Grimson. Legacy information
systems: Issues and directions. IEEE Software, 16(5):103–111, 1999. 17

[16] Gordon Blair, Nelly Bencomo, and Robert France. Models@ run.time. Computer,
42(10):22–27, 2009. 92

[17] Barry W. Boehm. Software engineering economics, pages 641–686. Springer-Verlag
New York, Inc., New York, NY, USA, 2002. 135, 160

[18] Shawn Bohner. Extending software change impact analysis into COTS compo-
nents. In Software Engineering Workshop.Proceedings of 27th Annual NASA God-
dard/IEEE, pages 175–182, 2002. 21

[19] Shawn Bohner and Robert Arnold. An Introduction To Software Change Impact
Analysis. In Software Change Impact Analysis, pages 1–26. 1996. 20

186

http://www.opengroup.org/tech/management/arm/
http://www.opengroup.org/tech/management/arm/
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/

[20] Philippe Boinot, Renaud Marlet, Jacques Noye, Gilles Muller, and Charles Consel. A
declarative approach for designing and developing adaptive components. In Proceed-
ings of IEEE International Conference on Automated Software Engineering, pages
111–119, 2000. 37

[21] Jeremy Bradbury, James Cordy, Juergen Dingel, and Michel Wermelinger. A survey
of self-management in dynamic software architecture specifications. In Proceedings
Of The 1St ACM SIGSOFT Workshop On Self-Managed Systems, pages 28–33, 2004.
33

[22] Nevon Brake, James Cordy, Elizabeth Dan, Marin Litoiu, and Valentina Popes. Au-
tomating discovery of software tuning parameters. In Proceedings of the International
Workshop On Software Engineering for Adaptive And Self-Managing Systems, pages
65–72, 2008. 28, 38

[23] Frederick Brooks. No Silver Bullet Essence and Accidents of Software Engineering.
Computer, 20(4):10–19, 1987. 5, 67

[24] Rodney Brooks. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, 2(1):14–23, 1986. 31

[25] Ruven Brooks. Towards a theory of the comprehension of computer programs. In-
ternational Journal of Man-Machine Studies, 18(6):543 – 554, 1983. 20

[26] Greg Brown, Betty Cheng, Heather Goldsby, and Ji Zhang. Goal-oriented specifica-
tion of adaptation requirements engineering in adaptive systems. In Proceedings of
the International Workshop on Software Engineering for Adaptive and Self-Managing
Systems, pages 23–29, 2006. 34

[27] Jens Bruhn, Christian Niklaus, Thomas Vogel, and Guido Wirtz. Comprehensive
support for management of enterprise applications. In Proceedings of the ACS/IEEE
International Conference on Computer Systems and Applications, pages 755–762,
2008. 32

[28] Yuriy Brun, Giovanna Di, Marzo Serugendo, Cristina Gacek, Holger Giese, Hol-
ger Kienle amd Marin Litoiu, Mauro Pezz, and Mary Shaw. Engineering self-adaptive
systems through feedback loops. Software Engineering for Self-Adaptive Systems,
pages 48–70, 2009. 26

[29] BtM: IBM Build to Manage. http://www.ibm.com/developerworks/eclipse/

btm/, 2011. 29

187

http://www.ibm.com/developerworks/eclipse/btm/
http://www.ibm.com/developerworks/eclipse/btm/

[30] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter Kniesel. To-
wards a taxonomy of software change. Journal on Software Maintenance and Evolu-
tion: Research and Practice, 17(5):309–332, 2005. xvii, 3, 15, 16

[31] Jonathan Buckner, Joseph Buchta, Maksym Petrenko, and Vaclav Rajlich. JRipples:
a tool for program comprehension during incremental change. In Proceedings of the
13th International Workshop on Program Comprehension, pages 149 – 152, may 2005.
139

[32] Frank Buschmann, Kevlin Henney, and Douglas Schmidt. Pattern-Oriented Soft-
ware Architecture: A Pattern Language for Distributed Computing. Wiley Software
Patterns Series. John Wiley & Sons, Inc., 2007. 169

[33] Carlos Canal, Ernesto Pimentel, and José Troya. Specification and refinement of
dynamic software architectures. In Proceedings of the 1st Working IFIP Conference
on Software Architecture, pages 107–126, 1999. 34

[34] Gerardo Canfora, Massimiliano Di Penta, and Luigi Cerulo. Achievements and chal-
lenges in software reverse engineering. Communications of the ACM, 54(4):142–151,
2011. 19

[35] Walter Cazzola. Evaluation of object-oriented reflective models. In In Proceedings of
ECOOP Workshop on Reflective Object-Oriented Programming and Systems, pages
386–387, 1998. 58

[36] Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Software Evolution through
Dynamic Adaptation of Its OO Design, volume 2975 of Lecture Notes in Computer
Science, pages 67–80. Springer Berlin/Heidelberg, 2004. 26

[37] Ned Chapin, Joanne Hale, Khaled Khan, Juan Ramil, and Wui-Gee Tan. Types of
software evolution and software maintenance. Journal of Software Maintenance and
Evolution: Research and Practice, 13(1):3–30, 2001. 3, 14

[38] Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jes-
per Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna
Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt
Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu,
Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park, Mary Shaw,
Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle. Software engi-
neering for self-adaptive systems: A research roadmap. In Software Engineering for

188

Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer Science, pages
1–26. Springer-Verlag, 2009. 5

[39] Shang Cheng, An cheng Huang, David Garlan, Bradley Schmerl, and Peter
Steenkiste. Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture. IEEE Computer, 37(10):46–54, 2004. 25, 31, 69, 71

[40] Elliot Chikofsky and James Cross. Reverse engineering and design recovery: A
taxonomy. IEEE Software, 07(1):13–17, 1990. 18, 19

[41] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-Functional
Requirements in Software Engineering. Springer, 2000. 35

[42] Lawrence Chung and Narry Subramanian. Process-oriented metrics for software
architecture adaptability. In Proceedings of 5th IEEE International Symposium Re-
quirements Engineering, pages 310–311, 2001. 36

[43] James Coplien, Daniel Hoffman, and David Weiss. Commonality and variability in
software engineering. IEEE Software, 15(6):37–45, 1998. 64

[44] James Cordy. The TXL source transformation language. Science of Computer Pro-
gramming, 61(3):190–210, 2006. 38

[45] Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon Moonen, and Rainer
Koschke. A systematic survey of program comprehension through dynamic anal-
ysis. IEEE Transactions on Software Engineering, 35(5):684 –702, 2009. 19

[46] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation ap-
proaches. In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques
in the Context of the Model Driven Architecture, pages 1–17, 2003. 21, 22

[47] Elizabeth Dancy and James Cordy. STAC: Software Tuning Panels for Autonomic
Control. In Proceedings of the Conference of the Center for Advanced Studies on
Collaborative Research, pages 146–160, 2006. 38, 62, 63

[48] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed require-
ments acquisition. Science of Computer Programming, 20(1-2):3–50, 1993. 34, 52

[49] Mahdi Derakhshanmanesh. Leveraging Model-Based Techniques for Runtime Adap-
tivity in Software Systems. Master’s thesis, University of Koblenz-Landau, Germany,
2010. 85, 126

189

[50] Mahdi Derakhshanmanesh, Mehdi Amoui, Jürgen Ebert, and Ladan Tahvildari.
GRAF: Graph-Based Runtime Adaptation Framework. In Proceedings of the 6th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pages 128–137, 2011. xx, 68, 76

[51] Simon Dobson, Spyros Denazis, Antonio Fernndez, Dominique Gati, Erol Gelenbe,
Fabio Massacci, Paddy Nixon Fabrice Saffre, Nikita Schmidt, and Franco Zambonelli.
A survey of autonomic communications. ACM Transactions on Autonomous and
Adaptive Systems, 1(2):223–259, 2006. 34

[52] Theodosius Dobzhansky. What is an adaptive trait? The American Naturalist,
90(855):337–347, 1956. 1

[53] Theodosius G. Dobzhansky. Genetics and the Origin of Species. Columbia University
Press, New York, 3rd edition, 1951. 1

[54] Larry Dooley. Case study research and theory building. Advances in developing
human resources, 4(3):335–354, 2002. 133

[55] Jim Dowling. The Decentralised Coordination of Self-Adaptive Components for Au-
tonomic Distributed Systems. PhD thesis, Department of Computer Science, Trinity
College Dublin, 2004. 30, 31

[56] Gary Duzan, Joseph Loyall, Richard Schantz, Richard Shapiro, and John Zinky.
Building adaptive distributed applications with middleware and aspects. In Proceed-
ings of International Conference on Aspect-Oriented Software Development, pages
66–73, 2004. 25, 37

[57] Jürgen Ebert and Daniel Bildhauer. Reverse Engineering Using Graph Queries. In
Proceedings of Graph Transformations and Model-Driven Engineering, volume 5765
of Lecture Notes in Computer Science, pages 335–362. 2010. 86

[58] Jurgen Ebert, Volker Riediger, and Andreas Winter. Graph technology in reverse
engineering. the tgraph approach. In Proceedings of 10th Workshop Software Reengi-
neering. GI Lecture Notes in Informatics, pages 67–81, 2008. 19

[59] Jürgen Ebert, Roger Süttenbach, and Ingar Uhe. Meta-CASE in practice: A CASE
for KOGGE. In Proceedings of Advanced Information Systems Engineering, volume
1250 of Lecture Notes in Computer Science, pages 203–216. 1997. 71

190

[60] Eclipse. Java Development User Guide. http://www.eclipse.org/

documentation/, 2011. 112

[61] Eric Evans. Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional, 2004. 99

[62] Eric Evans and Martin Fowler. Specifications. In Proceedings of the Conference on
Pattern Languages of Programming, pages 97–34, 1997. 50

[63] Jean Marie Favre. Towards a basic theory to model model driven engineering. In
Workshop on Software Model Engineering, 2004. 22

[64] Franck Fleurey and Arnor Solberg. A domain specific modeling language supporting
specification, simulation and execution of dynamic adaptive systems. In Proceedings
of the 12th International Conference on Model Driven Engineering Languages and
Systems, pages 606–621, 2009. 31

[65] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA, 1999. 18, 22, 112, 159

[66] Fraps: Realtime Video Capture & Benchmarking. http://www.fraps.com/, 2011.
155

[67] Alen Ganek and Thomas Corbi. The dawning of the autonomic computing era. IBM
Systems Journal, Special Issues on Autonomic Computing, 42(01):5–18, 2003. 35

[68] David Garlan, Shang Cheng, and Bradeley Schmerl. Increasing system dependability
through architecture-based self-repair. In Proceedings of Architecting Dependable
Systems, pages 61–89, 2003. 63

[69] David Garlan and Bradley Schmerl. Using architectural models at runtime: Research
challenges. In Software Architecture, volume 3047 of Lecture Notes in Computer
Science, pages 200–205. 2004. 41, 68, 92

[70] Hamoun Ghanbari and Marin Litoiu. Identifying implicitly declared self-tuning be-
havior through dynamic analysis. In Proceedings of the ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, pages 48 –57, may 2009. 139

[71] Tudor Gı̂rba and Stphane Ducasse. Modeling history to analyze software evolution.
Journal of Software Maintenance and Evolution: Research and Practice, 18(3):207–
236, 2006. 23

191

http://www.eclipse.org/documentation/
http://www.eclipse.org/documentation/
http://www.fraps.com/

[72] Heather Goldsby, Pete Sawyer, Nelly Bencomo, Betty Cheng, and Danny Hughes.
Goal-based modeling of dynamically adaptive system requirements. In Proceedings of
the 15th Annual IEEE International Conference and Workshop on the Engineering
of Computer Based Systems, pages 36–45, 2008. 33

[73] Hassan Gomaa and Mohamed Hussein. Software reconfiguration patterns for dynamic
evolution of software architectures. In Proceedings of Fourth Working IEEE/IFIP
Conference on Software Architecture, pages 79 – 88, 2004. 169

[74] Paul Grace, Bert Lagaisse, Eddy Truyen, and Wouter Joosen. A reflective framework
for fine-grained adaptation of aspect-oriented compositions. In Proceedings of the 7th
international conference on Software composition, pages 215–230, 2008. 25, 32, 37,
71

[75] Susan Graham, Peter Kessler, and Marshall Mckusick. Gprof: A call graph execution
profiler. In Proceedings of the SIGPLAN Symposium on Compiler Construction,
pages 120–126, 1982. 28

[76] Todd Graves, Alan Karr, and Harvey Siy Steve Marron. Predicting fault incidence
using software change history. IEEE Transactions Software Engineering, 26(7):653–
661, 2000. 23

[77] Philip Greenwood and Lynne Blair. Using dynamic aspect-oriented programming
to implement an autonomic system. In Proceedings of Dynamic Aspects Workshop,
pages 76–88, 2004. 25, 29

[78] Object Management Group. Unified Modeling Language (UML), Superstructure,
2010. Version 2.3. 78

[79] Carl Gunter, Elsa Gunter, Michael Jackson, and Pamela Zave. A reference model
for requirements and specifications. Software, IEEE, 17(3):37 –43, 2000. 42

[80] Charles Haley, Robin Laney, Jonathan Moffett, and Bashar Nuseibeh. Security re-
quirements engineering: A framework for representation and analysis. IEEE Trans-
actions on Software Engineering, 34(01):133–153, 2008. 53

[81] Robert Hanmer. Patterns for Fault Tolerant Software. John Wiley & Sons, Inc.,
2007. 169

[82] Ahmed Hassan and Richard Holt. The top ten list: Dynamic fault prediction. In
Proceedings of the 21st IEEE International Conference on Software Maintenance,
pages 263–272, 2005. 23

192

[83] Holger H. Hoos. Programming by optimization. Communications of the ACM,
55(2):70–80, 2012. 3, 37

[84] Tassilo Horn and Jürgen Ebert. The gretl transformation language. In Theory
and Practice of Model Transformations, volume 6707 of Lecture Notes in Computer
Science, pages 183–197. Springer Berlin / Heidelberg, 2011. 22, 86

[85] Xishi Huang, Luiz Capretz, Jing Ren, and Danny Ho. A neuro-fuzzy model for
software cost estimation. In Proceedings of 3rd International Conference on Quality
Software, pages 126–133, 2003. 23

[86] IBM. Autonomic computing toolkit: Developer’s guide. www6.software.ibm.com/

software/developer/library/autonomic/books/fpy3mst.htm, 2005. 27

[87] IBM. An architectural blueprint for autonomic computing. http://www-01.ibm.

com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf,
2006. 26, 80

[88] IEEE. Standard for software maintenance, 2006. 3, 14

[89] Michael Jackson. Software Requirements & Specifications: a Lexicon of Practice,
Principles and Prejudices. Addison-Wesley Publishing Co., 1995. 42, 45, 68

[90] JAIN SIP: The Standardized Java Interface to the Session Initiation Protocol. https:
//jain-sip.dev.java.net/, 2011. 138

[91] JAKE2. http://bytonic.de/html/jake2.html, 2012. xviii, 134, 147, 149

[92] Edgar Jakumeit, Sebastian Buchwald, and Moritz Kroll. Grgen.net. International
Journal on Software Tools for Technology Transfer, 12(3):263–271, 2010. 22

[93] JBoss AOP: Framework for Organizing Cross Cutting Concerns. http://www.jboss.
org/jbossaop/, 2011. 28, 89

[94] JBoss Application Server. http://jboss.org/jbossas/, 2011. 89

[95] Per Jönsson. Impact Analysis Organisational Views and Support Techniques. PhD
thesis, Blekinge Institute of Technology, Sweden, 2005. 21

[96] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick Valduriez.
ATL: a QVT-like transformation language. In Companion to the 21st ACM SIG-
PLAN symposium on Object-oriented programming systems, languages, and applica-
tions, pages 719–720, 2006. 22

193

www6.software.ibm.com/software/developer/library/autonomic/books/fpy3mst.htm
www6.software.ibm.com/software/developer/library/autonomic/books/fpy3mst.htm
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
https://jain-sip.dev.java.net/
https://jain-sip.dev.java.net/
http://bytonic.de/html/jake2.html
http://www.jboss.org/jbossaop/
http://www.jboss.org/jbossaop/
http://jboss.org/jbossas/

[97] Henry Kautz, David Mcallester, and Bart Selman. Encoding plans in propositional
logic. In Proceedings of the 5th International Conference on the Principle of Knowl-
edge Representation and Reasoning, pages 374–384, 1996. 55

[98] Jeffrey Kephart and David Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003. xix, 3, 4, 24, 29, 38, 66, 68, 84, 93, 164

[99] Jeffrey Kephart and William Walsh. An artificial intelligence perspective on auto-
nomic computing policies. In Proceedings of the 5th IEEE International Workshop
on Policies for Distributed Systems and Networks, pages 3–12, 2004. 54

[100] Joshua Kerievsky. Refactoring to Patterns. Pearson Higher Education, 2004. 111,
112

[101] Taghi Khoshgoftaar, Edward Allen, Kalai Kalaichelvan, and Nishith Goel. Predictive
modeling of software quality for very large telecommunications systems. In Communi-
cations of Conference Record Converging Technologies for Tomorrow’s Applications,
volume 1, pages 214–219, 1996. 23

[102] Taghi Khoshgoftaar, Abhijit Pandya, and Hemant More. A neural network approach
for predicting software development faults. In Proceedings of International Sympo-
sium on Software Reliability Engineering, pages 83–89, 1992. 23

[103] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In ECOOP’97
Object-Oriented Programming, volume 1241 of Lecture Notes in Computer Science,
pages 220–242. 1997. 28

[104] Gregor Kiczales and Jim Des Rivieres. The Art of the Metaobject Protocol. MIT
Press, Cambridge, MA, USA, 1991. 28

[105] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003. 21

[106] Mieczyslaw Kokar, Kenneth Baclawski, , and Yonet Eracar. Control theory-based
foundations of self-controlling software. IEEE Intelligent Systems, 14(3):37–45, 1999.
34, 43, 51

[107] Jeff Kramer and Jeff Magee. Analysing dynamic change in software architectures:
a case study. In Proceedings of 4th International Conference on Configurable Dis-
tributed Systems, pages 91–100, 1998. 34

194

[108] Robert Laddaga. Active Software, volume 1936 of Lecture Notes in Computer Science,
pages 11–26. Springer Berlin / Heidelberg, 2001. 24

[109] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16:872–923, 1994. 55

[110] Alexei Lapouchnian, Sotirios Liaskos, John Mylopoulos, and Yijun Yu. Towards
requirements-driven autonomic systems design. In Proceedings of Workshop on De-
sign and Evolution of Autonomic Application Software, pages 1–7, 2005. 36

[111] Gregory Lee, Martin Schulz, Dong Ahn, Andrew Bernat, Bronis de Supinski, Steven
Ko, and Barry Rountree. Dynamic binary instrumentation and data aggregation on
large scale systems. International Journal of Parallel Programming, 35(3):207–232,
2007. 28

[112] Meir Lehman. Laws of software evolution revisited. In Proceedings of the 5th Euro-
pean Workshop on Software Process Technology, pages 108–124, 1996. 2, 4, 14, 93,
164

[113] Meir Lehman and Juan Ramil. Software evolution and software evolution processes.
Annals of Software Engineering, 14(1-4):275–309, 2002. 14

[114] Karl Lieberherr and Cun Xiao. Customizing adaptive software to object-oriented
software using grammars. International Journal of Foundations of Computer Science,
5(5):179–208, 1994. 25

[115] Bennett Lientz and Burton Swanson. Software Maintenance Management. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1980. 14, 15

[116] Sam Lightstone. Foundations of autonomic computing development. In Proceedings
of 7th IEEE International Workshop on Engineering of Autonomic and Autonomous
Systems, pages 163–171, 2007. 35

[117] David Littman, Jeannine Pinto, Stanley Letovsky, and Elliot Soloway. Mental models
and software maintenance. In Proceedings of 1st workshop on empirical studies of
programmers on Empirical studies of programmers, pages 80–98, 1986. 20

[118] Michael Littman, Nishkam Ravi, Eitan Fenson, and Rich Howard. Reinforcement
learning for autonomic network repair. In Proceedings of the 1st International Con-
ference on Autonomic Computing, pages 284–285, 2004. 31

195

[119] Xia Liu and Qing Wang. Study on application of a quantitative evaluation approach
for software architecture adaptability. In Proceedings of the 5th International Con-
ference on Quality Software, pages 265–272, 2005. 37

[120] Jochen Ludewig. Models in software engineering - an introduction. Software and
Systems Modeling, 2:5–14, 2003. 41, 67

[121] Michael R. Lyu, editor. Handbook of software reliability engineering. McGraw-Hill,
Inc., Hightstown, NJ, USA, 1996. 138

[122] Pattie Maes. Concepts and experiments in computational reflection. SIGPLAN
Notes, 22(12):147–155, 1987. 24, 28

[123] Pattie Maes. Situated agents can have goals. Robotics and Autonomous Systems,
6(1-2):49–70, 1990. 30

[124] Thomas McCabe. A complexity measure. IEEE Transactions on Software Engineer-
ing, 2(4):308 – 320, 1976. 135

[125] Philip McKinley, Masoud Sadjadi, Eric Kasten, and Betty Cheng. Composing adap-
tive software. IEEE Computer, 37(7):56–64, 2004. 37, 58, 108

[126] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electronic
Notes in Theoretical Computer Science, 152(0):125 – 142, 2006. 21

[127] Tom Mens and Tom Tourwe. A survey of software refactoring. IEEE Transactions
on Software Engineering, 30(2):126–139, 2004. 111, 112

[128] Michael Merideth and Priya Narasimhan. Retrofitting networked applications to add
autonomic reconfiguration. ACM SIGSOFT Software Engineering Notes, 30(4):1–7,
2005. 38

[129] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition. Prentice-Hall,
1997. 123

[130] Audris Mockus, Basking Zhang, and Paul Luo Li. Predictors of customer perceived
software quality. In Proceedings of the 27th international conference on Software
engineering, pages 225–233, 2005. 23

[131] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and Arnor Solberg.
Models@ run.time to support dynamic adaptation. Computer, 42(10):44–51, 2009.
31, 41, 68, 92

196

[132] Brice Morin, Olivier Barais, Gregory Nain, and Jean-Marc Jezequel. Taming dy-
namically adaptive systems using models and aspects. In Proceedings of the 31st
International Conference on Software Engineering, pages 122–132, 2009. 32, 69

[133] Hausi Müller, Mauro Pezzè, and Mary Shaw. Visibility of control in adaptive sys-
tems. In Proceedings of the 2nd international workshop on Ultra-large-scale software-
intensive systems, pages 23–26, 2008. 57, 63

[134] Emerson Murphy-Hill. Programmer Friendly Refactoring Tools. PhD thesis, Portland
State University, 2009. 112

[135] John Mylopoulos, Lawrence Chung, and Eric Yu. From object-oriented to goal-
oriented requirements analysis. Communications of the ACM, 42(1):31–37, 1999.
52

[136] George Stephanides Nikolaos Tsantalis, Alexander Chatzigeorgiou. Predicting the
probability of change in object-oriented systems. IEEE Transactions on Software
Engineering, 31(7):601–614, 2005. 23

[137] Object Management Group. MDA Guide Version 1.0.1, 2003. 22

[138] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Specification, Version 1.1, 2011. 22

[139] Object Management Group. MOF 2 XMI Mapping (XMI), Version 2.4.1, 2011. 86

[140] Object Management Group. UML profile specifications. www.omg.org/technology/
documents/profile_catalog.htm, 2011. 66

[141] Katsuhiko Ogata. Modern control engineering. Prentice Hall PTR, 2001. xix, 26, 34,
43, 101

[142] William Opdyke. Refactoring object-oriented frameworks. PhD thesis, University of
Illinois at Urbana-Champaign, Champaign, IL, USA, 1992. 22, 111

[143] OpenJSIP: Open-Source SIP Services Implemented in Java. http://code.google.
com/p/openjsip/, 2011. 134, 137

[144] Peyman Oreizy, Michael Gorlick, Richard Taylor, Dennis Heimbigner, Gregory John-
son, Nenad Medvidovic, Alex Quilici, David Rosenblum, and Alexander Wolf. An
architecture-based approach to self-adaptive software. IEEE Intelligent Systems,
14(3):54–62, 1999. 24, 37, 38

197

www.omg.org/technology/documents/profile_catalog.htm
www.omg.org/technology/documents/profile_catalog.htm
http://code.google.com/p/openjsip/
http://code.google.com/p/openjsip/

[145] Peyman Oreizy, Nenad Medvidovic, and Richard Taylor. Architecture-based runtime
software evolution. In Proceedings of International Conference on Software Engineer-
ing, pages 177–186, 1998. 25, 137

[146] Michael Oudshoorn, Muztaba Fuad, and Debzani Deb. Towards autonomic com-
puting: Injecting self-organizing and self-healing properties into java programs. In
Proceedings of the 5th conference on New Trends in Software Methodologies Tools
and Techniques, volume 147, pages 384–406, 2006. 38

[147] OW2 Consortium. ASM: Java bytecode manipulation and analysis framework. http:
//asm.ow2.org/, 2010. 28

[148] Janak Parekh, Gail Kaiser, Philip Gross, and Giuseppe Valetto. Retrofitting au-
tonomic capabilities onto legacy systems. Cluster Computing, 9(2):141–159, 2006.
38

[149] David Parnas and Jan Madey. Functional documents for computer systems. Science
of Computer Programming, 25(1):41–61, 1995. xix, 46, 47

[150] Renaud Pawlak, Lionel Seinturier, Laurence Duchien, Gérard Florin, Fabrice Legond-
Aubry, and Laurent Martelli. JAC: an aspect-based distributed dynamic framework.
Software: Practice and Experience, 34(12):1119–1148, 2004. 29

[151] Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic weaving for aspect-
oriented programming. In Proceedings of the 1st international conference on Aspect-
oriented software development, pages 141–147, 2002. 28

[152] Steve Rabin. AI Game Programming Wisdom. Charles River Media, Inc., Rockland,
MA, USA, 2002. 147

[153] Sheela Ramanna. Rough neural network for software change prediction. In Proceed-
ings of International Conference on Rough Sets and Current Trends in Computing,
pages 602–609, 2002. 23

[154] Andres Ramirez and Betty Cheng. Design patterns for developing dynamically adap-
tive systems. In Proceedings of Workshop on Software Engineering for Adaptive and
Self-Managing Systems, pages 49–58, 2010. 169

[155] Rational Software Architect. http://www.ibm.com/developerworks/rational/

products/rsa/, 2010. 86

198

http://asm.ow2.org/
http://asm.ow2.org/
http://www.ibm.com/developerworks/rational/products/rsa/
http://www.ibm.com/developerworks/rational/products/rsa/

[156] Dave Robson, Keith Bennett, Barry Cornelius, and Malcolm Munro. Approaches to
program comprehension. Journal of Systems and Software, 14(2):79 – 84, 1991. 19

[157] Julio Rosenblatt. DAMN: a distributed architecture for mobile navigation. Journal
of Experimental & Theoretical Artificial Intelligence, 9(2-3):339–360, 1997. 30

[158] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009. 55

[159] Seyed Masoud Sadjadi, Philip McKinley, Betty Cheng, and Kurt Stirewalt. TRAP/J:
Transparent Generation of Adaptable Java Programs. In Proceedings of the Interna-
tional Symposium on Distributed Objects and Applications, pages 1243–1261, 2004.
32

[160] Mazeiar Salehie. A Quality-Driven Approach to Enable Decision-Making in Self-
Adaptive Software. PhD thesis, University of Waterloo, 2009. 100, 137

[161] Mazeiar Salehie, Sen Li, Reza Asadollahi, and Ladan Tahvildari. Change support in
adaptive software: A case study for fine-grained adaptation. In Proceedings of the
6th IEEE Conference and Workshops on Engineering of Autonomic and Autonomous
Systems, pages 35–44, 2009. 29

[162] Mazeiar Salehie and Ladan Tahvildari. Autonomic computing: emerging trends and
open problems. In Proceedings of the ICSE Workshop on Design and Evolution of
Autonomic Application Software, pages 82–88, 2005. xix, 36, 51

[163] Mazeiar Salehie and Ladan Tahvildari. Coordinating self-healing and self-optimizing
in autonomic elements: an experiment. In Proceedings of the International Workshop
on Software Engineering for Adaptive and Self-Managing Systems, page 98, 2006. 37

[164] Mazeiar Salehie and Ladan Tahvildari. A weighted voting mechanism for action
selection problem in self-adaptive software. In Proceedings of 1st IEEE International
Conference on Self-Adaptive and Self-Organizing Systems, pages 328–331, 2007. 31

[165] Mazeiar Salehie and Ladan Tahvildari. Self-Adaptive Software: Landscape and Re-
search Challenges. ACM Transactions on Autonomous and Adaptive Systems, 4(2):1–
42, 2009. 31, 34, 35, 63, 82

[166] Mohammed Salifu, Yijun Yu, and Bashar Nuseibeh. Specifying monitoring and
switching problems in context. In Proceedings of the 15th IEEE International Re-
quirements Engineering Conference, pages 211–220, 2007. 33

199

[167] Robert Seacord, Daniel Plakosh, and Grace Lewis. Modernizing Legacy Systems:
Software Technologies, Engineering Process and Business Practices. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003. 3, 15, 17

[168] Mary Shaw. Prospects for an engineering discipline of software. Software, 7(6):15–24,
1990. 2

[169] Martin Shepperd and Gada Kadoda. Comparing software prediction techniques using
simulation. IEEE Transactions on Software Engineering - Special section on the
seventh international software metrics symposium, 27(11):1014–1022, 2001. 23

[170] Shigeru Chiba. Javassist: Java bytecode manipulation made simple, 2010. 28

[171] SIPp: Traffic Generator for the SIP Protocol. http://sipp.sourceforge.net/,
2010. 143

[172] Wassiou Sitou and Bernd Spanfelner. Towards requirements engineering for context
adaptive systems. In Proceedings of the 31st Annual International Computer Software
and Applications Conference, volume 2, pages 593–600, 2007. 33

[173] Vitor Souza, Alexei Lapouchnian, William Robinson, and John Mylopoulos. Aware-
ness requirements for adaptive systems. In Proceedings of the 6th international sym-
posium on Software engineering for adaptive and self-managing systems, pages 60–69,
2011. 53

[174] Amitabh Srivastava and Alan Eustace. ATOM: A system for building customized
program analysis tools. In Proceedings of the ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 196–205, 1994. 28

[175] Nary Subramanian and Lawrence Chung. Metrics for software adaptability. In Pro-
ceedings of the Software Quality Management Conference, pages 371–380, 2001. 37

[176] Nary Subramanian and Lawrence Chung. Software architecture adaptability: An
NFR approach. In Proceedings of the 4th International Workshop on Principles of
Software Evolution, pages 52–61, 2001. 36, 46

[177] Nary Subramanian and Lawrence Chung. Tool support for engineering adaptability
into software architecture. In Proceedings of the 5th International Workshop on
Principles of Software Evolution, pages 86–96, 2002. 36

[178] Sun Microsystems, Inc. Java Management Extensions (JMX) Specification, version
1.4, 2006. 28

200

http://sipp.sourceforge.net/

[179] Sun Microsystems, Inc. Java Virtual Machine Tool Interface (JVMTI), 2006. 28

[180] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998. 31, 55, 168

[181] Gabriele Taentzer, Michael Goedicke, and Torsten Meyer. Dynamic change man-
agement by distributed graph transformation: Towards configurable distributed sys-
tems. In Proceedings of the 6th International Workshop on Theory and Application
of Graph Transformations, pages 179–193, 2000. 33

[182] Ladan Tahvildari and Kostas Kontogiannis. Improving design quality using meta-
pattern transformations: A metric-based approach. Software Maintenance and Evo-
lution: Research and Practice, 16(4-5):331–361, 2004. 22

[183] Pentti Tarvainen. Adaptability evaluation of software architectures; a case study. In
Proceedings of the 31st Annual International Computer Software and Applications
Conference, volume 2, pages 579–586, 2007. 37

[184] BCEL Team. BCEL: Byte Code Engineering Library. http://jakarta.apache.

org/bcel/, 2006. 28

[185] Gerald Tesauro. Reinforcement learning in autonomic computing: A manifesto and
case studies. IEEE Internet Computing, 11(1):22–30, 2007. 31, 55

[186] Lance Tokuda and Don Batory. Evolving object-oriented designs with refactorings.
Automated Software Engineering, 8(1):89–120, 2001. 22, 111

[187] TPTP: Eclipse Test & Performance Tools Platform. http://www.eclipse.org/

tptp/, 2011. 155

[188] Wladyslaw Turski. Software stability. In Proceedings of the 6th ACM Europian
Regional Conference on System Architecture, pages 107–116, 1981. 14

[189] Axel van Lamsweerde. Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. John Wiley and Sons, 2009. 52, 54, 100

[190] Daniel Varr and Andres Balogh. The model transformation language of the VIATRA2
framework. Science of Computer Programming, 68(3):214 – 234, 2007. 22

[191] Norha Villegas, Hausi Müller, Gabriel Tamura, Laurence Duchien, and Rubby Casal-
las. A framework for evaluating quality-driven self-adaptive software systems. In
Proceedings of the 6th international symposium on Software engineering for adaptive
and self-managing systems, pages 80–89, 2011. 51

201

http://jakarta.apache.org/bcel/
http://jakarta.apache.org/bcel/
http://www.eclipse.org/tptp/
http://www.eclipse.org/tptp/

[192] Eelco Visser. A survey of rewriting strategies in program transformation systems.
Electronic Notes in Theoretical Computer Science, 57(0):109 – 143, 2001. 21

[193] Thomas Vogel and Holger Giese. Adaptation and abstract runtime models. In
Proceedings of the ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems, pages 39–48, 2010. 32, 71, 92

[194] Anneliese von Mayrhauser and Marie Vans. Industrial experience with an integrated
code comprehension model. Software Engineering Journal, 10(5):171 –182, 1995. 19

[195] Anneliese Von Mayrhauser and Marie Vans. Program comprehension during software
maintenance and evolution. Computer, 28(8):44 –55, 1995. 19

[196] Nelson Weiderman, John Bergey, Dennis Smith, and Scott Tilley. Approaches to
legacy system evolution. Technical Report CMU/SEI-97-TR-014, Software Engi-
neering Institute, Carnegie Mellon University, Pittsburg, PA, 1997. 14, 17

[197] Peter Weissgerber and Stephan Diehl. Mining version histories to guide software
changes. IEEE Transactions in Software Engineering, 31(6):429–445, 2005. 23

[198] Danny Weyns, Sam Malek, and Jesper Andersson. Forms: a formal reference model
for self-adaptation. In Proceedings of the 7th international conference on Autonomic
computing, pages 205–214, 2010. 24

[199] Ji Zhang and Betty Cheng. Model-based development of dynamically adaptive soft-
ware. In Proceedings of the 28th International Conference on Software Engineering,
pages 371–380, 2006. 34

[200] Ji Zhang and Betty Cheng. Using temporal logic to specify adaptive program se-
mantics. Journal of Systems and Software, 79(10):1361–1369, 2006. 34

202

	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Description
	Research Challenges
	The Approach
	Thesis Contributions
	Thesis Organization

	Background Concepts and Related Work
	Software Evolution
	Software Modernization
	Software Reengineering
	Reverse Engineering
	Program Comprehension
	Model Transformation
	Refactoring
	Software-Change Prediction

	Self-Adaptive Software
	Architectural Perspective
	Enabling Technologies
	Adaptation Frameworks

	Engineering Aspects of Self-Adaptive Software
	Specifying Adaptation Requirements
	Design-Space Exploration
	Retrofitting Adaptivity into Legacy Systems

	Summary

	Conceptual Modeling of Self-Adaptive Software
	Conceptualization
	Adaptation Requirements
	A Metamodel for Adaptation Specifications
	Adaptation Goals
	Domain Attributes
	Adaptation Actions
	Adaptation Policies

	A Metamodel for Adaptability Specifications
	State Variables
	Effecting Styles
	Sensing Styles
	Adaptability Factors
	From Conceptual to Concrete Adaptability Models

	Summary

	A Model-Centric Self-Adaptation Approach
	Design Considerations
	Model Interpretation for Change Reflection
	Model Verification
	Model Synchronization
	Separation of Concerns
	Low Coupling to Adaptation Framework
	Extensibility and Reusability

	Adaptable Software
	Adaptation Framework
	Adaptation Middleware Layer
	Runtime Model Layer
	Adaptation Management Layer
	Management Extension Layer

	Runtime Behaviour
	Reification and Sensing Use Cases
	Controlling Use Case
	Effecting Use Case
	Reflection Use Case

	Realization
	Runtime Modeling with the TGraph Approach
	Model Interpretation and Reflection
	Tagging Adaptable Elements with Java Annotations
	Connecting to the Framework using AOP
	Adaptation Rule Engine
	External Adaptation Managers

	Summary

	Reengineering Towards Model-Centric Self-Adaptive Software
	The Process Model
	Adaptation Requirements Analysis
	System Analysis
	Locating Concepts
	Comprehending Software Adaptability
	Comparing Adaptability Models

	Planning
	Addressing Variability for Adaptation
	Deciding on State Variables Access Mechanisms
	Anticipating Future Changes

	Preparing Adaptable Software
	Refactorings
	Creational Transformations
	Tagging Transformations
	Adaptability Transformations

	Runtime Model Generation
	Preparing GRAF
	Implementing Adaptation Rules
	Advanced Customization

	Integration and Deployment
	Startup Configuration
	Load-Time Initialization

	Summary

	Case Studies
	Measures
	Evolution Cost
	Evolution Effectiveness
	Adaptation Cost
	Adaptation Effectiveness

	OpenJSIP: A Stand-Alone Telephony Server
	The Adaptation Requirement
	Adaptation Requirements Analysis
	System Analysis
	Planning for Change
	Preparing Adaptable OpenJSIP
	Results

	Jake2: A Legacy Game Engine
	The Adaptation Requirement
	Adaptation Requirements Analysis
	Preparing Adaptable Jake2
	Developing Adaptation Rules
	Evaluating GRAF/Jake2 Performance

	Discussions on the Obtained Results
	The Importance of Having Proper Adaptable Software
	The Advantages and Disadvantages of GRAF-based SAS
	The Cost-Effectiveness of the Approach.

	Threats to Validity
	Internal Validity
	External Validity

	Summary

	Concluding Remarks
	Future Research Directions

	APPENDICES
	Catalogue of Supporting Refactorings
	Runtime Model Schema
	References

