
Evolving Time Surfaces in a Virtual Stirred Tank

Bidur Bohara, Farid Harhad

Department of Computer Science

Louisiana State University

Baton Rouge, LA-70803

bbohar1@tigers.lsu.edu,

fharhad@cct.lsu.edu

Werner Benger

Center for Computation & Technology

Louisiana State University

Baton Rouge, LA-70803

werner@cct.lsu.edu

Nathan Brener

S. Sitharama Iyengar, Bijaya B. Karki

Department of Computer Science

Louisiana State University

Baton Rouge, LA-70803

brener@csc.lsu.edu

iyengar@csc.lsu.edu, karki@csc.lsu.edu

Marcel Ritter

Department of Computer Science

University of Innsbruck

Technikerstrasse 21a

A-6020 Innsbruck, Austria

marcel.ritter@student.uibk.ac.at

Kexi Liu, Brygg Ullmer

Department of Computer Science

Center for Computation & Technology

Louisiana State University

Baton Rouge, LA-70803

kliu9@lsu.edu, ullmer@lsu.edu

Somnath Roy

Sumanta Acharya

Department of Mechanical Engineering

Louisiana State University

Baton Rouge, LA-70803

sroy13@tigers.lsu.edu, acharya@me.lsu.edu

ABSTRACT

The complexity of large scale computational fluid dynamic simulations demand powerful tools to investigate the numerical

results. Time surfaces are the natural higher-dimensional extension of time lines, the evolution of a seed line of particles in the

flow of a vector field. Adaptive refinement of the evolving surface is mandatory for high quality under reasonable computation

times. In contrast to the lower-dimensional time line, there is a new set of refinement criteria that may trigger the refinement of

a triangular initial surface, such as based on triangle degeneracy, triangle area, surface curvature etc. In this article we describe

the computation of time surfaces for initially spherical surfaces. The evolution of such virtual “bubbles” supports analysis of

the mixing quality in a stirred tank CFD simulation. We discuss the performance of various possible refinement algorithms,

how to interface alternative software solutions and how to effectively deliver the research to the end-users, involving specially

designed hardware representing the algorithmic parameters.

Keywords: visualization, CFD, large data, pathlines, timelines, surface refinement

1 INTRODUCTION

1.1 Motivation

Computational Fluid Dynamics (CFD) is a computa-

tionally based design and analysis technique for the

study of fluid flow. CFD can provide high fidelity tem-

porally and spatially resolved numerical data, which

can be based on meshes that range from a few million

cells to tens of millions of cells. The data from CFD

can range to several hundred thousand time steps and

be of sizes in order of terabytes.

Therefore, a key challenge here is the ability to eas-

ily mine the time dependent CFD data; extract key fea-

tures of the flow field; display these spatially evolving

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

features in the space-time domain of interest. In this

work, we present an interdisciplinary effort to generate

and visualize time surfaces of the fluid flow from the

time dependent CFD data. The implementation of time

surfaces, such as an evolving surface of a sphere, for

analyzing the flow field is more relevant in context of a

stirred tank system. The integration of surfaces over

time generates an evolving surface that can illustrate

key flow characteristics such as how matter injected in

a stirred tank disperses, and in what regions of the tank

is the turbulence high. Such observations are crucial to

identifying the best conditions for optimal mixing.

The CFD dataset was obtained from a large eddy

simulation (LES) of flow inside a stirred tank reactor

(STR). The simulation is performed on 200 processors

(64 bit 2.33 G Hz Xeon quadcore) where each time-step

is calculated in approximately 36 seconds. Stirred tanks

are the most commonly used mixing device in chemical

and processing industries. Improvements in the design

of stirred tanks can translate into several billion dollar

annual profit. However, better designs of stirred tanks

require detailed understanding of flow and mixing be-

121 Journal of WSCG



Figure 1: Two evolving spheres visualized just before

their mixing in the Stirred Tank simulation system.

havior inside the tank. The present study focuses on an-

alyzing the dynamics of mixing inside the tank. Turbu-

lent flow inside the stirred tank was solved numerically

using LES to resolve small-scale turbulent fluctuations

and the immersed boundary method (IBM) in order to

model the rotating impeller blade in the framework of

a fixed curvilinear grid representing the tank geometry.

The grid is distributed over 2088 blocks and comprised

of 3.1 million cells in total. Flow variables like veloc-

ity and pressure are defined at the center of each cell

and computed for each time step over a total of 5700

time steps representing 25 complete rotations of the im-

peller. The handling and processing of these volumi-

nous, multi-block, non-uniform curvilinear datasets to

generate time surfaces and track set of particles in the

fluid flow is the main challenge addressed in this paper.

1.2 Related Work

One of the earliest works related to this problem is the

generation of stream surfaces, in particular Hultquist’s

attempt to generate a triangular mesh representation

of streamsurfaces. Hultquist introduced an algorithm

that constructs stream surfaces by generating triangu-

lar tiles of adjacent streamlines or stream ribbons. In

Hultquist’s algorithm, tiling is done in a greedy fashion.

When forming the next triangle, the shortest leading

edge is selected out of the two possible trailing trian-

gles and appended to the ribbon. Each ribbon forming

the stream surface is advanced until it is of equivalent

length to its neighboring ribbon along the curve they

share [13]. Particles are added to the trail of the stream

surface by splitting wide ribbons, and particles are re-

moved from the stream surface by merging two narrow

(and adjacent) ribbons into one. Note that Hultquist’s

algorithm was developed for steady flows. Also, ad-

vancing the front of the stream surface requires exam-

ining all the trailing ribbons.

Along the same lines, Schafhitzel et al. [15] adopted

the Hultquist criteria to define when particles are re-

moved or added, but they derived a point-based algo-

rithm that is designed for GPU implementation. In

addition to rendering a stream surface, they applied

line integral convolution to show the flow field patterns

along the surface.

Rather than remeshing a stream surface when the sur-

face becomes highly distorted, von Funck et al [23] in-

troduced a new representation of smoke in a flow as

a semi transparent surface by adjusting opacity of tri-

angles that get highly distorted and making them fade.

Throughout the evolution of the smoke surface, they do

not change the mesh, but rather use the optical model

of smoke as smoke tends to fade in high divergent ar-

eas [23]. However, the authors report that this method

does not work well if the seeding structure is a volume

structure instead of a line structure.

Core tangibles [21] we use in this paper are physi-

cal interaction elements such as Cartouche menus and

interaction trays, which serve common roles across a

variety of tangible and embedded interfaces. These el-

ements can be integrated to dynamically bind discrete

and continuous interactors to various digital behaviors.

Many toolkits support low-level tangible user interface

design, allowing designers to assemble physical com-

ponents into hardware prototypes which can be inter-

faced to software applications using event-based com-

munication. Notable examples include PHidgets [10],

Arduino [2], iStuff [1], SmartIts [3] etc. Core tangibles

focus on tangible interfaces for visualization, simula-

tion, presentation, and education, often toward collabo-

rative use by scientist end-users [21].

2 MATHEMATICAL BACKGROUND

In the domain of computer graphics one distinguishes

four categories of integration lines q ⊂ M that can

be computed from a time-dependent vector field v ∈
T (M), mathematically a section of the tangent bun-

dle T (M) on a manifold M describing spacetime: path

lines, stream lines, streak lines and material lines. Each

category represents a different aspect of the vector field:

path lines (also called trajectories) follow the evolu-

tion of a test particle as it is dragged around by the

vector field over time.

stream lines (also called field lines) represent the in-

stantaneous direction of the vector field; they are

identical to path lines if the vector field is constant

over time.

streak lines represent the trace of repeatedly emitted

particles from the same location, such as a trail of

smoke.

material lines (also called time lines) depict the loca-

tion of a set of particles, initially positioned along a

seed line, under the flow of the vector field.

122



Each of these lines comes with different characteristics:

stream lines and path lines are integration lines that are

tangential to the vector field at each point

q̇ ≡
d

ds
q(s) = v(q(s)) (1)

Since the underlying differential equation is of first or-

der, the solution is uniquely determined by specifying

the initial condition q(0) = q0 by a seed point q0 ∈ M

in spacetime. Neither stream lines nor path lines can

self-intersect (in contrast to e.g. geodesics, which are

solutions of a second order differential equation). How-

ever, a path line may cross the same spatial location at

different times, so the spatial projection of a path line

may self-intersect.

In contrast to stream and path lines, streak and mate-

rial lines are one-dimensional cuts of two-dimensional

integration surfaces S ⊂ M, dim(S) = 2. This surface is

constructed from all integral lines that pass through an

event on this initial seed line q0(τ):

S = {q : R→ M, q̇(s) = v(q(s)),q(0) = q0(τ)}

The resulting surface contains a natural parametriza-

tion S(s,τ) by the initial seed parameter τ and the

integration parameter s. It carries an induced natu-

ral coordinate basis of tangential vectors {~∂τ ,~∂s}, with
~∂s ≡ q̇ = v. For a streak line, the initial seed line q0(τ)
is timelike as new particles are emitted from the same

location over time, dq0(τ)/dt 6= 0, for a material line

the seed line is spacelike dq0(τ)/dt = 0, a set of points

at the same instant of time. The respective streak/time

line is the set of points of the surface q(t) = St=const. for

a constant time. If the integration parameter is chosen

to be proportional to the time s ∝ t, for instance when

performing Euler steps, then the original seed line pa-

rameter τ provides a natural parameter for the resulting

lines, i.e. each point along a time line is advanced by

the same time difference dt at each integration step.

Refinement of lines by introducing new integration

points is mandatory to sustain numerical accuracy of

the results. The ideas of the Hultquist algorithm [12]

and its improvements by Stalling [17] could be applied

also to the spatio-temporal case, however such would

result in the requirement to perform timelike interpo-

lation of the vector field. For data sets that are non-

equidistant in time such as adaptive mesh refinement

data generated from Berger-Oliger schemes [6] find-

ing the right time interval for a given spatial location

this becomes non-trivial. For now we refrain from non-

equidistant temporal refinement (such as done in [14]),

though this is an option – if not requirement – for future

work.

A time surface is the two-dimensional generalization

of a time line, a volumetric object in spacetime. The

Hultquist algorithm, if applied to a spatio-temporal sur-

face, discusses criteria on refining one edge, whereas

here we have a much richer set of possible surface char-

acteristics that may trigger creation or deletion of inte-

gration points. Some options are to refine a surface at

locations where

• a triangle’s edge

• a triangle’s area

• a triangle’s curvature

• a triangle degeneration (“stretching”)

becomes larger than a certain threshold. Section 5.1

reviews our results experimenting with different such

criteria.

3 SOLUTION

3.1 Data Model

We use the VISH [4] visualization shell as our imple-

mentation platform. It supports the concept of fiber

bundles [8] for the data model. The data model consists

of seven levels, each of which is comprised of com-

patible arrays that represent a certain property of the

dataset [5]. These levels, which constitute a Bundle,

are Slice, Grid, Skeleton, Representation, Field, Frag-

ment and Compound. The Field represents arrays of

primitive data types, such as int, double, bool, etc., and

the collection of Fields describes the entire Grid. The

Grid objects for different time slices are bundled to-

gether and are represented as a Bundle. As an example

of our implementation, each Field contains values of a

property such as coordinates, connectivity information,

velocity, etc. The collection of these Fields is a Grid

object, and the collection of Grid objects for all time

slices is the Bundle of the entire dataset.

The dataset used for visualizing the features of fluid

flow contains numerical data for 2088 curvilinear blocks

constituting the virtual stirred tank. The input vector

field is fragmented and these fragments are the blocks

of the Grid. The input dataset for each time slice con-

sists of coordinate location, pressure and fluid velocity

for each grid point in the entire 2088 blocks. These

properties are stored as Fields in the Grid object for

each time slice, and these Grid objects are then com-

bined into a Bundle.

When a multi-block is accessed for the first time, a

Uniform-Grid-Mapper is created which is a uniform

grid having the same size as a world coordinate aligned

bounding box of the multi-block. For each cell of the

Uniform-Grid-Mapper a list of curvi linear block cells

(indices) is stored which intersect the Uni-Grid-Mapper

cell by doing one iteration over all curvilinear grid cells

and a fast min/max test. When computing the local

multi-block coordinates the corresponding Uni-Grid-

Mapper cell is identified first which then selects a small

number of curvilinear cells for the Newton iteration.

123 Journal of WSCG



Uni-Grid-Mapper objects are stored in the Grid object

of the vector field and can be reused when accessing the

same multi-block again later.

3.2 Out of Core Memory Management

The original approach taken while visualizing the fea-

tures of fluid flow is to keep the entire vector field data

in the main memory and integrate over the vector field

to extract the features. However, with the necessity

of visualizing the time-dependent 3D vector field, the

original approach has restrictions, such as the size of

the time-dependent data can easily exceed the capacity

of main memory of even state of the art workstations.

In [24], the authors present the concept of an out-of-

core data handling strategy to process the large time

dependent dataset by only loading parts of the data at a

time and processing it. Two major strategies presented

for out-of-core data handling are Block-wise random

access and Slice-wise sequential access. The authors

emphasize the Slice-wise sequential access strategy for

handling the data given in time slices, however, we

have implemented both Block-wise access and Slice-

wise access of time-dependent data while generating

the time surfaces for visualizing the fluid flow.

Figure 2: Time surface computed from a vector field

given in 2088 fragments (curvilinear blocks) covering

the Stirred Tank Grid (top). Only those fragments that

affect the evolution of the time surface (bottom) are ac-

tually loaded into memory.

The virtual stirred tank system has 2088 blocks, and

each block has vector field data for every time slice.

The data for each time slice is accessed only once as

a Grid object from the input Bundle and processed to

generate the time surface at that particular time. The

integration of the time surface does not process all the

Figure 3: Particle advection of a 2-dimensional element

vs. a 1-dimensional element. In our case, our surface

element is in 3-dimensional space spanned over time.

blocks, instead only the blocks that are touched at the

given time slice are loaded and processed.

At every time slice two Grid Objects are handled,

one containing the input data of the vector field and the

other consisting of seed points and connectivity infor-

mation among the seed points. The connectivity infor-

mation is used to generate the triangle mesh for sur-

face generation. In the case of no surface refinement,

the connectivity information is constant throughout the

time slices and is stored once and used multiple times.

This conserves the memory and also reduces the mem-

ory access. However, with surface refinement the num-

ber of points and their connectivity changes over time

resulting in an increase in memory usage.

3.3 Particle Seeding and Advection

Our set of particle seeds qi,t0 for i = 0, ...,n− 1, lie on

a sphere. At any given time t > t0, the time surface is

represented as a triangular mesh formed by the particles

qi,t that have been advected using equation 1. Figure 3

illustrates the difference between our seeding approach

versus Hultquist’s where we are evolving a surface el-

ement (a triangle) over time as opposed to spanning a

surface out of a line segment element.

3.4 Triangular Mesh Refinements

As time elapses, the triangular mesh of particles en-

larges and twists according to the flow field. To pre-

serve the quality of the mesh, we refine it by adding

new particles and advecting them while updating the

mesh connectivity. Of the possible refinements criteria

mentioned above, we have implemented the following:

Edge length: If the distance between pairwise parti-

cles of a triangle is larger than a threshold edge

length, we insert a new midpoint and subdivide the

triangle accordingly.

Triangle area: If the area of the triangle formed by the

new positions of the particle triplet is larger than a

threshold area, we insert three midpoints and subdi-

vide the triangle to a new set of four triangles.

124



4 ALTERNATIVE APPROACHES

In order to verify and compare our results with other

implementations, we also investigate alternative imple-

mentations. Paraview [11] is one of the well known and

widely used visualization tools in the scientific commu-

nity. It addresses issues pertaining to the visualization

of large scale data-sets using high-performance com-

puting environments. It can be perceived as a frame-

work around the well known Visualization Toolkit [16]

library. It not only provides a GUI to Visualization

Toolkit(VTK), but also provides a convenient environ-

ment for intuitive visual programming of the visualiza-

tion pipeline.

Paraview has implicit mechanisms for handling scale,

both in terms of data and computation [7]. It achieves

this by providing generalized abstractions for paral-

lelization and distribution. Therefore a scientist using

Paraview can switch from visualizing smaller data-sets

on a desktop computer to a much larger data-set utiliz-

ing a large HPC infrastructure, with minimum effort.

We describe ongoing work and approaches to porting

and visualizing the given F5 (fiber-bundle) data-set, as

described in 3.1, in Paraview.

4.1 Porting Fiber-bundle (F5) to Paraview

The 500GB fiber-bundle data-set is provided in the F5

format. This format has no native support in Paraview

and some form of conversion would be required to uti-

lize the data. One approach to solve this problem is to

use a format converter and separately convert the entire

file to a natively supported format. However, this ap-

proach causes redundant data and can waste consider-

able amount of space on the storage disk. An alternative

solution is to write a custom reader into Paraview such

that the data is read and mapped into internal VTK data-

structures. This approach adds an additional computa-

tion time into the visualization pipeline and can cause

unnecessary slowdown of the visualization process.

An ideal solution would be a combination of the

above mentioned approaches such that both space and

time optimization can be achieved. Such a solution is

possible in our case due to a certain characteristic of

the F5 format (explained shortly) and the use of XDMF

(eXtensible Data Model and Format) [9] which is sup-

ported in Paraview. An F5 format is characteristically

a specific description or organization of the HDF5 data

format. All HDF5 readers and commands which typ-

ically work on HDF5 formats also work on F5. The

XDMF data format is an XML format for data gener-

ally known as a "light data". It provides light weight

descriptions of the "heavy data" which is typically a

HDF5 file containing the actual data. A XDMF file can

thus be seen as an index into the HDF5 file and is usu-

ally much smaller in size, taking very less time to get

generated.

Paraview is supplied with the generated XDMF file

through which it can access the data in the correspond-

ing HDF5 (or F5) file. No other reader or converter is

necessary. An added advantage of this approach is that

parallel file readers (if supported) and other parallel al-

gorithms can be used to quickly access and process very

large data-sets. We thus leverage on the parallel and

distributed framework already provided in Paraview.

5 RESULTS

5.1 Surface Refinement

We benchmarked our implementation with a 30-timestep

subset (85 MB per timestep) of the stirred tank data and

on a 64-bit dual core (2GHz each) pentium laptop ma-

chine with 4GB of RAM. We advected one sphere for

the first 30 timesteps of the simulation. Due to the small

size of our test data, we could not notice a difference

in time surface meshing quality from the visualization

itself, but from the data in tables 1 and 2, we notice

a slight performance improvement of the area criteria

over the edge length criteria. Though the number of

particles is slightly higher in the second case, this sug-

gests that the quality of the surface with the area crite-

rion is better.

threshold tot points avg time/slice tot time

0.005 4269 6.480 200.868

0.01 822 1.519 47.1

0.02 258 1.165 36.101

Table 1: Timing Analysis (in seconds) for the Edge

Length Criteria

threshold tot points avg time/slice tot time

0.005 4269 6.864 212.785

0.01 837 1.454 45.08

0.02 258 1.150 35.646

Table 2: Timing Analysis (in seconds) for the Triangle

Area Criteria

From either tables 1 or 2, picking a threshold too

small compared to the characteristic of the triangle be-

ing examined, results in maximum refinement, while a

large enough threshold leads to no refinement at all.

5.2 Timing Analysis

For the overall integration and refinement of the time

surface, we used a larger dataset of size 12GB with

150 timesteps. We ran the implementation on a 64bit

quadcore workstation with 64 GB of RAM. We used

the edge length criterion with a threshold of 0.01.

The listing in the Table 3 is for 12 GB of input data

from an initial time of 0 to a final time of 150. Initially

the number of points is 516, which increases over time

as more points are generated for surface refinement. As

the number of points increases, the computation time

125 Journal of WSCG



Figure 4: Images showing evolution of two spheres at

time slices 0, 50, 100, 125 and 150, respectively from

left-top to bottom, as seen top-view of the stirred tank.

First image shows the seed spheres, and the last image

shows two sphere just before the surfaces are about to

mix.

time no. of points time/slice(s) time/point(ms)

0 516 0.4 7.0

50 3468 2.0 5.9

100 15822 7.4 4.8

125 41574 18.8 4.7

150 129939 49.7 4.0

Table 3: Timing Analysis for Threshold=0.01

for the next time slice increases. However, the time per

point seems to be slowly decreasing, as seen in third

graph of Figure 5. This may be because more and more

points tend to locate in the same block and the data of

one block is shared by many points, resulting in less

memory access per point.

6 DEPLOYMENT TO END USERS

Results of the algorithm can be investigated better if

we explore the entire time evolution of the surface in-

teractively, by navigating through space and time. In

most visualization environments, the graphical user in-

terface is tightly coupled with the underlying visualiza-

tion functionality. One feature of VISH is that it de-

couples the interface from the underlying visualization

application. At least in principle, this makes it as easy

to couple VISH to a CAVE immersive environment,

Figure 5: First two graphs shows the increase in no.

of points and thus increase in processing time per slice

over the time. Third grpah shows the decrease in time

per point as number of point increases.

a web based distributed interface, or physical interac-

tion devices as to the provided traditional 2D graphical

user interface. As an example of this, we have based

a significant portion of our interaction with the present

large dataset from stirred tank with “viz tangible” inter-

action devices. An example of this is pictured in Fig-

ure 6. Earlier stages of this work have been described

in [22, 20, 19, 18].

An application programming interface (API) is un-

der development which supports coupling tangibles to

VISH and other visualization environments. In this

API, when interaction control messages are sent (trig-

126



Figure 6: User physically manipulating VISH applica-

tion through “viz tangibles” interaction devices

gered by physical events, such as RFID entrance/exit or

the turning of a knob), they trigger corresponding meth-

ods in VISH. We use cartouches – RFID-tagged inter-

action cards [19, 20] – as physical interactors which

describe data and operations within the VISH envi-

ronment. Users can access, explore and manipulate

datasets by placing appropriate cartouches on an inter-

action tray (Figures 6, 7), and making appropriate but-

ton presses, wheel rotations, etc.

Figure 7: Cartouche cards for viewpoint control and pa-

rameter adjustment operations

In our present implementation, we have used two

classes of cartouche objects. These are summarized be-

low:

1. Viewpoint operations: Specific supported view point

controls include rotation, zooming, and translation.

In the case of rotation and translation, individual

wheels are bounds to the (e.g.) x, y, z axis. In the

context of zooming or time step navigation, wheels

represent different scales of space and time naviga-

tion.

2. Parameter Adjustment operations: Our current im-

plementation includes time surface seedings and sur-

face transparency adjustment. For time surface seed-

ings, we steer center of seeds, number of subdivi-

sions, etc. to parameter wheels. Within surface

transparency adjustment, wheels are bounded to dif-

ferent scales of surface transparency.

In future, we hope quantities in high dimensional pa-

rameter space such as curvature and torsion of the sur-

face can also be explored effectively with the integra-

tion of “viz tangibles” and the API.

7 CONCLUSION

While most of the previous visualization techniques for

fluid flow have concentrated on flow streamlines and

pathlines, our approach has been directed towards gen-

erating the time surfaces of the flow. The interdepen-

dencies of integration over a vector field require ran-

dom access to amounts of data beyond a single work-

station’s capabilities, while at the same time requiring

shared memory for required refinements. This limits

available hardware and impacts parallelization efforts.

The evolution of a seed surface required refinement of

its corresponding triangular mesh to preserve the qual-

ity of the time surface over time. From the results we

noticed a slight superior quality of the area refinement

criterion over the edge length criterion.

8 ACKNOWLEDGMENTS

We thank the VISH development team, among them

Georg Ritter, University of Innsbruck, and Hans-Peter

Bischof, Rochester Institute of Technology, Amitava

Jana and Sanjay Kodiyalam from Southern University,

Baton Rouge, for their support. This research employed

resources of the Center for Computation & Technol-

ogy at Louisiana State University, which is supported

by funding from the Louisiana legislature’s Informa-

tion Technology Initiative. Portions of this work were

supported by NSF/EPSCoR Award No. EPS-0701491

(CyberTools), NSF MRI-0521559 (Viz Tangibles) and

IGERT (NSF Grant DGE-0504507).

9 ADDITIONAL AUTHORS

Additional Authors: Nikhil Shetty, Vignesh Natesan,

and Carolina Cruz-Neira, Center of Advanced Com-

puter Studies, University of Louisiana at Lafayette;

nikhil.j.shetty@gmail.com; vigneshn85@gmail.com; car-

olina.louisiana@gmail.com.

REFERENCES

[1] R. Ballagas, M. Ringel, M. Stone, and J. Borchers.

iStuff: a physical user interface toolkit for ubiqui-

tous computing environments.

127 Journal of WSCG



[2] M. Banzi. Getting Started with Arduino. Make

Books - Imprint of: O’Reilly Media, Sebastopol,

CA, 2008.

[3] M. Beigl and H. Gellersen. Smart-its: An embed-

ded platform for smart objects. In Smart Objects

Conference (sOc), volume 2003. Citeseer, 2003.

[4] W. Benger, G. Ritter, and R. Heinzl. The Con-

cepts of VISH. In 4th High-End Visualization

Workshop, Obergurgl, Tyrol, Austria, June 18-

21, 2007, pages 26–39. Berlin, Lehmanns Media-

LOB.de, 2007.

[5] W. Benger, M. Ritter, S. Acharya, S. Roy, and

F. Jijao. Fiberbundle-based visualization of a stir

tank fluid. In WSCG 2009, Plzen, 2009.

[6] M. J. Berger and J. Oliger. Adaptive mesh refine-

ment for hyperbolic partial differential equations.

J. Comput. Phys., 53:484–512, 1984.

[7] J. Biddiscombe, B. Geveci, K. Martin, K. Morel,

and D. Thompson. Time dependent processing

in a parallel pipeline architecture. IEEE Trans-

actions on Visualization and Computer Graphics,

13:2007.

[8] D. M. Butler and M. H. Pendley. A visualization

model based on the mathematics of fiber bundles.

Computers in Physics, 3(5):45–51, sep/oct 1989.

[9] J. A. Clarke and R. R. Namburu. A distributed

computing environment for interdisciplinary ap-

plications. Currency and Computation: Prac-

tice and Experience, 14, Grid Computing environ-

ments Special Issue:13–15, 2002.

[10] S. Greenberg and C. Fitchett. Phidgets: easy de-

velopment of physical interfaces through physi-

cal widgets. In Proceedings of the 14th annual

ACM symposium on User interface software and

technology, pages 209–218. ACM New York, NY,

USA, 2001.

[11] A. Henderson. Paraview guide, a parallel visual-

ization application, 2005.

[12] J. P. Hultquist. Constructing stream surfaces in

steady 3d vector fields. In Visualization ’92, pages

171–178. IEEE Computer Society, 1992.

[13] J. P. M. Hultquist. Constructing stream surfaces in

steady 3d vector fields. In VIS ’92: Proceedings

of the 3rd conference on Visualization ’92, pages

171–178, Los Alamitos, CA, USA, 1992. IEEE

Computer Society Press.

[14] H. Krishnan, C. Garth, and K. I. Joy. Time

and streak surfaces for flow visualization in large

time-varying data sets. Proc. IEEE Visualization

’09, Oct. 2009.

[15] T. Schafhitzel, E. Tejada, D. Weiskopf, and T. Ertl.

Point-based stream surfaces and path surfaces.

In GI ’07: Proceedings of Graphics Interface

2007, pages 289–296, New York, NY, USA, 2007.

ACM.

[16] W. Schroeder, K. Martin, and W. Lorensen. The

visualization toolkit: An object oriented approach

to 3d graphics, 1996.

[17] D. Stalling. Fast Texture-Based Algorithms for

Vector Field Visualization. PhD thesis, Free Uni-

versity Berlin, 1998.

[18] C. Toole, B. Ullmer, R. Sankaran, K. Liu, S. Jand-

hyala, C. W. Branton, and A. Hutanu. Tangible

interfaces for manipulating distributed scientific

visualization applications. Submitted to Proc. of

TEI’10, 2010.

[19] B. Ullmer, Z. Dever, R. Sankaran, C. Toole,

C. Freeman, B. Casady, C. Wiley, M. Diabi, A. J.

Wallace, M. Delatin, B. Tregre, K. Liu, S. Jand-

hyala, R. Kooima, C. W. Branton, and R. Parker.

Cartouche: conventions for tangibles bridging di-

verse interactive systems. Submitted to Proc. of

TEI’10, 2010.

[20] B. Ullmer, A. Hutanu, W. Benger, and H.-C.

Hege. Emerging tangible interfaces for facilitating

collaborative immersive visualizations. NSF Lake

Tahoe Workshop on Collaborative Virtual Reality

and Visualization, 2003.

[21] B. Ullmer, R. Sankaran, S. Jandhyala, B. Tre-

gre, C. Toole, K. Kallakuri, C. Laan, M. Hess,

F. Harhad, U. Wiggins, et al. Tangible menus

and interaction trays: core tangibles for common

physical/digital activities. In Proceedings of the

2nd international conference on Tangible and em-

bedded interaction, pages 209–212. ACM New

York, NY, USA, 2008.

[22] B. Ullmer, R. Sankaran, S. Jandhyala, B. Tre-

gre, C. Toole, K. Kallakuri, C. Laan, M. Hess,

F. Harhad, U. Wiggins, and S. Sun. Tangible

menus and interaction trays: core tangibles for

common physical/digital activities. In Proc. of

TEI ’08, pages 209–212, 2008.

[23] W. von Funck, T. Weinkauf, H. Theisel, and H.-P.

Seidel. Smoke surfaces: An interactive flow vi-

sualization technique inspired by real-world flow

experiments. IEEE Transactions on Visualiza-

tion and Computer Graphics (Proceedings Visual-

ization 2008), 14(6):1396–1403, November - De-

cember 2008.

[24] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P.

Seidel. Feature flow fields in out-of-core settings.

In H. Hauser, H. Hagen, and H. Theisel, editors,

Topology-based Methods in Visualization, Mathe-

matics and Visualization, pages 51–64. Springer,

2007. Topo-In-Vis 2005, Budmerice, Slovakia,

Sept. 29 - 30.

128


	!_2010_J_WSCG_1-3.pdf
	F19-full.pdf


