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Abstract. Genetic Algorithms have been used before to evolve transi-
tion rules for one dimensional Cellular Automata (CA) to solve e.g. the
majority problem and investigate communication processes within such
CA [3]. In this paper, the principle is extended to multi dimensional CA,
and it is demonstrated how the approach evolves transition rules for the
two dimensional case with a von Neumann neighborhood. In particular,
the method is applied to the binary AND and XOR problems by us-
ing the GA to optimize the corresponding rules. Moreover, it is shown
how the approach can also be used for more general patterns, and there-
fore how it can serve as a method for calibrating and designing CA for
real-world applications.

1 Introduction

According to [6] Cellular Automata (CA) are mathematical idealisations of phys-
ical systems in which space and time are discrete, and physical quantities take
on a finite set of discrete values. The simplest CA is one dimensional and looks
a bit like an array of ones and zeros of width N , where the first position of the
array is linked to the last position. In other words, defining a row of positions
C = {a1, a2, ..., aN} where C is a CA of width N and aN is adjacent to a1.

The neighborhood sn of an is defined as the local set of positions with a
distance to an along the connected chain which is no more than a certain radius
(r). This for instance means that s2 = {a148, a149, a1, a2, a3, a4, a5} for r = 3 and
N = 149. Please note that for one dimensional CA the size of the neighborhood
is always equal to 2r + 1.

The values in a CA can be altered all at the same time (synchronous) or
at different times (asynchronous). Only synchronous CA are considered in this
paper. In the synchronous approach at every timestep (t) every cell state in the
CA is recalculated according to the states of the neighborhood using a certain
transition rule Θ : {0, 1}2r+1 → {0, 1}, si → Θ(si). This rule basically is a one-to-
one mapping that defines an output value for every possible set of input values,
the input values being the ‘state’ of a neighborhood. The state of an at time t
is written as at

n, the state of sn at time t as st
n and the state of the entire CA C

at time t as Ct so that C0 is the initial state and ∀n = 1, . . . , N at+1
n = Θ(st

n).
Given Ct = {at

1, ..., a
t
N}, Ct+1 can be defined as {Θ(st

1), ..., Θ(st
N )}.
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Because an ∈ {0, 1} the number of possible states of sn equals 22r+1. Because
all possible binary representations of m where 0 ≤ m < 22r+1 can be mapped to
a unique state of the neighborhood, Θ can be written as a row of ones and zeros
R = {b1, b2, ..., b22r+1} where bm is the output value of the rule for the input
state that maps to the binary representation of m − 1. A rule therefore has a
length that equals 22r+1 and so there are 222r+1

possible rules for a binary one
dimensional CA. This is a huge number of possible rules (if r = 3 this sums up
to about 3, 4 × 1028) each with a different behaviour.

One of the interesting things about these and other CA is that certain rules
tend to exhibit organisational behaviour, independently of the initial state of
the CA. This behaviour also demonstrates there is some form of communication
going on in the CA over longer distances than the neighborhood allows directly.
In [3] the authors examine if these simple CA are able to perform tasks that
need positions in a CA to work together and use some form of communication.
One problem where such a communication seems required in order to give a good
answer is the Majority Problem (as described in section 3.1). A genetic algorithm
is used to evolve rules for one dimensional CA that do a rather good job of solving
the Majority Problem [3] and it is shown how these rules seem to send “particles”
and communicate by using these particles [4]. These results imply that even very
simple cells in one dimensional cellular automata can communicate and work
together to form more complex and powerful behavior.

It is not unthinkable that the capabilities of these one dimensional CA are
restricted by the number of directions in which information can “travel” through
a CA and that using multiple dimensions might remove these restriction and
therefore improve performance. Evolving these rules for the Majority Problem
for two dimensional CA using a Moore neighborhood (explained in section 3) is
reported in [2] showing that the GA did not clearly outperform random search.

The goal of the research is to find a generalization and report phenomena
observed on a higher level, with the future goal to use this research for iden-
tification and calibration of higher-dimensional CA applications to real world
systems like parallel computing and modelling social and biological processes.
The approach is described and results are reported on simple problems such
as the Majority Problem, AND, XOR, extending into how it can be applied to
pattern generation processes.

2 The Genetic Algorithm

As mentioned before, this research was inspired by earlier work [3,4] in which
transition rules for one dimensional CA were evolved to solve the Majority Prob-
lem (as defined in section 3.1). The GA is a fairly simple algorithm using bi-
nary representation of the rules, mutation by bit inversion, truncation selection,
and single-point crossover. The algorithm determined the fitness by testing the
evolved rules on 100 random initial states. Every iteration the best 20% of the
rules (the ‘elite’ rules) were copied to the next generation and the other 80% of
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the rules were generated using single-point crossover with two randomly chosen
‘elite’ rules and then mutated by flipping exactly 2 bits in the rule.

To be able to compare two dimensional CA with one dimensional CA the
GA used in section 3.1 is a copy of the the GA used in [3,4]. The GAs in section
3.2 and 4 on the other hand are modified to fit the different problem demands,
as will be explained in these sections.

3 Experimental Results for Two Dimensional CA

The two dimensional CA in this document are similar to the one dimensional
CA discussed so far. Instead of a row of positions, C now consists of a grid of
positions. The values are still only binary (0 or 1) and there still is only one
transition rule for all the cells. The number of cells is still finite and therefore
CA discussed here have a width, a height and borders.

The big difference between one dimensional and two dimensional CA is the
rule definition. The neighborhood of these rules is two dimensional, because there
are not only neighbors left and right of a cell, but also up and down. That means
that if r = 1, sn would consist of 5 positions, being the four directly adjacent
plus an. This neighborhood is often called “the von Neumann neighborhood”
after its inventor. The other well known neighborhood expands the Neumann
neighborhood with the four positions diagnally adjacent to an and is called “the
Moore neighborhood” also after its inventor.

Rules are defined with the same rows of bits (R) as defined in the one dimen-
sional case. For a von Neumann neighborhood a rule can be defined with 25 = 32
bits and a rule for a Moore neighborhood needs 29 = 512 bits. This makes the
Moore rule more powerful, for it has a bigger search space. Yet, this also means
that searching in that space might take more time and finding anything might
be a lot more difficult. In [2] the authors discourage the use of the Moore neigh-
borhood, yet in section 3.2 and section 4 results clearly show successes using the
Moore neighborhood, regardless of the langer search space.

In a one dimensional CA the leftmost cell is connected to the rightmost
cell. In the two dimensional CA this is also common such that it forms a torus
structure.

3.1 Majority Problem

The Majority Problem can be defined as follows: Given a set A = {a1, ..., an}
with n odd and am ∈ {0, 1} for all 1 ≤ m ≤ n, answer the question: ‘Are there
more ones than zeros in A?’.

The Majority Problem first does not seem to be a very difficult problem to
solve. It seems only a matter of counting the ones in the set and then comparing
them to the number of zeros. Yet when this problem is converted to the dimen-
sions of a CA it becomes a lot more difficult. This is because the rule in a CA
does not let a position look past its neighborhood and that is why the cells all
have to work together and use some form of communication.
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Fig. 1. This figure displays the number of rules that have a certain fitness value in
the two dimensional experiment and compares this to the one dimensional experiment.
The fitness bins are 0.01 in width and for both algorithm F169,103 is calculated for 300
rules.

Fig. 2. This figure shows a correct classification of the Majority Problem by a two
dimensional CA with both width and height equal to 13 and λ = 84/169. The transition
rule was one of the best tested in the experiment and scored F169,103 = 0.715.

Given that the relative number of ones in C0 is written as λ, in a simple
binary CA the Majority Problem can be defined as: Find a rule that, given an
initial state of a CA with N odd and a finite number of iterations to run (I),
will result in an ‘all zero’ state if λ < 0.5 and an ‘all one’ state otherwise.

The fitness (f) of a rule is is therefore defined as the relative number of
correct answers to 100 randomly chosen initial states, where a ‘correct answer’
corresponds to an ‘all zero’ state if λ < 0.5 and an ‘all one’ state otherwise. In [3]
the authors found that using a uniform distribution over λ for the initial states
enhanced performance greatly; this is used here as well. The best runs will be
tested using randomly chosen initial states with a normal distribution over the
number of ones. The relative number of correct classifications on these states is
written as Fn,m where n is the width of the CA and m is the number of tests
conducted.

Preliminary experiments showed that it took much more time to evolve rules
for the Moore neighborhood than for the von Neumann neighborhood. The tests
that were done with the Moore neighborhood also did not result in any en-
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couraging results, this being in line with [2]. That is why the von Neumann
neighborhood was chosen for this experiment. Because this neighborhood con-
sists of five positions, the search space for CA rules is a lot smaller than in the
one dimensional experiment. Instead of the 27 = 128 bits in the rule, R now
consists of 25 = 32 bits, thus drastically decreasing the serch space. This means
that the search space decreased from 2128 to 232 and is now 2(128−32) = 296 times
smaller!

For this experiment we used a CA with width = 13 and height = 13. This
means that these CA have 13 × 13 = 169 cells (N) and are 169 − 149 = 20 cells
larger than the one dimensional CA used in the original experiment.

This algorithm was run 300 times and each winning rule was tested by calcu-
lating FN,M using F169,103 . These results are plotted againts results of our own
one dimensional experiment (not reported here, analogue to [3,4]) in Figure 1.
The striking difference between this distribution of fitness and the distribution
of fitness in the one dimensional experiment is the absence of the peak around
FN,M ≈ 0.5 in the two dimensional results. In those results almost all the evolved
rules have a fitness above 0.58. A fitness around 0.66 seems to be average and
the best rules have a fitness above 0.7. That is all very surprising taking into
account that the von Neumann neighborhood only consists of 5 cells.

The Majority Problem is a good example of a problem that forces cells in
a CA to ‘communicate’ with another. The communication ‘particles’ can be
seen in the one dimensional experiment, but are not easily spotted in the two
dimensional experiment. That does not mean there are no ‘particles’ traveling
in the two dimensional CA, because it might be very hard to identify these
particles. In a two dimensional CA ‘particles’ are no longer restricted to traveling
in only one direction, but can travel to multiple directions at the same time.
Traveling particles in two dimensional CA can therefore look like expanding
areas with a distinct border. But there might be multiple particles traveling at
the same time, meeting each other and thereby creating new particles. This is
why communication between cells in a two dimensional CA is not very visible in
the Majority Problem, although results show that this communication is present.

Fig. 3. This figure displays the iterations of a CA solving the AND problem. Every
row shows the iteration of the rule using a different initial state. Note that in the first
column (t = 0) the initial states are clearly visible and in the last column the coloring
matches the output of an AND port.
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Table 1. Fitness values found in the AND problem.

Number of runs
Neumann Moore

Fitness with crossover without crossover with crossover without crossover
100 0 0 31 21

98-99 0 0 41 54
95-97 0 0 14 25
90-94 77 93 14 0
80-89 23 7 0 0
70-79 0 0 0 0
< 70 0 0 0 0

3.2 AND and XOR Problem

To show the communication between cells in a two dimensional CA a different
experiment was conducted. A genetic algorithm was used to evolve rules for two
dimensional CA that could solve the simple binary operators AND and XOR.
These operators both have two input values and one output value which can only
be determined if both input values are known. This is unlike the OR operator for
example where the output value is always one if one or more of the input values
is one, so if only one input value is known to be one then the value of the other
input value is not needed. This may look very trivial, but it is very important
in order to force the CA to combine the two values and thereby communicate.

The AND Problem. To show the communications in a CA the information
that needs to be combined must be initialized as far apart as possible. The
following problem definition takes this into account: Given a square CA with
two ‘input cells’, one top left and one bottom right: find a rule that iterates the
CA so that after I iterations the CA is in an ‘all one’ state if both the ‘input
cells’ were one in the initial state and in an ‘all zero’ state otherwise.

Small two dimensional CA were used with a width and a height of 5 cells
and I was set to 10. The borders of the CA were unconnected to allow a larger
virtual distance between the two corner cells. This means that the leftmost cell
in a row was not connected to the rightmost cell in the same row and the topmost
cell was not connected to the bottommost cell as was done with the Majority
Problem experiment. Instead every cell on the border of the CA was connected
to so called ‘zero-cells’. These ‘zero-cells’ stay zero whatever happens.

When using two input cells, there are four different initial states. These states
are written as S(v1,v2) where v1 and v2 are the two input values. All cells other
than the two input cells are initialized with zero.

The fitness of a rule is defined as the total number of cells that have the
correct values after I iterations. The number of ones in iteration t is written as
Ot

(v1,v2). The total fitness of the AND problem is defined as f = (N − OI
(0,0)) +

(N − OI
(0,1)) + (N − OI

(1,0)) + OI
(1,1). This makes the maximum fitness equal to

4 × 5 × 5 = 100.
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In this experiment another variation of the simple genetic algorithm was
used. A generation step starts by sorting the rules according to their fitness.
Then it selects the top ten% of the rules as ‘elite’ rules and copies them without
changes to the next generation. Every ‘elite’ rule is then copied nine times or
is used in single-point crossover to make the other 90% of the population. Both
methods were tested and compared. The generated rules are mutated and also
moved to the next generation. Mutation is done by flipping every bit in the rule
with a probability pm. The algorithm stops if it finds a rule with f = 100 or
it reaches 1000 generations. In prelimenary experiments a number of different
values of pm were tested. Setting pm to a rather high value of 0.05 turned out to
be the most effective choice, confirming our insight that with increasing selection
strength higher mutation rates than the usual 1

l (l beging the the length of the
binary string) are performing better [1].

The algorithm was run 100 runs with and without single-point crossover and
using both the von Neumann and the Moore neighborhoods. The results are
shown in Table 1.

Although rules evolved with the von Neumann neighborhood are not able to
solve the problem perfectly, it is already surprising that it finds rules which work
for 93%, for such a rule only misplaces 7 cells in the final state. All the other 93
cells have the right value. This suggests that the information was combined, but
the rule could not fill or empty the whole square using the same logic.

The Moore neighborhood is clearly more powerful and was able to solve the
problem perfectly. The rules that are able to do this clearly show communi-
cational behaviour in the form of “traveling” information and processing this
information at points where information “particles” meet.

It is also surprising that using crossover in combination with a Neumann
neighborhood does not outperform the same algorithm without the crossover.
This may be due to the order of the bits in the transition rule and their meaning.
This is worth exploring in future work. Maybe using other forms of crossover
might give better results in combination with multi dimensional CA.

Fig. 4. This figure displays the iterations of a CA solving the XOR problem. Every
row shows the iteration of the rule using a different initial state. Note that in the first
column (t = 0) the initial states are clearly visible and in the last column the coloring
matches the output of an XOR port.
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Table 2. Fitness values found in the XOR problem.

Number of runs
Neumann Moore

Fitness with crossover without crossover with crossover without crossover
100 0 0 0 1

98-99 0 0 4 4
95-97 0 0 7 6
90-94 2 1 19 21
80-89 76 96 69 66
70-79 18 3 1 2
< 70 4 0 0 0

Fig. 5. The bitmaps used in the pattern generation experiment.

The XOR Problem. The XOR Problem is not much different from the AND
problem. We used the same genetic algorithm and the same CA setup. The only
difference is the fitness function. We defined the XOR problem as follows: Given
a square CA with two ‘input cells’, one top left and one bottom right: find a rule
that iterates the CA so that after I iterations the CA is in an ‘all one’ state if
only one of the ‘input cells’ was one in the initial state and in an ‘all zero’ state
otherwise. This means that the total fitness of the XOR problem is defined as
f = (N − OI

(0,0)) + OI
(0,1) + OI

(1,0) + (N − OI
(1,1)).

The algorithm was run with pm = 0.05 for a maximum of 1000 generations
for 100 runs with both Neumann and Moore neighborhoods with and without
single point crossover. The results are shown in Table 2.

These results support earlier finding in suggesting that single-point crossover
doesn’t really improve the performance when used in a two dimensional CA. The
results show that the algorithm using only mutation has found ways to solve this
rather difficult communicational problem. The Neumann neighborhood seemed
unable to perform for 100%, yet it came rather close with one rule classifying
the problem for 92%. The algorithm found one transition rule using the Moore
neighborhood that is able to solve the problem for the full 100%. This rule
depicted in Figure 4 shows clear signs of “traveling particles” and is another
example of how a local rule can trigger global behaviour.

4 Evolving Bitmaps

Now that it is shown that two dimensional CA’s can communicate, it is time to
increase the challenge for the CA a bit. The aim of this experiment is to evolve
rules for two dimensional CA that generate patterns (or bitmaps).
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Table 3. Number of successful rules found per bitmap.

Successful rules
Bitmap (out of a 100)
“square” 80

“hourglass” 77
“heart” 35
“smiley” 7
“letter” 9

Fig. 6. This figure shows some iteration paths of successful transition rules.

The Bitmap Problem is defined as follows: Given an initial state and a specific
desired end state: find a rule that iterates from the initial state to the desired state
in less than I iterations. Note that this does not require the number of iteration
between the initial and the desired state to be fixed.

The CA used in this experiment is not very different from the one used in
the AND/XOR experiment (section 3.2). In prelimenary experiments we tried
different sizes of CA, but decided to concentrate on small square bitmaps with a
width and a height of 5 cells (as done in section 3.2). To make the problem harder
and to stay in line with earlier experiments the CA have unconnected borders
like in section 3.2. The von Neumann neighborhood was chosen instead of the
Moore neighborhood and therefore sn consist of 5 cells (r = 1) and a rule can
be described with 25 = 32 bits. The searchspace therefore is 232 = 4294967296.

After testing different initial states, the ‘single seed’ state was chosen and
defined as the state in which all the positions in the CA are zero except the
position (�width/2�, �height/2�) which is one. For the GA we used the same al-
gorithm as we used in the AND and XOR experiments. Because this experiment
uses a Neumann neighborhood and the AND and XOR experiments suggested
that the combination between the von Neumann neighborhood and single point
crossover was not a good idea, this experiment used only mutation. Like in sec-
tion 3.2 mutation is performed by flipping every bit in the rule with a probability
pm. In this experiment pm = 1/32 = 0.03125.

In trying to be as diverse as possible five totally different bitmaps were chosen,
they are shown in Figure 5. The algorithm was run 100 times for every bitmap
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for a maximum of 5000 generations. The algorithm was able to find a rule for all
the bitmaps, but some bitmaps seemed a bit more difficult than others. Table 3
shows the number of successful rules for every bitmap. Note that symmetrical
bitmaps seem to be easier to generate then asymmetric ones.

Although this experiment is fairly simple, it does show that a GA can be used
to evolve transition rules in two dimensional CA that are able to generate pat-
terns even with a simple von Neumann neighborhood. Ongoing experiments with
bigger CA suggest that they don’t differ much from these small ones, although
the restrictions on what can be generated from a single-seed state using only a
von Neumann neighborhood seem to be bigger when size of the CA increases.

5 Conclusions

This paper shows how two dimensional CA are able to solve the majority problem
with similar results compared to one dimensional CA used in [3,4]. Using the
same GA as in [3,4] a better average fitness was achieved suggesting that evolving
two dimensional CA is easier and more reliable.

The paper shows that two dimensional CA can show communicational be-
haviour in the form of the AND and XOR problems and that this behaviour can
be evolved using a GA. The document also shows that a more generic behaviour
can be evolved using a GA by showing how different patterns can be iterated
from the same initial state. These results all suggest that a multi dimensional
CA is a very powerful tool and in combination with GAs they can be evolved to
exhibit specific bahaviour. It is therefore feasible that this combination can be
used to solve all sorts of real world problems.
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