
EVSAC: Accelerating Hypotheses Generation by Modeling Matching Scores

with Extreme Value Theory

Victor Fragoso Pradeep Sen Sergio Rodriguez Matthew Turk

University of California, Santa Barbara

{vfragoso@cs, psen@ece, srodriguez@pstat, mturk@cs}.ucsb.edu

Abstract

Algorithms based on RANSAC that estimate models us-

ing feature correspondences between images can slow down

tremendously when the percentage of correct correspon-

dences (inliers) is small. In this paper, we present a prob-

abilistic parametric model that allows us to assign confi-

dence values for each matching correspondence and there-

fore accelerates the generation of hypothesis models for

RANSAC under these conditions. Our framework lever-

ages Extreme Value Theory to accurately model the statis-

tics of matching scores produced by a nearest-neighbor fea-

ture matcher. Using a new algorithm based on this model,

we are able to estimate accurate hypotheses with RANSAC

at low inlier ratios significantly faster than previous state-

of-the-art approaches, while still performing comparably

when the number of inliers is large. We present results of ho-

mography and fundamental matrix estimation experiments

for both SIFT and SURF matches that demonstrate that our

method leads to accurate and fast model estimations.

1. Introduction

Many applications in computer vision use image corre-

spondences to estimate important model parameters such

as homographies, fundamental matrices, and others. How-

ever, these correspondences can often be “corrupted” by

measurement noise or features that do not comply with the

“true” model to be estimated, i.e., outliers. Random Sample

Consensus (RANSAC) [7] has been the method of choice

to estimate model parameters in the presence of outliers,

and many improvements have been proposed to increase its

speed and its accuracy, e.g., [6, 14, 15, 16, 20].

Many methods improve RANSAC by exploiting prior in-

formation such as matching scores [2, 5, 9, 19] or geomet-

rical cues [4, 13, 16] in order to bias the generation of hy-

potheses (models) with matches that are more likely to be

correct, hence avoiding outliers as much as possible. How-

ever, even these state-of-the-art approaches are slow when

the percentage of inliers in the correspondences is low (e.g.,

< 10%), as can happen in many real-world situations. This

slowdown is caused by a substantial increase in the number

of iterations required for convergence.

In this work, we focus on the problem of increasing the

speed of RANSAC in these conditions. Our method extracts

information from the matching scores that are available in

many computer vision applications to compute a correct-

ness confidence for the matches. Specifically, our contribu-

tions are:

1. A new probabilistic parametric model for matching

scores generated by a nearest-neighbor matcher that

is based on extreme value theory [3] and which accu-

rately models the distribution of the lowest scores.

2. EVSAC, a novel algorithm that leverages our proba-

bilistic framework to assign confidence values to each

match in order to accelerate accurate hypothesis gen-

eration in RANSAC.

2. Previous work

In this section we review previous approaches that tackle

the problem of generating good hypotheses in RANSAC.

Since our method uses matching scores, we focus on ap-

proaches that do the same. Given the image correspon-

dences and their matching scores (typically computed us-

ing a distance or similarity metric), these methods model

the statistics of the scores to assess the “correctness” of a

match. Note we use the term “match” to refer to a feature

correspondence between the query and reference images.

Several approaches that speed up the generation of hy-

potheses compute a correctness confidence by attempting

to model the distributions of matching scores produced by

correct and incorrect matches. Tordoff and Murray [19]

model these distributions in Guided-MLESAC (GMLE-

SAC) from data pre-labeled as correct and incorrect by fit-

ting appropriate curves in an offline stage. Goshen and

Shimshoni [9] model these distributions in BEEM by using

a non-parametric kernel density estimation and considering

Lowe’s ratio [11] as the random variable.

Brahmachari and Sarkar [2] compute a confidence for

every match on the fly by using the closest matching scores.
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Their BLOGS algorithm assigns a higher correctness con-

fidence when the best matching score is far from the two

second-best scores. Chum and Matas [5] take a different

approach in PROSAC, where promising models are gener-

ated and tested earlier by sampling from a subset containing

ranked correspondences by a quality measure. PROSAC

starts with a subset of good matches and progressively ex-

pands it until convergence. Although PROSAC requires a

good quality measure to rank correspondences for success,

it is guaranteed to perform no worse than random sampling.

Fragoso and Turk [8] also compute a confidence on the

fly by using the closest-matching scores. Specifically, they

employ a heuristic that models the correct matches using

information from a tail distribution and use this simple con-

fidence metric to guide sampling. While we use their con-

fidence values to preclassify correct/incorrect matches as

input to our approach, our algorithm takes a different ap-

proach, focusing on modeling the entire nearest-neighbor

matching process from all the data. By leveraging extreme

value theory, we can accurately model the minima for all

features and use it effectively for accelerating the hypothe-

sis generation.

Finally, there is also work that uses extreme value the-

ory (EVT) for modeling the tail of the underlying distribu-

tion to predict the correctness of a classifier, such as Meta-

Recognition of Scheirer et al. [17]. In contrast, we propose

a fundamentally different application of EVT that models

the minimum scores produced by a nearest-neighbor fea-

ture matcher, which we represent as a stochastic process.

We show that EVT can be used to estimate the distributions

for both correct and incorrect matches using our proposed

mixture model, which then can be used to compute confi-

dence values to accelerate hypothesis generation.

3. Modeling the matching scores

3.1. The matching process

Given a pair of images, i.e., a query and a reference im-

age, we first detect image features (interest points or key-

points) on both using standard techniques (e.g., [1, 11]). For

each feature, we then compute its descriptor (SIFT [11] or

SURF [1]) and use the photometric information captured

in these descriptors to obtain matches or correspondences

between the query image and the reference. Formally, for

every query feature i we first compute the distance between

the query descriptor qi and each of the reference descrip-

tors rj to get a matching score si,j = d(qi, rj). We then

select the reference feature with the minimum score as the

best match, satisfying the nearest-neighbor rule:

j⋆ = argmin
j

{si,j}
m

j=1 . (1)

When using a similarity metric instead of a distance, the

algorithm seeks the maximum score; in this paper we will

focus on the distance metric since several descriptors are

compared using a Euclidean distance.

It is well known that the matching process given by Eq. 1

can return either correct or incorrect matches. An inlier

(correct) match is one where the associated reference and

query features both specify to the same physical location in

the scene, while outlier (incorrect) matches are those that

refer to different features in the scene yet produced a lower

matching score. Incorrect matches could be due to several

factors, such as repeating textures in the scene, features in

the query image that are not visible in the reference, changes

of lighting or shading, and others. Although descriptors are

typically designed to be as invariant as possible to these ef-

fects, this problem still occurs quite often. In fact, the ma-

jority of nearest matches found for features in real-world

images are typically outliers.

The processes that corrupt matches are complex and hard

to model. Hence, we take a stochastic approach and model

the probabilistic behavior of the matching scores. We rep-

resent the nearest-neighbor matching process as comprising

two random processes: one that produces correct matches

and another that produces incorrect matches for each query

feature. These correct and incorrect matching scores are

then merged together into the sequence {si,j}
m

j=1, where

the matching score of the correct match (if it exists) may or

may not be the smallest in the list. We now describe our

probabilistic framework to model these distributions.

3.2. Our probabilistic model

Formally, the nearest-neighbor matcher can be modeled

with two stochastic processes, one producing independent

correct matching scores with a distribution Fc and another

producing independent incorrect matching scores with a

distribution Fc̄ (see Fig. 1). Note we write probability den-

sities (pdf’s) with lower case letters and distribution func-

tions (cdf’s) with capital letters.

Because incorrect matches can have lower scores than

correct matches, there is overlap between Fc and Fc̄. There-

fore, the minimum score from a nearest-neighbor matcher

might be produced by either Fc or Fc̄. If we could tell which

of these two distributions produced the minimum, we would

know if the minimum corresponds to a correct match or not.

First, we consider the distribution of incorrect matches.

If we have m features in our reference image and assume

that there is only one correct matching feature, then the

matching process will produce m − 1 “incorrect” scores

drawn from distribution Fc̄ for each query feature. Since

our nearest-neighbor matcher will only consider the mini-

mum score, if an incorrect score is selected as the minimum

then it will follow a distribution that models the minimum

of Fc̄. But what is this distribution? To answer this ques-

tion, we draw insight from one of the classical theorems in

extreme value theory (see, e.g., [3]):
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Figure 1. Overview of the matching process. (top) Given query

and reference images where correct matches have been pre-

identified, we show the pdf’s of the matching scores for both cor-

rect (fc) and incorrect matches (gc̄). (bottom) We pose the pro-

cess of matching a query descriptor qi to a set of reference de-

scriptors {rj}
m

j=1
in a probabilistic framework. First, a random

process generates at most one correct matching score using cdf

Fc. Another random process generates at least m − 1 incorrect

matching scores using distribution Fc̄. From this last set of in-

correct matches the minimum is taken, modeled by distribution

Gc̄. Finally, the minimum of these two outputs is the best match-

ing score si,j⋆ . This process therefore models a nearest-neighbor

matcher. Our work leverages extreme value theory to model this

matching process without knowing the distributions a priori, and

computes the confidence that score si,j⋆ is from a correct match.

Theorem: 1. Let Xi be a sequence of i.i.d. random vari-

ables and let Mn = max {X1, . . . , Xn} denote the max-

imum. If there exist sequences of normalizing constants

an > 0, bn ∈ R, and a non-degenerate probability dis-

tribution function, G, such that

P(a−1
n (Mn − bn) ≤ x) → G(x) as n → ∞ (2)

then G(x) is of the same type as one of the three extremal-

type distributions: Gumbel, Fréchet, and Weibull.

Intuitively, Theorem 1 states that the statistics of max-

ima Mn converges to distribution G (which can be Gum-

bel, Fréchet, or Weibull) asymptotically when the size of

the sequence goes to infinity (i.e., a large sequence). Al-

though the theorem considers the maximum of a sequence,

it can be trivially applied to the minimum as well, since

a minimization problem can be recast as a maximization:

maxi {−Xi} = mini {Xi}. Therefore, we can apply this

theorem to model the minima of Fc̄ as distribution Gc̄.

In order to derive analytically which of the three

extremal-type distributions to use for Gc̄, we technically

need full knowledge of Fc̄ which we do not have a pri-

ori in our application. However, we can use the General-

ized Extreme Value distribution (GEV), which unifies the
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Figure 2. (left) Fitted Gamma distributions to matching scores

from pre-identified correct matches. (center) Fitted GEV distri-

butions to matching scores from pre-identified incorrect matches.

(right) The histograms show the distribution of all the best match-

ing scores (which include both correct and incorrect matches) and

the continuous curve shows that our mixture model of the two den-

sities is a good fit. In all cases, SIFT matches are shown on top and

SURF matches on the bottom.

three extremal-type distributions, to address this issue, so

Gc̄(s) = GEV(s;µ, σ, ξ) (see [3] or supp. material).

To model the correct matching distribution Fc, we as-

sume that the statistics of the correct matching scores will

be skewed towards the minimum since many of the state-

of-the-art descriptors such as SIFT or SURF are designed to

be as invariant as possible, resulting in low scores. There-

fore, we can expect distributions with longer right-tails,

and so we pose that the correct matching scores follow a

Gamma distribution, i.e., Fc(s) = Gamma(s;α, β). Fig. 2

shows fitted corresponding distributions to a set of pre-

identified correct/incorrect matching scores for SIFT and

SURF matches to demonstrate that the models we have se-

lected for Fc and Gc̄ are reasonable in practice.

So now we have distribution Fc that produces the inlier

scores and Gc̄ that produces the best outlier score for each

feature. The nearest neighbor matcher then selects between

the two depending on which one is smaller. We observe

that the probability of selecting one distribution or the other

is given by the inlier ratio ε, which states the percentage

of the nearest matches that are actually inliers for all query

features. Therefore, the statistics of nearest-neighbor score

si,j⋆ can be modeled by the following mixture distribution:

F = εFc + (1− ε)Gc̄ (3)

where we use the inlier ratio ε as the mixing parameter be-

tween the two distributions. The plots on the right in Fig.

2 show that this mixture model fits the measured minimum

values for each feature reasonably in real examples.

We can then use this mixture model to calculate weights

or correctness confidences as a function of a matching score

for every correspondence by computing the posterior prob-

ability from Eq. (3):
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p(c|s) =
p(s|c)p(c)

p(s|c)p(c) + p(s|c̄)p(c̄)

=
εfc

εfc + (1− ε)gc̄
(4)

where p(c) = ε, p(s|c) = fc, and p(s|c̄) = gc̄. In the

section that follows, we describe an algorithm that automat-

ically estimates the necessary parameters for our model in

order to use it to accelerate model generation.

3.3. Building the probabilistic model from the data

We now introduce the EVSAC algorithm (summarized in

Algorithm 1), which was inspired by BEEM’s prior search

method [9] and which estimates the parameters for our theo-

retical model from real image data. EVSAC requires the im-

age feature correspondences {x ↔ x′}
n

i=1, and the k near-

est neighbor matching scores {si,1:k}
n

i=1 sorted in an as-

cending order for every i-th correspondence. We denote the

r-th element in the sorted sequence si,1:k for the i-th match

as si,(r), then si,(1) = si,j⋆ . The goal of EVSAC is to pro-

duce the set of weights {w}
n

i=1 for every correspondence,

which will be used for generating hypotheses.

Our algorithm begins by computing the distributions for

correct and incorrect matches for the data provided. In or-

der to start the process, we need a correct-match predic-

tor to preliminarily label each match as correct or incorrect

(e.g., Lowe’s ratio [11] or MR-Rayleigh [8]). We then fit a

two-parameter Gamma distribution to the data identified as

correct to estimate Fc. Subsequently, we use all the second

nearest matching scores, i.e., si,(2), ∀i = 1, . . . , n, to find

the three parameters of the GEV distribution for Gc̄. We

use the second nearest matching scores (instead of all the

matches labeled incorrect by the predictor) since in practice

this results in a better approximation of the true GEV, as if

we had a perfect incorrect match detector (see Fig. 3).

Next, we estimate ε, which is the mixing parameter be-

tween these two computed distributions. To find this pa-

rameter, we build the empirical cdf of F , see Eq. (3), using

all the lowest matching scores, i.e., si,(1). Subsequently, we

then solve the following constrained least-squares problem:

minimize
y

1

2
‖Ay − b‖22

subject to 1Ty = 1

0 	 y 	 u

(5)

where the symbol 	 indicates entrywise comparison, and

A =

⎡

⎢

⎣

Fc(s1) Gc̄(s1)
...

...

Fc(sL) Gc̄(sL)

⎤

⎥

⎦
, b =

⎡

⎢

⎣

F (s1)
...

F (sL)

⎤

⎥

⎦
,

y =

[

ε

ε′

]

, and u =

[

τ

1

]

.

Algorithm 1 EVSAC

Require: {x ↔ x′}
n

i=1 and {si,1:k}
n

i=1
Ensure: {wi}

n

i=1 and {pi}
n

i=1

1: v ← Predict
(

{si,1:k}
n

i=1

)

2: (α, β) ← FitGamma
({

si,(1) such that vi = 1
})

3: (µ, σ, ξ) ← FitGEV
({

si,(2)
})

4: Calculate the empirical cdf using si,j⋆

5: Find ε by solving (5)

6: Calculate posterior-weights pi using Eq. (4)

7: Calculate weights wi using Eq. (6)

8: Use the weights wi for generating hypotheses

The first entry of vector u, i.e., τ , is the inlier ratio com-

puted by the predictor in step 1. We set this upper bound

to the estimate of ε as in practice the predictor introduces

some false-positives (false-alarms) and so the true inlier ra-

tio must be less than or equal to this number.

Intuitively, the solution to (5) is the mixture parameter

that produces the lowest error between the observations (the

minimum scores returned by the nearest-neighbor matcher

for all query features) and the mixture model that com-

bines our estimates for the correct and incorrect distribu-

tions. Once this has been found, we can use Bayes’ theorem

in Eq. (4) to calculate a correctness confidence for each cor-

respondence (step 6). Although the confidences determined

by the posterior lead to speed ups in the convergence of the

model estimation, we noticed that the overlap between dis-

tributions causes some incorrect matches to be assigned a

high confidence, costing extra iterations in RANSAC. To al-

leviate this problem, we calculate an “agreement” between

the predictor in step 1 and the posterior. Assuming that the

predictor returns a binary vector v where 1 denotes correct

match and 0 otherwise, we calculate the final weights as

wi = pivi, (6)

where pi is the posterior for the i-th match. In the case

where no agreement exists, i.e., all weights are zero, or

when the agreement within some number of iterations did

not converge to a solution, then the confidences pi com-

puted with the posterior can be used. Finally, we use

weights wi to sample matches to generate hypotheses.

4. Experiments

We present in this section two different experiments to

assess the performance of EVSAC. The first experiment

evaluates the accuracy of calculating the parameters of

our probabilistic framework, i.e., the distribution parame-

ters and the mixing parameter ε. The second experiment

measures the performance of our approach against well-

established non-uniform sampling algorithms for the es-

timation task of homographies and fundamental matrices.
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Table 1. Estimation of ε comparison: ε̂ is the estimation with τ

set as an upper bound (see Eq. (5)), and ε̃ is without. The upper

bounded estimate tends to provide more accurate estimations.

Image Pairs ε ε̂ ε̃

Oxford-Bark (1-4 SURF) 0.0131 0.0141 0.1870

Oxford-Boat (1-6 SURF) 0.0257 0.0270 0.1429

Oxford-Bark (1-3 SIFT) 0.0479 0.0438 0.1291

Oxford-Trees (1-6 SIFT) 0.1028 0.1119 0.2467

Strecha-Brussel (2-3 SIFT) 0.1855 0.2067 0.2263

Strecha-Brussel (1-2 SURF) 0.2964 0.3115 0.3632

The estimation experiments consider cases ranging from a

very low inlier-ratio to cases where the inlier ratio is larger,

which are more commonly presented in previous work.

Datasets: We use Oxford datasets [12] and Strecha’s

multi-view stereo datasets [18] for our experiments. Each

Oxford dataset contains a reference image and five query

images, as well as five homographies that relate the ref-

erence image and the query images. The three Strecha’s

datasets provide the set of camera parameters, i.e., intrinsic

and extrinsic matrices, for every image.

To generate the ground truth of image feature correspon-

dences, we first detected approximately a thousand key-

points per image by using OpenCV’s Hessian keypoint de-

tector and also computed their SIFT [11] and SURF [1]

descriptors using OpenCV’s implementation. For the Ox-

ford datasets, we exploited the homographies provided and

mapped the reference image keypoints onto every query im-

age. Subsequently, we then selected for every query key-

point the closest mapped reference keypoint with a mini-

mum Euclidean distance less than five pixels. When no ref-

erence keypoint was found with this process, then that query

keypoint did not have a true match. We then manually veri-

fied the result of this process, and used it as our ground truth

for the Oxford datasets.

For the multi-view dataset, we calculated the fundamen-

tal matrices between subsequent images (first and second

image, second and third image, and so on) using the pro-

vided intrinsic and extrinsic matrices (see [10], pg. 246).

We then matched the keypoints on the subsequent images

using their descriptors, and filtered out those query key-

points that produced a distance greater than or equal to 3

pixels from the epiline. The resulting set of matches was

verified manually to ensure that only correct matches were

left.

4.1. Parameter estimation experiment

We now present an evaluation of the performance of our

algorithm to find the parameters of our probabilistic frame-

work: ε, and the distribution parameters using the predic-

tor from [8] only as the predictor in step 1. We compared

the estimated parameters against the parameters obtained

assuming that we had a perfect correct match detector.

f̂c ĝc fc gc p̂ p

0 100 200 300 400 500
0

1

2

3

4

5
x 10

−3

Matching Score

D
e

n
si

ty

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Matching Score

P
o

st
e

ri
o

r 
P

ro
b

a
b

ili
ty

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

Matching Score

D
e

n
si

ty

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Matching Score

P
o

st
e

ri
o

r 
P

ro
b

a
b

ili
ty

Figure 3. Comparison of the mixture of densities and posterior

probability computed using EVSAC against the ground truth for

a pair of images with SIFT matches (top row) and SURF matches

(bottom row). Our density estimations f̂c and ĝc̄ are close to the

densities fc and gc̄ computed with an oracle. In the second col-

umn, we compare our estimated posterior probability p̂ with the

posterior p computed with the oracle.

We first examine the accuracy of the estimation of ε in

Table 1. The estimate of ε using the upper bound in vector u

used in (5), ε̂, tends to be closer to the real value, while the

estimate without the upper bound (ε̃) can overshoot some-

times.

Next, we examine the quality of our estimation of the

different probability densities and the posterior we use to

compute the weights wi. In the first column of Fig. 3, we

can observe that our algorithm (continuous curves) is able

to approximate with a good accuracy the mixture of densi-

ties obtained with the ground truth data (dashed curves). In

the second column, we present the posterior probabilities

computed from the estimated model (continuous curves)

and the posterior obtained from the ground truth (dashed

curves). This means that our algorithm estimates an accu-

rate posterior that essentially maximizes the information in

the matching score when computing a confidence value.

4.2. Homography experiment

In this experiment we assess the performance of our

non-uniform sampling algorithm for estimating homogra-

phies. We implemented the probabilistic model parame-

ter estimation in Matlab, and produced the set of weights

for every correspondence. We also computed the weights

produced by BEEM, BLOGS, and GMLESAC in Matlab.

These weights were then read by our C++/OpenCV imple-

mentation of the respective algorithms: RANSAC (guided

by our weights), Guided-MLESAC [19], BEEM’s prior esti-

mation step [9], and BLOGS’ global search mechanism [2].

All these sampling algorithms (along with PROSAC [5]

and classical RANSAC) were then included in a classical

hypothesis-test loop, where the support was always being
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maximized, and a solution was considered “good” if it sat-

isfied the maximality constraint, i.e., the constraint that a

good hypothesis was generated within a certain number of

iterations (see [5] for more details on this constraint). The

homography was computed using the OpenCV findHomog-

raphy( ) function without the RANSAC option. An inlier

was considered if the reprojection error of the homogra-

phy was less than 5 pixels. The algorithms were allowed to

run until a maximum number of iterations (hypothesis-test

loops) calculated adaptively is reached, and the algorithm

converged when 90% of the inliers (correct-matches) were

detected. The found hypothesis was refined afterwards us-

ing a non-linear method.

The results of this experiment are summarized in Table 2.

The Oxford datasets used for the experiment presented very

challenging scenarios, where the inlier-ratios ε ranged from

1-10% for SIFT and SURF matches. The experiments were

run 300 times. We present the average number of inliers

detected; the average RMS reprojection error in pixels w.r.t.

to the error achieved by the ground truth data; the average

number of models/hypotheses generated; the average time

in milliseconds; the average Frobenius norm of the error

between estimated homography and the computed homog-

raphy with the ground truth (f-error); and the percentage of

“good” runs where each algorithm converged. The results

are sorted in ascending order by the inlier-ratio. We can ob-

serve that our algorithm (EVSAC) tends to perform overall

faster when the inlier ratio is very low (see rows A, B, C, D,

and E), and performs equivalent or faster than BEEM and

BLOGS as soon as the inlier-ratio increased (see rows F, G,

H, I). PROSAC and GMLESAC struggled to converge fast

when the inlier-ratio was very low (ε < 11%).

To measure the effect of the inlier-ratio on the conver-

gence time, we used the entire Oxford-Trees dataset, where

we observed that the inlier-ratio decreased as the blurring

increased in a systematic manner. In Fig. 4 we present a plot

of the convergence time as a function of the inlier-ratio. We

only considered BEEM, BLOGS, and EVSAC because the

other methods did not converge when the inlier ratio was

low. We can observe that EVSAC tends to converge faster

when the inlier-ratio is less than 0.1 and performs equiva-

lently when the inlier-ratio starts to increase.

4.3. Fundamental matrix experiment

In this experiment, we assess the performance of EVSAC

in estimating fundamental matrices. We have the same im-

plementation as in the homography experiment using Mat-

lab and C++/OpenCV implementation. The fundamental

matrix was computed using the 7-point algorithm provided

by the OpenCV findFundamentalMat( ) function without

the RANSAC option. When the function returned more

than one solution, we kept the matrix that had the biggest

inlier support. A match was considered to be an inlier when
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Figure 4. Convergence time as a function of the inlier ratio for

SIFT matches (left) and SURF matches (right) on the Oxford-

Trees dataset.

the distance between a query keypoint and the epiline was

less than a pixel.

The results of this experiment are shown in Table 3.

Strecha’s multi-view dataset provided different relatively

high inlier ratios; ranging from 29-43% for SIFT and SURF

matches. The experiments were run 300 times, and we

present the same quantities as in the homography experi-

ment. We can observe that in all the experiments our algo-

rithm (EVSAC), BEEM, BLOGS, and PROSAC were the

fastest regardless of the descriptor used. GMLESAC was

the second fastest algorithm and RANSAC was the slow-

est. All of the algorithms converged in all the trials, and

provided an accurate estimation as the Frobenius norm indi-

cates. This confirms that our algorithm can perform equiv-

alently to other methods when the inlier-ratio is not so low.

5. Conclusions and future directions

We have introduced a probabilistic framework that uses

extreme value theory to model the statistics of the best

matching scores selected by a nearest-neighbor feature

matcher. We then use the posterior probability of our mix-

ture model to compute the correctness weight for every

correspondence and thereby accelerate model generation.

Our homography and fundamental matrix estimation ex-

periments showed that our algorithm (EVSAC) performs

robustly and is faster than existing state-of-the-art meth-

ods (BEEM, BLOGS, PROSAC, and GMLESAC) when the

inlier-ratio is low (< 11%). Moreover, the experiments

also demonstrated that EVSAC is comparable to these other

methods when the inlier-ratio increases (> 20%). The re-

sults suggest that EVSAC is a very useful algorithm for ap-

plications that require fast and robust model estimation in

complex environments where the number of inliers is low.

This work opens the possibility of using extreme value

theory for developing models for related problems that in-

volve a minimum (or maximum) which can be cast as

stochastic processes. For example, we are interested in ex-

tending this work to similarity metrics and to develop statis-

tical tools for analyzing and designing descriptors/metrics

for these applications.
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Table 2. Homography estimation results for SIFT and SURF matches. The results are sorted by inlier-ratio (ε) in ascending order. EVSAC

performed well when the inlier-ratio is low, and performed equivalently when the inlier-ratio increased.

RANSAC BEEM BLOGS PROSAC GMLESAC EVSAC

A: ε = 0.01, n = 992, SURF inliers NA 14 ± 0 14 ± 0 14 ± 0 14 ± 0 14 ± 0

error NA 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

models NA 1443 2524 4 1521 11

time NA 563.1 1008.3 2 511 4.2

f-error NA 0 0 0 0 0

good runs 0 % 100% 96% 0.33% 0.33% 100%

B: ε = 0.02, n = 992, SIFT inliers 10 ± 2 12 ± 3 12 ± 2 10 ± 2 11 ± 3 12 ± 2

error 0.36 ± 0.1 0.1± 0.02 0.1 ± 0.04 0.37 ± 0.03 0.24 ± 0.04 0.16 ± 0.03

models 2436910 41 17 2752900 10044 10

time 338618 13.3 5.3 375482 1446.4 3.3

f-error 94.4 6.6 10.7 136.7 37.8 12.1

good runs 37% 100% 100% 100% 100% 100%

C: ε = 0.035, n = 992, SURF inliers 27 ± 4 24 ± 2 22 ± 4 27 ± 4 29 ± 2 24 ± 2

error 0.1 ± 0.03 0.1 ± 0.01 0.1 ± 0.01 0.1 ± 0.02 0.03 ± 0.05 0.2 ± 0.1

models 1313580 3741 4072 1458250 209963 1965

time 286881 1172.3 1509.5 284838 28092.1 572.3

f-error 2.5 2 9 3.2 2.9 4.2

good runs 89% 100% 99% 100% 100% 100%

D: ε = 0.04, n = 981, SURF inliers 38 ± 6 39 ± 2 39 ± 2 38 ± 6 38 ± 9 39 ± 2

error 0.01 ± 0.1 0.04 ± 0.02 0.01 ± 0.001 0.02 ± 0.1 0.01 ± 0.2 0.02 ± 0.01

models 697832 39 82 655073 4151 4

time 155067 10.9 21.5 145207 838.4 1.3

f-error 1.1 0 0.1 1.3 3.9 0.1

good runs 91.33% 100% 100% 98% 99% 100%

E: ε = 0.05, n = 807, SURF inliers 38 ± 6 40 ± 2 40 ± 2 38 ± 6 33 ± 9 40 ± 2

error 1.5 ± 0.2 0.04 ± 0.03 0.002 ± 0.001 0.45 ± 0.53 0.02 ± 0.13 0.02 ± 0.01

models 304532 149 355 321952 4713 92

time 61170.4 42.9 98.5 56176.5 2111.9 26.3

f-error 0.3 0.3 0.2 0.6 35.7 0.8

good runs 100% 100% 100% 100% 100% 100%

F: ε = 0.05, n = 807, SIFT inliers 37 ± 6 41 ± 3 41 ± 4 36 ± 6 41 ± 3 41 ± 3

error 2.08 ± 0.3 0.08 ± 0.02 0.002 ± 0.01 0.17 ± 0.04 0.05 ± 0.02 0.04 ± 0.02

models 221667 71 14 218811 341 22

time 42002.5 15.7 3.5 40750.7 67.5 5.4

f-error 8.4 1.7 0.7 8.4 1.1 0.1

good runs 100% 100% 100% 100% 100% 100%

G: ε = 0.10, n = 992, SURF inliers 58 ± 23 81 ± 8 81 ± 9 60 ± 23 81 ± 8 82 ± 7

error 0.003 ± 0.06 0.02 ± 0.01 0.03 ± 0.009 0.02 ± 0.06 0.02 ± 0.006 0.03 ± 0.004

models 4899 177 193 4507 918 73

time 1738.9 49.6 53.6 1616.2 226.5 21.9

f-error 16 0.8 0.7 13.3 0.6 0.4

good runs 100% 100% 100% 100% 100% 100%

H: ε = 0.103, n = 992, SIFT inliers 62 ± 16 82 ± 9 82 ± 9 69 ± 16 80 ± 8 82 ± 8

error 0.1 ± 0.05 0.02 ± 0.016 0.05 ± 0.008 0.09 ± 0.04 0.03 ± 0.003 0.03 ± 0.003

models 4727 72 26 3649 773 8

time 1183.3 13.9 5.5 834 120.1 4.1

f-error 8.9 0.7 1.1 4.5 1 0.8

good runs 100% 100% 100% 100% 100% 100%

I: ε = 0.103, n = 992, SIFT inliers 70 ± 15 81 ± 11 81 ± 10 77 ± 13 80 ± 12 82 ± 10

error 0.09 ± 0.02 0.03 ± 0.007 0.003 ± 0.002 0.05 ± 0.001 0.02 ± 0.015 0.002 ± 0.02

models 4675 13 13 1961 89 13

time 1032.4 3.4 3.3 507.2 18.4 3.4

f-error 5.5 0.4 0.8 3.3 1.4 1.3

good runs 100% 100% 100% 100% 100% 100%
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Table 3. Fundamental matrix estimation results for SIFT and SURF matches. The results are sorted by inlier-ratio (ε) in ascending order.

EVSAC performed as fast as BEEM, BLOGS, and PROSAC.

RANSAC BEEM BLOGS PROSAC GMLESAC EVSAC

A: ε = 0.29, n = 992, SURF inliers 221 ± 30 236 ± 32 241 ± 34 237 ± 34 229 ± 31 237 ± 34

error 0.5 ± 1.5 0.4 ± 2.2 0.3 ± 0.7 0.4 ± 1.0 1.0 ± 7 0.3 ± 0.4

models 160 3 3 3 16 2

time 1349 69 64 67 497 64

f-error 0.07 0.05 0.1 1.0 0.06 0.08

good runs 100% 100% 100% 100% 100% 100%

B: ε = 0.33, n = 992, SURF inliers 261 ± 44 278 ± 39 283 ± 38 288 ± 35 262 ± 43 279 ± 38

error 0.8 ± 5 0.4 ± 1.8 0.3 ± 0.6 0.4 ± 1.3 0.4 ± 1.4 0.4 ± 2

models 18 1 1 1 15 1

time 214 60 61 59 95 51

f-error 0.002 0.002 0.002 0.001 0.001 0.002

good runs 100% 100% 100% 100% 100% 100%

C: ε = 0.40, n = 992, SIFT inliers 306 ± 34 321 ± 42 335 ± 42 331 ± 41 305 ± 36 330 ± 40

error 0.3 ± 0.5 0.3 ± 0.6 0.2 ± 0.8 0.2 ± 0.3 0.6 ± 5 0.2 ± 0.4

models 59 3 3 3 44 3

time 593 83 75 78 410 81

f-error 1.0 0.3 0.1 0.1 0.1 0.1

good runs 100% 100% 100% 100% 100% 100%

D: ε = 0.43, n = 992, SIFT inliers 340 ± 55 368 ± 50 380 ± 38 387 ± 36 353 ± 51 373 ± 50

error 0.1 ± 0.25 0.08 ± 0.13 0.07 ± 0.15 0.06 ± 0.07 0.13 ± 0.32 0.08 ± 0.11

models 5 1 1 1 4 1

time 117 78 76 80 108 78

f-error 0.002 0.003 0.002 0.002 0.002 0.002

good runs 100% 100% 100% 100% 100% 100%
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