
Ex Ante Skewness and Expected Stock Returns

First Draft: March 2007
This Draft: January 11, 2012

Abstract

We use a sample of option prices to estimate the ex ante higher moments of the underlying individual
securities’ risk-neutral returns distribution. We find that individual securities’ risk neutral volatility,
skewness, and kurtosis are strongly related to future returns. Specifically, we find a negative relation
between past volatility and subsequent returns in the cross-section. We also find that ex ante more
negatively (positively) skewed returns are associated with subsequent higher (lower) returns, while
ex ante kurtosis is positively related to subsequent returns. We analyze the extent to which these
returns relations represent compensation for risk and find evidence that, even after controlling for
differences in co-moments, individual securities’ skewness matters.



1 Introduction

Models implying that investors consider higher moments in returns have a long history in the
literature. Researchers such as Rubinstein (1973), Kraus and Litzenberger (1976) and Kraus
and Litzenberger (1983) develop models of expected returns which incorporate skewness. In
these models, the higher moments which are relevant for individual securities are co-moments
with the aggregate market portfolio. Subsequently, empirical work provided evidence that
higher moments of the return distribution are important in pricing securities. Consistent
with the models’ focus on co-moments, the tests in these papers ask whether a security’s co-
skewness or co-kurtosis with the market is priced; historical returns data are typically used to
measure these co-moments. For example, Harvey and Siddique (2000) explore both skewness
and co-skewness and test whether co-skewness is priced, and Dittmar (2002) tests whether
a security’s co-skewness and co-kurtosis with the market portfolio might influence investors’
expected returns.

Other recent papers have suggested that additional features of individual securities’ pay-
off distribution may be relevant for understanding differences in assets’ returns. For ex-
ample, Ang, Hodrick, Xing, and Zhang (2006) and Ang, Hodrick, Xing, and Zhang (2009)
document that firms’ idiosyncratic return volatility contains important information about fu-
ture returns. The work of Barberis and Huang (2008), Brunnermeier, Gollier, and Parker
(2007), and the empirical evidence presented in Mitton and Vorkink (2007) and Boyer, Mit-
ton, and Vorkink (2010) imply that the skewness of individual securities may also influence
investors’ portfolio decisions. Xing, Zhang, and Zhao (2010) find that portfolios formed by
sorting individual securities on a measure which is related to idiosyncratic skewness gen-
erate cross-sectional differences in returns. Green and Hwang (2009) use the approach of
Zhang (2006) and find that IPOs with high expected skewness (’lottery’ stocks) experience
significantly greater first-day returns, followed by substantially greater negative abnormal
returns in the subsequent three to five years.

We therefore have two strands in the existing literature: (1) models and empirical re-
sults that emphasize the importance of higher moments as they affect stochastic discount
factors, (2) models and empirical evidence that focus on the higher moment characteristics
of individual securities. In this second strand of the literature, researchers have proposed
both behavioral and rational models. For example, Barberis and Huang (2008) argue that
investors with cumulative prospect theory preferences demand securities with highly skewed
payoffs, such as IPO stocks. Brunnermeier, Gollier, and Parker (2007) develop a model of op-
timal (as opposed to rational) beliefs which also predicts that investors will overinvest in the
most highly (right) skewed securities, with the consequence that those securities will have
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lower subsequent average returns. They also show that, while there is a rational expectations
solution to their model, it represents a knife-edge case. Mitton and Vorkink (2007) introduce
a rational model where investors have heterogeneous preferences for skewness and show that
idiosyncratic skewness can impact prices. Chabi-Yo, Ghysels, and Renault (2010) also present
a model where heterogeneity of beliefs across rational investors can generate a pricing kernel
which depends on idiosyncratic moments.

In this paper, we examine the importance of higher moments using a new approach. We
exploit the fact that if option and stock prices reflect the same information, then it is possi-
ble to use options market data to extract estimates of the higher moments of the securities’
(risk-neutral) probability density function. Our method has several advantages. First, option
prices are a market-based estimate of investors’ expectations. Many authors, including Bates
(1991), Rubinstein (1994) and Jackwerth and Rubinstein (1996) have argued that option mar-
ket prices can capture the information of market participants. Second, the use of option prices
eliminates the need of a long time series of returns to estimate the moments of the return dis-
tribution; this is especially helpful when trying to forecast the payoff distribution of relatively
new firms or during periods where expectations, at least for some firms, may change relatively
quickly. Third, options reflect a true ex ante measure of expectations; they do not give us, as
Battalio and Schultz (2006) note, the “unfair advantage of hindsight.” As Jackwerth and Ru-
binstein (1996) state, “not only can the nonparametric method reflect the possibly complex
logic used by market participants to consider the significance of extreme events, but it also
implicitly brings a much larger set of information . . . to bear on the formulation of probability
distributions.”

We begin with a sample of options on individual stocks, and test whether cross-sectional
differences in estimates of the higher moments of an individual security’s payoff extracted
from options are related to subsequent returns. Consistent with the Ang, Hodrick, Xing, and
Zhang (2006) and Ang, Hodrick, Xing, and Zhang (2009) findings for physical measures of
idiosyncratic volatility, we find a negative relation between risk-neutral volatility and subse-
quent returns. We also document a significant negative relation between firms’ risk-neutral
skewness and subsequent returns - that is, more negatively skewed securities have higher
subsequent returns. In addition, we find a significant positive relation between firms’ risk-
neutral kurtosis and subsequent returns. These relations persist after controlling for firm
characteristics, such as beta, size, and book-to-market ratios, and adjustment for the Fama
and French (1993) risk factors.

We examine the extent to which these relations between risk-neutral higher moments and
subsequent returns are determined by co-moments with the market portfolio. We measure
co-moments using the approaches of Harvey and Siddique (2000) and Bakshi, Kapadia, and
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Madan (2003), and then decompose total moments into co-moments – such as co-skewness –
and idiosyncratic moments. We find that the relation between idiosyncratic higher moments,
particularly idiosyncratic skewness, and subsequent returns persists, even after controlling
for differences in covariance, co-skewness and co-kurtosis.1

Our results are consistent with models such as Brunnermeier, Gollier, and Parker (2007),
and Barberis and Huang (2008), which predict that investors will trade off the benefits of
diversification and skewness, holding more concentrated positions in skewed securities, and
resulting in a negative relation between idiosyncratic skewness and expected returns. These
results are also consistent with the empirical evidence in Mitton and Vorkink (2007), who
examine the choices of investors in a sample of discount brokerage accounts and find that
investors appear to hold relatively undiversified portfolios and accept lower Sharpe ratios
for positively skewed portfolios and securities. These papers focus on physical moments of
returns, in contrast to the risk-neutral moments that we examine. Consequently, we ana-
lyze the relation between our risk-neutral estimates of skewness and estimates formed from
historical returns. We find a positive and statistically significant relation between these esti-
mates; however, we find comparatively little evidence that the relation between risk-neutral
moments and subsequent returns in our sample is driven by this relation; that is, after con-
trolling for differences in physical moments, the predictive relation between risk-neutral mo-
ments and subsequent returns continues to hold. In contrast, after controlling for differences
in risk-neutral moments, we find no clear pattern in returns for portfolios which differ in
physical skew.

The remainder of the paper is organized as follows. In section 2, we detail the method we
employ for recovering measures of volatility, skewness, and kurtosis, following Bakshi, Ka-
padia, and Madan (2003) and we discuss the data (and data filters) used in our analysis. In
Section 3 we focus on testing whether estimates of the ex ante higher moments of the payoff
distribution obtained from options data are related to the subsequent returns of the underly-
ing security. In Section 4, we analyze the extent to which the relations between option-based
ex ante higher moment sorts and subsequent returns are due to investors seeking compensa-
tion for higher co-moment risk, rather than idiosyncratic moments. We examine in Section 5
the relation between risk-neutral and physical distributions, and in particular the comparison
of portfolio sorts based on skewness under both measures. We conclude in Section 6.

1In robustness checks, we also explore a stochastic discount factor approach and consider several alternative
specifications of the stochastic discount factor, both parametric and non-parametric. We find results similar to
those obtained from the decomposition of higher moments. These results are available in a companion document
containing supplementary material: see BLANK (2011).
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2 Data and Computing Ex Ante Risk-Neutral Moments

We wish to examine the relation, if any, between features of the risk-neutral density func-
tion and the pricing of stocks. In this section we describe the data and the methods used to
compute ex ante estimates of volatility, skewness, and kurtosis.

Our data on option prices are from Optionmetrics (provided through Wharton Research
Data Services). We begin with daily option price data for all out-of-the-money calls and puts
for all stocks from 1996-2005. Closing prices are constructed as midpoint averages of the
closing bid and ask prices.

Data on stock returns are obtained from the Center for Research in Security Prices (again
provided through Wharton Research Data Services). We employ daily and monthly returns
from 1996-2005 for all individual securities covered by CRSP with common shares outstand-
ing. Risk free rates are the continuously compounded yield computed from the bank discount
yields on secondary market three month Treasury Bills taken from the Federal Reserve Re-
port H.15. Finally, we obtain balance sheet data for the computation of book-to-market ratios
from Compustat and compute these ratios following the procedure in Davis, Fama, and French
(2000).

We begin by calculating higher moments of firms’ risk neutral probability distributions. In-
tuitively, a risk neutral probability distribution is computed so that today’s fair (i.e. arbitrage-
free) price of an asset is equal to the discounted expected value of the future payoffs of the
asset, where the discount rate used is simply the riskfree rate. Thus, under the risk neutral
measure, all financial assets in the economy have the same expected rate of return, regard-
less of their risk. In contrast, if we use the actual (or physical) probability distribution of
the asset’s payoffs and assume that investors are risk-averse, assets which have more risk in
their distribution of payoffs should have a greater expected rate of return (and so lower prices)
than less risky assets. The relation between risk-neutral and physical probabilities therefore
depends on the price of risk; risk-neutral probabilities subsume, or incorporate, the effects of
risk, since the prices from which they are calculated embed investors’ risk preferences.

Like the physical density, the risk neutral density has first, second, third and fourth mo-
ments, respectively mean, variance, skewness and kurtosis. All densities are extracted from
options and are therefore conditional and for a given horizon. In a risk-neutral density, the
mean should correspond to the risk free rate at a given time with a particular maturity.

To estimate the higher moments of the (risk-neutral) density function of individual securi-
ties, we use the results in Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan (2003).
Bakshi and Madan (2000) show that any payoff to a security i can be constructed and priced
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using a set of option prices with different strike prices on that security. They define Vi,t(τ),
Wi,t(τ), and Xi,t(τ) as the time t prices of τ -maturity quadratic, cubic, and quartic contracts,
respectively. Bakshi, Kapadia, and Madan (2003) define these contracts as contingent claims
with payoffs equal to respectively future second, third and fourth powers of log price returns.
The contracts are based on Ci,t(τ ;K) and Pi,t(τ ;K), which are the time t prices of European
calls and puts written on the underlying stock with strike price K and expiration τ periods
from time t. Expressions for Vi,t(τ), Wi,t(τ), and Xi,t(τ) appear in Appendix A1 as equations
(A1), (A2) and (A3). Using the prices of these contracts, standard moment definitions imply
that the risk-neutral moments can be calculated as

V ARQi,t(τ) = erτVi,t(τ)− µi,t(τ)2 (1)

SKEWQ
i,t(τ) =

erτWi,t(τ)− 3µi,t(τ)e
rτVi,t(τ) + 2µi,t(τ)

3

[erτVi,t(τ)− µi,t(τ)2]3/2
(2)

KURTQi,t(τ) =
erτXi,t(τ)− 4µi,t(τ)Wi,t(τ) + 6erτµi,t(τ)

2Vi,t(τ)− µi,t(τ)4

[erτVi,t(τ)− µi,t(τ)2]2
(3)

where
µi,t(τ) = erτ − 1− erτVi,t(τ)/2− erτWi,t(τ)/6− erτXi,t(τ)/24 (4)

and r represents the risk-free rate. We follow Dennis and Mayhew (2002), and use a trape-
zoidal approximation to estimate the integrals in expressions (A1) - (A3) using discrete data.2

In Table 1, we present descriptive statistics for the sample estimates of volatility, skew-
ness, and kurtosis. We report medians, 5th and 95th percentiles across time and securities
for each year during the sample period. The results in Table 1 indicate that higher moments
are important in describing the risk-neutral distribution. While we do not conduct formal
tests for the statistical significance of departures from normality, it is clear that there are
individual stocks that are strongly negatively skewed (with fifth percentiles of skewness al-
ways smaller than -3 and medians as small as -1.3) and fat-tailed (with the 95th percentile of
kurtosis in the cross section above 18 and medians consistently above 3). As Bakshi, Kapadia,
and Madan (2003) point out, skewed risk-neutral distributions imply that the physical distri-
bution is skewed, or fat-tailed, or both. In either case, the underlying physical distribution is
non-Gaussian.

There are clear patterns in the time series of these moments through the sample period,
as well as evidence of interactions between them. Volatility peaks in 2000, during the height
of the Internet bubble, then declines through 2005. The median risk-neutral skewness is

2We are grateful to Patrick Dennis for providing us with his code to perform the estimation.
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negative, indicating that the distribution is left-skewed; the median value stays relatively
flat through 2000 after which it declines sharply, while the median kurtosis estimate increases
during that same period, more than doubling from 2000 through 2005. In very broad terms,
the results in Table 1 imply that the estimates of higher moments that we obtain using the
Optionmetrics sample and the method of Bakshi, Kapadia, and Madan (2003) are related to
price movements in the underlying market.

3 Ex Ante Higher Moments and the Cross-section of Returns

Our focus in this section is on testing whether estimates of the ex ante higher moments of the
payoff distribution obtained from options data are related to the subsequent returns of the
underlying security.

3.1 Arbitrage Issues

Under the assumption that no-arbitrage rules hold between the options market and the un-
derlying security prices, the information set contained in both cash and derivatives markets
should be the same. Several authors have shown that information in option prices can provide
valuable forecasts of features of the payoff distributions in the underlying market. For exam-
ple, Bates (1991) examines option prices (on futures contracts) prior to the market crash of
1987 and concludes that the market anticipated a crash in the year, but not the two months,
prior to the October market decline. He also shows that fears of a crash increased immediately
after the crash itself.

Our sample period includes the Internet bubble, and some researchers have argued that
option prices and equity prices diverged during this period. For example, Ofek and Richard-
son (2003) propose that the Internet bubble is related to the ‘limits to arbitrage’ argument
of Shleifer and Vishny (1997). This argument requires that investors could not, or did not,
use the options market to profit from mis-pricing in the underlying market, and, in fact, they
also provide empirical evidence that option prices diverged from the (presumably misvalued)
prices of the underlying equity during this period. However, Battalio and Schultz (2006) use
a different dataset of option prices than Ofek and Richardson (2003), and conclude that short-
ing synthetically using the options market was relatively easy and cheap, and that short-sale
restrictions are not the cause of persistently high Internet stock prices. A corollary to their
results is that option prices and the prices of underlying stocks did not diverge during the
Internet bubble and they argue that Ofek and Richardson’s results may be a consequence of
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misleading or stale price quotes in their options data set. Note that if option and equity prices
do not contain similar information, then our tests should be biased against finding a system-
atic relation between estimates of higher moments obtained from option prices and subse-
quent returns in the underlying market.3 However, motivated by the Battalio and Schultz
results, we employ additional filters to try to ensure that our results are not driven by stale
or misleading prices. In addition to eliminating option prices below 50 cents and perform-
ing robustness checks with additional constraints on option liquidity, as mentioned above, we
also remove options with less than one week to maturity, and eliminate days in which closing
quotes on put-call pairs violate no-arbitrage restrictions.

3.2 Portfolio Sorts

Each day, we sample the prices of out of the money calls and puts on individual securities that
have expiration dates that are closest to 0.083 years (one month), 0.250 years (three months),
0.500 years (six months) and 1.000 years to maturity and midpoint bid and offer prices of
$0.50 or greater. As documented in Dennis and Mayhew (2009), the procedure for calculating
risk neutral moments is most accurate when we have an equal number of puts and calls. If
there are a greater number of puts than calls, we retain only the same number of puts as
we have calls. The puts that we retain in this circumstance are those that are closest to, but
out of the money. We also require that there is trading volume in out of the money options
for that firm at the selected maturity on the trading day. We then use the Bakshi, Kapadia,
and Madan procedure outlined in section 2 to estimate volatility, skewness, and kurtosis for
horizons of one, three, six, and twelve months. The resulting output of this procedure is a
set of three risk neutral moments (volatility, skewness, and kurtosis) for four horizons each
(one, three, six, and twelve months) for each firm on each day that data are available. At
the daily frequency, a number of firms exhibit apparent outliers in measures of skewness and
kurtosis, which appear to be the effect of data errors. We remove observations in the top 1%
and bottom 1% of the cross-sectional distribution of volatility, skewness, and kurtosis each
day to mitigate the effect of these outliers. Finally, we delete observations on firms that have
less than 10 trading days of observations in a given calendar month.

Following Bakshi, Kapadia, and Madan (2003), we average the daily estimates for each
stock over time (in our case, the calendar quarter). Thus, each firm in our sample has a sin-
gle observation for volatility, skewness, and kurtosis for each maturity (one, three, six, and
twelve months) over the period starting in the first quarter of 1996 and ending in the fourth

3Robert Battalio graciously provided us with the OPRA data used in their analysis; unfortunately, these data,
provided by a single dealer, do not have a sufficient cross-section of data across calls and puts to allow us to
estimate the moments of the risk-neutral density function in which we are interested.
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quarter of 2005. We rank each firm within the quarter on the basis of its maturity-dependent
volatility, skewness, and kurtosis into terciles. The ‘extreme’ terciles contain 30% of the sam-
ple, while the middle tercile contains 40% of the sample. This sorting procedure results in
twelve rankings per firm per quarter, on the basis of three moments and four maturities. We
then use the rank to form equally-weighted portfolios over the subsequent calendar quarter,
holding the moment tercile rank fixed. The result is a total of 36 portfolios ranked on horizon-
dependent moments, with returns sampled at the monthly frequency over the period April,
1996 through December, 2005.

In Table 2, we report results for portfolios sorted on the basis of estimated volatility, skew-
ness, and kurtosis. We focus on two maturity bins, 3 (Panel A) and 12 (Panel B) months;
all other maturities are discussed in BLANK (2011). Specifically, we report the subsequent
raw returns of the equally-weighted moment-ranked portfolios over the next month in the col-
umn with label ‘Mean’. In the next column, we report the characteristic-adjusted return over
that same month. To calculate the characteristic-adjusted return, we perform a calculation
similar to that in Daniel, Grinblatt, Titman, and Wermers (1997). For each individual firm,
we assess to which of the 25 Fama-French size- and book-to-market ranked portfolios the
security belongs. We subtract the return of that Fama-French portfolio from the individual
security return and then average the resulting excess or characteristic-adjusted ‘abnormal’
return across firms in the moment-ranked portfolio. In the next three columns of Table 2, we
report the average firm’s risk-neutral volatility, skewness and kurtosis estimates for each of
the ranked portfolios.Finally, we report average betas, average (log) market value and average
book-to-market equity ratios of the securities in the portfolio.

Summary statistics in Panel A of Table 2 imply a strong negative relation between volatil-
ity and subsequent raw returns; for example, in the 3 month maturity options, the returns
differential between high volatility (Portfolio 3) and low volatility (Portfolio 1) securities is -56
basis points per month; longer 12 month maturities in Panel B have differentials of -69 basis
points per month. The magnitude of this difference is not statistically significant; however, we
speculate that this result is more due to the relatively small sample size (117 monthly obser-
vations) than a meaningful difference in the return differential across maturities. Low (high)
volatility portfolios tend to contain low (high) beta firms and larger (smaller) firms, while dif-
ferences in book-to-market equity ratios across portfolios are relatively small and differ across
maturity bins. We adjust for these differences in size and book-to-market equity ratio in the
characteristic-adjusted return column. After adjusting for the differences in size and book-
to-market equity observed across the volatility portfolios, the return differentials are smaller.
However, although the differential is reduced, it remains economically significant, with the
lowest volatility portfolios earning -36 (-44) basis points, for 3 (12) month maturity options,
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per month more than the highest volatility portfolios.

There is virtually no relation between volatility and skewness estimates in the sample.
The relation between volatility and kurtosis is much stronger: as average volatility increases
in the portfolio, kurtosis declines. Thus, the relation between volatility and returns may be
confounded by the effect, if any, of other moments on returns; we examine this possibility
later in this section. Finally, the average number of securities in each portfolio indicates
that the portfolios should be relatively well-diversified. The top and bottom tercile portfolios
average 92 firms, whereas the middle tercile portfolio averages 123 firms. Combined with the
fact that we are sampling securities which have publicly traded options, this breadth should
reduce the effect of outlier firms on our results.

Most interestingly, we see significant differences in Table 2 in returns across skewness-
ranked portfolios. The raw returns differential is negative for 3 and 12 months maturities, at
-82 and -73 basis points per month, respectively. That is, on average, in each maturity bin the
securities with lower skewness earn higher returns in the next month, while securities with
less negative, or positive, skewness earn lower returns. The differentials in raw returns are
of the same order of magnitude and somewhat larger than those observed in the volatility-
ranked portfolios, and the difference is statistically different than zero at the 10% or better
critical level. Compared to the volatility-ranked portfolios, the skewness-ranked portfolios
show relatively little difference in their betas, and comparable differences in their market
value and book-to-market equity ratios. When we adjust for the size- and book-to-market
characteristics of securities, the characteristic-adjusted returns hardly change, averaging -79
and -67 basis points per month, respectively, across the two maturity bins.4

In addition to the differences in returns, the table indicates that there is a negative rela-
tion between skewness and kurtosis. That is, kurtosis declines as we move across skewness-
ranked portfolios. As in Panel A, interactions between other moments and returns could be
masking or exacerbating the relation between skewness and returns. Consequently, in later
tests, we control for the relation of other higher moments to returns in estimating their effect.

4 In a different application, Xing, Zhang, and Zhao (2010) find a positive relation between a skewness metric
taken from option prices and the next month’s returns. Their measure of skewness is the absolute value of the
difference in implied volatilities in out-of-the-money call option contracts, where the strike price is constrained
to be within the range of 0.8S to S, (where S is the current price of the underlying stock), and preferably in the
range of 0.95S to S. Thus, their skewness measure is related to the slope of the volatility smile over a smaller
range of strike prices. We conduct a Monte Carlo exercise using a Heston model with plausible parameter values,
to compare the performance of our skewness metric to theirs in a setting where skewness is known. In this
controlled environment we find that the slope estimate of skewness used by Xing et al. is extremely noisy (using a
Mean Squared Error metric) compared to the Bakshi et al. approach we use. The simulation details are reported
in BLANK (2011).

9



Both panels in Table 2 also report the results when securities are sorted on the basis of
estimated kurtosis. Generally, we see a positive relation between kurtosis and subsequent raw
returns; the return differential is economically significant, at approximately 72 basis points
per month across each of the two maturities. As with the other moment-ranked portfolios, the
effect is reduced after adjusting for book-to-market and market capitalization differences, but
the differences are very slight and the effect remains highly economically significant across
the two maturity bins and statistically significant at the 5% critical level. As in the other
panels, we also observe patterns in the other estimated moments, with both volatility and
skewness decreasing as kurtosis increases.5

3.3 Multivariate sorts

We estimate the relation between higher moments and subsequent returns, while controlling
for variation in other higher moments, using double and triple sorts.6 In the double-sorting
method, we sort firms into tercile portfolios based independently on volatility, skewness, and
kurtosis. We then form portfolios based on the intersection of rankings of volatility and either
skewness or kurtosis.7 For each of the nine portfolios formed, we report subsequent returns.
The results from sorting on volatility and skewness, for three-month and twelve-month op-
tions, are reported in Panel A of Table 3; the results from sorting on volatility and kurtosis
are reported in Panel B. In each Panel, the number of firms in each portfolio are reported in
parentheses below the returns.

Reading across the columns of Panel A in Table 3, we observe that, holding volatility
constant, skewness continues to be negatively related to subsequent returns for all levels of
volatility and for both maturities. The effect is monotonic in 4 out of 6 cases and the return dif-
ferential across the extreme skewness terciles varies from -19 to -100 basis points per month.
This magnitude is roughly consistent with the magnitude of the return differential in univari-
ate sorted portfolios in Table 2. The table also highlights the fact that the negative relation
between risk-neutral volatility and subsequent returns is found primarily in the middle and

5We also re-calculated our results using value- rather than equal-weighting, and found similar differentials
for skewness and kurtosis, although the sign of the volatility relation is reversed for options at most maturities.
For example, in volatility sorted portfolios, spreads for 1, 3, 6 and 12 month options are 10, 39, -20 and 17 bp per
month, respectively. For skewness-sorted portfolios, spreads are consistently negative and of similar magnitude
across maturities; for kurtosis-sorted portfolios, we continue to observe positive differentials, although they vary
somewhat more in magnitude across option maturities.

6We explored the use of Fama-MacBeth regressions to estimate the effect of variation in individual higher
moments, while holding other moments constant, at the individual firm level. Unfortunately, the number of firms
combined with the noise in the moment estimates provided insufficient power to draw reliable inferences about
the relations between moments and returns.

7Sorts on skewness and kurtosis resulted in portfolios that were too sparse to make inferences; empirically, it’s
rare to observe very skewed distributions (in either direction) that do not have high kurtosis.
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high skewness firms.

In Panel B, where we sort on volatility and kurtosis, the results are also generally consis-
tent with the univariate kurtosis sorts in Table 2. In five out of six cases, holding volatility
constant, the return differential in extreme kurtosis portfolios is positive, and varies between
4 and 86 basis points per month. In the sixth case (moderate volatility portfolios and three-
month options), the return differential is a negative 24 basis points per month. The negative
relation between risk-neutral volatility and subsequent returns occurs largely among firms
with relatively low (tercile 1) or high (tercile 3) kurtosis firms.

We also perform a multivariate independent sort on all three higher moment estimates.
Clearly, the number of firms in each of the portfolios would decline sharply if we form tercile
portfolios for each moment, and many portfolios would be empty. As a consequence, for the
triple sort, we sort into two portfolios only. These results are presented in Panel C of Table 3.
While the number of firms in some portfolios is relatively small, the results are fairly clear. If
we hold skewness and kurtosis levels constant, we continue to see a negative relation between
volatility and subsequent returns. In 7 out of 8 cases, the differential is negative, varying
between -11 and -50 basis points per month. If we hold volatility and kurtosis constant,
we continue to see a negative relation between skewness and subsequent returns, with the
differential varying between -14 and -68 basis points per month. However, when we control
for both volatility and skewness, the kurtosis effect does not appear to be stable. In six of the
eight cases, increasing kurtosis is associated with a decline in returns, with the magnitude
of the return differential varying from -32 to -3 basis points. In the remaining two cases, the
effect of increasing kurtosis is positive (at 1 and 28 basis points per month, respectively).

Overall, the results in Table 2 and Table 3 imply that, on average, higher moments in
the distribution of securities’ payoffs are related to subsequent returns. Consistent with the
evidence in Ang, Hodrick, Xing, and Zhang (2006), we see that securities with higher volatility
have lower subsequent returns. We also find that securities with higher skewness have lower
subsequent returns. Finally, while higher kurtosis is related to higher subsequent returns
in individual sorts, this effect is not robust when controlling for variation in volatility and
skewness.

The evidence that the relation between kurtosis and returns is relatively weak compared
to skewness is consistent with the evidence in Chang, Christoffersen, and Jacobs (2009). In
addition, the evidence that skewness in individual securities is negatively related to subse-
quent returns is consistent with the models of Barberis and Huang (2008), and Brunnermeier,
Gollier, and Parker (2007). In their papers, they note that investors who prefer positively
skewed distributions may hold concentrated positions in securities whose payoffs are more
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right-skewed – that is, investors may trade off skewness against diversification, since adding
securities to a portfolio will increase diversification, but at the cost of reducing skewness. The
preference for skewness will increase the demand for, and consequently the price of, securities
with higher skewness and consequently reduce their expected returns. The magnitude of the
differential for skewness that we find is consistent with the empirical results in Boyer, Mitton,
and Vorkink (2010), who generate a cross-sectional model of expected skewness in physical
distributions for individual securities and find that portfolios sorted on expected skew gener-
ate a return differential of approximately 67 basis points per month. Finally, our results in
monthly returns are consistent with the longer-horizon results of Green and Hwang (2009),
who find that, while IPOs with high expected skewness have significantly greater first day
returns, they tend to earn significantly lower returns over the next 3-5 years.

Despite the fact that the negative relation between skewness and returns, for which we
find evidence, is consistent with behavioral explanations as in citeasnounbarberis2007stocks,
it does not follow that we can rule out rational explanations. For example, in an analysis
of investors who optimize over mean, variance, skewness and kurtosis of returns, Chabi-Yo,
Ghysels, and Renault (2010) show that allowing for heterogeneity in investors’ preferences
and beliefs can give rise to additional factors (beyond co-moments) in the pricing of nonlinear
risks. And, Mitton and Vorkink (2007) show that allowing for heterogeneity in investors’
preferences for skewness can also lead to right-skewed securities having higher prices.

3.4 Factor-Adjusted Returns

In Table 2, we adjust for the differences in characteristics across portfolios, following Daniel,
Grinblatt, Titman, and Wermers (1997), by subtracting the return of the specific Fama-French
portfolio to which an individual firm is assigned. However, Fama and French (1993) interpret
the relation between characteristics and returns as evidence of risk factors. Consequently, we
also adjust for differences in characteristics across our moment-sorted portfolios by estimating
a time series regression of the High-Low portfolio returns for each moment on the three factors
proposed in Fama and French (1993).

Results of this risk adjustment are reported in Table 4. The dependent variables in our
regressions are the monthly returns from portfolios re-formed each month (as in Table 2),
where the portfolios are either the tercile sorts or a long position in the portfolio of securities
with the highest estimated moments, and a short position in the portfolio of securities with the
lowest estimated moments. The three factors in the regressions are the return on the value-
weighted market portfolio in excess of the risk-free rate (rMRP,t), the return on a portfolio of
small capitalization stocks in excess of the return on a portfolio of large capitalization stocks
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(rSMB,t), and the return on a portfolio of firms with high book-to-market equity in excess of the
return on a portfolio of firms with low book-to-market equity (rHML,t). Since the dependent
portfolios in our analysis are equally-weighted, we construct factors on the basis of equally-
weighted portfolio returns as well. Firms are again grouped by maturity and sorted into
portfolios on the basis of estimated moments (volatility, skewness and kurtosis) using options
closest to three and twelve months to maturity, respectively.8 We report in Table 4 intercepts,
slope coefficients for the three factors, and adjusted R-squareds. Tests statistics for the null
hypothesis that the coefficient is zero are presented below the point estimates.

The first panel in Table 4 contains the results for volatility-sorted portfolios. Consistent
with the results in Table 2 for characteristic-adjusted returns, we observe negative alphas in
our “high-low” portfolio. The point estimates of the intercepts suggest that risk adjustment
has little economic impact on the magnitude of the returns to the portfolios. Alphas for zero-
cost portfolios sorted on the basis of 3-month (12-month) options earn alphas of -48 (-56) basis
points. While the point estimates are not statistically distinguishable from zero, we conjecture
that this result is again due to a relatively small sample size rather than the precision of
the estimates. The magnitude and sign of these excess returns are consistent with those of
Ang, Hodrick, Xing, and Zhang (2006), who show that firms with high idiosyncratic volatility
relative to the Fama-French model earn “abysmally low” returns.

The patterns in the intercepts for skewness-sorted portfolios are of the same sign as the
volatility-sorted alphas but larger in magnitude and statistically significant at the 5% level.
For 3-month (12-month) maturity options, the results indicate that a zero cost portfolio earns
-110 (-103) basis points per month relative to Fama-French risk adjustment. These findings
are consistent with the summary statistics in Table 2. The negative alphas still imply a ‘low
skewness’ premium; that is, securities with more negative skewness earn, on average, higher
returns in the subsequent months, while securities with less negative, or positive skewness,
earn lower returns in subsequent months.

We also report in Table 4 the results for kurtosis-sorted portfolios. The economic mag-
nitude and statistical significance of the zero-cost portfolio alphas are highest for this set of
portfolios. For 3-month (12-month) options, we observe excess returns of 118 (117) basis points
per month, statistically distinguishable from zero at the 1% critical level. Consistent with the
results in Table 2, we see positive intercepts in portfolios that are long kurtosis. The mag-
nitude of the alphas with respect to kurtosis is comparable to that observed in the skewness
and volatility sorted portfolios.

There is one other noteworthy feature of Table 4. The explanatory power of the Fama-
8The one and six month maturities - reported in BLANK (2011) - yield similar findings.
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French three factors is, on average, lower for the kurtosis-sorted High-Low portfolios, and
much lower for the skewness-sorted High-Low portfolios, than the volatility-sorted portfolios.
Some of this difference is likely due to the fact that, as Table 2 shows, skewness and kurtosis-
sorted portfolios exhibit much smaller differences in size and beta than do the volatility-sorted
portfolios. However, it is also possible that there are features of the returns on moment-sorted
portfolios that are not captured well by the usual firm characteristics. This evidence implies
that there is potentially important variation in the returns of higher moment sorted portfolios
that is not captured by the Fama and French (1993) risk adjustment framework.

Recall that the evidence from the multivariate sorts in Section 3.3 indicated that, while
moment estimates are correlated, the effects of volatility and skewness are robust to control-
ling for variation in other moments; kurtosis effects were, in contrast, much weaker after
controlling for variation in volatility and skewness. The results in Table 4 are also informa-
tive in this regard. The distinct pattern of pricing errors, and in particular the differences
in explanatory power of Fama-French factors between volatility sorts on the one hand, and
skewness (and to a lesser extent kurtosis) sorts on the other, indicate that our results are not
driven exclusively by confounding effects across moment classifications.

3.5 Robustness checks

As noted above, one of our concerns following the findings of Battalio and Schultz (2006) is
that results might be driven by stale or misleading prices. Consequently, as a robustness
check, we perform other tests to examine the possibility that return differentials are driven
by liquidity issues, either in the underlying equity returns or by stale or illiquid option prices.
For example, we consider alternative minimum price criteria for the options included in our
sample. We also risk-adjust returns relative to an aggregate liquidity factor, as in Pástor
and Stambaugh (2003). The results presented in this section are robust to these additional
requirements, and are discussed in more detail in BLANK (2011).

4 Higher Moment Returns: Systematic and Idiosyncratic Com-
ponents

In this section, we analyze the extent to which the cross-sectional relations between higher
moments and returns presented in Tables 2 and 4 are due to investors seeking compensation
for higher co-moment risk, rather than idiosyncratic moments. We start in subsection 4.1
with a characterization of co-skewness and co-kurtosis in the context of single factor models,
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inspired by the analysis in Harvey and Siddique (2000) and Bakshi, Kapadia, and Madan
(2003). In subsection 4.2, we estimate the relation of risk-neutral co-moments to returns in
our sample. In subsection 4.3 we decompose total moments into co-moments and idiosyncratic
moments and examine the relationship of these components to subsequent returns. In a final
subsection we report on various robustness checks using more general specifications.

4.1 Co-skewness, Co-kurtosis and a Single Factor Model

Bakshi, Kapadia, and Madan (2003) suggest a procedure for computing the co-skewness of an
asset with a factor. They assume a single factor data-generating process:

ri,t = ai + birm,t + ei,t, (5)

where ei,t is assumed to be independent of rm,t. The authors note that if the parameters a and
b are ’risk-neutralized’, equation (5) is also well-defined under the risk-neutral measure. With
this single factor model, co-skewness can be calculated as:

COSKEWQ
t (ri,t+τ , rm,t+τ ) =

EQt

[(
ri,t+τ − EQt [ri,t+τ ]

)(
rm,t+τ − EQt [rm,t+τ ]

)2]
√
V ARQt (ri,t+τ )V AR

Q
t (rm,t+τ )

= biSKEW
Q
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V ARQi,t (τ)√
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(6)

In these expressions, ri,t+τ is the τ -period return on the underlying security, SKEWQ is the
risk-neutral skewness, and COSKEWQ is the risk-neutral co-skewness with the single factor
m. Note that the formula in equation (6) is the risk neutral equivalent of the co-skewness
measure used by Harvey and Siddique (2000) (see their equation (11) and equations (26)-(27)
in Bakshi, Kapadia, and Madan (2003)).

A similar argument can be invoked to derive co-kurtosis,
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Since bi is a risk-neutral parameter in equations (6)-(7), Bakshi, Kapadia, and Madan (2003)
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note that it can be estimated from options data. Accordingly, we estimate bi using the proce-
dure in Coval and Shumway (2001). Specifically, we compute the risk-neutral bi as:

bi =
Si,t
Ci,t
N

(
ln (Si,t/Ki) +

(
r − δ + 0.5σ2

)
τ

σ
√
τ

)
βi (8)

where N represents the normal distribution, δ is the stock’s dividend yield, σ2 is the volatility
of the underlying stock return, and βi is the slope coefficient from a projection of underlying
stock returns on the single factor.9 We estimate βi using one year of past daily returns to the
underlying equity, regressed on the S&P500, ending on the day of the observed option prices.
To avoid cross-sectional biases in β related to cross-sectional variation in liquidity, we use the
procedure in Dimson (1979) that corrects for infrequent trading; our reported results use a
1-day lead and lag of the market return as additional regressors. In unreported results, we
also computed Dimson β’s with 5 leads and lags of the market return, and found very little
difference in the results.

4.2 Relation of risk-neutral co-moments to returns

Given estimates of bi, we compute co-skewness and co-kurtosis using equations (6) and (7);
note that the estimate of bi corresponds directly to a measure of risk-neutral covariance with
the single factor m. Previous authors, such as Harvey and Siddique (2000) and Dittmar
(2002), have reported significant cross-sectional relationships between physical co-moments
and returns. We examine whether there are similar relationships between risk-neutral co-
moments and expected returns. We form co-moment sorted portfolios which are analogous to
the total moment sorted portfolios used in Table 2. That is, we first calculate daily risk-neutral
co-moments. We average these co-moments over the calendar quarter, rank into terciles and
then form equal-weight portfolios on the basis of these rankings over the next three months.
Reported results in Table 5 have the same structure as the results for total moments reported
in Table 2.

The risk-neutral covariance sorted portfolios are associated with a positive premium of
41 basis points per month for 3-month options and 65 basis points for 12-month maturity
options. This premium is reversed in sign, and roughly similar in magnitude, to the total
volatility premium reported in Table 2. The premium is substantially attenuated when we

9Coval and Shumway (2001) report that their estimates of bi following this procedure are very similar to those
calculated by directly regressing option returns on the market portfolio. We follow their lead, and use the average
ratio of Si,t/Ci,t across calls and the risk neutral variance calculated for each security i to compute our estimates
of this parameter. We also experimented with using the most and least out-of-the-money calls in our estimates
and found little cross-sectional sensitivity to the choice of call options.
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adjust for firm characteristics; it is reduced to 14 bp (36 bp) for 3 (12) month options. This
indicates that, similar to the total volatility premium, differences in risk-neutral covariances
are associated with significant differences in market capitalization and book-to-market equity
ratios.

Differences in co-skewness are associated with significant negative differences in returns
of 48 basis points for three-month options, and 64 basis points for 12 month options. The mag-
nitude of this differential is of the same sign, and similar in magnitude to, the co-skewness
premium reported in Harvey and Siddique (2000); they find a negative premium associated
with co-skewness of approximately 30 basis points per month. Adjusting for firm charac-
teristics significantly reduces the co-skewness premium, to -16 basis points for three-month
options and -29 basis points for 12-month options. These results are also broadly consistent
with Harvey and Siddique (2000), who link co-skewness to characteristics such as size and
book-to-market equity.

Finally, portfolios sorted on co-kurtosis are associated with a positive return differential
that is similar in sign and magnitude to portfolios sorted on total kurtosis. When measured
using 3-month (12-month) maturity options, the difference in returns is 55 (54) basis points
per month. Co-kurtosis is also associated with firm characteristics, and as a consequence
these return differentials are also significantly reduced after characteristic adjustment, with
characteristic-adjusted returns falling to 25 basis points per month for both option maturities.
Although economic magnitude of covariance, coskewness, and cokurtosis premia seem signif-
icant, the statistical evidence does not indicate that these premia are significantly different
than zero at conventional critical levels.

Overall, our estimates of risk-neutral co-moments appear to generate dispersion in returns
that are consistent with the relation between physical co-moments and returns observed by
other researchers. In addition, these risk-neutral co-moments are strongly associated with
differences in firm characteristics. This association with characteristics may be due to the
comoments’ representations of common factor exposures. Table 6 reports the results of time
series regressions of the co-moment sorted High-Low portfolio returns on the three factors
proposed in Fama and French (1993) as in Table 4. In sharp contrast to the results in Table 4
on moment-sorted portfolios, all of the alphas in Table 6 are insignificant, and the R-squares
for co-skewness and co-kurtosis sorted portfolios are substantially higher than the R-squares
for skewness and kurtosis sorted portfolios. These results imply that a significant fraction of
the returns differential in Table 2 is associated with the idiosyncratic component of higher
moments, rather than co-moments with the market portfolio. We explore this further in the
next section.
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4.3 Decomposing total moment return effects

We decompose the return differential observed for total moment sorted portfolios in Table 2,
into components related to dispersion in co-moments and dispersion in idiosyncratic moments.
We begin by regressing the daily series of total moments for each firm on daily co-moments
within the calendar quarter:

VQi,t = κV0i + κV1iCOV AR
Q
i,t + ζVi,t

SQi,t = κS0i + κS1iCOSKEW
Q
i,t + ζSi,t

KQi,t = κK0i + κK1iCOKURT
Q
i,t + ζKi,t

In this specification, idiosyncratic moments are the intercepts, κV0i, κ
S
0i, and κK0i, or the portion

of the total moments that are not explained by co-moments.10 While the relation between
total moments and co-moments in the regressions above is significant, the explanatory power
of the co-moments is not large.

Following the procedure for the total moments and co-moments above, we sort firms into
tercile portfolios on the basis of the idiosyncratic moments. Summary statistics for these
portfolios are presented in Table 7, and regressions adjusting for the contribution of Fama and
French risk factors to returns are presented in Table 8. These tables have the same structure
as Tables 2 and 4 in which we sort firms into portfolios on the basis of total moments.

The results in Tables 7 and 8 mimic to a large extent the total moment results reported in
Tables 2 and 4. That is, while risk-neutral co-moments have significant relations to returns
that are consistent with the relations found in physical co-moments by other authors, and
while we do find dispersion in co-moments in portfolios sorted on total moments, the returns
differentials associated with differences in idiosyncratic moments are not substantially differ-
ent than those observed in total moments in Table 2, and the alpha estimates obtained after
Fama-French risk adjustment for idiosyncratic moments are not substantially different than
those for total moments. In general, differences in idiosyncratic moments appear to drive most
of the dispersion in total moments, and the returns differential associated with differences in
idiosyncratic moments is both statistically and economically significant.

10Note that within the quarter, the average errors must be equal to zero; as a consequence, including the residual
in the average idiosyncratic moment would not change our results.
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4.4 Robustness

The analysis in the previous subsections relied on the assumption of a single-factor data-
generating process. As a robustness check, we explore other approaches to the specification
of systematic risks. We will describe these results briefly here; they are available in BLANK
(2011).

We consider alternative specifications of the stochastic discount factor,Mt (τ), whereMt (τ)

satisfies the Euler equation
Et [Mt (τ) ri,t (τ)] = 0 (9)

and ri,t is an excess return for asset i. In this setting, inferences about the importance of id-
iosyncratic moments are relative to a particular specification of the stochastic discount factor.
Failure of the Euler equation condition to hold may represent the importance of idiosyncratic
risk or mis-specification of the stochastic discount factors.

We use several methods to estimate Mt (τ) that allow for higher co-moments to influence
required returns. These methods differ in the details of specific factor proxies, the number of
higher co-moments allowed, and the construction of the stochastic discount factor. The goal
in each case is to estimate the relation between idiosyncratic moments and residual returns,
after adjusting for risk.

We begin by considering a parametric stochastic discount factor (SDF) that incorporates
information about higher moments of the SDF, and consequently adjusts for securities’ co-
moment risk with the SDF. This approach is similar to that of Harvey and Siddique (2000)
and Dittmar (2002), who examine polynomial stochastic discount factors that account for co-
skewness and co-kurtosis risk, respectively. The evidence from these tests suggests that the
payoffs to higher moment-sorted portfolios, particularly skewness-sorted portfolios, cannot be
traced to higher co-moments with respect to a value-weighted market proxy. While the statis-
tical magnitude of the pricing errors is not consistent across all specifications, the economic
magnitude of the pricing errors is large. As a consequence, relative to the risks associated
with returns on an S&P 500 tangency portfolio, the returns to the moment-sorted high minus
low portfolios appear to be idiosyncratic.

In a second specification of Mt (τ), we estimate the parameters of the SDF polynomial
using the returns on the tangency portfolio, where the basis assets used to construct the
tangency portfolio consist of industry portfolios. This specification yields similar results to
those obtained with the S&P 500. Finally, we consider a non-parametric estimate of Mt (τ),
in which we construct the SDF by taking the ratio of the risk-neutral distribution of the
market portfolio, constructed from index options data, to estimates of the physical distribution
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constructed from different samples of historical returns data. Although the precision of the
estimates is poor, the results of this method are again similar, with idiosyncratic moments,
particularly skewness, still significantly related to subsequent returns.

Overall, the results of our robustness analysis appear to corroborate the evidence we ob-
tain using a simple single-factor model. This evidence indicates that the payoffs of moment-
sorted portfolios are less related to systematic exposure to a stochastic discount factor than
they are to idiosyncratic components.

5 Risk Neutral and Physical Probability Distributions

Up to this point, we have focused on the estimation of risk-neutral moments, and the rela-
tionship with subsequent returns. However, the models, such as Barberis and Huang (2008)
and Brunnermeier, Gollier, and Parker (2007) that consider the effects of skewness and fat
tails in individual securities’ distributions on expected returns deal with investors’ estimates
of the physical distribution. The purpose of this section is to analyze the relation between
risk-neutral and physical moments in our sample, and whether the predictive power of risk-
neutral moments for subsequent returns is due to their relation to physical moments. In
addition, we examine the relation between risk-neutral moments and forward-looking valua-
tion ratios.

5.1 Risk-neutral moments, physical moments and subsequent returns

Bakshi, Kapadia, and Madan (2003), who examine the relation between risk-neutral and
physical distributions, note that under certain conditions the risk-neutral distribution can
be obtained by simply exponentially ‘tilting’ the physical density, with the tilt determined
by the risk-aversion of investors. Related, Bliss and Panagirtzoglou (2004) assume a time-
varying stationary risk-aversion function and use estimates of the risk-neutral distribution
taken from option prices, and a particular parametric form of the utility function, to estimate
physical distributions. While time variation in risk premia or, equivalently risk aversion, may
cause differences between risk-neutral and physical distributions over longer intervals, these
papers suggest that, with a relatively constant pricing kernel over shorter periods, the cross-
sectional variation in risk-neutral and physical moments will capture the same information.

We compute risk neutral skewness using the standard measure based on the third moment
of returns. It would therefore be natural to compute the physical measure third moments by
using sample third moments to measure skewness. However, it is well-known that skewness
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estimates based on sample averages are sensitive to outliers, even more so than are estimates
of the first two moments. This fact has prompted researchers since Pearson (1895), Bowley
(1920), and more recently Hinkley (1975) to look for robust measures of asymmetry that are
not based on sample estimates of the third moment. Specifically, Hinkley’s (1975) robust
coefficient of asymmetry (skewness) is defined as:

RAθ (rt) =
(qθ (rt)− q0.50 (rt))− (q0.50 (rt)− q1−θ (rt))

qθ (rt)− q1−θ (rt)
(10)

where q1−θ (rt), q0.50 (rt) and qθ (rt) are the 1 − θ, 0.5, and θ quantiles of rt, and quantile θ is
defined as qθ (rt) = F−1n (rt), for θ ∈ (0, 1].11 This skewness measure captures asymmetry of
quantiles q1−θ (rt) and qθ (rt) with respect to the median (i.e. q0.50 (rt)). In the specific case
of θ = 0.75, we are considering the inter-quartile range and, in that case, (10) is known as
Bowley’s (1920) statistic. The normalization in the denominator ensures that the measure
is unit independent with values between −1 and 1. When RAθ (rt) = 0 the distribution is
symmetric, while values diverging to −1 (1) indicate skewness to the left (right).

Two types of applications of the above measure have been proposed and used in the finance
literature. Kim and White (2004), White, Kim, and Manganelli (2008) and Ghysels, Plazzi,
and Valkanov (2011) adopt the above measure in a time series context, whereas Zhang (2006),
Green and Hwang (2009) apply the RA measure in a cross-sectional context. We pursue
the cross-sectional approach and analyze the relationship between physical and risk neutral
skewness across securities.

The approach of Zhang (2006) consists of pooling a cross-section of stocks along some com-
mon characteristic. Since we are interested in studying the match between risk neutral and
physical measure skewness, we use risk neutral skewness as the characteristic, and pool
firms within quantiles on the basis of risk-neutral skew. Specifically, we rank firms into three
groups on the basis of risk neutral skew. Within each group, we calculate the quantile-based
skewness measure appearing in equation (10) using monthly returns compounded over the six
months ending in the calendar quarter. Each risk neutral tercile k will then have a measure
of average risk-neutral skew, SQk,t, and a measure of physical skew, SPk,t. We use this informa-
tion to compute frequency tables to assess the frequency with which the risk-neutral skew
ranking is equal to the physical skew ranking. Under the hypothesis that the rankings assign
firms randomly to each tercile, the frequency with which a first tercile risk neutral skew firm
is a first tercile physical skew firm is 33.3%.

The results of this tabulation are presented in the left-most sections of Table 9, with results
11The inverse of F (rt) is unique when it is assumed that F (rt) is strictly increasing. If F (rt) is not strictly

increasing, then we can define the quantile as q∗θk (rt) ≡ inf {r : Fn (rt) = θk}.
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using 3-month options in Panel A and 12-month options in Panel B. In both sets of results,
the assignment between P and Q measures of skewness appears to be non-random. Partic-
ularly in the first and third terciles, there is a propensity for low risk neutral skew firms to
have low physical skewness (48% and 48% for 3- and 12-month maturities), and for high risk
neutral skew firms to have high physical skewness (42% and 44% for 3- and 12-month matu-
rities). While the propensity is somewhat lower for firms with intermediate skew, the ratio
still exceeds the null of random assignment of 33.3%. A formal test of this null hypothesis is
presented below each table; the χ2 test of the null suggests strong rejection of the hypothesis
of random assignment across terciles. Despite this evidence, while the diagonal elements are
dominant, it is also clear that the mapping between Q and P is not perfect.

We next ask whether the variation in average returns that we observe due to risk neutral
skewness is more closely associated with the risk neutral skewness or physical skewness
classification. Our approach to answering this question is similar to the contingency table
results above. We begin with the risk-neutral terciles from our previous analysis. To generate
dispersion in physical skewness within each tercile, we further subdivide each tercile into four
groups on the basis of risk-neutral skew. We calculate the quantile-based physical skewness
within each of these twelve groups, and then, conditional on the risk-neutral tercile ranking,
sort on the basis of physical skewness into three groups.12 As a result, we’re left with nine
classifications of securities, based on risk-neutral and physical skewness. We form equally-
weighted portfolio returns of these nine classifications.

Average returns for the portfolios appear in the second set of panels in Table 9. For the
purposes of comparison, recall that the results in Table 2 generate a skewness ’discount’ of
0.82% (0.73%) per month for 3 (12) month maturity options. In the mean returns panel of
Table 9, holding physical skew constant, we continue to see average return differentials that
decline as risk-neutral skewness increases (reading down each column). However, holding
risk-neutral skewness constant (in each row), there is no clear pattern in average returns as
physical skewness increases. For example, in the sample of 3 month options, for low risk-
neutral portfolios, the average returns increases by 49 basis points per month as physical
skew increases. For moderate risk-neutral portfolios, the returns are basically flat as physical
skew increases, and for high risk-neutral portfolios, returns decrease by 0.30% per month.

Overall the results in Table 9 tell us that there is an association between Q and P skew-
ness measures, but that they are far from perfectly related. One advantage of risk neutral
skewness is that it is truly a market-based forward looking prediction, while the skewness

12The three groups are 1) securities with ’extreme’ high physical skewness 2) securities with ’extreme’ low
physical skewness and 3) securities in the middle two groups of physical skewness. Using twelve groups helps
us balance consideration between generating sufficient dispersion in physical skewness and having a sufficient
number of firms in each group.
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measure under P that we have used is historical in nature - and therefore may not have the
same predictive content. One could potentially invoke parametric prediction models for skew-
ness under P, such as those proposed by Harvey and Siddique (1999). In general, however, it
is a challenging task to estimate such time series models for individual firms. In such a set-
ting, the use of option prices eliminates the need of a long time series of returns to estimate
the moments of the return distribution.

5.2 Skewness, Valuation and the Internet Bubble

We have presented evidence that risk-neutral higher moments are associated with cross-
sectional variation in subsequent returns, and that a significant portion of this explanatory
power is due to idiosyncratic moments. We have also shown in Table 9 that risk-neutral and
physical moments are related, although the predictive power of physical measures, after con-
trolling for risk-neutral moments, is relatively weak. In this section, we analyze the relation
between higher risk-neutral moments and valuation ratios. Valuation ratios should, in equi-
librium, be the (inverse of the) infinite sum of discounted expected future cash flows. As a
consequence, they also represent beliefs at time t about future payoffs. Such a question may
be particularly interesting during the Internet bubble, which is included in our sample pe-
riod. Note also that these expectations are taken under the physical distribution. Hence, the
association between risk neutral skewness and valuation ratios also relates to the analysis
in the previous subsection pertaining to the relationship between risk neutral and physical
probability distributions.

We use again measures of risk neutral higher moments constructed as in Section 2. As a
valuation measure, we use the earnings-to-price ratio (henceforth E/P) of individual securi-
ties.13 We sort securities into decile portfolios based on risk neutral higher moment estimates,
and then examine portfolio statistics. We present the results in Table 10. In the table, we re-
port the average firm’s volatility (in Panel A), skewness (in Panel B) and kurtosis (in Panel
C) across each decile portfolio. For each portfolio, we also report the mean of three valuation
ratios: FY0, the historical E/P ratio, FY1, the next fiscal year forecast E/P ratio, and FY2, the
two years out forecasted E/P ratio.14 As these results demonstrate, there are strong relations

13We use E/P ratios, rather than price-to-earnings, due to the prevalence of negative earnings for some firms
in our sample. We do not exclude firms with negative earnings, since negative earnings are common during the
Internet bubble, and it is precisely these firms for which higher moments may be more important in assessing
valuation. Indeed, in our sample, firms with negative earnings per share tend to be smaller, more volatile and
have higher betas; they also exhibit substantial differences in volatility, skewness and kurtosis.

14The historical E/P ratio is based on the month-end CRSP price per share and most recent Compustat earnings
per share. Following Fama and French (1993), we assume that earnings per share data are available no more
recently than six months after the fiscal year end. The forecast earnings per share are based on I/B/E/S mean
estimates for the upcoming and following fiscal year ends.
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between risk-neutral moments and valuation ratios. Earnings-to-price ratios over all hori-
zons decline as volatility and skewness increase; E/P ratios increase as kurtosis increases.
Clearly, ex ante risk-neutral moments estimated from equity options are related to valuation
ratios calculated for the underlying securities. In each case, the relation is sharpest for his-
torical E/P measures, while the slope is most attenuated for FY2 forecasts, but the relations
are there throughout. Intuitively, securities with higher volatility and higher skewness are
more highly valued, i.e., they have lower E/P ratios. For the same level of expected earn-
ings, investors are more willing to pay a higher price for securities which are more volatile,
and more right-skewed. In a discounted cash-flow model, this higher valuation should come
from lower discount rates, or higher expected growth rates. Conversely, securities which have
higher kurtosis have higher E/P ratios, or are valued less highly.

We further divide the sample into two subperiods, using March of 2000 as the dividing
point. If the pricing of technology stocks in the 1998-2000 period was related to higher mo-
ments, we should observe substantial differences in higher moments, or a significant increase
in the sensitivity of valuation ratios to higher moments, in the first subperiod. While esti-
mates of higher moments tend to be more extreme during the first subperiod (with the excep-
tion of volatility in one case), these differences are relatively small. Moreover, the relations
between higher moments and valuation ratios are not more steeply sloped during this sub-
period; in fact, if we estimate a linear relation between individual higher moments and E/P
ratios for each subperiod, we find that for every E/P measure (historical, FY1 forecast and
FY2 forecast), the relation between moments and E/P ratios tends to be more pronounced,
or steeper, in the second subperiod, with the single exception of FY1 forecasts and volatil-
ity. Thus, while the results in this subsection indicate that valuation ratios and option-based
risk-neutral higher moments are related, we find little support for the hypothesis that higher
moments of individual firms’ payoff distribution contributed significantly to higher valuations
during the Internet bubble.

6 Conclusions

We explore the possibility that higher moments of the returns distribution are important in
explaining security returns. Using a sample of option prices from 1996-2005, we estimate the
moments of the risk-neutral density function for individual securities using the methodology
of Bakshi, Kapadia, and Madan (2003). We analyze the relation between volatility, skewness
and kurtosis and subsequent returns.

We find a strong relation between these moments and returns. Specifically, we find that

24



high (low) volatility firms are associated with lower (higher) returns over the next month.
This result is consistent with the results of Ang, Hodrick, Xing, and Zhang (2006). We also
find that skewness has a strong negative relation with subsequent returns; firms with lower
negative skewness, or positive skewness, earn lower returns. That is, investors seem to prefer
positive skewness, and the returns differential associated with skewness is both economically
and statistically significant. We also find a positive relation between kurtosis and returns.
These relations are robust to controls for differences in firm characteristics, such as firm size,
book-to-market ratios and betas, as well as liquidity and momentum. However, when we
control for interactions between volatility, skewness and kurtosis, we find that the evidence
for an independent relation between kurtosis and returns is relatively weak.

We use several different methods to control for differences in higher co-moments, and their
related compensation for risk, when estimating the relation between higher moments and
returns. These methods range from a simple single-factor data-generating process, suggested
in Bakshi, Kapadia, and Madan (2003) and similar to the method (in physical returns) used
in Harvey and Siddique (2000), to a non-parametric calculation of the stochastic discount
factor. After controlling for higher co-moments, we continue to find evidence that idiosyncratic
moments matter.

Finally, we examine the relation between risk neutral and physical skewness. Asset pric-
ing models that consider the effects of skewness and fat tails in individual securities’ distri-
butions on expected returns deal with investors’ estimates of the physical distribution. We
therefore explore the relationship between the two probability measures to relate our empir-
ical findings to the existing theoretical models. We find that P andQ skewness measures are
strongly, but not perfectly, related. Risk neutral skewness is truly a market-based forward
looking prediction–and the relation between risk-neutral moments and valuation ratios, for
which we find evidence, is consistent with this interpretation. In contrast, the skewness un-
der P is historical in nature and backward looking by construction - which partly explains
why the sorts under Q and P do not line up perfectly. The fact that there is an association
between forward-looking, easy to compute skewness sorts under Q and historical sorts under
P, along with the fact that the mapping between the two measures is relatively stable over
short horizons, leads us to believe that the results we obtain relate to existing theoretical
asset pricing models.
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Table 2: Descriptive Statistics: Risk Neutral Moment Portfolios
Panels A and B present summary statistics for portfolios sorted on measures of firms’ risk-neutral moments. Firms
are sorted on average risk-neutral volatility, skewness, and kurtosis within each calendar quarter into terciles
based on 30th and 70th percentiles. We then form equally-weighted portfolios of these firms, holding the moment
ranking constant for the subsequent calendar quarter. Risk-neutral moments are calculated using the procedure
in Bakshi, Kapadia, and Madan (2003); in Panel A we report results using options closest to three months to
maturity, and in Panel B results with options closest to twelve months to maturity. The first column of each
panel presents mean monthly returns. The second column presents characteristic-adjusted returns, calculated
by determining, for each firm, the Fama-French 5X5 size- and book-to-market portfolio to which it belongs and
subtracting that return. The next three columns present the average individual firm’s risk-neutral volatility,
skewness and kurtosis of the stocks in the portfolio for the portfolio formation period. The final three columns
display the beta, log market value and book-to-market equity ratio of the portfolio. The final row of the table
presents t statistics of the null hypothesis that the difference in the third and first tercile are zero. Monthly
return data cover the period 4/96 through 12/05, for a total of 117 monthly observations.

Panel A: 3 Months to Maturity
Volatility

Mean Char-Adj
Tercile Return Return Vol Skew Kurt Beta ln MV B/M
1 1.354 0.441 17.837 -1.284 10.764 0.916 15.739 0.349
2 0.987 0.088 28.513 -1.151 9.521 1.354 14.701 0.342
3 0.792 0.081 49.816 -1.273 6.453 1.873 14.114 0.370
3-1 -0.562 -0.360 31.979 0.011 -4.312 0.957 -1.625 0.020
t(3-1) -0.713 -0.571 44.376 0.151 -5.220 27.246 -21.999 2.284

Skewness
Mean Char-Adj

Tercile Return Return Vol Skew Kurt Beta ln MV B/M
1 1.448 0.570 31.507 -2.814 15.437 1.246 15.636 0.331
2 1.042 0.205 32.261 -0.980 5.392 1.420 14.741 0.357
3 0.627 -0.216 31.140 0.026 7.327 1.408 14.170 0.370
3-1 -0.821 -0.786 -0.367 2.841 -8.110 0.162 -1.466 0.039
t(3-1) -2.062 -2.079 -0.633 33.671 -6.456 5.627 -31.693 5.908

Kurtosis
Mean Char-Adj

Tercile Return Return Vol Skew Kurt Beta ln MV B/M
1 0.631 -0.247 37.250 -0.369 2.370 1.523 13.996 0.388
2 1.106 0.308 31.710 -0.955 5.449 1.386 14.770 0.351
3 1.355 0.458 26.134 -2.450 20.302 1.177 15.766 0.322
3-1 0.724 0.705 -11.116 -2.081 17.933 -0.346 1.770 -0.066
t(3-1) 2.011 2.119 -26.365 -24.244 14.378 -10.839 45.560 -8.732

Table continued on next page...
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Panel B: 12 Months to Maturity
Volatility

Mean Char-Adj
Tercile Return Return Vol Skew Kurt Beta ln MV B/M

1 1.338 0.441 17.488 -1.295 10.908 0.897 15.846 0.350
2 1.014 0.142 27.870 -1.115 9.316 1.355 14.686 0.340
3 0.772 0.004 47.956 -1.238 6.469 1.896 14.028 0.373

3-1 -0.566 -0.437 30.468 0.057 -4.439 0.998 -1.819 0.023
t(3-1) -0.694 -0.679 50.135 0.789 -5.374 27.299 -26.073 2.375

Skewness
Mean Char-Adj

Tercile Return Return Vol Skew Kurt Beta ln MV B/M
1 1.446 0.548 30.156 -2.743 15.207 1.261 15.591 0.330
2 0.979 0.153 31.313 -0.974 5.480 1.414 14.754 0.355
3 0.714 -0.123 30.689 0.019 7.323 1.400 14.197 0.373

3-1 -0.732 -0.671 0.533 2.761 -7.884 0.140 -1.394 0.043
t(3-1) -1.864 -1.783 1.073 31.855 -6.286 5.085 -31.502 6.601

Kurtosis
Mean Char-Adj

Tercile Return Return Vol Skew Kurt Beta ln MV B/M
1 0.622 -0.223 36.600 -0.371 2.408 1.512 13.998 0.390
2 1.127 0.295 30.441 -0.951 5.533 1.387 14.782 0.352
3 1.337 0.459 25.416 -2.382 20.036 1.188 15.747 0.318

3-1 0.715 0.682 -11.184 -2.010 17.627 -0.324 1.749 -0.072
t(3-1) 2.055 2.120 -25.670 -23.057 14.085 -11.175 41.433 -9.975
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Table 3: Risk Neutral Moment Double- and Triple-Sorted Portfolios
The table presents the results of multi-way sorts on risk neutral moments. We independently sort firms into tercile
portfolios based on volatility, skewness, and kurtosis, and then form portfolios on the intersection of volatility and
either skewness or kurtosis. For each of the nine portfolios formed, we report the average of subsequent returns.
The results from sorting on volatility and skewness, for three-month and twelve-month options, are reported in
Panel A, the results from sorting on volatility and kurtosis are reported in Panel B. We present results from
sorting on medians of volatility, skewness, and kurtosis independently in Panel C. In panels A and B, the number
of firms in each portfolio are reported in parentheses below the returns.

Panel A: Volatility-Skewness Sorts
3 Months to Maturity 12 Months to Maturity

S1 S2 S3 S1 S2 S3
V1 1.409 1.420 1.048 V1 1.351 1.288 1.005
N (52) (39) (32) N (53) (39) (31)
V2 1.044 0.902 0.765 V2 1.132 0.949 0.944
N (33) (25) (34) N (34) (25) (33)
V3 1.374 0.650 0.369 V3 1.376 0.419 0.453
N (37) (28) (27) N (36) (28) (28)

Panel B: Volatility-Kurtosis Sorts
3 Months to Maturity 12 Months to Maturity

K1 K2 K3 K1 K2 K3
V1 1.144 1.346 1.438 V1 0.963 1.325 1.366
N (34) (37) (52) N (33) (38) (52)
V2 1.190 0.513 0.946 V2 1.211 0.683 1.254
N (37) (29) (26) N (37) (29) (26)
V3 0.349 1.409 1.213 V3 0.377 1.530 0.829
N (51) (27) (14) N (52) (26) (14)

Panel C: Volatility-Skewness-Kurtosis Sorts
3 Months to Maturity

V1S1K1 V1S1K2 V1S2K1 V1S2K2 V2S1K1 V2S1K2 V2S2K1 V2S2K2
Mean 1.623 1.304 1.087 1.002 1.250 1.196 0.592 0.872
N (8) (71) (52) (22) (25) (49) (68) (11)

12 Months to Maturity
V1S1K1 V1S1K2 V1S2K1 V1S2K2 V2S1K1 V2S1K2 V2S2K1 V2S2K2

Mean 1.424 1.209 1.110 1.069 1.301 1.268 0.621 0.626
N (9) (72) (51) (22) (24) (48) (70) (12)
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Table 4: Fama-French Factor Risk Adjustment: Risk Neutral Moment-Sorted Portfolios
The table presents the results of time series regressions of excess return differentials (High-Low) between portfo-
lios ranked on risk neutral volatility, skewness, and kurtosis on the three Fama and French (1993) factors MRP
(the return on the value-weighted market portfolio in excess of a one-month T-Bill), SMB (the difference in returns
on a portfolio of small capitalization and large capitalization stocks), and HML (the difference in returns on a port-
folio of high and low book equity to market equity stocks). The moment-sorted portfolios are equally-weighted,
formed on the basis of terciles and re-formed each quarter. The table presents point estimates of the coefficients
and t-statistics. In Panel A, we use options closest to 3 months to maturity to calculate risk neutral moments;
12 month options are used in Panel B. Data cover the period April 1996 through December 2005 for 117 monthly
observations.

Panel A: 3 Months to Maturity

Volatility
Rank α βMRP βSMB βHML Adj. R2

1 0.648 0.762 -0.448 -0.240 0.835
3.337 17.817 -9.652 -4.340

2 0.465 0.977 -0.383 -0.803 0.877
1.652 15.750 -5.684 -10.010

3 0.170 1.313 -0.230 -1.183 0.880
0.414 14.551 -2.351 -10.149

3-1 -0.478 0.550 0.218 -0.943 0.748
-1.109 5.786 2.113 -7.674

Skewness
Rank α βMRP βSMB βHML Adj. R2

1 0.975 0.831 -0.240 -0.743 0.770
2.630 10.173 -2.709 -7.042

2 0.445 1.029 -0.368 -0.777 0.917
1.911 20.057 -6.614 -11.716

3 -0.126 1.175 -0.459 -0.716 0.896
-0.455 19.314 -6.946 -9.110

3-1 -1.100 0.344 -0.219 0.027 0.129
-2.717 3.855 -2.255 0.235

Kurtosis
Rank α βMRP βSMB βHML Adj. R2

1 -0.223 1.237 -0.358 -0.709 0.905
-0.804 20.211 -5.392 -8.965

2 0.524 1.021 -0.395 -0.775 0.912
2.210 19.554 -6.961 -11.477

3 0.961 0.780 -0.304 -0.752 0.792
2.916 10.741 -3.863 -8.018

3-1 1.184 -0.457 0.054 -0.043 0.327
3.677 -6.441 0.698 -0.472

Table continued on next page ...
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Panel B: 12 Months to Maturity

Rank α βMRP βSMB βHML Adj. R2

1 0.666 0.734 -0.453 -0.246 0.829
3.460 17.306 -9.828 -4.495

2 0.500 0.971 -0.384 -0.806 0.878
1.788 15.746 -5.737 -10.110

3 0.104 1.350 -0.224 -1.173 0.877
0.247 14.551 -2.229 -9.785

3-1 -0.562 0.615 0.228 -0.926 0.749
-1.262 6.264 2.141 -7.298

Skewness
Rank α βMRP βSMB βHML Adj. R2

1 0.975 0.829 -0.232 -0.747 0.771
2.630 10.146 -2.612 -7.076

2 0.396 1.035 -0.380 -0.798 0.914
1.657 19.642 -6.649 -11.720

3 -0.059 1.169 -0.451 -0.684 0.901
-0.224 20.065 -7.135 -9.087

3-1 -1.034 0.341 -0.220 0.063 0.124
-2.579 3.854 -2.292 0.549

Kurtosis
Rank α βMRP βSMB βHML Adj. R2

1 -0.246 1.231 -0.354 -0.684 0.906
-0.908 20.585 -5.459 -8.853

2 0.572 1.011 -0.382 -0.804 0.909
2.347 18.830 -6.554 -11.582

3 0.921 0.800 -0.326 -0.739 0.799
2.853 11.246 -4.217 -8.037

3-1 1.167 -0.431 0.029 -0.054 0.309
3.699 -6.202 0.382 -0.605
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Table 5: Descriptive Statistics: Risk Neutral Co-moment Portfolios
Panels A and B present summary statistics for portfolios sorted on measures of firms’ risk-neutral moments.
Firms are sorted on average risk-neutral covariance, co-skewness, and co-kurtosis within each calendar quarter
into terciles based on 30th and 70th percentiles. We then form equally-weighted portfolios of these firms, holding
the moment ranking constant for the subsequent calendar quarter. The co-moments are calculated using firm
risk-neutral moments and risk-neutral moments on the S&P 500 index. Specifically, we calculate the co-moments
as

COV ARQi =
Si,t
Ci,t
N

(
ln (Si,t/Ki) +

(
r − δ + 0.5σ2

)
τ

σ
√
τ

)
βi = bi

COSKEWQ
i = biSKEW

Q
m,t (τ)

V ARQi,t (τ)√
V ARQm,t (, τ)

COKURTQi = bi
KURTQm,t (τ)

V ARQi,t (τ)V AR
Q
m,t (, τ)

In these expressions, Si,t is the stock price on date t, Ci,t is the call price, Ki is the strike price, r is the risk-free
rate, δ is the dividend yield, and βi is the Dimson beta calculated over the past 250 trading days. The subscript
m refers to the S&P 500 index. Risk-neutral moments are calculated using the procedure in Bakshi, Kapadia,
and Madan (2003); in Panel A we report results using options closest to three months to maturity, and in Panel B
results with options closest to twelve months to maturity. The first column of each panel presents mean monthly
returns. The second column presents characteristic-adjusted returns, calculated by determining, for each firm,
the Fama-French 5X5 size- and book-to-market portfolio to which it belongs and subtracting that return. The
next three columns present the average risk-neutral volatility, skewness and kurtosis of the stocks in the portfolio
for the portfolio formation period. The final three columns display the beta, log market value and book-to-market
equity ratio of the portfolio. Monthly return data cover the period 4/96 through 12/05, for a total of 117 monthly
observations.

Panel A: 3 Months to Maturity
Covariance

Mean Char-Adj
Tercile Return Return Vol Skew Kurt Beta ln MV B/M

1 0.839 0.078 31.505 -0.879 10.309 1.511 14.457 0.313
2 0.913 0.155 31.159 -1.057 6.912 1.410 14.730 0.337
3 1.253 0.215 32.653 -1.845 9.728 1.224 15.642 0.382

3-1 0.414 0.137 1.148 -0.966 -0.581 -0.286 1.185 0.069
t(3-1) 0.812 0.323 1.337 -13.639 -0.590 -9.487 12.030 8.227

Coskewness
Mean Char-Adj

Tercile Return Return Vol Skew Kurt Beta ln MV B/M
1 1.164 0.116 26.782 -1.780 10.119 1.068 15.790 0.366
2 1.093 0.327 32.797 -1.120 7.021 1.459 14.717 0.346
3 0.682 -0.040 35.171 -0.860 9.755 1.614 14.323 0.318

3-1 -0.482 -0.156 8.389 0.920 -0.365 0.545 -1.467 -0.048
t(3-1) -0.791 -0.316 17.027 13.524 -0.376 22.463 -14.957 -6.440

Cokurtosis
Mean Char-Adj

Tercile Return Return Vol Skew Kurt Beta ln MV B/M
1 0.732 0.006 39.428 -0.870 9.224 1.725 14.224 0.324
2 0.966 0.177 32.620 -1.146 7.139 1.445 14.730 0.342
3 1.284 0.260 22.779 -1.734 10.505 0.985 15.867 0.365

3-1 0.552 0.254 -16.650 -0.864 1.281 -0.740 1.643 0.042
t(3-1) 0.802 0.459 -49.652 -13.349 1.316 -27.949 17.534 5.260

Table continued on next page...
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Panel B: 12 Months to Maturity
Covariance

Mean Char-Adj
Tercile Return Return Vol Skew Kurt Beta ln MV B/M

1 0.682 -0.063 32.871 -0.792 9.584 1.640 14.265 0.303
2 0.972 0.206 30.316 -1.057 6.952 1.438 14.693 0.341
3 1.332 0.294 28.948 -1.850 10.276 1.077 15.875 0.387

3-1 0.649 0.357 -3.924 -1.058 0.692 -0.563 1.610 0.084
t(3-1) 0.950 0.668 -4.849 -15.490 0.708 -24.419 18.416 13.706

Coskewness
Mean Char-Adj

Tercile Return Return Vol Skew Kurt Beta ln MV B/M
1 1.281 0.249 25.814 -1.834 10.563 0.992 15.955 0.378
2 1.039 0.220 31.240 -1.082 6.999 1.465 14.701 0.341
3 0.641 -0.043 34.754 -0.777 9.220 1.702 14.174 0.311

3-1 -0.640 -0.291 8.940 1.058 -1.343 0.710 -1.781 -0.068
t(3-1) -0.867 -0.506 14.338 15.602 -1.391 33.332 -20.626 -10.138

Cokurtosis
Mean Char-Adj

Tercile Return Return Vol Skew Kurt Beta ln MV B/M
1 0.753 0.027 36.878 -0.789 9.043 1.776 14.133 0.314
2 0.943 0.137 31.516 -1.104 6.950 1.449 14.687 0.344
3 1.296 0.281 23.339 -1.789 10.817 0.944 16.012 0.372

3-1 0.543 0.254 -13.538 -1.000 1.773 -0.832 1.878 0.058
t(3-1) 0.714 0.431 -35.948 -15.145 1.786 -30.623 22.235 7.796
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Table 6: Fama-French Factor Risk Adjustment: Risk Neutral Co-moment-Sorted Portfolios
The table presents the results of time series regressions of excess return differentials (High-Low) between portfo-
lios ranked on risk neutral covariance, co-skewness, and co-kurtosis on the three Fama and French (1993) factors
MRP (the return on the value-weighted market portfolio in excess of a one-month T-Bill), SMB (the difference in
returns on a portfolio of small capitalization and large capitalization stocks), and HML (the difference in returns
on a portfolio of high and low book equity to market equity stocks). The co-moments are calculated using firm
risk-neutral moments and risk-neutral moments on the S&P 500 index. Specifically, we calculate the co-moments
as

COV ARQi =
Si,t
Ci,t
N

(
ln (Si,t/Ki) +

(
r − δ + 0.5σ2

)
τ

σ
√
τ

)
βi = bi

COSKEWQ
i = biSKEW

Q
m,t (τ)

V ARQi,t (τ)√
V ARQm,t (, τ)

COKURTQi = bi
KURTQm,t (τ)

V ARQi,t (τ)V AR
Q
m,t (, τ)

In these expresssions, Si,t is the stock price on date t, Ci,t is the call price, Ki is the strike price, r is the risk-free
rate, δ is the dividend yield, and βi is the Dimson beta calculated over the past 250 trading days. The subscript m
refers to the S&P 500 index. The moment-sorted portfolios are equally-weighted, formed on the basis of terciles
and re-formed each quarter. The table presents point estimates of the coefficients and t-statistics. In Panel A, we
use options closest to 3 months to maturity to calculate risk neutral moments; 12 month options are used in Panel
B. Data cover the period April 1996 through December 2005 for 117 monthly observations.

Panel A: 3 Months to Maturity
Covariance

Tercile α βMRP βSMB βHML Adj. R2

1 0.355 1.116 -0.366 -1.044 0.898
1.142 16.301 -4.929 -11.807

2 0.496 0.942 -0.366 -0.906 0.868
1.634 14.088 -5.044 -10.480

3 0.355 0.986 -0.380 -0.309 0.792
1.196 15.084 -5.348 -3.655

3-1 0.000 -0.129 -0.013 0.736 0.509
0.001 -1.509 -0.143 6.632

Coskewness
Tercile α βMRP βSMB βHML Adj. R2

1 0.317 0.893 -0.416 -0.238 0.778
1.178 15.042 -6.450 -3.096

2 0.634 1.003 -0.409 -0.909 0.872
2.069 14.838 -5.582 -10.405

3 0.201 1.128 -0.272 -1.110 0.898
0.613 15.590 -3.459 -11.877

3-1 -0.116 0.235 0.144 -0.873 0.675
-0.306 2.815 1.590 -8.094

Cokurtosis
Tercile α βMRP βSMB βHML Adj. R2

1 0.194 1.200 -0.215 -1.155 0.899
0.556 15.577 -2.571 -11.605

2 0.500 1.001 -0.459 -0.875 0.876
1.704 15.467 -6.536 -10.458

3 0.503 0.823 -0.406 -0.239 0.736
1.793 13.307 -6.044 -2.985

3-1 0.309 -0.377 -0.191 0.917 0.734
0.797 -4.417 -2.060 8.313

Table continued on next page.
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Panel B: 12 Months to Maturity
Covariance

Tercile α βMRP βSMB βHML Adj. R2

1 0.332 1.127 -0.354 -1.246 0.880
0.890 13.693 -3.968 -11.718

2 0.500 0.964 -0.295 -0.895 0.861
1.562 13.672 -3.859 -9.819

3 0.372 0.946 -0.485 -0.121 0.852
1.790 20.672 -9.766 -2.054

3-1 0.039 -0.181 -0.131 1.125 0.729
0.101 -2.114 -1.407 10.174

Coskewness
Tercile α βMRP βSMB βHML Adj. R2

1 0.402 0.863 -0.485 -0.122 0.834
1.974 19.207 -9.940 -2.102

2 0.561 1.003 -0.349 -0.913 0.869
1.772 14.372 -4.610 -10.120

3 0.218 1.157 -0.283 -1.221 0.877
0.563 13.553 -3.052 -11.067

3-1 -0.184 0.294 0.202 -1.099 0.744
-0.453 3.272 2.072 -9.467

Cokurtosis
Tercile α βMRP βSMB βHML Adj. R2

1 0.274 1.219 -0.272 -1.233 0.900
0.766 15.456 -3.173 -12.098

2 0.465 0.984 -0.349 -0.889 0.864
1.479 14.187 -4.630 -9.914

3 0.472 0.827 -0.497 -0.143 0.798
2.120 16.828 -9.320 -2.247

3-1 0.198 -0.393 -0.225 1.091 0.799
0.533 -4.789 -2.529 10.290
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Table 7: Descriptive Statistics: Risk Neutral Idiosyncratic Moment Portfolios
Panels A and B present summary statistics for portfolios sorted on measures of firms’ risk-neutral moments.
Firms are sorted on average risk-neutral idiosyncratic volatility, skewness, and kurtosis within each calendar
quarter into terciles based on 30th and 70th percentiles. Idiosyncratic moments are calculated by regressing
daily estimates of each firm’s total moment on measures of the risk-neutral co-moment within a calendar quarter:

VQi,t = κV0i + κV1iCOV AR
Q
i,t + ζVi,t

SQi,t = κS0i + κS1iCOSKEW
Q
i,t + ζSi,t

KQi,t = κK0i + κK1iCOKURT
Q
i,t + ζKi,t

The average unexplained portion of the moments, κV0i, κS0i, and κK0i, are used as the measure of idiosyncratic
moments. We then form equally-weighted portfolios of these firms, holding the moment ranking constant for the
subsequent calendar quarter. Risk-neutral moments are calculated using the procedure in Bakshi, Kapadia, and
Madan (2003); in Panel A we report results using options closest to three months to maturity, and in Panel B
results with options closest to twelve months to maturity. The first column of each panel presents mean monthly
returns. The second column presents characteristic-adjusted returns, calculated by determining, for each firm,
the Fama-French 5X5 size- and book-to-market portfolio to which it belongs and subtracting that return. The
next three columns present the average risk-neutral volatility, skewness and kurtosis of the stocks in the portfolio
for the portfolio formation period. The final three columns display the beta, log market value and book-to-market
equity ratio of the portfolio. Monthly return data cover the period 4/96 through 12/05, for a total of 117 monthly
observations.

Panel A: 3 Months to Maturity
Idiosyncratic Volatility

Mean Char-Adj
Tercile Return Return Vol Skew Kurt Beta ln MV B/M

1 1.295 0.358 18.307 -1.362 10.760 0.929 15.832 0.343
2 0.990 0.106 28.727 -1.226 9.756 1.375 14.754 0.337
3 0.691 0.010 49.090 -1.135 5.443 1.879 14.227 0.352

3-1 -0.603 -0.349 30.783 0.227 -5.317 0.950 -1.605 0.008
t(3-1) -0.751 -0.542 43.943 5.258 -10.422 25.650 -20.252 1.091

Idiosyncratic Skewness
Mean Char-Adj

Tercile Return Return Vol Skew Kurt Beta ln MV B/M
1 1.331 0.474 31.172 -2.596 14.190 1.261 15.728 0.324
2 0.991 0.176 32.501 -1.030 5.745 1.448 14.780 0.344
3 0.658 -0.190 31.179 -0.166 7.394 1.403 14.306 0.365

3-1 -0.673 -0.664 0.008 2.430 -6.796 0.142 -1.422 0.041
t(3-1) -1.741 -1.814 0.014 41.477 -6.808 5.687 -33.818 6.159

Idiosyncratic Kurtosis
Mean Char-Adj

Tercile Return Return Vol Skew Kurt Beta ln MV B/M
1 0.576 -0.257 37.530 -0.540 3.251 1.553 14.111 0.368
2 1.080 0.271 31.799 -0.997 5.770 1.388 14.839 0.344
3 1.290 0.415 25.778 -2.265 18.290 1.196 15.835 0.321

3-1 0.714 0.672 -11.752 -1.725 15.039 -0.357 1.724 -0.046
t(3-1) 1.899 2.098 -27.093 -28.392 14.862 -11.752 42.316 -6.348

Table continued on next page...
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Panel B: 12 Months to Maturity
Idiosyncratic Volatility

Mean Char-Adj
Tercile Return Return Vol Skew Kurt Beta ln MV B/M

1 1.282 0.348 17.692 -1.336 10.811 0.901 15.941 0.342
2 0.963 0.102 27.984 -1.146 9.212 1.378 14.755 0.335
3 0.740 0.019 47.234 -1.186 5.998 1.910 14.115 0.357

3-1 -0.542 -0.329 29.542 0.150 -4.813 1.009 -1.826 0.015
t(3-1) -0.651 -0.499 50.832 3.095 -8.549 25.385 -24.935 1.695

Idiosyncratic Skewness
Mean Char-Adj

Tercile Return Return Vol Skew Kurt Beta ln MV B/M
1 1.359 0.466 29.761 -2.618 14.620 1.284 15.672 0.326
2 0.962 0.203 31.108 -1.019 5.803 1.427 14.829 0.339
3 0.668 -0.215 30.988 -0.077 6.770 1.409 14.296 0.369

3-1 -0.692 -0.681 1.227 2.540 -7.850 0.125 -1.376 0.043
t(3-1) -1.683 -1.699 2.471 37.366 -7.823 4.845 -33.172 5.927

Idiosyncratic Kurtosis
Mean Char-Adj

Tercile Return Return Vol Skew Kurt Beta ln MV B/M
1 0.657 -0.212 36.734 -0.521 3.243 1.540 14.100 0.371
2 1.012 0.256 30.332 -0.989 5.837 1.387 14.864 0.342
3 1.299 0.401 25.065 -2.213 18.093 1.210 15.814 0.320

3-1 0.642 0.613 -11.670 -1.693 14.850 -0.329 1.713 -0.050
t(3-1) 1.683 1.721 -27.075 -27.646 14.589 -11.455 37.402 -7.007
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Table 8: Fama-French Factor Risk Adjustment: Risk Neutral Idiosyncratic Moment-Sorted
Portfolios
The table presents the results of time series regressions of excess return differentials (High-Low) between portfo-
lios ranked on idiosyncratic risk neutral volatility, skewness, and kurtosis on the three Fama and French (1993)
factors MRP (the return on the value-weighted market portfolio in excess of a one-month T-Bill), SMB (the differ-
ence in returns on a portfolio of small capitalization and large capitalization stocks), and HML (the difference in
returns on a portfolio of high and low book equity to market equity stocks). Idiosyncratic moments are calculated
by regressing daily estimates of each firm’s total moment on measures of the risk-neutral co-moment within a
calendar quarter:

VQi,t = κV0i + κV1iCOV AR
Q
i,t + ζVi,t

SQi,t = κS0i + κS1iCOSKEW
Q
i,t + ζSi,t

KQi,t = κK0i + κK1iCOKURT
Q
i,t + ζKi,t

We take the average unexplained portion of the moments, κV0i, κS0i, and κK0i, and use these as the measure of
idiosyncratic moments. Moment-sorted portfolios are equally-weighted, formed on the basis of terciles and re-
formed each quarter. The table presents point estimates of the coefficients and t-statistics. In Panel A, we use
options closest to 3 months to maturity to calculate risk neutral moments; 12 month options are used in Panel B.
Data cover the period April 1996 through December 2005 for 117 monthly observations.

3 Months to Maturity
Idiosyncratic Volatility

Tercile α βMRP βSMB βHML Adj. R2

1 0.576 0.788 -0.487 -0.238 0.835
2.895 17.962 -10.236 -4.197

2 0.524 0.956 -0.400 -0.842 0.872
1.817 15.043 -5.803 -10.257

3 0.092 1.295 -0.212 -1.199 0.873
0.216 13.881 -2.089 -9.944

3-1 -0.485 0.507 0.276 -0.961 0.732
-1.068 5.073 2.541 -7.439

Idiosyncratic Skewness
Tercile α βMRP βSMB βHML Adj. R2

1 0.891 0.824 -0.294 -0.754 0.762
2.389 10.021 -3.298 -7.097

2 0.441 1.009 -0.333 -0.831 0.910
1.780 18.468 -5.621 -11.772

3 -0.108 1.188 -0.495 -0.698 0.897
-0.398 19.786 -7.589 -8.993

3-1 -1.000 0.364 -0.200 0.056 0.146
-2.569 4.244 -2.151 0.509

Idiosyncratic Kurtosis
Tercile α βMRP βSMB βHML Adj. R2

1 -0.285 1.272 -0.394 -0.729 0.897
-0.960 19.438 -5.550 -8.617

2 0.571 0.973 -0.367 -0.823 0.897
2.213 17.107 -5.946 -11.194

3 0.892 0.788 -0.351 -0.736 0.809
2.895 11.607 -4.758 -8.387

3-1 1.177 -0.484 0.044 -0.007 0.377
3.638 -6.793 0.565 -0.075

Table continued on next page.
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12 Months to Maturity
Idiosyncratic Volatility

Tercile α βMRP βSMB βHML Adj. R2

1 0.595 0.743 -0.469 -0.230 0.818
2.971 16.838 -9.792 -4.027

2 0.489 0.981 -0.415 -0.857 0.883
1.741 15.857 -6.176 -10.727

3 0.120 1.307 -0.211 -1.188 0.857
0.264 13.067 -1.945 -9.188

3-1 -0.475 0.565 0.258 -0.958 0.717
-0.983 5.304 2.228 -6.965

Idiosyncratic Skewness
Tercile α βMRP βSMB βHML Adj. R2

1 0.905 0.827 -0.261 -0.755 0.758
2.369 9.822 -2.855 -6.932

2 0.406 1.023 -0.334 -0.840 0.900
1.522 17.399 -5.238 -11.058

3 -0.075 1.166 -0.527 -0.686 0.897
-0.284 19.938 -8.293 -9.071

3-1 -0.981 0.339 -0.265 0.069 0.121
-2.334 3.657 -2.640 0.577

Idiosyncratic Kurtosis
Tercile α βMRP βSMB βHML Adj. R2

1 -0.217 1.276 -0.430 -0.699 0.897
-0.744 19.815 -6.145 -8.403

2 0.517 0.977 -0.374 -0.844 0.895
1.968 16.858 -5.941 -11.263

3 0.896 0.779 -0.307 -0.738 0.790
2.732 10.771 -3.908 -7.900

3-1 1.114 -0.497 0.123 -0.039 0.330
3.272 -6.629 1.509 -0.400
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Table 10: Relation of Valuation Ratios to Risk Neutral Moments
We sort securities into decile portfolios based on risk neutral moment estimates, and then compute portfolio
statistics. The statistics are the mean log market value, book-to-market ratio, beta, and risk neutral moments
of the portfolio. In addition, we calculate earnings to price (E/P) ratios for different measures of earnings. The
E/P ratios are FY0, the E/P ratios based on closest monthly historical earnings per share figures (constructed as
in Fama and French (1993)), FY1, the E/P ratio based on I/B/E/S consensus mean estimates of next fiscal-year-
end’s earnings per share, and FY2, the E/P ratio calculated based on I/B/E/S consensus mean earnings per share
estimates for the fiscal year ending two years after the most recent fiscal year end.

Panel A: Volatility
Decile MV BM Beta Vol Skew Kurt FY0 FY1 FY2
1 16.088 0.350 0.817 0.141 -1.334 14.095 5.228 3.454 3.952
2 15.755 0.344 0.882 0.181 -1.253 8.924 4.656 3.510 4.124
3 15.385 0.354 1.050 0.212 -1.264 9.345 4.035 3.363 4.105
4 15.161 0.325 1.157 0.241 -1.372 9.202 4.069 3.116 3.937
5 14.701 0.347 1.288 0.268 -1.059 9.982 3.568 2.987 3.862
6 14.563 0.359 1.413 0.298 -1.101 11.891 2.858 2.442 3.561
7 14.377 0.338 1.568 0.333 -1.073 6.952 -0.094 1.951 3.140
8 14.086 0.362 1.710 0.380 -1.063 6.146 0.450 1.151 2.790
9 14.107 0.355 1.866 0.459 -1.146 5.498 -1.050 0.993 2.843
10 14.152 0.393 2.043 0.658 -1.611 7.706 -5.637 -1.263 1.455

Panel B: Skewness
Decile MV BM Beta Vol Skew Kurt FY0 FY1 FY2
1 16.181 0.316 1.078 0.289 -4.279 26.083 3.757 3.116 3.816
2 15.546 0.344 1.266 0.322 -2.404 11.800 2.739 2.613 3.588
3 15.194 0.332 1.389 0.334 -1.793 8.669 2.757 2.004 3.042
4 14.918 0.367 1.449 0.334 -1.385 6.927 2.104 2.503 3.708
5 14.779 0.356 1.431 0.324 -1.094 5.657 1.502 2.029 3.334
6 14.692 0.333 1.416 0.320 -0.838 4.771 1.167 2.130 3.256
7 14.582 0.372 1.387 0.312 -0.608 4.227 0.643 1.475 2.833
8 14.326 0.357 1.405 0.310 -0.366 3.724 0.495 1.836 3.420
9 14.092 0.356 1.394 0.311 -0.100 3.411 0.901 1.632 3.261
10 14.092 0.398 1.425 0.313 0.556 15.066 2.170 2.012 3.449

Panel C: Kurtosis
Decile MV BM Beta Vol Skew Kurt FY0 FY1 FY2
1 13.714 0.432 1.485 0.393 -0.182 1.571 -2.353 0.567 2.586
2 14.046 0.376 1.574 0.367 -0.370 2.402 -0.883 0.670 2.619
3 14.212 0.359 1.508 0.358 -0.552 3.120 1.174 1.204 2.666
4 14.509 0.364 1.394 0.331 -0.693 3.862 2.455 2.211 3.525
5 14.684 0.369 1.417 0.327 -0.839 4.722 2.269 2.535 3.664
6 14.846 0.344 1.360 0.309 -0.976 5.827 2.827 2.443 3.562
7 15.042 0.326 1.366 0.301 -1.311 7.371 2.130 2.814 3.837
8 15.352 0.341 1.249 0.279 -1.592 9.485 3.307 2.805 3.842
9 15.662 0.308 1.187 0.262 -2.140 13.111 3.450 2.819 3.662
10 16.293 0.316 1.094 0.242 -3.636 38.691 3.528 3.107 3.785
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Technical Appendices

A1 Estimation of Risk Neutral Moments - Details

To estimate the higher moments of the (risk-neutral) density function of individual securities, we use
the results in Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan (2003). Bakshi and Madan
(2000) show that any payoff to a security can be constructed and priced using a set of option prices
with different strike prices on that security. The assumptions used in Bakshi and Madan (2000) are
standard for the no-arbitrage option pricing literature, and can cover various configurations of primi-
tive uncertainty, ranging from discrete time dynamics, continuous-time diffusion, pure-jump, to jump
diffusion environments. Bakshi, Kapadia, and Madan (2003), assuming constant instantaneous inter-
est rates, demonstrate how to express the risk-neutral density moments in terms of quadratic, cubic,
and quartic payoffs. In particular, Bakshi, Kapadia, and Madan (2003) show that one can express the
τ -maturity price of a security that pays the quadratic, cubic, and quartic return on the base security i
as

Vi,t (τ) =

∫ ∞

Si,t

2(1− ln(Ki/Si,t))

K2
i

Ci,t(τ ;Ki)dKi (A1)

+

∫ Si,t

0

2(1 + ln(Ki/Si,t))

K2
i

Pi,t(τ ;Ki)dKi

Wi,t(τ) =

∫ ∞

Si,t

6(ln(Ki/Si,t))− 3(ln(Ki/Si,t))
2

K2
i

Ci,t(τ ;Ki)dKi (A2)

+

∫ Si,t

0

6(ln(Ki/Si,t)) + 3(ln(Ki/Si,t))
2

K2
i

Pi,t(τ ;Ki)dKi

Xi,t(τ) =

∫ ∞

Si,t

12(ln(Ki/Si,t))
2 − 4(ln(Ki/Si,t)

3)

K2
i

Ci,t(τ ;Ki)dKi (A3)

+

∫ Si,t

0

12(ln(Ki/Si,t))
2 + 4(ln(Ki/Si,t)

3)

K2
i

Pi,t(τ ;Ki)dKi

where Vi,t(τ), Wi,t(τ), and Xi,t(τ) are the time t prices of τ -maturity quadratic, cubic, and quartic
contracts, respectively. Ci,t(τ ;K) and Pi,t(τ ;K) are the time t prices of European calls and puts written
on the underlying stock with strike price K and expiration τ periods from time t. As equations (A1),
(A2) and (A3) show, the procedure involves using a weighted sum of (out-of-the-money) options across
varying strike prices to construct the prices of payoffs related to the second, third and fourth moments
of returns.
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A2 Option Data Filters

We do not adjust for early exercise premia in our option prices. As Bakshi, Kapadia, and Madan (2003)
note, the magnitude of such premia in OTM calls and puts is very small, and the implicit weight
that options receive in our estimation of higher moments declines as they get closer to at-the-money.
Using the same method, BKM show in their empirical work that, for their sample of OTM options,
the implied volatilities from the Black-Scholes model and a model of American option prices have
negligible differences.

In estimating equations (A1) - (A3), we use equal numbers of out-of-the-money (OTM) calls and
puts for each stock for each day. Thus, if there are n OTM puts with closing prices available on day t
we require n OTM call prices. If there are N > n OTM call prices available on day t, we use the n OTM
calls which have the most similar distance from stock to strike as the OTM puts for which we have
data. We require a minimum n of 2. Dennis and Mayhew (2009) examine and estimate the magnitude
of the bias induced in Bakshi-Kapadia-Madan estimates of skewness which is due to discreteness
in strike prices. For $5 ($2.50) differences in strike prices, they estimate the bias in skewness is
approximately -0.07 (0.05). Since most stocks have the same differences across strike prices, however,
the relative bias should be approximately the same across securities, and should not affect either the
ranking of securities into portfolios based on skewness, or the nature of the cross-sectional relation
between skewness and returns which we examine. In our empirical implementation, the moneyness
of the options in our sample ranged roughly from .8 to 1.2 with on average 5 equally spaced contracts.
We eliminate options in which there is no trading volume in any option of the same maturity. We also
eliminate options with prices less than $0.50 in order to remove especially thinly traded options. In
unreported results, we examine the sensitivity of our results to changing the requirement of options
available and both increasing and decreasing the price filter. The results are qualitatively unchanged
and are discussed in BLANK (2011). The resulting set of data consists of 3,722,700 daily observations
across firms and maturities over the 1996-2005 sample period.
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