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Abstract

Crop wild relatives have a long history of use in potato breeding, particularly for pest and

disease resistance, and are expected to be increasingly used in the search for tolerance to

biotic and abiotic stresses. Their current and future use in crop improvement depends on

their availability in ex situ germplasm collections. As these plants are impacted in the wild by

habitat destruction and climate change, actions to ensure their conservation ex situ become

ever more urgent. We analyzed the state of ex situ conservation of 73 of the closest wild rel-

atives of potato (Solanum section Petota) with the aim of establishing priorities for further

collecting to fill important gaps in germplasm collections. A total of 32 species (43.8%), were

assigned high priority for further collecting due to severe gaps in their ex situ collections.

Such gaps are most pronounced in the geographic center of diversity of the wild relatives in

Peru. A total of 20 and 18 species were assessed as medium and low priority for further col-

lecting, respectively, with only three species determined to be sufficiently represented cur-

rently. Priorities for further collecting include: (i) species completely lacking representation

in germplasm collections; (ii) other high priority taxa, with geographic emphasis on the cen-

ter of species diversity; (iii) medium priority species. Such collecting efforts combined with

further emphasis on improving ex situ conservation technologies and methods, performing

genotypic and phenotypic characterization of wild relative diversity, monitoring wild popula-

tions in situ, and making conserved wild relatives and their associated data accessible to

the global research community, represent key steps in ensuring the long-term availability of

the wild genetic resources of this important crop.
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Introduction
Potato (Solanum tuberosum L.) is the most important tuber crop worldwide, continuing to

gain significance in temperate and tropical regions as a source of carbohydrates, vitamins, and

minerals [1] as well as for industrial purposes [2]. The crop is susceptible to a wide range of bi-

otic stresses, in particular fungal diseases and pests [3,4]. A relatively low historical influx of

variation has led to a genetic bottleneck within potato cultivars [5–7], thus the development of

potato varieties with novel genetic diversity is expected to improve resistance to biotic and abi-

otic constraints [8].

As one source of such variation, potato breeding programs have looked to related wild spe-

cies [8–10]. Widely used and well documented sources of valuable traits such as frost and late

blight (Phytophthora infestans (Mont.) de Bary) resistance include S. acaule, S. bulbocastanum,

S. chacoense, S. demissum and S. stoloniferum. The search for late blight resistance has been a

center point in the evaluation and use of wild relatives in potato breeding [11–15]. In addition,

S. commersonii and S. berthaultii have been evaluated for bacterial wilt (Ralstonia solana-

cearum Smith) and verticillium wilt (Verticillium spp.) resistances, respectively [16–18]. Other

species have been proposed as valuable sources of resistance, e.g., S. acroglossum for Colorado

potato beetle (Leptinotarsa decemlineata Say), and S. albicans for cold sweetening [19,20]

(Table 1).

Despite the extensive history of use of the wild relatives of potato in breeding, most species

have not yet been evaluated for their potential for utilization. These include species from the

eastern Andean slopes where resistance to late blight is particularly key for survival (e.g. S. lax-

issimum and S. rhomboideilanceolatum), as well as more distant relatives that may display

drought resistance due to their adaptation to dry habitats (e.g. S. immite and S.mochiquense).

Enhanced understanding of species reproductive biologies, advances in pre-breeding technolo-

gies to bypass reproductive barriers, improvements in cisgenic techniques, and the evolution of

new genotyping and phenotyping platforms are likely make the use of wild relatives more at-

tractive and efficient [45–49].

Table 1. Crop wild relatives that have been evaluated and/or used in potato breeding.

Genepool Species Resistance trait(s) Reference

Primary S. acaule Biotic: Nacobbus aberrans. Abiotic: frost [21–24]

S. berthaultii Biotic: Erwinia carotovora, E. atroseptica; Verticillium wilt. Other: cold induced sweetening [25–28]

S. brevicaule Biotic: Globodera sp., G. pallida, virus [22,29–31]

S. candolleanum Biotic: Globodera sp., G. pallida, Erwinia carotovora, E. atroseptica [25,26,31]

S. vernei Biotic: virus, pest and nematode [22,31,32]

Secondary S. boliviense Abiotic: frost [33,34]

S. cajamarquense Biotic: Phytophthora infestans [35]

S. chacoense Biotic: virus, pest, Verticillium wilt Other: cold induced sweetening [27,28,30,36,37]

S. demissum Biotic: Phytophthora infestans [36,38]

S. kurtzianum Biotic: Globodera sp. [31]

S. paucissectum Biotic: Phytophthora infestans [39]

S. raphanifolium Other: cold induced sweetening [28]

S. stoloniferum Biotic: Phytophthora infestans, PVY [32,36]

Tertiary S. bulbocastanum Biotic: Phytophthora infestans [12,40,41]

S. commersonii Biotic: Ralstonia solanacearum. Abiotic: frost [16,18,42]

S. palustre Biotic: PLRV [43]

S. tarnii Biotic: PVY, Leptinotarsa decemlineata, Phytophthora infestans [44]

doi:10.1371/journal.pone.0122599.t001
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Species designations within the section Petota, where potato resides, have recently been re-

vised on the basis of new molecular findings in combination with morphological studies [50–55].

The wild related species of potato have been organized into primary, secondary and tertiary

genepools according to the ease of crossability with the cultivated species [56,57]. These wild rel-

atives constitute a morphologically and genetically diverse group of plants distributed from cen-

tral Chile and Argentina to the southwestern United States. They occupy a variety of habitats

within deserts, forests and mountainous regions [58] (Fig 1). Mexico, Bolivia, Argentina, and es-

pecially Peru are considered to possess the greatest total diversity of potato wild relatives, al-

though high levels of endemism are reflected in unique species occurring in most of the total 16

countries where these wild relatives grow [58].

While CWR are likely to play a role in climate change adaptation of novel potato cultivars

[59], a number of the wild relatives of cultivated potato are threatened due to habitat destruc-

tion and climate change [60–62]. It is therefore becoming more important to address gaps in

the ex situ conservation of these plants, particularly for species that are currently underrepre-

sented in genebanks and are most impacted in their native habitats.

Gap analysis is a systematic methodology for assessing the comprehensiveness of ex situ

conservation of plant species, and for assigning taxonomic and geographic priorities for further

collecting [63,64]. Gap analysis has been applied to the wild relatives of a wide range of crops,

including grains, forages and legumes [57,64,65]. The analysis can also contribute to the identi-

fication of species and habitat priorities for complementary in situ conservation.

Here we assessed the current state of ex situ conservation of the wild relatives of potato

through a gap analysis, in order to identify those species and geographic areas in need of con-

servation in order to assure their long-term availability for plant breeding efforts.

Materials and Methods

Wild relative species and geographic area of study
We assessed the closely related wild relatives of potato (i.e. primary and secondary genepool

wild relatives [66]), as well as any distant relatives in the third genepool that have been re-

ported with confirmed or potential uses in crop breeding (Table 2). We followed the most

recent taxonomic revision of Solanum L. section Petota [55] (see also Solanaceae Source,

http://solanaceaesource.org/), henceforth “Solanaceae Source taxonomy”. A complementary

analysis was also performed following the taxonomy of Ochoa [67–69] (henceforth “CIP taxon-

omy”), in order to provide a gap analysis for the potato wild relative collection conserved as the

International Potato Center (CIP), based on its current taxonomic classification (S1 Table). Our

study focused on the native distributions of potato wild relatives, which occur in Argentina, Bo-

livia, Brazil, Chile, Colombia, Costa Rica, Ecuador, Guatemala, Honduras, Mexico, Panama,

Paraguay, Peru, Uruguay, USA, and Venezuela [55].

Germplasm data were obtained from repositories that provide straightforward access to ge-

netic resources and associated data to the global research community through online informa-

tion systems (i.e. EURISCO -http://eurisco.ipk-gatersleben.de/, GRIN -http://www.ars-grin.gov/-

and CIP’s biomart portal -http://germplasmdb.cip.cgiar.org/-). Species presence records and ad-

ditional germplasm accessions passport data were gathered from online databases and via com-

munications with data managers (i.e. GBIF -http://www.gbif.org/-, CRIA -http://splink.cria.org.

br/-, SINGER, CPNWH -http://www.pnwherbaria.org/-, the Atlas of Guatemalan CropWild

Relatives [72], “PBI Solanum—a worldwide treatment”, “LAC biosafety”, CAS, F, FSU, H and

MANCH)), extracted from the literature [55], and through visits to herbaria (i.e. E, K, L, NY,

MA, PH, RB and US). The occurrence data utilized in this analysis is available on http://dx.doi.

org/10.6084/m9.figshare.1284187.
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Fig 1. Flowers, plants and habitats of six potato wild relatives. A) Solanum acaule, B) S. candolleanum, C) S. laxissimum, D) S. rhomboideilanceolatum,
E) S. simplicissimum and F) S.wittmackii. Photographs by S. de Haan. The author of the photographs has given written consent to publish them.

doi:10.1371/journal.pone.0122599.g001
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Table 2. List of 73 species analyzed and their corresponding prioritization category, genepool, ploidy level, native areas and count of data re-
trieved for this study.

Species scientific name Countries Ploidy
[70] and
(EBN)[71]

Genepool No. of reference
samples
(georeferenced)

No. of germplasm
accessions
(georeferenced)

SRS GRS ERS FPS FPCAT

S. acaule Bitter ARG; BOL;
PER; CHL

4x
(2EBN),
6x

Primary 3058 (864) 1762 (521) 3.66 10.00 10.00 7.89 NFCR

S. acroglossum Juz. PER 2x (2EBN) Secondary 92 (23) 4 (4) 0.42 0.61 3.00 0.00 HPS

S. acroscopicum Ochoa PER 2x Secondary 93 (38) 11 (7) 1.06 0.90 6.36 2.77 HPS

S. agrimonifolium Rydberg GTM; HND;
MEX

4x (2EBN) Secondary 345 (118) 40 (14) 1.04 6.48 4.21 3.91 MPS

S. albicans (Ochoa)
Ochoa

ECU; PER 6x (4EBN) Secondary 288 (73) 132 (40) 3.14 5.20 10.00 6.11 LPS

S. albornozii Correll ECU 2x (2EBN) Secondary 25 (7) 13 (8) 3.42 5.06 7.50 5.33 LPS

S. andreanum Baker COL; ECU 2x
(2EBN);
4x (4EBN)

Secondary 448 (234) 111 (71) 1.99 5.06 6.47 4.51 MPS

S. ayacuchense Ochoa PER 2x (2EBN) Secondary 10 (7) 0 (0) 0.00 0.00 0.00 0.00 HPS

S. berthaultii J. G. Hawkes ARG; BOL 2x
(2EBN),
3x

Primary 836 (292) 323 (116) 2.79 7.68 10.00 6.82 LPS

S. boliviense M. F. Dunal
in DC.

BOL; PER;
ARG

2x (2EBN) Secondary 1724 (657) 388 (185) 1.84 8.00 10.00 6.61 LPS

S. bombycinum C. M.
Ochoa

BOL 4x Secondary 8 (6) 1 (1) 1.11 1.62 5.00 0.00 HPS

S. brevicaule Bitter ARG; BOL;
PER

2x
(2EBN);
4x
(4EBN);
6x (4EBN)

Primary 4428 (1477) 1159 (457) 2.07 10.00 10.00 7.36 LPS

S. buesii Vargas PER 2x (2EBN) Secondary 63 (32) 6 (4) 0.87 0.24 2.73 0.00 HPS

S. bulbocastanum Dunal
in Poiret

GTM; MEX 2x
(1EBN),
3x

Tertiary 970 (399) 175 (47) 1.53 6.20 10.00 5.91 LPS

S. burkartii Ochoa PER 2x Secondary 88 (18) 7 (5) 0.74 6.09 8.33 0.00 HPS

S. cajamarquense Ochoa PER 2x (1EBN) Secondary 223 (39) 16 (8) 0.67 1.06 6.00 2.58 HPS

S. candolleanum Berthault PER; BOL 2x
(2EBN),
3x

Primary 2910 (1245) 739 (349) 2.03 10.00 9.17 7.06 LPS

S. cantense Ochoa PER 2x (2EBN) Secondary 155 (68) 3 (3) 0.19 0.93 3.75 0.00 HPS

S. chacoense Bitter ARG; BOL;
PRY; PER;
URY; BRA

2x
(2EBN),
3x

Secondary 2527 (1004) 710 (119) 2.19 1.94 5.52 3.22 MPS

S. chilliasense Ochoa ECU 2x (2EBN) Secondary 15 (7) 5 (4) 2.50 10.00 10.00 0.00 HPS

S. chiquidenum Ochoa PER 2x (2EBN) Secondary 360 (148) 17 (11) 0.45 3.27 7.00 3.57 MPS

S. chomatophilum Bitter PER; ECU 2x (2EBN) Secondary 967 (378) 124 (55) 1.14 6.54 8.33 5.34 LPS

S. clarum D. S. Correll GTM; MEX 2x Secondary 244 (92) 6 (4) 0.24 3.69 2.78 0.00 HPS

S. colombianum Dunal COL; ECU;
PAN; VEN

4x (2EBN) Secondary 1116 (444) 214 (105) 1.61 6.47 9.14 5.74 LPS

S. commersonii M. F.
Dunal

ARG; BRA;
URY

2x
(1EBN),
3x

Tertiary 692 (272) 112 (30) 1.39 2.14 5.83 3.12 MPS

S. contumazaense Ochoa PER 2x (2EBN) Secondary 21 (13) 2 (2) 0.87 5.26 6.67 0.00 HPS

S. demissum Lindley GTM; MEX 6x (4EBN) Secondary 1669 (513) 613 (85) 2.69 8.30 10.00 6.99 LPS

(Continued)
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Table 2. (Continued)

Species scientific name Countries Ploidy
[70] and
(EBN)[71]

Genepool No. of reference
samples
(georeferenced)

No. of germplasm
accessions
(georeferenced)

SRS GRS ERS FPS FPCAT

S. flahaultii Bitter COL 4x Secondary 99 (37) 39 (10) 2.83 2.66 3.75 3.08 MPS

S. gandarillasii H. M.
Cárdenas

BOL 2x (2EBN) Secondary 48 (28) 21 (7) 3.04 3.72 7.14 4.64 MPS

S. garcia-barrigae Ochoa COL 4x Secondary 21 (10) 3 (2) 1.25 0.52 1.90 0.00 HPS

S. gracilifrons Bitter PER 2x Secondary 19 (8) 1 (1) 0.50 1.47 3.75 0.00 HPS

S. guerreroense D. S.
Correll

MEX 6x (4EBN) Secondary 4 (2) 20 (2) 8.33 10.00 10.00 9.44 NFCR

S. hastiforme Correll PER 2x (2EBN) Secondary 49 (32) 2 (2) 0.39 0.38 4.00 0.00 HPS

S. hintonii D. S. Correll MEX 2x Secondary 39 (18) 0 (0) 0.00 0.00 0.00 0.00 HPS

S. hjertingii J. G. Hawkes MEX 4x (2EBN) Secondary 155 (62) 54 (10) 2.58 1.93 4.00 2.84 HPS

S. hougasii D. S. Correll MEX 6x (4EBN) Secondary 186 (79) 39 (10) 1.73 2.12 3.68 2.51 HPS

S. huancabambense

Ochoa
PER 2x (2EBN) Secondary 111 (28) 29 (10) 2.07 2.07 5.56 3.23 MPS

S. incasicum Ochoa PER 2x (2EBN) Secondary 9 (5) 2 (2) 1.82 10.00 5.00 0.00 HPS

S. infundibuliforme R. A.
Philippi

ARG; BOL 2x (2EBN) Primary 836 (277) 234 (116) 2.19 4.71 7.78 4.89 MPS

S. iopetalum (Bitter) J. G.
Hawkes

MEX 6x (4EBN) Secondary 626 (313) 93 (51) 1.29 5.23 7.50 4.67 MPS

S. kurtzianum Bitter & L.
Wittmack

ARG 2x (2EBN) Secondary 764 (253) 276 (32) 2.65 4.02 8.75 5.14 LPS

S. laxissimum Bitter PER 2x (2EBN) Secondary 139 (91) 19 (10) 1.20 1.73 5.00 2.64 HPS

S. lesteri J. G. Hawkes &
Hjerting

MEX 2x Secondary 23 (12) 12 (4) 3.43 4.22 4.44 4.03 MPS

S. limbaniense Ochoa PER 2x (2EBN) Secondary 56 (28) 12 (7) 1.76 1.18 5.00 2.65 HPS

S. lobbianum Bitter COL 4x (2EBN) Secondary 1 (1) 4 (1) 8.00 NA NA 0.00 HPS

S. longiconicum Bitter CRI; PAN 4x Secondary 546 (198) 25 (12) 0.44 10.00 10.00 6.81 LPS

S. maglia D. F. L. von
Schlechtendal

CHL; ARG 2x, 3x Secondary 190 (51) 15 (4) 0.73 0.14 1.33 0.74 HPS

S. medians Bitter PER; CHL 2x
(2EBN),
3x

Secondary 849 (305) 98 (35) 1.03 4.32 4.44 3.27 MPS

S. microdontum Bitter ARG; BOL 2x
(2EBN),
3x

Secondary 1178 (349) 422 (94) 2.64 6.25 9.09 5.99 LPS

S. morelliforme Bitter &
Muench

GTM; MEX;
HND

2x Secondary 364 (140) 45 (18) 1.10 4.74 6.55 4.13 MPS

S. multiinterruptum Bitter PER 2x
(2EBN),
3x

Secondary 496 (204) 95 (45) 1.61 7.33 8.75 5.90 LPS

S. neocardenasii J. G.
Hawkes & J. P. Hjerting

BOL 2x Secondary 25 (17) 17 (5) 4.05 0.56 3.64 2.75 HPS

S. neorossii J. G. Hawkes
& J. P. Hjerting

ARG 2x Secondary 76 (35) 45 (14) 3.72 4.17 10.00 5.96 LPS

S. neovavilovii Ochoa BOL 2x (2EBN) Secondary 26 (13) 0 (0) 0.00 0.00 0.00 0.00 HPS

S. nubicola Ochoa PER 4x (2EBN) Secondary 36 (20) 2 (2) 0.53 0.70 5.45 0.00 HPS

S. okadae J. G. Hawkes &
J. P. Hjerting

BOL 2x Primary 139 (55) 75 (19) 3.50 1.08 7.14 3.91 MPS

S. olmosense Ochoa ECU; PER 2x (2EBN) Secondary 26 (15) 0 (0) 0.00 0.00 0.00 0.00 HPS

S. oxycarpum Schiede in
D. F. L. von Schlechtendal

MEX 4x (2EBN) Secondary 203 (77) 58 (20) 2.22 2.45 7.93 4.20 MPS

(Continued)

Ex SituConservation Priorities for the Wild Relatives of Potato

PLOS ONE | DOI:10.1371/journal.pone.0122599 April 29, 2015 6 / 19



Environmental niche modelling
Environmental niche modelling (ENM) techniques were used to estimate the potential geo-

graphic distribution of each wild potato species. MaxEnt [73] was selected as the modelling al-

gorithm due to its performance when compared with other modelling approaches, and to its

wide use in conservation analyses [74–76]. Ten thousand random points were used as back-

ground records across Central and South America, the native range of the wild relatives. A

five-fold cross-validation option (k = 5) was implemented to maximize the use of small sets of

georeferenced records in the modelling, producing five replicates per species, subsequently

summarized into a single ensemble model by estimating the mean values across the replicates.

The models were restricted to their known native countries per species as reported in the litera-

ture [55], and further refined using a species-specific threshold corresponding to the shortest

distance to the upper left corner of the Receiver Operating Characteristic (ROC) curve [77].

Table 2. (Continued)

Species scientific name Countries Ploidy
[70] and
(EBN)[71]

Genepool No. of reference
samples
(georeferenced)

No. of germplasm
accessions
(georeferenced)

SRS GRS ERS FPS FPCAT

S. paucissectum Ochoa PER 2x (2EBN) Secondary 182 (20) 20 (10) 0.99 10.00 10.00 7.00 LPS

S. pillahuatense Vargas PER 2x (2EBN) Secondary 15 (11) 1 (1) 0.63 10.00 10.00 0.00 HPS

S. piurae Bitter PER 2x (2EBN) Secondary 226 (38) 17 (7) 0.70 0.47 3.00 1.39 HPS

S. polyadenium
Greenman

MEX 2x Secondary 286 (97) 99 (14) 2.57 3.52 8.13 4.74 MPS

S. raphanifolium Cárdenas
& Hawkes

PER 2x (2EBN) Secondary 597 (206) 220 (69) 2.69 6.52 8.57 5.93 LPS

S. rhomboideilanceolatum

Ochoa
PER 2x (2EBN) Secondary 99 (46) 7 (3) 0.66 1.04 6.67 0.00 HPS

S. salasianum Ochoa PER 2x Secondary 13 (7) 0 (0) 0.00 0.00 0.00 0.00 HPS

S. schenckii Bitter MEX 6x (4EBN) Secondary 105 (37) 49 (13) 3.18 2.45 6.80 4.14 MPS

S. sogarandinum Ochoa PER 2x
(2EBN),
3x

Secondary 157 (81) 27 (13) 1.47 3.22 6.67 3.79 MPS

S. stoloniferum D. F. L.
von Schlechtendal

MEX; USA 4x (2EBN) Secondary 3807 (1464) 1582 (314) 2.94 10.00 10.00 7.65 NFCR

S. tarnii J. G. Hawkes &
Hjerting

MEX 2x Tertiary 68 (31) 45 (10) 3.98 2.58 4.62 3.73 MPS

S. venturii J. G. Hawkes &
J. P. Hjerting

ARG 2x (2EBN) Secondary 165 (62) 39 (6) 1.91 0.47 4.44 2.28 HPS

S. vernei Bitter & L.
Wittmack

ARG 2x (2EBN) Primary 429 (122) 261 (47) 3.78 2.46 8.89 5.04 LPS

S. verrucosum D. F. L.
von Schlechtendal

MEX 2x
(2EBN),
3x, 4x

Secondary 968 (378) 222 (36) 1.87 6.56 5.91 4.78 MPS

S. violaceimarmoratum

Bitter
BOL; PER 2x (2EBN) Secondary 234 (104) 61 (16) 2.07 0.98 2.86 1.97 HPS

SRS: Sampling Representativeness Score., GRS: Geographical Representativeness Score., ERS: Environmental Representativeness Score., FPS: Final

priority score., FPCAT: Final priority category., HPS = high priority species, MPS = medium priority species, LPS = low priority species, and NFCR = ‘no

further collecting required’ (NFCR). ARG: Argentina, BOL: Bolivia, BRA: Brazil, CHL: Chile, COL: Colombia, CRI: Costa Rica, ECU: Ecuador, GTM:

Guatemala, HND: Honduras, MEX: Mexico, PAN: Panama, PER: Peru, PRY: Paraguay, URY: Uruguay, USA: United States of America and VEN:

Venezuela.

doi:10.1371/journal.pone.0122599.t002

Ex SituConservation Priorities for the Wild Relatives of Potato

PLOS ONE | DOI:10.1371/journal.pone.0122599 April 29, 2015 7 / 19



For environmental drivers, we used 19 bioclimatic variables (S2 Table) derived from the

WorldClim database [78] at a resolution of 2.5 arc-minutes (approx. 5 km at the equator).

The performance of each ENMwas assessed to determine its suitability for use in the gap

analysis. Three parameters were checked: (i) the 5-fold average Area Under the Test ROC Curve

(ATAUC), (ii) the standard deviation of the ATAUC for the 5 different folds, and (iii) the pro-

portion of potential distribution where the standard deviation is greater than 0.15 (ASD15). A

suitable model had to meet these conditions: ATAUC>0.7, STAUC<0.15 and ASD15<10%

[64]. In those cases where a suitable niche model was not produced (either due to lack of data or

low performance of the ensemble model), a convex hull (polygon surrounding the outermost

georeferenced points) was prepared.

Gap analysis
We used a gap analysis methodology [63,64] including three metrics to determine the urgency

of collecting wild relatives for conservation ex situ. A Sampling Representativeness Score (SRS)

compared the number of germplasm accessions to the total number of samples (germplasm

plus species presence records, with or without geographic coordinates), giving a general over-

view of the sufficiency of accessions per species. A Geographic Representativeness Score (GRS)

compared the ENMs of the species to the geographic distribution of existing germplasm acces-

sion collecting sites, estimated by creating circular buffers of 50 km (CA50) around each site

where the accession was collected [79], in order to assess the geographic coverage of germplasm

collections. An Ecosystem Representativeness Score (ERS) assessed the number of ecosystems

currently represented in ex situ collections (CA50 of germplasm collections), in comparison to

the total number of ecosystems distributed within the ENMs of species. For this, a world terres-

trial ecoregions map was used to determine the ecosystem units [80]. The three gap analysis

metrics were given equal weight and an average was calculated to obtain a Final Priority Score

(FPS). Four categories were employed to assign priority for further collecting for ex situ conser-

vation: high priority species (HPS) when FPS�3, or when ten or less accessions were recorded

in germplasm collections; medium-priority species (MPS) when 3< FPS�5; low priority spe-

cies (LPS) when 5< FPS�7.5; and ‘no further collecting of germplasm required’ (NFCR) when

7.5< FPS�10.

The gap analysis was performed using R v2.15.1 [81], and the packages maptools [82], rgdal

[83], SDMTools [84], raster [85], sp [86,87], dismo [88] and ggplot2 [89].

Identification of geographic areas of priority for further collecting
Maps highlighting areas identified as priorities for further collecting (collecting gaps) were pre-

pared for each species by subtracting the existing germplasm CA50 buffers from the ENMs.

For those species where a niche model was not produced, CA50 buffers were prepared around

all presence records, with germplasm CA50 buffers subtracted from these representations of

the distribution of species. Collecting gap maps for all high priority species were analyzed

using the “Zonal Statistics” tool in ArcMap 10.1 to produce a count of species in need of further

collecting per country.

Results

Wild relative species and geographic area of study
Seventy-three species were included in the analysis as relatively close relatives of potato (i.e.

members of the primary and secondary genepools [66] or due to published actual or potential

use in breeding efforts). These included seven species from the primary genepool of potato, 63

Ex SituConservation Priorities for the Wild Relatives of Potato

PLOS ONE | DOI:10.1371/journal.pone.0122599 April 29, 2015 8 / 19



from the secondary genepool, and three tertiary genepool species with reported use in crop im-

provement (Table 2). Almost half of the species analyzed are diploids with an endosperm balance

number of 2 (2 EBN), followed by tetraploids (2 EBN and 4 EBN) and hexaploids (4 EBN) [71].

For the complementary gap analysis, following the CIP taxonomy, a total of 187 putative species

were analyzed, equivalent to the 73 Solanaceae Source taxonomy species [55] (S1 Table). A total

of 49,164 records for the 73 potato wild relatives were gathered (75.76% with coordinates), with

11,100 germplasm accessions and 37,251 presence records, including herbarium references, inac-

tive germplasm accessions, and field sighting recordings (Fig 2A).

Environmental niche modelling
The environmental niche models of 75 species (89%) met the parameters used to consider an

ENM suitable for use in the gap analysis. For the remaining eight species (S. chilliasense, S.

guerreroense, S. incasicum, S. lobbianum, S. neovavilovii, S. olmosense, S. paucissectum, and S.

pillahuatense), convex hulls were prepared and used in the gap analysis, as the ENM replicates

produced were highly variable and did not comply with the ASD15 condition. Potato crop wild

relative species richness was found to be highest in Peru, followed by Mexico and Argentina

(Fig 2B, S1 File).

Occurrence data, ENMs and the collecting priorities maps for the species analyzed, follow-

ing the Solanaceae Source taxonomy, are available in an interactive format at http://www.

cwrdiversity.org/distribution-map/.

Gap analysis
The gap analysis for the 73 species resulted in the assignment of 32 HPS, 20 MPS, 18 LPS and 3

NFCR (Table 2). There are no germplasm accessions currently available for S. ayacuchense, S.

neovavilovii, S. olmosense and S. salasianum, and these species therefore represent the greatest

urgency for further collecting. All HPS belong to the secondary genepool (Fig 3).

Fig 2. Distribution of the wild relatives of potato and hotspots for collecting. A) Distribution of germplasm and herbarium records included in the
analysis. Red dots represent germplasm accessions (G) and dark gray dots herbarium/presence records (H). B) Species richness based upon environmental
niche models, and C) Potential hotspots for further collecting of high priority species (HPS).

doi:10.1371/journal.pone.0122599.g002
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Solanum neocardenasii and S. lobbianum possessed a single dominant factor contributing to

their priority category assignment for further collecting. All other species possessed two (40.6%

of the species), three (28.1%) or four (28.1%) factors contributing importantly to their FPS sta-

tus (S3 Table). Ninety-four percent of the species classified as HPS had a low SRS (SRS equal or

less than 3) [median (mean) = 0.73 (1.22)] (Fig 4A, S1 Fig). Likewise, 78.1% of HPS exhibited a

low GRS [0.930 (2.07)] (S1 Fig), with five species well represented (S. candolleanum, S. brevi-

caule, S. stoloniferum and S. acaule), as shown in Fig 4B, where the dashed line is the complete

representativeness line, and the continuous line is the average representativeness line, the for-

mer showing an ideal scenario where the potential geographic extension of the genepool is

completely represented at genebank collections and the latter showing the extent of representa-

tiveness compared to the potential extent of the genepool. On the other hand, the ERS contrib-

uted less to the FPS of high priority species, with less than half (37.5%) of the HPS exhibiting

an ERS�3 [median value 3.75 (4.01)] (Fig 4, S1 Fig). A total of 65.6% of the species ranked as

high priority had less than ten active accessions and consequently very limited representative-

ness in terms of absolute numbers of accessions available in germplasm collections.

A total of 31 HPS were mapped together for targeting of geographic hotspots for further col-

lecting (Fig 2C, S2 File). Peru contained the highest count of HPS for further collecting (21 spe-

cies), followed by Mexico (4); Bolivia (3); Colombia (2), Ecuador (2) and Argentina, Chile and

Guatemala (each with 1 species) (Fig 2C). Twenty-eight species (out of 32) were found to be

endemic to a single country (Fig 5). The greatest concentrations of species requiring further

collecting were predicted to occur in the Peruvian Departments of Cajamarca, La Libertad,

Ancash and Huánuco. S4 Table provides an overview of sites recommended for further collect-

ing of high priority species based on their presence points.

Fig 3. Potato wild relatives’ priorities for further collecting by genepool. Categories are: high priority
species (HPS), medium priority species (LPS), low priority species (LPS), and ‘no further collecting required’
(NFCR).

doi:10.1371/journal.pone.0122599.g003
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A total of 18 species were assessed as MPS for further collecting, and are distributed in: Ar-

gentina (1 species), Bolivia (2), Colombia (1), Ecuador (2), Guatemala (2), Mexico (8), Peru

(5), Honduras (2), Paraguay (1), Uruguay (1) and Brazil (1) (Fig 6).

The restricted range and endemic nature of many of the insufficiently collected taxa implies

that targeted collecting trips to specific regions outside the gap richness areas are needed in

order to form comprehensive germplasm collections for potato wild relatives. Some of the HPS

species are known to occur in threatened habits, requiring urgent attention; e.g. S. rhomboidei-

lanceolatum (Fig 1D) and S. piurae. Other species, such as S. laxissimum (Fig 1C) and S. neova-

vilovii, occur in relatively intact natural areas or within the boundaries of national parks and

can thus be expected to be more secure. Active monitoring of these species in the wild can pro-

vide greater assurance of continued conservation in these areas.

Discussion
With 32 species classified as high priority and another 20 as medium priority for collecting, it

is evident that further conservation action is needed to safeguard the wild genetic resources of

this globally important crop. We propose three levels of priority for further collecting: first for

the four HPS species that are completely lacking from internationally available genebank col-

lections (S. ayacuchense, S. neovavilovii, S. olmosense and S. salasianum); second for the other

28 HPS species occurring in a total of eight countries; and third for the MPS.

In addition to gap filling for ex situ collections, the results can help establish priorities for

the establishment of genetic reserves for the in situ conservation of potato wild relatives. Such

reserves may most effectively be established at sites where several HPS and/or MPS overlap, es-

pecially if coinciding with existing protected areas. Habitats undergoing significant disturbance

may also represent high priorities for consideration for in situ conservation efforts.

Some of the HPS display very restricted distributions and are considered to be threatened in

situ. The limited habitat of S. rhomboideilanceolatum in Peru is increasingly exposed to road

building and overgrazing by livestock (field observation by the authors, 2013). Yet other HPS

with restricted distributions, such as S. bombycinum in Bolivia, are reported to grow in habitats

that are not presently highly exposed to threats [62], while additional species with relatively ex-

tensive ranges such as S. laxissimum in Peru show considerable spatial overlap with protected

Fig 4. Gap analysis metrics. A) Sampling Representativeness Score (SRS), B) Geographic Representativeness Score (GRS), and C) Ecosystem
Representativeness Score (ERS) gap analysis metrics for potato wild relatives. Red dots represent results per species. Dashed lines represent complete
representativeness in ex situ conservation systems. A linear regression (continuous lines) depicts the mean trend for the genepool.

doi:10.1371/journal.pone.0122599.g004
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Fig 5. Countries identified for potential further collecting per high priority crop wild relative species.
ARG: Argentina, BOL: Bolivia, CHL: Chile, COL: Colombia, ECU: Ecuador, GTM: Guatemala, MEX: Mexico,
PER: Peru.

doi:10.1371/journal.pone.0122599.g005
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areas. Factors such as threats to the in situ conservation of wild populations, overlap with pro-

tected areas, and degree of endemism can further refine collecting priorities. Monitoring the

population dynamics, ecology and genetics of selected species to corroborate the effect of cli-

mate change and other threats to wild relatives also represent useful contributions to conserva-

tion planning [90]. Such studies can help to ground-truth climate change forecasts and to

enhance the understanding of the adaptive capacity of wild relatives.

Many of the taxa classified as generally well conserved (LPS and NFCR) are those that are

widely used in breeding programs, such as S. bulbocastanum and S. stoloniferum. This is a logi-

cal consequence of demand from such programs. It is anticipated that demand for as yet under-

utilized species will increase as potato breeding efforts expand the use of wide diversity in order

to confront emerging biotic and abiotic stresses.

Our results assign a relatively large number of species from Peru to the category of high pri-

ority for further collecting. This may seem surprising given the long history of collecting mis-

sions in the center of species diversity. Sampling biases relative to road systems, time

limitations of collecting missions and the tendency of collectors to sample in areas of previous

expeditions have been reported [58,91]. The high levels of endemism, and difficult access to

some of the areas where HPS potato wild relatives occur provide further insight into the low

level of representation of a number of these species in genebanks. New roads in Peru in previ-

ously isolated and remote habitats will soon make these populations increasingly accessible for

collecting but at the same time more vulnerable to habitat destruction.

Fig 6. Number of CWR species prioritized for further collecting per country.HPS = high priority species,
MPS = medium priority species, LPS = low priority species, and NFCR = ‘no further collecting required’
(NFCR). ARG: Argentina, BOL: Bolivia, BRA: Brazil, CHL: Chile, COL: Colombia, CRI: Costa Rica, ECU:
Ecuador, GTM: Guatemala, HND: Honduras, MEX: Mexico, PAN: Panama, PER: Peru, PRY: Paraguay,
URY: Uruguay and VEN: Venezuela.

doi:10.1371/journal.pone.0122599.g006
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Long-term conservation of the genetic diversity of wild relatives of potato will also require

further research in population genetics and reproductive biology of the species [92]. Gap filling

of the taxa identified here as critically under-represented in germplasm collections will provide

an important step in making germplasm available for such analyses. Future studies should in-

corporate morphological and molecular analyses in order to elucidate the diversity and genetic

distances within and between populations of wild relatives as well as between genebank collec-

tions and in situ reserves [93–95]. Genetic variability encountered within natural populations

of CWR has been described in few cases [96,97] but has not generally been taken into account

when planning collecting expeditions for wild relatives [98]. Further taxonomic research may

also be useful. The complementary gap analysis following the CIP taxonomy displayed differ-

ences in resulting priorities for further collecting (S2 Fig), and may reveal potentially useful in-

fraspecific variation for further exploration, as some of the species in CIP taxonomy may

represent unique subpopulations within the Solanaceae Source taxonomy.

The collecting priorities identified here, combined with further emphasis on improving ex

situ conservation technologies and associated data management, performing genotypic and

phenotypic characterization of wild relative diversity, monitoring wild populations in situ, and

making conserved wild relatives and their associated data accessible to the global research com-

munity, represent key steps in ensuring the long-term availability of the wild genetic resources

of this critically important crop.
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(MPS), low priority species (LPS), and ‘no further collecting required’ (NFCR).
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S2 Fig. Share of species per prioritization category by taxonomic classification system.

High priority species (HPS), medium priority species (LPS), low priority species (LPS), and ‘no

further collecting required’ (NFCR).
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