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Abstract

 

It has been known for years that rodents harbor a unique population of CD4

 

�

 

CD25

 

�

 

 “profes-
sional” regulatory/suppressor T cells that is crucial for the prevention of spontaneous autoim-
mune diseases. Here we demonstrate that CD4

 

�

 

CD25

 

�

 

CD45RO

 

�

 

 T cells (mean 6% of CD4

 

�

 

T cells) are present in the blood of adult healthy volunteers. In contrast to previous reports,
these CD4

 

�

 

CD25

 

�

 

 T cells do not constitute conventional memory cells but rather regulatory
cells exhibiting properties identical to their rodent counterparts. Cytotoxic T lymphocyte–asso-
ciated antigen (CTLA)-4 (CD152), for example, which is essential for the in vivo suppressive
activity of CD4

 

�

 

CD25

 

�

 

 T cells, was constitutively expressed, and remained strongly upregu-
lated after stimulation. The cells were nonproliferative to stimulation via their T cell receptor
for antigen, but the anergic state was partially reversed by interleukin (IL)-2 and IL-15. Upon
stimulation with allogeneic (but not syngeneic) mature dendritic cells or platebound anti-CD3
plus anti-CD28 the CD4

 

�

 

CD25

 

�

 

 T cells released IL-10, and in coculture experiments sup-
pressed the activation and proliferation of CD4

 

�

 

 and CD8

 

�

 

 T cells. Suppression proved IL-10
independent, yet contact dependent as in the mouse. The identification of regulatory
CD4

 

�

 

CD25

 

�

 

 T cells has important implications for the study of tolerance in man, notably in
the context of autoimmunity, transplantation, and cancer.
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Introduction

 

Immunological self-tolerance is critical for the prevention
of autoimmunity and maintenance of immune homeostasis.
The ability of the immune system to discriminate between
self and nonself is controlled by mechanisms of central and
peripheral tolerance. Central tolerance involves deletion of
self-reactive T lymphocytes in the thymus at an early stage
of development (1, 2). Several mechanisms of peripheral
tolerance have been described, including T cell anergy and
ignorance (1–4). Studies ongoing for more than a decade in
rodents have provided firm evidence for the existence of a
unique CD4

 

�

 

CD25

 

�

 

 population of “professional” regula-
tory/suppressor T cells that actively and dominantly prevent
both the activation and the effector function of autoreactive
T cells that have escaped other mechanisms of tolerance (5–
7). The elimination or inactivation of these cells resulted in
severe autoimmune disease and was also found to enhance
immune responses to alloantigens and even tumors (5, 7, 8).

Recent studies have revealed that the CD4

 

�

 

CD25

 

�

 

 regula-
tory T (Tr) cells constitute a rather homogenous population
(9), derive from the thymus (7), and are naturally nonprolif-
erative (i.e., anergic) to stimulation via the TCR but re-
quire activation via their TCR to become suppressive and
to inhibit the proliferation of CD4

 

�

 

 or CD8

 

�

 

 T cells.
However, once activated their regulatory/suppressor func-
tion was completely antigen-nonspecific and cytokine-
independent, yet cell contact–dependent (10). The exact
mechanisms of suppression, notably the cell surface and/or
short-range soluble molecules involved in the T cell–T cell
interaction, have yet to be characterized. New in vitro data
suggest that the CD4

 

�

 

CD25

 

�

 

 T cells inhibit the prolifera-
tion of responders by inhibiting their IL-2 production (11).
Recent in vivo studies suggest that the function of
CD4

 

�

 

CD25

 

�

 

 T cells is crucially dependent on signaling via
the cytotoxic T lymphocyte–associated antigen (CTLA)-4/
CD152 molecule which was found to be constitutively ex-
pressed on CD4

 

�

 

CD25

 

�

 

 T cells (12–14).
Although it has been evident for years that the

CD4

 

�

 

CD25

 

�

 

 T cell population constitutes a unique lin-
eage of professional regulatory/suppressor T cells crucial for
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the prevention of spontaneous autoimmune disease (5) it is,
quite surprisingly, totally unknown to date whether CD4

 

�

 

T cells exhibiting similar functional properties are naturally
present in man. In this study we show that this is indeed the
case, and that the CD4

 

�

 

CD25

 

�

 

 T cells in the peripheral
blood of adult healthy volunteers in contrast to previous re-
ports are not conventional memory cells (15–17) but rather
regulatory cells exhibiting functional properties identical to
their rodent counterparts.

 

Materials and Methods

 

Culture Medium.

 

RPMI 1640 (BioWhittaker) supplemented
with 1% heat-inactivated autologous plasma, 20 

 

�

 

g/ml gentami-
cin (Merck), and 2 mM glutamine (BioWhittaker) was used for
the generation of dendritic cells (DCs), and X-VIVO-20 (Bio-
Whittaker) supplemented with 1% heat-inactivated single donor
human serum, 20 

 

�

 

g/ml gentamicin (Merck), and 2 mM
glutamine (BioWhittaker) was used for T cell culture.

 

Cytokines.

 

All cytokines used in this study were recombinant
human proteins. Final concentrations were: 1,000 U/ml GM-
CSF (Leukomax™; Novartis); 800 U/ml IL-4 (Sandoz); and IL-2
(Proleukin; Chiron Corp.) and IL-15 (PeproTech) were used at
the concentrations indicated; for DC maturation we used a cock-
tail consisting of 2 ng/ml IL-1

 

�

 

 (Sigma Aldrich), 1,000 U/ml IL-6
(Sandoz), 10 ng/ml TNF-

 

�

 

 (Bender), and 1 

 

�

 

g/ml prostaglandin
E

 

2

 

 (Sigma Aldrich).

 

Abs.

 

For immunostaining PE- and FITC-conjugated Abs (all
from BD PharMingen) against CD3 (UCHT1), CD4 (RPA-T4),
CD5 (UCHT 2), CD8 (RPA-T8), CD14 (M5E2), CD19 (HIB
19), CD25 (M-A251), CD28 (CD28.2), CD45 RA (HI 100),
CD45 RO (UCHL1), CD56 (B159), CD62L (DREG-56), CD80
(L307.4), CD83 HB15e), CD86 (FUN-1), CD95 (DX 2), CD95L
(G247-4),CD122 (MiK-

 

�

 

2), CD152 (BNI3.1), CD154 (TRAP
1), HLA-DR (G46-6), and respective mouse and rat isotype con-
trols were employed. Abs used for intracellular cytokine staining
were FITC- and PE-conjugated anti–IL-2 (MQ1-17H12), anti–
IL-4 (8D4-8), anti–IL-10 (JES3-19F1), and anti–IFN-

 

�

 

 (4S.B3),
all from BD PharMingen. Unconjugated anti–IL-10 (JES3-19F1;
BD PharMingen) and anti–TGF-

 

�

 

 (R&D Systems) were used for
neutralization experiments, and anti-CD3 (UCHT1) and anti-
CD28 (CD28.2) were used for polyclonal activation of T cells.

 

Cytokine Assays.

 

T cells were stimulated with allogeneic DCs
or with platebound anti-CD3 (10 

 

�

 

g/ml) plus soluble anti-CD28
(10 

 

�

 

g/ml) in X-VIVO-20 plus 1% serum. Cytokine analysis was
performed at different time points by analysis of supernatants with
commercially available ELISA kits for human IL-2, IL-4, IL-10,
IFN-

 

�

 

, and TGF-

 

�

 

 (BD PharMingen). For analysis of intracellu-
lar cytokine production T cells were either stimulated with 20
ng/ml PMA and 500 

 

�

 

g/ml Ca

 

2

 

�

 

 ionophore A23187 (both from
Sigma Aldrich) for 6 h or with platebound anti-CD3 and soluble
anti-CD28 Ab for 6 h. 2 

 

�

 

M monensin (Sigma Aldrich) was
added for the last 5 h of culture. Cells were collected, washed,
fixed and saponin permeabilized (fix/perm solution; BD Phar-
Mingen), and stained with cytokine-specific Ab or isotype.

For cytokine mRNA analysis, T cells were stimulated with
platebound anti-CD3 and soluble anti-CD28 Ab. Cells were ana-
lyzed by RNase protection assay template sets (BD PharMingen).

 

Cell Isolation and DC Generation.

 

DCs were generated from
buffy coats or leukapheresis products (both obtained from the
Department of Transfusion Medicine, University of Erlangen-
Nuremberg, from healthy donors after informed consent was

 

given) as described previously (18, 19). In brief, PBMCs were
isolated by Ficoll density gradient centrifugation. Monocytes
were isolated by plastic adherence and cultured in RPMI 1640
and supplemented with IL-4 and GM-CSF. At day 6 a matura-
tion cocktail (IL-1

 

�

 

, IL-6, prostaglandin E

 

2

 

, and TNF-

 

�

 

) was
added. At day 7 nonadherent cells were harvested and constituted
mature DCs that were 

 

�

 

90% double positive for costimulatory
molecules (CD80, CD86) and CD83.

CD4

 

�

 

 T cells were isolated from PBMCs with a negative
CD4

 

�

 

 T cell isolation kit (Miltenyi Biotec). CD4

 

�

 

CD25

 

�

 

 T cells
were isolated from the pure, untouched CD4

 

�

 

 T cells using
CD25 microbeads (Miltenyi Biotec). Isolation of CD8

 

�

 

 T cells
was performed using a negative CD8

 

�

 

 T cell isolation kit (Mil-
tenyi Biotec). Purity was assessed by FACS

 

®

 

.

 

Flow Cytometric Analysis.

 

For immunofluorescence staining,
cells were washed and stained for 20 min at 4

 

�

 

C with optimal di-
lution of each Ab. Cells were washed again and analyzed by flow
cytometry (FACScan™ and CELLQuest™ software; Becton
Dickinson). For analysis of cell surface–CD152 expression, cells
were stained with the appropriate Ab for 2 h at 37

 

�

 

C (14). For
analysis of intracellular CD152, cells were stained for CD4 ex-
pression, fixed and saponin permeabilized (fix/perm solution; BD
PharMingen), and stained with CD152-specific Ab or isotype.

 

Proliferation Assays.

 

To assess proliferation of different CD4

 

�

 

subtypes, 10

 

5

 

 sorted T cells were incubated in X-VIVO-20 with
different numbers of DCs in 96-well U-bottom plates or different
concentrations of platebound anti-CD3 plus soluble anti-CD28
in 96-well flat-bottomed plates. For assessment of regulatory
properties 10

 

5

 

 bulk CD4

 

�

 

 T cells were cultured with 5 

 

	 

 

10

 

3

 

 (in
some experiments also with 10

 

3

 

 cells) DCs in 96-well U-bottom
plates. Purified CD4

 

�

 

CD25

 

�

 

 or CD4

 

�

 

CD25

 




 

 T cells were
added at different concentrations. After 4–5 d of culture [

 

3

 

H]Tdr
(37 kBq per well) was added for additional 16 h. Proliferation was
measured using a liquid scintillation counter.

 

Transwell Experiments.

 

Transwell experiments were performed
in 24-well plates. 10

 

6

 

 bulk CD4

 

�

 

 T cells were stimulated with
5 

 

	

 

 10

 

4

 

 DCs. In addition, 10

 

6

 

 CD4

 

�

 

CD25

 

�

 

 or CD4

 

�

 

CD25

 




 

 T
cells were either added directly to the culture or were placed in
transwell chambers (Millicell, 0.4 

 

�

 

m; Millipore). After 5 d of co-
culture T cells were transferred to 96-well plates (10

 

5

 

 cells per
well) in triplicates. Proliferation was measured after a 16-h pulse
with [

 

3

 

H]Tdr using a liquid scintillation counter.

 

Results

 

CD4

 

�

 

CD25

 

�

 

 T Cells Show a Reduced Proliferative Re-
sponse to Both Allogeneic and Polyclonal Stimulation.

 

A low
proliferative potential is highly characteristic of the well-
characterized regulatory CD25

 

�

 

CD4

 

�

 

 T cells in the mu-
rine system (5). To analyze the proliferative capacity of hu-
man CD4

 

�

 

 subpopulations we magnetically sorted CD4

 

�

 

T cells for their expression of CD25. By using a MACS

 

®

 

CD4-negative selection kit and a positive selection for
CD25 afterwards, we routinely obtained 

 

�

 

95% pure popu-
lation of CD4

 

�

 

CD25

 

�

 

 T cells (Fig. 1 A). These cells com-
prise 

 

�

 

6% (2.8–17.2%,

 

 n 

 

�

 

 20) of peripheral CD4

 

�

 

 T cells
in the blood of the healthy adults we studied.

Mature DCs are known as the most powerful APCs (20).
Nevertheless, the CD4

 

�

 

CD25

 

�

 

 T cells exhibited virtually
no proliferative response when stimulated in vitro with
fully mature allogeneic DCs in sharp contrast to the CD4

 

�
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CD25

 




 

 T cells (Fig. 2 A) or the whole CD4

 

�

 

 population
(Fig. 2 A). Interestingly, the CD4� population depleted of
CD25� T cells showed a higher proliferation when stimu-
lated with allogeneic DCs compared with the whole CD4�

population (Fig. 2 A).
We next sought to determine whether the CD4�CD25�

T cells would possibly only proliferate upon repetitive stimu-
lation by mature DCs. After restimulation the proliferative
response of CD25
 T cells increased somewhat, whereas the
response of CD25� T cells remained very low (Fig. 2 B).
Priming and restimulation by allogeneic mature DCs resulted
in a 30–50-fold expansion of the CD25
 population after
two rounds of restimulation. In contrast, there was no signif-
icant increase of the CD25� population (data not shown).

We actually harvested a slightly (�10%) decreased absolute
number of CD4�CD25� T cells as compared with the initial
inoculum after the repetitive stimulation in the apparent ab-
sence of significant apoptosis or necrosis (data not shown).

The exceedingly low proliferative response of CD4�

CD25� T cells was also apparent when these cell popula-
tions were polyclonally stimulated with platebound anti-
CD3 plus soluble anti-CD28 (Fig. 2 C). To test whether the
T cell growth factors IL-2 and IL-15 could affect the prolif-
erative potential, various doses were added to CD4�CD25�

and CD4�CD25
 T cells that were stimulated with either
immobilized anti-CD3 plus soluble anti-CD28 (Fig. 2 C,
top) or with mature allogeneic DCs (Fig. 2 C, bottom). A
series of pilot experiments revealed that IL-2 enhanced the

Figure 1. CD4�CD25� T cells
exhibit distinct phenotypical dif-
ferences to CD4�CD25
 T cells.
CD4� T cells were isolated from
PBMCs by negative MACS®

sorting yielding highly purified
untouched CD4� T cells. These
cells were labeled with anti-
CD25 magnetic beads and sorted.
(A) Sorting resulted in virtually
pure CD25� T cells. A represen-
tative result out of 20 indepen-
dent standardized experiments is
shown. (B) The phenotype of
CD4�CD25�, CD4�CD25
,
and activated CD4�CD25
 T
cells was analyzed as described in
Materials and Methods. In addi-
tion, CD4�CD25
 T cells were
activated with immobilized anti-
CD3 plus soluble anti-CD28 for
48 h. After activation cells were
labeled with anti-CD25 mag-
netic beads and sorted. Results
were similar in five independent
experiments. (C) CD4�CD25�

and CD4�CD25
 T cells were
stained with anti–CTLA-4 Ab at
37�C for 2 h. Staining was per-
formed ex vivo and at different
time points after activation with
immobilized anti-CD3 plus solu-
ble anti-CD28. One representa-
tive result of four independent
experiments is shown.
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proliferation of CD25� T cells only at high doses (100–
1,000 U/ml). IL-15 had a similar effect, again only at very
high doses of 50–100 ng/ml. When both cytokines were
mixed, they had strong synergistic effects and doses of 10 U/
ml IL-2 plus 10 ng/ml IL-15 were sufficient to promote the
proliferation of CD4�CD25� T cells. The addition of IL-2
and/or IL-15 in the absence of a polyclonal or allogeneic T
cell stimulus did not induce significant proliferation in the
CD25� or CD25
 T cell subset (data not shown).

CD4�CD25� T Cells Exhibit Distinct Phenotypical Differ-
ences to CD4�CD25
 T Cells. To further characterize the
CD25�CD4� T cell population we compared the expres-
sion of various surface molecules on CD4�CD25�, CD4�

CD25
, and stimulated CD4�CD25
 T cells (Fig. 1 B).
All three populations showed homogenous expression of
CD3 and CD4. No contaminating cells such as monocytes,
B cells, CD8� T cells, or NK cells could be observed
by FACS® analysis (data not shown). Without prior stimu-
lation, i.e., ex vivo, the CD25� population already ex-
pressed high levels of intracellular and low levels of cell sur-
face CTLA-4 (CD152). Furthermore, ex vivo–isolated

CD4�CD25� T cells constitutively expressed CD122 (IL-2
receptor [IL-2R] � chain), HLA-DR (�50%), and con-
sisted primarily (�80%) of CD45RO cells resembling a
memory T cell phenotype. In sharp contrast, the ex vivo–
isolated CD4�CD25
 T cells did not express CTLA-4
(neither intracellularly nor on the surface), CD122, or
HLA-DR, and more cells expressed CD45RA rather than
CD45RO. However, after activation with platebound
anti-CD3 plus soluble anti-CD28 most CD4�CD25
 be-
came strongly CD25� (the level of CD25 expression was
�1 log higher compared with the CD4�CD25� T cells,
data not shown), and displayed high levels of HLA-DR and
CD122 (again �1 log higher compared with CD4�CD25�

T cells) as to be expected. In addition, both intracellular
and surface CTLA-4 was upregulated within 24–48 h yet
quickly downregulated thereafter (Fig. 1 C, data not shown
for intracellular CTLA-4) as expected. The kinetics of
CTLA-4/CD152 expression proved strikingly different
when CD4�CD25� T cells were stimulated. These cells
also upregulated their (constitutively already present albeit
low) CD152 surface expression, yet the strong expression

Figure 2. CD4�CD25� T cells are nonproliferative/anergic to both allogeneic and
polyclonal stimulation, which is partially reversed by the addition of IL-2 and/or IL-15,
but not by neutralizing anti–IL-10 Abs. (A) Whole CD4�, CD4�CD25�, and
CD4�CD25
 T cells were isolated from adult blood by MACS® sorting as in Fig. 1. 105

T cells per 96 well were stimulated with different numbers of mature allogeneic DCs.
Proliferation of T cells (triplicate cultures) was determined by [3H]Tdr incorporation. Re-
sults were similar in five independent experiments. (B) MACS®-sorted CD4�CD25� and
CD4�CD25
 T cells were primed and restimulated every week with mature allogeneic
DCs from the same donor (DC/T cell ratio of 1:20). Proliferation (105 T cells per 96
well) was determined by [3H]Tdr incorporation. Similar results were obtained in three in-
dependent experiments. (C) CD4�CD25� and CD4�CD25
 T cells were stimulated
with 10 �g/ml immobilized anti-CD3 and 10 �g/ml soluble anti-CD28 (top) or with
5 	 103 mature allogeneic DCs (bottom) as described in (A). 500 U/ml IL-2, 100 ng/ml
IL-15, a mixture of 10 U/ml IL-2 plus 1 ng/ml IL-15 or 10 �g/ml anti–IL-10 were
added at the onset of culture. [3H]Tdr incorporation was measured after 5 d of culture.
One of three independent experiments is shown. The addition of IL-2 and/or IL-15 in
the absence of a polyclonal or allogeneic T cell stimulus did not induce significant prolif-
eration in the CD25� or CD25
 T cell subset (data not shown).
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of CD152 remained constant for a period of �1 wk (Fig. 1
C). Staining with several other mAbs such as anti-CD28,
-CD62L, -CD69, -CD95, -CD95L, and -CD154 (CD40
ligand) did not reveal reproducible and significant differ-
ences between CD4�CD25� and CD4�CD25
 T cells.

CD4�CD25� T Cells if Stimulated via the TCR Suppress
the Activation of CD4� and CD8� T Cells in a Cell Contact–
and Dose-dependent Manner. To analyze the putative regu-
latory properties of CD25� T cells coculture experiments
were performed. In a first series of tests we isolated from a
particular donor both the total CD4� population and the
CD25� and CD25
 fractions. Whole CD4� T cells were
then mixed with CD4�CD25� or CD4�CD25
 T cell sub-
populations at indicated ratios and stimulated with alloge-
neic mature DCs (Fig. 3 A). CD4�CD25� T cells signifi-
cantly inhibited the proliferation of whole CD4� T cells and
at a 1:1 ratio virtually blocked it (cpm then represented the
background levels of CD25� T cell proliferation, Fig. 2,
A–C). The addition of CD25
 T cells instead of CD25� T
cells slightly enhanced proliferation (data not shown). As
CD4�CD25
 rapidly expressed CD25 and CD122, i.e.,
both chains of the IL-2R, upon polyclonal (Fig. 1 B) and
stimulation by allogeneic DCs (data not shown), this finding
indicated that the suppressive activity of the CD4�CD25�

T cell subset was not simply due to consumption or passive

adsorption of IL-2 via their IL-2R. CD4�CD25� T cells
exerted also a suppressive activity on whole CD8� T cells
albeit downregulation was less intense (Fig. 3 B).

In a further set of experiments we wanted to determine
whether activation of CD4�CD25� T cells by syngeneic
DCs was sufficient for induction of their regulatory proper-
ties. To this end mature DCs and CD4�CD25� T cells
were generated/isolated from the same donor (donor I). In
addition, whole CD4� T cells and the CD4�CD25� T cell
subset were isolated from another donor (donor II). The
whole CD4� T cells (donor II) were then stimulated with
allogeneic mature DCs (donor I) in the absence (Fig. 3 C,
CD4� only) or presence of various numbers of CD4�

CD25� T cells isolated from either donor I or donor II
(Fig. 3 C). Whole CD4� T cells from donor II proliferated
vigorously as expected when stimulated with allogeneic,
donor I–derived DCs (Fig. 3 C, CD4� only). In the pres-
ence of donor I–derived CD4�CD25� T cells (i.e., synge-
neic to the DCs used) the proliferation (i.e., alloreactivity)
of whole donor II–derived CD4� T cells was not sup-
pressed at all (Fig. 3 C). However, potent suppression oc-
curred when donor II–derived CD4�CD25� T cells (i.e.,
allogeneic to the DCs used) were added (Fig. 3 C). Sup-
pression was also observed in experiments where DCs,
whole CD4� T cells, and CD4�CD25� T cells were de-

Figure 3. CD4�CD25� T cells if stimulated via the TCR suppress the
activation of CD4� and CD8� T cells in a cell contact– and dose-depen-
dent manner. (A and B) MACS®-sorted whole CD4� (A) and CD8� (B) T
cells (105 T cells per 96 well) were added to CD4�CD25� T cells at the ra-
tios indicated and stimulated with allogeneic DCs at a DC/CD4� or CD8�

T cells ratio of 1:20. Proliferation was determined by [3H]Tdr incorpora-
tion after 5 d. One of five independent experiments is shown. (C) DCs and
CD4�CD25� T cells were generated/ isolated from the same donor (donor
I). In addition, whole CD4� T cells and CD4� CD25� T cells were iso-
lated from another donor (donor II). 105 whole CD4� T cells per 96 well
were cultured with 5 	 103 DCs per well (i.e., DC/T ratio = 1:20; results
were comparable at a DC/T ratio of 1:100, data not shown). CD4�CD25�

T cells from donor I and donor II were then added, respectively. Prolifera-
tion was determined by [3H]Tdr incorporation after 5 d of culture. Results
are representative of three independent experiments shown as mean cpm of
triplicate cultures. (D) Whole CD4� T cells or CD4�CD25� T cells were
(105 T cells per 96 well) stimulated with 5 	 103 allogeneic mature DCs
(DC/T ratio = 1:20) (upper two panels). In addition, whole CD4� T cells
were cocultured with CD4�CD25� T cells at a ratio of 1:1 (105 T cells per
96 well each) and stimulated with allogeneic DCs again at a DC/T ratio of

1:20 in the presence or absence of 10 �g/ml anti–IL-10, 2 �g/ml anti–TGF-�, 500 U/ml IL-2, 50 ng/ml IL-15, or a mixture of 10 U/ml IL-2 and 1 ng/ml
IL-15. In a parallel transwell approach the CD4�CD25� T cells were stimulated with allogeneic DCs (DC/T cell ratio of 1:20) in a transwell chamber, and
whole CD4� T cell responders were put into the well together with allogeneic DCs again at a DC/T ratio of 1:20. Proliferation after 5 d of culture was de-
termined by [3H]Tdr incorporation. One of four representative experiments is shown.
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rived from three different donors (data not shown). These
data indicated that TCR-mediated activation of CD4�

CD25� T cells was required to let them exert their regula-
tory function and that syngeneic DCs were insufficient to
induce their suppressive activity.

Next we performed transwell chamber experiments to
investigate whether the regulatory function of the CD4�

CD25� T cells was mediated primarily by soluble factors or
required cell–cell contact (Fig. 3 D). As shown in Fig. 3 D
the CD4�CD25� T cells suppress proliferation of whole
CD4� T cells almost completely in the presence of alloge-
neic DCs. Separation of the two populations in transwell
chambers virtually abolished their suppressive effect. These
observations suggested that direct cell contact is essential for
the inhibitory capacity of CD4�CD25� T cells, as the
semipermeable membrane of transwell chambers allows
free passage of soluble factors, but excludes direct cell con-
tact. The transwell experiments also confirmed that con-
sumption of IL-2 by CD4�CD25� T cells was not the
mechanism responsible for suppression.

Despite the obvious requirement for close interaction
between regulatory and responding cells neither a targeting
of the antigen-presenting DCs or a role of soluble factors
was excluded by the transwell experiments. Therefore, we
also employed platebound anti-CD3 Ab in combination
with soluble anti-CD28 Ab as an APC independent and
polyclonal T cell stimulus. Whole CD4� T cells alone
showed strong proliferation upon this stimulation. As men-
tioned previously (Fig. 2 C), CD4�CD25� T cells did not
proliferate. In coculture of both populations, there was at
least a 75% reduction at a 1:1 ratio compared with control
(data not shown). These data suggested that regulation does
not primarily occur via modulation of APC function. Neu-
tralizing Abs to the cytokines IL-10 and TGF-� (critical for
the suppressive activities of the so-called Tr1 cell and Th3,
respectively; references 21, 22) did not abolish the regula-
tory activity of the CD4�CD25� T cells demonstrating
that these cytokines played no major suppressive role at
least in the assays we looked at. The addition of IL-2 and/
or IL-15 to cocultures at the high doses that promote the
proliferation of CD4�CD25� T cells (Fig. 2 C) reduced
their inhibitory effects. However, the suppressive activity
was likely not abolished as the significant proliferation of
the CD4�CD25� T cells has to be taken into account
when interpreting the data (Fig. 3 D).

CD4�CD25� T Cells Predominantly Secrete IL-10. To
analyze and compare the cytokine profiles, freshly sorted
CD4�CD25� and CD4�CD25
 T cells were activated
with platebound anti-CD3 plus anti-CD28. Supernatants
were then analyzed by ELISA, and RNA expression was
studied by RNase protection assays. In addition, intracellu-
lar cytokine staining was performed to determine the per-
centage of cells releasing a certain cytokine. As shown in
Fig. 4, CD4�CD25
 T cells predominantly secreted IFN-�
and IL-2 with little secretion of IL-10 and IL-4, resem-
bling a Th1-like profile. On the other hand, CD4�CD25�

T cells predominantly produced IL-10 and only low levels
of IL-2, IL-4, and IFN-�, resembling Tr1 cells. Compari-

son of both subpopulations at the RNA level revealed that
CD25� T cells express more IL-10, less IFN-�, and similar
levels of IL-2 mRNA compared with CD25
 T cells. IL-1
receptor antagonist mRNA was found predominantly in
CD4�CD25� T cells, whereas significant IL-1� mRNA
levels were only present in CD4�CD25
 T cells. TGF-�
was expressed at similarly low levels in both cell types.

Discussion
The concept of suppressor or immunoregulatory T cells

has been revitalized during the past few years by the better

Figure 4. Different cytokine profiles of CD4�CD25� and CD4�CD25


T cells. (A) MACS®-sorted CD4�CD25� and CD4�CD25
 T cells were
stimulated with 20 ng/ml PMA and 500 �g/ml A23187 Ca2� ionophore
for 6 h. 2 �M monensin was added for the last 5 h. Staining of CD3 surface
expression was performed. Cells were washed, fixed, permeabilized, and
stained for detection of intracellular cytokines using FITC- or PE-conju-
gated specific Abs. One of nine independent experiments with similar re-
sults is shown. Results were identical when T cells were stimulated with
platebound anti-CD3 plus soluble anti-CD28 Ab (data not shown). (B)
CD4�CD25� and CD4�CD25
 T cells were activated with platebound
anti-CD3 plus soluble anti-CD28. After 48 h of culture analysis of RNA
expression was performed by RNase protection assay. (C) After treating
cells as described in (B) cytokines in the supernatant were measured by
ELISA (one of five independent experiments is shown).
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delineation of several regulatory cell types in rodents, the
mutual relationship of which is not yet finally defined. The
so-called Tr1 and Th3 cells mediate bystander suppression
- without need for direct cell contact - by the secretion of
high levels of IL-10 and TGF-�, respectively (21, 22). The
best characterized and apparently most important Tr cell
population identified so far are the CD4�CD25� T cells.
They occur naturally in rodents (representing �10% of
CD4� cells in lymphoid organs), are characterized by con-
stitutive expression of CD25 (IL-2R�), and are clearly of
crucial importance for maintaining tolerance and prevent-
ing autoimmune disease in vivo. Surprisingly, a cell popu-
lation exhibiting equivalent properties has not been de-
scribed in humans to date. Here we have demonstrated that
the CD4�CD25� T cells in human blood that previously
had been considered to represent conventional memory T
cells (15–17) in fact appear to be the exact human counter-
part of the unique CD4�CD25� Tr cells that have been
known and studied for many years in rodents. We were
able to isolate the CD4�CD25� T cells from adult blood in
sizeable quantities (average 6% of CD4� T cells) so that a
detailed study and comparison to CD4�CD25
 T cells
could be undertaken. It turned out that the human cells
share the key phenotypical and functional features with the
murine CD4�CD25� immunoregulatory T cells. The most
interesting and previously unidentified phenotypical feature
was that the CTLA-4 molecule (CD152) was already con-
stitutively expressed (at high levels intracellularly and at low
levels at the surface) by the human CD4�CD25� T cells,
was further upregulated after stimulation via the TCR, and
maintained at high surface levels for at least a week after (in
sharp contrast to CD4�CD25
 T cells that expressed
CTLA-4 de novo upon stimulation and only very tran-
siently as described in references 23 and 24). The expres-
sion pattern of CTLA-4 by CD4�CD25
 already sup-
ported their relationship to the murine CD4�CD25� Tr
cell as these cells constitutively express CTLA-4 as a mole-
cule essential for their in vivo suppressive activity (12, 13).
Like their murine counterparts the human CD4�CD25� T
cells showed almost no proliferation upon stimulation, nei-
ther in response to polyclonal activation by platebound
anti-CD3 plus anti-CD28 nor after (even repetitive) stimu-
lation with the most potent natural immunostimulatory
cells, i.e., mature (allogeneic) DCs. When these stimuli
were combined with high doses of IL-2 (500 U/ml) anergy
was partially reversed as described in the mouse (8). A
novel finding was that IL-15 at high doses (50–100 ng/ml)
induced comparable proliferation and that the combined
action of IL-2 and IL-15 even at lower doses (10 U/ml and
10 ng/ml, respectively) had a strong synergistic action and
induced vigorous proliferation. This might prove impor-
tant as expansion of CD4�CD25� T cells is vital for poten-
tial therapeutic applications and cloning of these cells for
further more detailed studies (including mechanistic and
molecular ones). Of interest was that neutralizing anti–IL-
10 mAb failed to promote proliferation indicating that the
release of IL-10 by these cells was not causing anergy in an
autocrine fashion. In coculture experiments the CD4�

CD25� T cells displayed another key feature in that they
suppressed only upon activation via their own TCR the
proliferation of CD4�CD25
 or CD8� T cells in a con-
tact- and dose-dependent, yet cytokine-independent man-
ner. Our ex vivo system has not allowed us to investigate
whether the suppression is completely antigen nonspecific
as has recently been shown in the mouse by taking advan-
tage of TCR transgenic mice (8). However, respective
mechanistic studies might be possible by using our IL-2
plus IL-15 approach for the expansion of these cells.

It is most remarkable that a recent report has shown that
T cells with regulatory properties and a phenotype virtually
identical to the CD4�CD25� T cells we have isolated ex
vivo from human blood can be generated in vitro by repet-
itive stimulation of human naive T cells with immature
DCs (25). In the mouse CD4�CD25� Tr cell populations
are continuously generated in the thymus (7), yet the
maintenance of Tr cells in the periphery requires the pres-
ence of tissue-specific antigens and IL-2 (26, 27). Based on
the two supplementary findings (29, and this study) it is
certainly tempting to speculate that immature DCs that
have sampled peripheral tissues via the uptake of apoptotic
cells (28, 29), and present universal or tissue-specific au-
toantigens, are responsible for the survival and possibly
slight proliferation of thymic Tr cell emigrants. We are
currently testing whether the survival of the ex vivo–iso-
lated CD4�CD25� Tr cells can be promoted by interac-
tion with immature DCs and whether the recently re-
ported “generation” of CD4�CD25� T cells from naive T
cells by immature DCs in vitro (25) possibly rather repre-
sents maintenance of survival of preexisting CD4�CD25�

in the initial inoculum. It is also of note that we found that
interaction of ex vivo–isolated human CD4�CD25� T
cells with syngeneic mature DCs was insufficient to activate
their suppressive properties while allogeneic mature DCs
were potent inducers of regulation. This observation again
suggests testable hypotheses. For example, will immature in
contrast to mature syngeneic DCs activate CD4�CD25� T
cells (suggesting that they carry some specific ligand for in-
teraction), or will they do so only after ingestion of apop-
totic bodies (suggesting that presentation of autoantigens is
required)? Furthermore, can mature DCs that present
nominal recall antigens (e.g., influenza proteins/peptides)
stimulate T cells both in the CD4�CD25
 T cell popula-
tion and the CD4�CD25� T cells suggesting that besides
autoantigens also the recognition of foreign antigens could
trigger regulation at inflammatory sites?

In summary, we demonstrate that a sizeable population
(�6%) of CD4�CD25� T cells exists in the peripheral
blood of normal human adults that in contrast to previous
belief do not represent conventional memory but rather Tr
cells equivalent to the unique population of CD4�CD25�

professional regulatory/suppressor T cells that have been
studied for years in rodents. The identification and charac-
terization of the human CD4�CD25� Tr cells will now al-
low for their monitoring in various disease states and has
important implications for understanding and treating au-
toimmunity, graft rejection, and cancer.
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