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Ex vivo metabolite profiling of 
paediatric central nervous system 
tumours reveals prognostic markers
Christopher D. Bennett1,2, Simrandip K. Gill1,2, Sarah E. Kohe1,2, Martin P. Wilson3, 
Nigel P. Davies4, Theodoros N. Arvanitis  1,2,5, Daniel A. Tennant  6 & Andrew C. Peet  1,2

Brain tumours are the most common cause of cancer death in children. Molecular studies have greatly 
improved our understanding of these tumours but tumour metabolism is underexplored. Metabolites 
measured in vivo have been reported as prognostic biomarkers of these tumours but analysis of 
surgically resected tumour tissue allows a more extensive set of metabolites to be measured aiding 
biomarker discovery and providing validation of in vivo findings. In this study, metabolites were 
quantified across a range of paediatric brain tumours using 1H-High-Resolution Magic Angle Spinning 
nuclear magnetic resonance spectroscopy (HR-MAS) and their prognostic potential investigated. 
HR-MAS was performed on pre-treatment frozen tumour tissue from a single centre. Univariate 
and multivariate Cox regression was used to examine the ability of metabolites to predict survival. 
The models were cross validated using C-indices and further validated by splitting the cohort into 
two. Higher concentrations of glutamine were predictive of a longer overall survival, whilst higher 
concentrations of lipids were predictive of a shorter overall survival. These metabolites were predictive 
independent of diagnosis, as demonstrated in multivariate Cox regression models. Whilst accurate 
quantification of metabolites such as glutamine in vivo is challenging, metabolites show promise as 
prognostic markers due to development of optimised detection methods and increasing use of 3 T 
clinical scanners.

Cancer is a major cause of death from disease in childhood, and brain tumours are the most common cause of 
cancer-related death in this age group1. Whilst some brain tumours now have a very good prognosis, others have 
continued to present a challenge, highlighting the need for new techniques for investigation and management. 
Identifying novel biomarkers of prognosis would allow more accurate treatment strati�cation to improve survival 
rates and reduce long-term morbidity. A key strategy in optimizing the clinical management of children with 
brain tumours is to identify subgroups that have prognostic signi�cance, and this has been particularly success-
ful in medulloblastoma where molecular subgroups have already been incorporated into the accepted diagnos-
tic classi�cation2. Whilst most molecular markers have been de�ned by tumour genetics, there is an increasing 
interest in tumour metabolism as both a biomarker of prognosis and potential therapeutic target. Mutations in 
the metabolic enzyme isocitrate dehydrogenase (IDH) act as a marker of good prognosis in gliomas3 and has led 
to novel therapeutic targets being identi�ed4. �e mutated enzyme produces the metabolite 2-hydroxyglutarate 
which can be detected both in tissue and in vivo providing a non-invasive test for this subgroup illustrating a key 
advantage for metabolite biomarkers of prognosis.

Whilst the identi�cation of speci�c prognostic subgroups has advantages, markers that are applicable across 
multiple tumour types also give clinical value. Histological markers, such as Ki67 proliferation index, are used 
regardless of diagnosis to assess tumour aggressiveness, and MYC status is a marker of poor prognosis used clin-
ically in many di�erent tumour types5. Speci�c metabolites have been proposed as markers of prognosis over a 
range of di�erent children’s brain tumours using in vivo Magnetic Resonance Spectroscopy (MRS). Speci�cally, 

1Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom. 2Birmingham 
Women’s and Children’s Hospital NHS Foundation Trust, Birmingham, United Kingdom. 3Birmingham University 
Imaging Centre, School of Psychology, University of Birmingham, Birmingham, United Kingdom. 4University 
Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom. 5Institute of Digital Healthcare, WMG, 
University of Warwick, Coventry, United Kingdom. 6Institute of Metabolism and Systems Research, University 
of Birmingham, Birmingham, UK. Correspondence and requests for materials should be addressed to A.C.P.  
(email: a.peet@bham.ac.uk)

Received: 30 January 2019

Accepted: 3 June 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-45900-x
http://orcid.org/0000-0001-5473-135X
http://orcid.org/0000-0003-0499-2732
http://orcid.org/0000-0002-4846-5152
mailto:a.peet@bham.ac.uk


2SCIENTIFIC REPORTS |         (2019) 9:10473  | https://doi.org/10.1038/s41598-019-45900-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

glutamine and N-acetylaspartate (NAA) were found to be markers of good prognosis whilst scyllo-inositol and 
mobile lipids markers of poor prognosis6.

However, performing MRS on typical clinical scanners is associated with a number of limitations, in particu-
lar, the relatively small number of metabolites that can be measured accurately and the requirement for sampling 
of relatively large tumour volumes. Ex-vivo 1H-High-Resolution Magic Angle Spinning (HR-MAS) can ana-
lyse small brain tumour tissue samples to provide quantitative information on a larger number of metabolites7. 
HR-MAS has identi�ed prognostic metabolic markers in a number of tumour types including prostate8, colorec-
tal9, breast10, neuroblastoma11 and pancreatic adenocarcinomas12. A good agreement has been demonstrated 
between in vivo and ex vivo methods13,14, providing an indication that HR-MAS-visible metabolites accurately 
re�ect the values present in situ and are potentially observable in vivo. �e primary aim of this study was to iden-
tify and measure the concentrations of metabolites in a range of paediatric brain tumours using HR-MAS and test 
the ability of metabolites to predict survival.

Methods
Patients. All patients with brain tumours presenting at the Birmingham Children’s Hospital were eligible 
to be entered into the study. Approval was obtained from the research ethics committee (NRES East Midlands-
Derby, 04/MRE04/41) and informed consent was given by parents/guardians. All experiments were performed in 
accordance with relevant guidelines and regulations. Patients were accrued between January 1998 and May 2016 
and followed up until September 2017. A consensus diagnosis was obtained for each patient by a multidiscipli-
nary team of clinicians that included histopathological diagnosis according to Louis et al.15. Brain tumour tissue, 
frozen as soon as possible a�er resection, was requested from the histopathology tissue bank at Birmingham 
Children’s Hospital. In total, 133 brain tumour samples were released for HR-MAS. Dates of death and clinical 
information were obtained from the West Midlands Regional Children’s Tumour Registry. Patients were treated 
with the protocol appropriate for their respective diagnosis. Broadly, this involved maximal safe surgical resection 
when the tumour was in a favourable location, with adjuvant radiotherapy and/or chemotherapy if necessary.

From the 133 tumour samples available, 19 were excluded from the analysis due to quality reasons or cause 
of death not being from the tumour diagnosis. �e �nal cohort consisted of 114 primary pre-treatment brain 
tumour samples including 36 pilocytic astrocytomas (PA), 32 medulloblastomas (MB), 15 ependymomas (EP), 7 
glioblastoma multiforme (GBM), 6 atypical teratoid rhabdoid tumours (ATRT), 4 anaplastic astrocytomas (AA), 
4 choroid plexus papilloma (CPP), 3 gangliogliomas (GG), 2 atypical choroid plexus papillomas (ACPP), 2 CNS 
primitive neuroectodermal tumours (PNET), 1 choroid plexus carcinoma (CPC), 1 astroblastoma (AB) and 1 
unclassi�ed low grade astrocytic glial tumour. As the tumour tissue was requested before the release of the WHO 
CNS classi�cation 2016, diagnoses are those speci�ed by the WHO CNS classi�cation 200715. 35 patients died 
and 79 were alive at the end of the study. �e median follow-up time for the whole cohort was 5.31 years (Table 1).

Sample preparation and HRMAS. �e frozen samples were stored at −80 °C until used for HR-MAS. 
Samples were dissected on dry ice and inserted into either a 12 µl or 50 µl HR-MAS rotor with TMSP (Cambridge 
Biosciences, Cambridge, UK) as a quanti�cation reference and D2O (Sigma-Aldrich, Dorset, UK) to �ll the 
allocated rotor volume. Sample weights ranged from 3.4 to 35.8 mg. HR-MAS experiments were performed 
using a Bruker Avance 500 MHz (11.74 T) NMR spectrometer and a 4 mm 3 channel HR-MAS z-PFG band 
probe (Bruker, Coventry, UK). �e samples were maintained at a temperature of 4 °C, a spin rate of 4800 Hz set for 
each experiment with 256 or 512 scans acquired depending on the signal-to-noise ratio. A standard 1D NOESY 
pulse sequence preceded by 2 s of water presaturation was acquired, with a repetition time of 4 s. In addition, a 
285 ms Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was also acquired for each sample to aid in metabo-
lite identi�cation by minimizing broad signal contributions from lipids and macromolecules.
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tumour
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Choroid 

plexus 

carcinoma

Astrobla-

stoma

Astrocytic 

glial 

tumour Total

N 36 32 15 7 6 4 4 3 2 2 1 1 1 114

Number of 

events (n)
3 13 3 6 4 3 0 0 1 1 1 0 0 35

Gender 

(male:female)
18:18 26:6 11:4 5:2 4:2 1:3 4:0 1:2 1:1 1:1 1:0 0:1 1:0 74:40

Mean age at 

diagnosis (years)
8.30 7.11 5.53 5.68 1.10 10.49 3.40 11.07 7.24 2.95 5.09 10.18 11.58 5.93

Age range 

(years)
1.2–15.9 1.5–14.6 0.3–16.3

0.03–

11.5
0.02–4.6 4.1–15.5 0.4–10.1 8.7–14.9 2.2–12.3 1.6–4.3 N/A N/A N/A 0.03–16.3

Median survival 

(years)
4.71 1.82 1.68 0.94 0.31 1.54 N/A N/A 0.94 1.93 1.39 N/A N/A 1.50

Anatomical  

location (n) 

[supratentorial: 

infratentorial: 

spinal]

7:29:0 0:32:0 5:9:1 6:1:0 1:5:0 3:1:0 2:2:0 2:1:0 2:0:0 1:1:0 1:0:0 1:0:0 0:1:0 31:82:1

Table 1. Clinical information for patients included in this study, organised by tumour diagnosis.
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Processing of HR-MAS data. Each free induction decay was Fourier transformed using TOPSPIN (Bruker, 
Coventry, UK). Phase and baseline correction (Whittaker Smoother) were performed using Mnova NMR 9.0 
so�ware suite (2014; Mestrelab Research, Spain). Creatine was used as a chemical shi� reference at 3.03 ppm. 
Spectral �tting was then performed between 0.5 and 4.7 ppm. All spectral peaks were deconvoluted and peak 
integrals measured followed by normalization to TMSP. �e following metabolites were quanti�ed and included 
in the analyses: acetate (Ace), alanine (Ala), ascorbate (Asc), choline (Cho), creatine (Cr), gamma-aminobutyric 
acid (GABA), glucose (Glc), glutamine (Gln), glutamate (Glu), glutathione (GSH), glycine (Gly), glycerophos-
phocholine (GPC), hypotaurine (hTau), isoleucine (Iso), lactate (Lac), leucine (Leu), myo-inositol (mIns), 
N-acetylaspartate (NAA), phosphocholine (PCh), serine (Ser), scyllo-inositol (sIns), succinate (Suc), taurine 
(Tau), valine (Val), lipids at 0.9 and lipids at 1.3 ppm (Fig. 1, Supplementary Table 1). Lipids were highly cor-
related, and so the lipid resonances were summed and termed total lipids. Metabolites were assigned according 
to Govindaraju et al.16 whilst lipids were assigned according to Moestue et al.17. Metabolite concentrations were 
normalised to the total sum of non-lipid metabolite concentrations.

Data and statistical analysis. Death caused by the tumour was the endpoint for the study, with time to 
event calculated from the date of �rst surgical resection to death. Univariate and multivariate Cox regression 
were performed on normalised metabolite concentrations and clinical parameters to determine the association 
of metabolites with survival. Likelihood ratio tests were used to determine signi�cance of Cox models. Clinical 
parameters found to signi�cantly predict survival in the univariate analyses were included as variables in the 

Figure 1. Example spectrum with annotated metabolite resonances and splitting patterns. Not visible in this 
spectrum are NAA(s) at 2.01ppm, GABA(t) at 2.30ppm, GPC(s) at 3.23ppm, sIns(s) at 3.34ppm and Glc(d) at 
4.65ppm. Abbreviations: s, singlet; d, doublet; t, triplet; dd, doublet of doublets; m, multiplet; ppm, parts per 
million.
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multivariate analyses. Univariate P-values were corrected using Benjamini-Hochberg correction to control the 
false discovery rate.

Validation of the models was performed using leave-one-out cross-validation (LOOCV) of C-indices, as 
described in Braadland et al.8. For each individual i, a Cox proportional hazards model is created leaving i out. 
�e coe�cients, βi, generated are applied to i’s covariates, xi, to obtain a linear predictor ηi = βixi. �is is repeated 
for all individuals in the analysis creating the vector η = η1, η2, η2…ηn, where n is the number of individuals. �e 
resultant vector of linear predictors is used as a single covariate in a Cox proportional hazards model to calculate 
the C-index. Normalised metabolite concentrations were scaled by dividing each metabolite by its standard devi-
ation prior to univariate and multivariate analysis.

Kaplan-Meier analyses were used to test the di�erence in survival of patients with brain tumours separated 
into groups above and below 25%, 50% or 75% quantiles for signi�cant metabolites in the whole cohort. To fur-
ther test the robustness of the biomarkers, the whole cohort was divided based on the date of tissue collection 
into an initial cohort (n = 23), comprised of tissue collected during or before June 2006, and a validation cohort 
(n = 91), comprised of tissue collected a�er June 2006. �e quantile showing the most signi�cant result was recal-
culated in the initial cohort and the obtained value was applied to the validation cohort. Kaplan-Meier analysis 
was performed using logrank tests. All survival analyses were performed using the survival library written for the 
R so�ware package18.

Results
Univariate cox regression. A total of 25 metabolite features were assigned as quanti�ed using HR-MAS 
(Fig. 1, Supplementary Table 1). �e mean metabolite concentrations for the di�erent tumour groups are given 
in Supplementary Table 2. Univariate Cox regression identi�ed 2 metabolites with prognostic potential (Table 2, 
Supplementary Table 3); higher Gln was associated with decreased risk of death, whilst a higher concentration 
of total lipids was associated with an increased risk of death. Whilst Val, Suc and hTau were signi�cant in the 
univariate analysis, they were no longer signi�cant upon P-value correction. Of the clinical features tested, diag-
nosis was shown to be a signi�cant predictor of survival; patients diagnosed with AA, ATRT, CPC, GBM, MB 
and PNET had a signi�cantly higher risk of death than PA patients (Table 2). Similar to Val, Suc and hTau, age at 
diagnosis was signi�cant in the univariate analysis but was no longer signi�cant a�er P-value correction. Gender 
and tumour location were not signi�cant predictors of survival in this analysis (Supplementary Table 4).

Multivariate cox regression. �e two metabolites with prognostic potential in the univariate analyses were 
further evaluated in a multivariate analysis. Each metabolite was assessed with diagnosis as a second covariate. 
Gln and total lipids were found to be predictors of survival independent of diagnosis, with higher concentrations 
of Gln predicting better survival, whilst higher concentrations of total lipids were associated with a higher risk of 
death (Table 2).

Validation of prognostic markers. Upon validation of the univariate analysis using leave one out cross 
validation of C-indices, total lipids alone demonstrated a marginally greater predictive accuracy than diagnosis 
alone. Validation of the multivariate models showed a greater predictive accuracy when either Gln or total lipids 
were combined with diagnosis when compared with diagnosis alone using the same validation method (Table 3).

�e relationship between survival and metabolic predictors remained when the whole cohort was strati�ed 
into high and low concentrations groups using 25%, 50% and 75% quantiles. �e di�erence in survival between 
patients with high and low Gln was greatest when cases were strati�ed by the 50% quantile Gln, whilst the dif-
ference between high and low lipids patients was greatest upon strati�cation using the 75% quantile (Fig. 2A,B). 

Variable

Univariate analysis Multivariate analyses

HR (95% CI) Corrected P-value

Glutamine model Total lipids model

HR (95% CI) P-value HR (95% CI) P-value

Gln 0.52 (0.31, 0.87) 0.041 0.42 (0.21–0.85) 0.015 — —

Total lipids 2.02 (1.53, 2.66) 2.48 × 10−4 — — 1.91 (1.35, 2.68) 2.15 × 10−4

Diagnosis 4.58 × 10−4

PA Reference — Ref — Ref —

AA 13.03 (2.62, 64.65) 0.0017 9.93(2.99, 49.59) 0.005 15.80 (3.16, 79.16) 7.86 × 10−4

ACPP 9.27 (0.95, 90.57) 0.056 3.41 (0.32, 36.58) 0.31 8.08 (0.82, 79.10) 0.073

ATRT 17.11 (3.80, 76.95) 2.1 × 10−4 8.63 (1.75, 42.61) 0.0081 11.69 (2.38, 57.53) 0.0025

CPC 35.46 (3.52, 357.31) 0.0025 9.48 (0.79, 113.46) 0.076 10.39 (0.96, 112.40) 0.054

EP 2.55 (0.51, 12.63) 0.25 1.34 (0.25, 7.09) 0.73 2.61 (0.53, 12.98) 0.24

GBM 31.72 (7.77, 129.45) 1.5 × 10−6 32.73 (7.86, 136.23) 1.64 × 10−6 22.29 (5.32, 93.31) 2.14 × 10−5

MB 5.91 (1.68, 20.76) 0.0056 2.45 (0.61, 9.89) 0.21 5.71 (1.62, 20.11) 0.0066

PNET 14.12 (1.44, 138.02) 0.023 6.03 (0.58, 63.08) 0.13 21.69 (2.15, 218.62) 0.009

Table 2. Univariate and multivariate Cox models for metabolite concentrations demonstrating their ability to 
predict overall survival of paediatric brain tumour patients. As no deaths were recorded for patients diagnosed 
with GG, AB, CPP or the unclassi�ed glial tumour, these entries have been excluded from this table.
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Separation of the whole cohort into an initial cohort and validation cohort further demonstrated the prognostic 
ability of Gln and total lipids. �e di�erence in survival using the 50% quantile Gln concentration in the initial 
cohort reached prognostic signi�cance, which was maintained when the cut-o� was applied to the validation 
cohort (Fig. 2C,D). �e di�erence in survival using the 75% quantile total lipids in the initial cohort demon-
strated prognostic signi�cance, which remained following application to the validation cohort (Fig. 2E,F).

Discussion
�is study has shown that the concentration of metabolites measured in fresh, frozen diagnostic biopsy tissue 
from a variety of paediatric brain tumours using HR-MAS varies with disease aggressiveness. �rough univariate 
and multivariate Cox models, it was shown that both Gln and total lipids have prognostic signi�cance independ-
ent of tumour diagnosis and that addition of metabolite concentrations can aid in predicting overall survival. 
Interestingly, through cross-validation, total lipid concentration alone outperformed diagnosis in predicting sur-
vival, although the di�erence was small.

We have previously reported in vivo Gln concentration as a predictor of good prognosis in paediatric brain 
tumours independent of diagnosis6, and it is encouraging to have this con�rmed by ex vivo spectroscopy. Gln 
is poorly resolved at an MR scanner �eld strength of 1.5 T due to the overlapping of signals from Glu, NAA 
and macromolecules. Techniques have been developed to improve the accuracy of Gln quanti�cation; 1D MRS 
techniques include averaging spectra from di�erent echo times (TE)19, the use of optimal TE’s20-22, very short 
TE’s23,24 and spectral-selective refocusing25. 2D techniques have also been developed but are not favoured due to 
the high level of expertise required to ensure reliable results and the time taken to acquire the data26. �ere have 
been recent advancements in ultrafast 2D NMR27, although this is still in its infancy. Overall, there is a realistic 
prospect that it will be possible to routinely measure tumour Gln levels in vivo in the near future.

Gln is the most abundant amino acid in blood plasma, and its metabolism has long been known to be impor-
tant in tumour biology28; uptake has been shown to increase in brain tumours in order to support cellular bio-
energetics and biosynthetic processes needed for proliferation29. Metabolism is under the direct control of major 
transcription factors such as TP53, Myc and Ras30. Mutations or changes in the regulation of these genes are 
common in cancers, including brain tumours, and switch the cells’ metabolism from oxidative phosphorylation 
of glucose to energy ine�cient glucose fermentation and glutaminolysis31. �is switch to Gln metabolism has 
been linked to poor prognosis32, therefore Gln concentration may aid strati�cation of patients into risk groups 
and inform treatment decisions. Due to the reliance of some cancers on Gln, the metabolism of this amino acid 
has been identi�ed as a potential target for treatment33.

Lipids have also previously been identi�ed as biomarkers of survival through in vivo MRS of paediatric brain 
tumours. �e lipid signals can be generated by mobile lipids stored in cytoplasmic lipid droplets34,35 or by lipids 
in areas of tissue necrosis36,37, although it is unlikely that highly necrotic areas of tumour would be sampled. �e 
role of lipids droplets in brain tumours is not well understood; however, there is evidence suggesting the number 
of lipid droplets increases in response to cellular stress and are associated with growth arrest38 and necrosis34. 
Furthermore, the number of cells positively stained for adipophilin, a lipid droplet associated protein, was shown 
to signi�cantly increase with tumour grade39.

Risk strati�cation is not the only potential bene�t of enhanced metabolite quanti�cation. Progression of dis-
ease and response to treatment can be monitored using MRS. Increases in Gln concentration in contralateral 
white matter is linked to glioblastoma migration40, whilst reductions in the concentration of phosphocholine and 
lactate in glioblastoma cell lines have been observed a�er treatment with mTor and PI3K inhibitors41, re�ecting 
the observation of reduced total Cho in orthotopic glioblastoma mouse models42. Increases in lipid concentra-
tions have been correlated with responses to treatment in cell lines exposed to chemotherapy agents38,43.

Suc, hTau and Val, which were signi�cant in the univariate analysis before correction for multiple compar-
isons, warrant further investigation considering the limited understanding of these metabolites in the context 
of paediatric brain tumours. Increases in both Suc and hTau were associated with a longer survival time, whilst 
increases in Val were associated with a shorter survival time.

Despite in vivo studies identifying NAA and sIns as prognostic markers, neither metabolite reached prognos-
tic signi�cance in the current study of tumour tissue. In addition to the limited sample size which could explain 
this, it is worth noting that the population of tumours included is somewhat di�erent to that of in vivo studies 
and this could also contribute to the �nding. �ere is a lack of available frozen tissue from surgically intractable 
tumours such as optic pathway gliomas and brain stem tumours unlike in vivo studies. Optic pathway gliomas 
have been shown to have a high concentration of NAA and a good prognosis whilst brain stem tumours have a 
higher concentration of sIns and a poor prognosis6.

In conclusion, this study has con�rmed that the concentration of Gln and lipids in resected tissue are predic-
tors of survival independent of diagnosis. �e importance of Gln and lipids as predictors of prognosis in children’s 

Variable

Univariate analysis Multivariate analysis

LOOCV C-index LOOCV C-index

Gln 0.641 0.686

Total lipids 0.670 0.727

Diagnosis 0.666 —

Table 3. Cross validation of the univariate and multivariate models demonstrate improved predictive accuracy a�er 
inclusion of either Gln or total lipid concentrations in addition to diagnosis when compared to diagnosis alone.
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tumours should lead to their measurement in tumour tissue, the implementation of MRS techniques to accurately 
measure their concentration non-invasively and the exploration of novel agents which can alter their metabolism 
for therapeutic e�ect.

Data Availability
�e datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.

Figure 2. Strati�cation of patients in the whole cohort into high and low metabolite concentration groups 
using (A) 50% quantile Gln and (B) 75% quantile total lipids demonstrates signi�cant di�erences in survival. 
Strati�cation of patients in (C) the initial cohort using 50% quantile Gln demonstrates a signi�cant di�erence in 
survival which remains upon application of the determined value to (D) the validation cohort. Strati�cation of 
patients in (E) the initial cohort using 75% quantile total lipids demonstrates a signi�cant di�erence in survival 
which remains upon application of the determined value to (F) the validation cohort.

https://doi.org/10.1038/s41598-019-45900-x


7SCIENTIFIC REPORTS |         (2019) 9:10473  | https://doi.org/10.1038/s41598-019-45900-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

References
 1. Ostrom, Q. T. et al. Alex’s Lemonade Stand Foundation Infant and Childhood Primary Brain and Central Nervous System Tumors 

Diagnosed in the United States in 2007–2011. Neuro Oncol 16, x1–x36, https://doi.org/10.1093/neuonc/nou327 (2015).
 2. Louis, D. N. et al. �e 2016 World Health Organization Classi�cation of Tumors of the Central Nervous System: a summary. Acta 

neuropathologica 131, 803–820, https://doi.org/10.1007/s00401-016-1545-1 (2016).
 3. Combs, S. E. et al. Prognostic signi�cance of IDH-1 and MGMT in patients with glioblastoma: One step forward, and one step back? 

Radiation Oncology (London, England) 6, 115–119, https://doi.org/10.1186/1748-717x-6-115 (2011).
 4. Rohle, D. et al. An Inhibitor of Mutant IDH1 Delays Growth and Promotes Di�erentiation of Glioma Cells. Science 340, 626–630, 

https://doi.org/10.1126/science.1236062 (2013).
 5. Hutter, S., Bolin, S., Weishaupt, H. & Swartling, F. J. Modeling and Targeting MYC Genes in Childhood Brain Tumors. Genes 8, 107, 

https://doi.org/10.3390/genes8040107 (2017).
 6. Wilson, M. et al. Magnetic resonance spectroscopy metabolite pro�les predict survival in paediatric brain tumours. European 

journal of cancer (Oxford, England: 1990) 49, 457–464, https://doi.org/10.1016/j.ejca.2012.09.002 (2013).
 7. Gri�n, J. L. & Shockcor, J. P. Metabolic pro�les of cancer cells. Nature reviews. Cancer 4, 551–561 (2004).
 8. Braadland, P. R. et al. Ex vivo metabolic �ngerprinting identi�es biomarkers predictive of prostate cancer recurrence following 

radical prostatectomy. British journal of cancer 117, 1656–1664, https://doi.org/10.1038/bjc.2017.346 (2017).
 9. Pacholczyk-Sienicka, B., Fabianska, A., Pasz-Walczak, G., Kordek, R. & Jankowski, S. Prediction of survival for patients with 

advanced colorectal cancer using (1) H High-resolution magic angle spinning nuclear MR spectroscopy. Journal of magnetic 
resonance imaging: JMRI 41, 1669–1674, https://doi.org/10.1002/jmri.24734 (2015).

 10. Giskeodegard, G. F. et al. Lactate and glycine-potential MR biomarkers of prognosis in estrogen receptor-positive breast cancers. 
NMR in biomedicine 25, 1271–1279, https://doi.org/10.1002/nbm.2798 (2012).

 11. Imperiale, A. et al. Metabolomic pattern of childhood neuroblastoma obtained by (1)H-high-resolution magic angle spinning 
(HRMAS) NMR spectroscopy. Pediatric blood & cancer 56, 24–34, https://doi.org/10.1002/pbc.22668 (2011).

 12. Battini, S. et al. Metabolomics approaches in pancreatic adenocarcinoma: tumor metabolism pro�ling predicts clinical outcome of 
patients. BMC medicine 15, 56, https://doi.org/10.1186/s12916-017-0810-z (2017).

 13. Tzika, A. et al. Biochemical characterization of pediatric brain tumors by using in vivo and ex vivo magnetic resonance spectroscopy. 
Journal of neurosurgery 96, 1023–1031, https://doi.org/10.3171/jns.2002.96.6.1023 (2002).

 14. Wilson, M., Davies, N. P., Grundy, R. G. & Peet, A. C. A quantitative comparison of metabolite signals as detected by in vivo MRS 
with ex vivo 1H HR-MAS for childhood brain tumours. NMR in biomedicine 22, 213–219, https://doi.org/10.1002/nbm.1306 (2009).

 15. Louis, D. N. et al. �e 2007 WHO Classi�cation of Tumours of the Central Nervous System. Acta neuropathologica 114, 97–109 
(2007).

 16. Govindaraju, V., Young, K. & Maudsley, A. A. Proton NMR chemical shi�s and coupling constants for brain metabolites. NMR in 
biomedicine 13, 129–153, https://doi.org/10.1002/1009-1492(200005)13:3<129::AID-NBM619>3.0.CO;2-V (2000).

 17. Moestue, S., Sitter, B., Bathen, T. F., Tessem, M. B. & Gribbestad, I. S. HR MAS MR spectroscopy in metabolic characterization of 
cancer. Current topics in medicinal chemistry 11, 2–26 (2011).

 18. Team, R. C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria 
(2015).

 19. Hurd, R. et al. Measurement of brain glutamate using TE-averaged PRESS at 3T. Magnetic resonance in medicine 51, 435–440, 
https://doi.org/10.1002/mrm.20007 (2004).

 20. Schubert, F., Gallinat, J., Seifert, F. & Rinneberg, H. Glutamate concentrations in human brain using single voxel proton magnetic 
resonance spectroscopy at 3 Tesla. NeuroImage 21, 1762–1771, https://doi.org/10.1016/j.neuroimage.2003.11.014 (2004).

 21. Mullins, P. G., Chen, H., Xu, J., Caprihan, A. & Gasparovic, C. Comparative reliability of proton spectroscopy techniques designed 
to improve detection of J-coupled metabolites. Magnetic resonance in medicine 60, 964–969, https://doi.org/10.1002/mrm.21696 
(2008).

 22. Yang, S., Hu, J., Kou, Z. & Yang, Y. Spectral simpli�cation for resolved glutamate and glutamine measurement using a standard 
STEAM sequence with optimized timing parameters at 3, 4, 4.7, 7, and 9.4T. Magnetic resonance in medicine 59, 236–244, https://
doi.org/10.1002/mrm.21463 (2008).

 23. Wijtenburg, S. A. & Knight-Scott, J. Very short echo time improves the precision of glutamate detection at 3T in 1H magnetic 
resonance spectroscopy. Journal of magnetic resonance imaging: JMRI 34, 645–652, https://doi.org/10.1002/jmri.22638 (2011).

 24. Mekle, R. et al. MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform 
at 3T and 7T. Magnetic resonance in medicine 61, 1279–1285, https://doi.org/10.1002/mrm.21961 (2009).

 25. Choi, C. et al. Measurement of brain glutamate and glutamine by spectrally-selective refocusing at 3 Tesla. Magnetic resonance in 
medicine 55, 997–1005, https://doi.org/10.1002/mrm.20875 (2006).

 26. Ramadan, S., Lin, A. & Stanwell, P. Glutamate and Glutamine: A Review of In Vivo MRS in the Human Brain. NMR in biomedicine 
26, 10.1002/nbm.3045, https://doi.org/10.1002/nbm.3045 (2013).

 27. Akoka, S. & Giraudeau, P. Fast hybrid multi-dimensional NMR methods based on ultrafast 2D NMR. Magnetic resonance in 
chemistry: MRC 53, 986–994, https://doi.org/10.1002/mrc.4237 (2015).

 28. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & �ompson, C. B. �e Biology of Cancer: Metabolic Reprogramming Fuels Cell 
Growth and Proliferation. Cell metabolism 7, 11–20, https://doi.org/10.1016/j.cmet.2007.10.002 (2008).

 29. DeBerardinis, R. J. et al. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the 
requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences 104, 19345–19350, https://doi.
org/10.1073/pnas.0709747104 (2007).

 30. Kim, M. H. & Kim, H. Oncogenes and Tumor Suppressors Regulate Glutamine Metabolism in Cancer Cells. Journal of Cancer 
Prevention 18, 221–226 (2013).

 31. Elstrom, R. L. et al. Akt Stimulates Aerobic Glycolysis in Cancer Cells. Cancer research 64, 3892 (2004).
 32. Yang, L. et al. Metabolic shi�s toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Molecular 

Systems Biology 10, 728, https://doi.org/10.1002/msb.20134892 (2014).
 33. Shelton, L. M., Huysentruyt, L. C. & Seyfried, T. N. Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor 

model. International journal of cancer. Journal international du cancer 127, 2478–2485, https://doi.org/10.1002/ijc.25431 (2010).
 34. Opstad, K. S., Bell, B. A., Gri�ths, J. R. & Howe, F. A. An investigation of human brain tumour lipids by high-resolution magic angle 

spinning 1H MRS and histological analysis. NMR in biomedicine 21, 677–685, https://doi.org/10.1002/nbm.1239 (2008).
 35. Pan, X. et al. �e size of cytoplasmic lipid droplets varies between tumour cell lines of the nervous system: a 1H NMR spectroscopy 

study. Magma (New York, N.Y.) 25, 479–485, https://doi.org/10.1007/s10334-012-0315-x (2012).
 36. Opstad, K. S., Bell, B. A., Gri�ths, J. R. & Howe, F. A. Taurine: a potential marker of apoptosis in gliomas. British journal of cancer 

100, 789–794, https://doi.org/10.1038/sj.bjc.6604933 (2009).
 37. Cheng, L. L. et al. Quanti�cation of microheterogeneity in glioblastoma multiforme with ex vivo high-resolution magic-angle 

spinning (HRMAS) proton magnetic resonance spectroscopy. Neuro Oncol 2, 87–95, https://doi.org/10.1093/neuonc/2.2.87 (2000).
 38. Mirbahai, L. et al. Lipid biomarkers of glioma cell growth arrest and cell death detected by 1 H magic angle spinning MRS. NMR in 

biomedicine 25, 1253–1262, https://doi.org/10.1002/nbm.2796 (2012).

https://doi.org/10.1038/s41598-019-45900-x
https://doi.org/10.1093/neuonc/nou327
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.1186/1748-717x-6-115
https://doi.org/10.1126/science.1236062
https://doi.org/10.3390/genes8040107
https://doi.org/10.1016/j.ejca.2012.09.002
https://doi.org/10.1038/bjc.2017.346
https://doi.org/10.1002/jmri.24734
https://doi.org/10.1002/nbm.2798
https://doi.org/10.1002/pbc.22668
https://doi.org/10.1186/s12916-017-0810-z
https://doi.org/10.3171/jns.2002.96.6.1023
https://doi.org/10.1002/nbm.1306
https://doi.org/10.1002/mrm.20007
https://doi.org/10.1016/j.neuroimage.2003.11.014
https://doi.org/10.1002/mrm.21696
https://doi.org/10.1002/mrm.21463
https://doi.org/10.1002/mrm.21463
https://doi.org/10.1002/jmri.22638
https://doi.org/10.1002/mrm.21961
https://doi.org/10.1002/mrm.20875
https://doi.org/10.1002/nbm.3045
https://doi.org/10.1002/mrc.4237
https://doi.org/10.1016/j.cmet.2007.10.002
https://doi.org/10.1073/pnas.0709747104
https://doi.org/10.1073/pnas.0709747104
https://doi.org/10.1002/msb.20134892
https://doi.org/10.1002/ijc.25431
https://doi.org/10.1002/nbm.1239
https://doi.org/10.1007/s10334-012-0315-x
https://doi.org/10.1038/sj.bjc.6604933
https://doi.org/10.1093/neuonc/2.2.87
https://doi.org/10.1002/nbm.2796


8SCIENTIFIC REPORTS |         (2019) 9:10473  | https://doi.org/10.1038/s41598-019-45900-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

 39. Kohe, S., Colmenero, I., McConville, C. & Peet, A. Immunohistochemical staining of lipid droplets with adipophilin in para�n-
embedded glioma tissue identi�es an association between lipid droplets and tumour grade. Journal of Histology and Histopathology 
4, 4, https://doi.org/10.7243/2055-091X-4-4 (2017).

 40. Kallenberg, K. et al. Untreated glioblastoma multiforme: increased myo-inositol and glutamine levels in the contralateral cerebral 
hemisphere at proton MR spectroscopy. Radiology 253, 805–812, https://doi.org/10.1148/radiol.2533071654 (2009).

 41. Venkatesh, H. S. et al. Reduced phosphocholine and hyperpolarized lactate provide magnetic resonance biomarkers of PI3K/Akt/
mTOR inhibition in glioblastoma. Neuro Oncol 14, 315–325, https://doi.org/10.1093/neuonc/nor209 (2012).

 42. Koul, D. et al. Cellular and in vivo activity of a novel PI3K inhibitor, PX-866, against human glioblastoma. Neuro Oncol 12, 559–569, 
https://doi.org/10.1093/neuonc/nop058 (2010).

 43. Pan, X. et al. Increased unsaturation of lipids in cytoplasmic lipid droplets in DAOY cancer cells in response to cisplatin treatment. 
Metabolomics: O�cial journal of the Metabolomic. Society 9, 722–729, https://doi.org/10.1007/s11306-012-0483-8 (2013).

Acknowledgements
�e authors wish to thank all sta� in the Histopathology Department at Birmingham Children’s Hospital for 
storing and making the tissue available. We also thank the sta� at Henry Wellcome Building for Biomolecular 
NMR at the University of Birmingham, and in particular Dr. Sara Whittaker, for all their support with this work. 
We also wish to thank the West Midlands Tumour Registry for providing the clinical information for this study. 
Action Medical Research and the Brain Tumour Charity; grant number GN2181. National Institute of Health 
Research; NIHR-RP-02-12-019. Birmingham Children’s Hospital Research Foundation; BCHRF 353. Children 
with Cancer; 15/188.

Author Contributions
Conception and design: C.D.B., S.K.G., A.C.P. Collection and organisation of samples and clinical information: 
C.D.B., S.K.G., S.E.K. Raw data collection and design of 1H-MRS protocols: C.D.B., S.E.K., S.K.G., M.W. Data 
processing and analysis of metabolite concentrations: C.D.B., S.E.K., S.K.G. Statistical and survival analysis: 
C.D.B. Writing of dra� manuscript: C.D.B. Revision and preparation of �nal manuscript: C.D.B., S.K.G., D.A.T., 
S.E.K., A.C.P. Financial support: N.P.D., T.N.A., A.C.P. Overall supervision: A.C.P. All authors read and approved 
the �nal manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-45900-x.

Competing Interests: �e authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2019

https://doi.org/10.1038/s41598-019-45900-x
https://doi.org/10.7243/2055-091X-4-4
https://doi.org/10.1148/radiol.2533071654
https://doi.org/10.1093/neuonc/nor209
https://doi.org/10.1093/neuonc/nop058
https://doi.org/10.1007/s11306-012-0483-8
https://doi.org/10.1038/s41598-019-45900-x
http://creativecommons.org/licenses/by/4.0/

	Ex vivo metabolite profiling of paediatric central nervous system tumours reveals prognostic markers

	Methods

	Patients. 
	Sample preparation and HRMAS. 
	Processing of HR-MAS data. 
	Data and statistical analysis. 

	Results

	Univariate cox regression. 
	Multivariate cox regression. 
	Validation of prognostic markers. 

	Discussion

	Acknowledgements

	Figure 1 Example spectrum with annotated metabolite resonances and splitting patterns.
	﻿Figure 2 Stratification of patients in the whole cohort into high and low metabolite concentration groups using (A) 50% quantile Gln and (B) 75% quantile total lipids demonstrates significant differences in survival.
	Table 1 Clinical information for patients included in this study, organised by tumour diagnosis.
	Table 2 Univariate and multivariate Cox models for metabolite concentrations demonstrating their ability to predict overall survival of paediatric brain tumour patients.
	Table 3 Cross validation of the univariate and multivariate models demonstrate improved predictive accuracy after inclusion of either Gln or total lipid concentrations in addition to diagnosis when compared to diagnosis alone.


