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Ex vivo metabolite profiling of 
paediatric central nervous system 
tumours reveals prognostic markers
Christopher D. Bennett1,2, Simrandip K. Gill1,2, Sarah E. Kohe1,2, Martin P. Wilson3, 
Nigel P. Davies4, Theodoros N. Arvanitis  1,2,5, Daniel A. Tennant  6 & Andrew C. Peet  1,2

Brain tumours are the most common cause of cancer death in children. Molecular studies have greatly 
improved our understanding of these tumours but tumour metabolism is underexplored. Metabolites 
measured in vivo have been reported as prognostic biomarkers of these tumours but analysis of 
surgically resected tumour tissue allows a more extensive set of metabolites to be measured aiding 
biomarker discovery and providing validation of in vivo findings. In this study, metabolites were 
quantified across a range of paediatric brain tumours using 1H-High-Resolution Magic Angle Spinning 
nuclear magnetic resonance spectroscopy (HR-MAS) and their prognostic potential investigated. 
HR-MAS was performed on pre-treatment frozen tumour tissue from a single centre. Univariate 
and multivariate Cox regression was used to examine the ability of metabolites to predict survival. 
The models were cross validated using C-indices and further validated by splitting the cohort into 
two. Higher concentrations of glutamine were predictive of a longer overall survival, whilst higher 
concentrations of lipids were predictive of a shorter overall survival. These metabolites were predictive 
independent of diagnosis, as demonstrated in multivariate Cox regression models. Whilst accurate 
quantification of metabolites such as glutamine in vivo is challenging, metabolites show promise as 
prognostic markers due to development of optimised detection methods and increasing use of 3 T 
clinical scanners.

Cancer is a major cause of death from disease in childhood, and brain tumours are the most common cause of 
cancer-related death in this age group1. Whilst some brain tumours now have a very good prognosis, others have 
continued to present a challenge, highlighting the need for new techniques for investigation and management. 
Identifying novel biomarkers of prognosis would allow more accurate treatment strati�cation to improve survival 
rates and reduce long-term morbidity. A key strategy in optimizing the clinical management of children with 
brain tumours is to identify subgroups that have prognostic signi�cance, and this has been particularly success-
ful in medulloblastoma where molecular subgroups have already been incorporated into the accepted diagnos-
tic classi�cation2. Whilst most molecular markers have been de�ned by tumour genetics, there is an increasing 
interest in tumour metabolism as both a biomarker of prognosis and potential therapeutic target. Mutations in 
the metabolic enzyme isocitrate dehydrogenase (IDH) act as a marker of good prognosis in gliomas3 and has led 
to novel therapeutic targets being identi�ed4. �e mutated enzyme produces the metabolite 2-hydroxyglutarate 
which can be detected both in tissue and in vivo providing a non-invasive test for this subgroup illustrating a key 
advantage for metabolite biomarkers of prognosis.

Whilst the identi�cation of speci�c prognostic subgroups has advantages, markers that are applicable across 
multiple tumour types also give clinical value. Histological markers, such as Ki67 proliferation index, are used 
regardless of diagnosis to assess tumour aggressiveness, and MYC status is a marker of poor prognosis used clin-
ically in many di�erent tumour types5. Speci�c metabolites have been proposed as markers of prognosis over a 
range of di�erent children’s brain tumours using in vivo Magnetic Resonance Spectroscopy (MRS). Speci�cally, 
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glutamine and N-acetylaspartate (NAA) were found to be markers of good prognosis whilst scyllo-inositol and 
mobile lipids markers of poor prognosis6.

However, performing MRS on typical clinical scanners is associated with a number of limitations, in particu-
lar, the relatively small number of metabolites that can be measured accurately and the requirement for sampling 
of relatively large tumour volumes. Ex-vivo 1H-High-Resolution Magic Angle Spinning (HR-MAS) can ana-
lyse small brain tumour tissue samples to provide quantitative information on a larger number of metabolites7. 
HR-MAS has identi�ed prognostic metabolic markers in a number of tumour types including prostate8, colorec-
tal9, breast10, neuroblastoma11 and pancreatic adenocarcinomas12. A good agreement has been demonstrated 
between in vivo and ex vivo methods13,14, providing an indication that HR-MAS-visible metabolites accurately 
re�ect the values present in situ and are potentially observable in vivo. �e primary aim of this study was to iden-
tify and measure the concentrations of metabolites in a range of paediatric brain tumours using HR-MAS and test 
the ability of metabolites to predict survival.

Methods
Patients. All patients with brain tumours presenting at the Birmingham Children’s Hospital were eligible 
to be entered into the study. Approval was obtained from the research ethics committee (NRES East Midlands-
Derby, 04/MRE04/41) and informed consent was given by parents/guardians. All experiments were performed in 
accordance with relevant guidelines and regulations. Patients were accrued between January 1998 and May 2016 
and followed up until September 2017. A consensus diagnosis was obtained for each patient by a multidiscipli-
nary team of clinicians that included histopathological diagnosis according to Louis et al.15. Brain tumour tissue, 
frozen as soon as possible a�er resection, was requested from the histopathology tissue bank at Birmingham 
Children’s Hospital. In total, 133 brain tumour samples were released for HR-MAS. Dates of death and clinical 
information were obtained from the West Midlands Regional Children’s Tumour Registry. Patients were treated 
with the protocol appropriate for their respective diagnosis. Broadly, this involved maximal safe surgical resection 
when the tumour was in a favourable location, with adjuvant radiotherapy and/or chemotherapy if necessary.

From the 133 tumour samples available, 19 were excluded from the analysis due to quality reasons or cause 
of death not being from the tumour diagnosis. �e �nal cohort consisted of 114 primary pre-treatment brain 
tumour samples including 36 pilocytic astrocytomas (PA), 32 medulloblastomas (MB), 15 ependymomas (EP), 7 
glioblastoma multiforme (GBM), 6 atypical teratoid rhabdoid tumours (ATRT), 4 anaplastic astrocytomas (AA), 
4 choroid plexus papilloma (CPP), 3 gangliogliomas (GG), 2 atypical choroid plexus papillomas (ACPP), 2 CNS 
primitive neuroectodermal tumours (PNET), 1 choroid plexus carcinoma (CPC), 1 astroblastoma (AB) and 1 
unclassi�ed low grade astrocytic glial tumour. As the tumour tissue was requested before the release of the WHO 
CNS classi�cation 2016, diagnoses are those speci�ed by the WHO CNS classi�cation 200715. 35 patients died 
and 79 were alive at the end of the study. �e median follow-up time for the whole cohort was 5.31 years (Table 1).

Sample preparation and HRMAS. �e frozen samples were stored at −80 °C until used for HR-MAS. 
Samples were dissected on dry ice and inserted into either a 12 µl or 50 µl HR-MAS rotor with TMSP (Cambridge 
Biosciences, Cambridge, UK) as a quanti�cation reference and D2O (Sigma-Aldrich, Dorset, UK) to �ll the 
allocated rotor volume. Sample weights ranged from 3.4 to 35.8 mg. HR-MAS experiments were performed 
using a Bruker Avance 500 MHz (11.74 T) NMR spectrometer and a 4 mm 3 channel HR-MAS z-PFG band 
probe (Bruker, Coventry, UK). �e samples were maintained at a temperature of 4 °C, a spin rate of 4800 Hz set for 
each experiment with 256 or 512 scans acquired depending on the signal-to-noise ratio. A standard 1D NOESY 
pulse sequence preceded by 2 s of water presaturation was acquired, with a repetition time of 4 s. In addition, a 
285 ms Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was also acquired for each sample to aid in metabo-
lite identi�cation by minimizing broad signal contributions from lipids and macromolecules.
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tumour
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Choroid 

plexus 

carcinoma

Astrobla-

stoma

Astrocytic 

glial 

tumour Total

N 36 32 15 7 6 4 4 3 2 2 1 1 1 114

Number of 

events (n)
3 13 3 6 4 3 0 0 1 1 1 0 0 35

Gender 

(male:female)
18:18 26:6 11:4 5:2 4:2 1:3 4:0 1:2 1:1 1:1 1:0 0:1 1:0 74:40

Mean age at 

diagnosis (years)
8.30 7.11 5.53 5.68 1.10 10.49 3.40 11.07 7.24 2.95 5.09 10.18 11.58 5.93

Age range 

(years)
1.2–15.9 1.5–14.6 0.3–16.3

0.03–

11.5
0.02–4.6 4.1–15.5 0.4–10.1 8.7–14.9 2.2–12.3 1.6–4.3 N/A N/A N/A 0.03–16.3

Median survival 

(years)
4.71 1.82 1.68 0.94 0.31 1.54 N/A N/A 0.94 1.93 1.39 N/A N/A 1.50

Anatomical  

location (n) 

[supratentorial: 

infratentorial: 

spinal]

7:29:0 0:32:0 5:9:1 6:1:0 1:5:0 3:1:0 2:2:0 2:1:0 2:0:0 1:1:0 1:0:0 1:0:0 0:1:0 31:82:1

Table 1. Clinical information for patients included in this study, organised by tumour diagnosis.
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Processing of HR-MAS data. Each free induction decay was Fourier transformed using TOPSPIN (Bruker, 
Coventry, UK). Phase and baseline correction (Whittaker Smoother) were performed using Mnova NMR 9.0 
so�ware suite (2014; Mestrelab Research, Spain). Creatine was used as a chemical shi� reference at 3.03 ppm. 
Spectral �tting was then performed between 0.5 and 4.7 ppm. All spectral peaks were deconvoluted and peak 
integrals measured followed by normalization to TMSP. �e following metabolites were quanti�ed and included 
in the analyses: acetate (Ace), alanine (Ala), ascorbate (Asc), choline (Cho), creatine (Cr), gamma-aminobutyric 
acid (GABA), glucose (Glc), glutamine (Gln), glutamate (Glu), glutathione (GSH), glycine (Gly), glycerophos-
phocholine (GPC), hypotaurine (hTau), isoleucine (Iso), lactate (Lac), leucine (Leu), myo-inositol (mIns), 
N-acetylaspartate (NAA), phosphocholine (PCh), serine (Ser), scyllo-inositol (sIns), succinate (Suc), taurine 
(Tau), valine (Val), lipids at 0.9 and lipids at 1.3 ppm (Fig. 1, Supplementary Table 1). Lipids were highly cor-
related, and so the lipid resonances were summed and termed total lipids. Metabolites were assigned according 
to Govindaraju et al.16 whilst lipids were assigned according to Moestue et al.17. Metabolite concentrations were 
normalised to the total sum of non-lipid metabolite concentrations.

Data and statistical analysis. Death caused by the tumour was the endpoint for the study, with time to 
event calculated from the date of �rst surgical resection to death. Univariate and multivariate Cox regression 
were performed on normalised metabolite concentrations and clinical parameters to determine the association 
of metabolites with survival. Likelihood ratio tests were used to determine signi�cance of Cox models. Clinical 
parameters found to signi�cantly predict survival in the univariate analyses were included as variables in the 

Figure 1. Example spectrum with annotated metabolite resonances and splitting patterns. Not visible in this 
spectrum are NAA(s) at 2.01ppm, GABA(t) at 2.30ppm, GPC(s) at 3.23ppm, sIns(s) at 3.34ppm and Glc(d) at 
4.65ppm. Abbreviations: s, singlet; d, doublet; t, triplet; dd, doublet of doublets; m, multiplet; ppm, parts per 
million.
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multivariate analyses. Univariate P-values were corrected using Benjamini-Hochberg correction to control the 
false discovery rate.

Validation of the models was performed using leave-one-out cross-validation (LOOCV) of C-indices, as 
described in Braadland et al.8. For each individual i, a Cox proportional hazards model is created leaving i out. 
�e coe�cients, βi, generated are applied to i’s covariates, xi, to obtain a linear predictor ηi = βixi. �is is repeated 
for all individuals in the analysis creating the vector η = η1, η2, η2…ηn, where n is the number of individuals. �e 
resultant vector of linear predictors is used as a single covariate in a Cox proportional hazards model to calculate 
the C-index. Normalised metabolite concentrations were scaled by dividing each metabolite by its standard devi-
ation prior to univariate and multivariate analysis.

Kaplan-Meier analyses were used to test the di�erence in survival of patients with brain tumours separated 
into groups above and below 25%, 50% or 75% quantiles for signi�cant metabolites in the whole cohort. To fur-
ther test the robustness of the biomarkers, the whole cohort was divided based on the date of tissue collection 
into an initial cohort (n = 23), comprised of tissue collected during or before June 2006, and a validation cohort 
(n = 91), comprised of tissue collected a�er June 2006. �e quantile showing the most signi�cant result was recal-
culated in the initial cohort and the obtained value was applied to the validation cohort. Kaplan-Meier analysis 
was performed using logrank tests. All survival analyses were performed using the survival library written for the 
R so�ware package18.

Results
Univariate cox regression. A total of 25 metabolite features were assigned as quanti�ed using HR-MAS 
(Fig. 1, Supplementary Table 1). �e mean metabolite concentrations for the di�erent tumour groups are given 
in Supplementary Table 2. Univariate Cox regression identi�ed 2 metabolites with prognostic potential (Table 2, 
Supplementary Table 3); higher Gln was associated with decreased risk of death, whilst a higher concentration 
of total lipids was associated with an increased risk of death. Whilst Val, Suc and hTau were signi�cant in the 
univariate analysis, they were no longer signi�cant upon P-value correction. Of the clinical features tested, diag-
nosis was shown to be a signi�cant predictor of survival; patients diagnosed with AA, ATRT, CPC, GBM, MB 
and PNET had a signi�cantly higher risk of death than PA patients (Table 2). Similar to Val, Suc and hTau, age at 
diagnosis was signi�cant in the univariate analysis but was no longer signi�cant a�er P-value correction. Gender 
and tumour location were not signi�cant predictors of survival in this analysis (Supplementary Table 4).

Multivariate cox regression. �e two metabolites with prognostic potential in the univariate analyses were 
further evaluated in a multivariate analysis. Each metabolite was assessed with diagnosis as a second covariate. 
Gln and total lipids were found to be predictors of survival independent of diagnosis, with higher concentrations 
of Gln predicting better survival, whilst higher concentrations of total lipids were associated with a higher risk of 
death (Table 2).

Validation of prognostic markers. Upon validation of the univariate analysis using leave one out cross 
validation of C-indices, total lipids alone demonstrated a marginally greater predictive accuracy than diagnosis 
alone. Validation of the multivariate models showed a greater predictive accuracy when either Gln or total lipids 
were combined with diagnosis when compared with diagnosis alone using the same validation method (Table 3).

�e relationship between survival and metabolic predictors remained when the whole cohort was strati�ed 
into high and low concentrations groups using 25%, 50% and 75% quantiles. �e di�erence in survival between 
patients with high and low Gln was greatest when cases were strati�ed by the 50% quantile Gln, whilst the dif-
ference between high and low lipids patients was greatest upon strati�cation using the 75% quantile (Fig. 2A,B). 

Variable

Univariate analysis Multivariate analyses

HR (95% CI) Corrected P-value

Glutamine model Total lipids model

HR (95% CI) P-value HR (95% CI) P-value

Gln 0.52 (0.31, 0.87) 0.041 0.42 (0.21–0.85) 0.015 — —

Total lipids 2.02 (1.53, 2.66) 2.48 × 10−4 — — 1.91 (1.35, 2.68) 2.15 × 10−4

Diagnosis 4.58 × 10−4

PA Reference — Ref — Ref —

AA 13.03 (2.62, 64.65) 0.0017 9.93(2.99, 49.59) 0.005 15.80 (3.16, 79.16) 7.86 × 10−4

ACPP 9.27 (0.95, 90.57) 0.056 3.41 (0.32, 36.58) 0.31 8.08 (0.82, 79.10) 0.073

ATRT 17.11 (3.80, 76.95) 2.1 × 10−4 8.63 (1.75, 42.61) 0.0081 11.69 (2.38, 57.53) 0.0025

CPC 35.46 (3.52, 357.31) 0.0025 9.48 (0.79, 113.46) 0.076 10.39 (0.96, 112.40) 0.054

EP 2.55 (0.51, 12.63) 0.25 1.34 (0.25, 7.09) 0.73 2.61 (0.53, 12.98) 0.24

GBM 31.72 (7.77, 129.45) 1.5 × 10−6 32.73 (7.86, 136.23) 1.64 × 10−6 22.29 (5.32, 93.31) 2.14 × 10−5

MB 5.91 (1.68, 20.76) 0.0056 2.45 (0.61, 9.89) 0.21 5.71 (1.62, 20.11) 0.0066

PNET 14.12 (1.44, 138.02) 0.023 6.03 (0.58, 63.08) 0.13 21.69 (2.15, 218.62) 0.009

Table 2. Univariate and multivariate Cox models for metabolite concentrations demonstrating their ability to 
predict overall survival of paediatric brain tumour patients. As no deaths were recorded for patients diagnosed 
with GG, AB, CPP or the unclassi�ed glial tumour, these entries have been excluded from this table.
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Separation of the whole cohort into an initial cohort and validation cohort further demonstrated the prognostic 
ability of Gln and total lipids. �e di�erence in survival using the 50% quantile Gln concentration in the initial 
cohort reached prognostic signi�cance, which was maintained when the cut-o� was applied to the validation 
cohort (Fig. 2C,D). �e di�erence in survival using the 75% quantile total lipids in the initial cohort demon-
strated prognostic signi�cance, which remained following application to the validation cohort (Fig. 2E,F).

Discussion
�is study has shown that the concentration of metabolites measured in fresh, frozen diagnostic biopsy tissue 
from a variety of paediatric brain tumours using HR-MAS varies with disease aggressiveness. �rough univariate 
and multivariate Cox models, it was shown that both Gln and total lipids have prognostic signi�cance independ-
ent of tumour diagnosis and that addition of metabolite concentrations can aid in predicting overall survival. 
Interestingly, through cross-validation, total lipid concentration alone outperformed diagnosis in predicting sur-
vival, although the di�erence was small.

We have previously reported in vivo Gln concentration as a predictor of good prognosis in paediatric brain 
tumours independent of diagnosis6, and it is encouraging to have this con�rmed by ex vivo spectroscopy. Gln 
is poorly resolved at an MR scanner �eld strength of 1.5 T due to the overlapping of signals from Glu, NAA 
and macromolecules. Techniques have been developed to improve the accuracy of Gln quanti�cation; 1D MRS 
techniques include averaging spectra from di�erent echo times (TE)19, the use of optimal TE’s20-22, very short 
TE’s23,24 and spectral-selective refocusing25. 2D techniques have also been developed but are not favoured due to 
the high level of expertise required to ensure reliable results and the time taken to acquire the data26. �ere have 
been recent advancements in ultrafast 2D NMR27, although this is still in its infancy. Overall, there is a realistic 
prospect that it will be possible to routinely measure tumour Gln levels in vivo in the near future.

Gln is the most abundant amino acid in blood plasma, and its metabolism has long been known to be impor-
tant in tumour biology28; uptake has been shown to increase in brain tumours in order to support cellular bio-
energetics and biosynthetic processes needed for proliferation29. Metabolism is under the direct control of major 
transcription factors such as TP53, Myc and Ras30. Mutations or changes in the regulation of these genes are 
common in cancers, including brain tumours, and switch the cells’ metabolism from oxidative phosphorylation 
of glucose to energy ine�cient glucose fermentation and glutaminolysis31. �is switch to Gln metabolism has 
been linked to poor prognosis32, therefore Gln concentration may aid strati�cation of patients into risk groups 
and inform treatment decisions. Due to the reliance of some cancers on Gln, the metabolism of this amino acid 
has been identi�ed as a potential target for treatment33.

Lipids have also previously been identi�ed as biomarkers of survival through in vivo MRS of paediatric brain 
tumours. �e lipid signals can be generated by mobile lipids stored in cytoplasmic lipid droplets34,35 or by lipids 
in areas of tissue necrosis36,37, although it is unlikely that highly necrotic areas of tumour would be sampled. �e 
role of lipids droplets in brain tumours is not well understood; however, there is evidence suggesting the number 
of lipid droplets increases in response to cellular stress and are associated with growth arrest38 and necrosis34. 
Furthermore, the number of cells positively stained for adipophilin, a lipid droplet associated protein, was shown 
to signi�cantly increase with tumour grade39.

Risk strati�cation is not the only potential bene�t of enhanced metabolite quanti�cation. Progression of dis-
ease and response to treatment can be monitored using MRS. Increases in Gln concentration in contralateral 
white matter is linked to glioblastoma migration40, whilst reductions in the concentration of phosphocholine and 
lactate in glioblastoma cell lines have been observed a�er treatment with mTor and PI3K inhibitors41, re�ecting 
the observation of reduced total Cho in orthotopic glioblastoma mouse models42. Increases in lipid concentra-
tions have been correlated with responses to treatment in cell lines exposed to chemotherapy agents38,43.

Suc, hTau and Val, which were signi�cant in the univariate analysis before correction for multiple compar-
isons, warrant further investigation considering the limited understanding of these metabolites in the context 
of paediatric brain tumours. Increases in both Suc and hTau were associated with a longer survival time, whilst 
increases in Val were associated with a shorter survival time.

Despite in vivo studies identifying NAA and sIns as prognostic markers, neither metabolite reached prognos-
tic signi�cance in the current study of tumour tissue. In addition to the limited sample size which could explain 
this, it is worth noting that the population of tumours included is somewhat di�erent to that of in vivo studies 
and this could also contribute to the �nding. �ere is a lack of available frozen tissue from surgically intractable 
tumours such as optic pathway gliomas and brain stem tumours unlike in vivo studies. Optic pathway gliomas 
have been shown to have a high concentration of NAA and a good prognosis whilst brain stem tumours have a 
higher concentration of sIns and a poor prognosis6.

In conclusion, this study has con�rmed that the concentration of Gln and lipids in resected tissue are predic-
tors of survival independent of diagnosis. �e importance of Gln and lipids as predictors of prognosis in children’s 

Variable

Univariate analysis Multivariate analysis

LOOCV C-index LOOCV C-index

Gln 0.641 0.686

Total lipids 0.670 0.727

Diagnosis 0.666 —

Table 3. Cross validation of the univariate and multivariate models demonstrate improved predictive accuracy a�er 
inclusion of either Gln or total lipid concentrations in addition to diagnosis when compared to diagnosis alone.
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tumours should lead to their measurement in tumour tissue, the implementation of MRS techniques to accurately 
measure their concentration non-invasively and the exploration of novel agents which can alter their metabolism 
for therapeutic e�ect.

Data Availability
�e datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.

Figure 2. Strati�cation of patients in the whole cohort into high and low metabolite concentration groups 
using (A) 50% quantile Gln and (B) 75% quantile total lipids demonstrates signi�cant di�erences in survival. 
Strati�cation of patients in (C) the initial cohort using 50% quantile Gln demonstrates a signi�cant di�erence in 
survival which remains upon application of the determined value to (D) the validation cohort. Strati�cation of 
patients in (E) the initial cohort using 75% quantile total lipids demonstrates a signi�cant di�erence in survival 
which remains upon application of the determined value to (F) the validation cohort.
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