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Abstract 16 

Vegetation dynamics are affected not only by the concurrent climate, but also by memory-induced 17 

lagged responses. For example, favorable climate in the past could stimulate vegetation growth to 18 

surpass the ecosystem carrying capacity, leaving an ecosystem vulnerable to climate stresses. This 19 

phenomenon, known as structural overshoot, could potentially contribute to worldwide drought 20 

stress and forest mortality, but the magnitude of the impact is poorly known due to the dynamic 21 

nature of overshoot and complex influencing timescales. Here we use a dynamic statistical learning 22 

approach to identify and characterize ecosystem structural overshoot globally, and quantify the 23 

associated drought impacts. We find that structural overshoot contributed to around 11% of 24 

drought events during 1981-2015, and is often associated with compound extreme drought and 25 

heat, causing faster vegetation declines and greater drought impacts compared to non-overshoot 26 

related droughts. The fraction of droughts related to overshoot is strongly related to mean annual 27 

temperature, with biodiversity, aridity, and land cover as secondary factors. These results highlight 28 

the large role vegetation dynamics play in drought development, and suggest that soil water 29 

depletion due to warming-induced future increases in vegetation could cause more frequent and 30 

stronger overshoot droughts. 31 

 32 

  33 
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Introduction 34 

Droughts have a large impact on global terrestrial ecosystems and the associated carbon and water 35 

cycles1–4. The impact of drought is dependent not only on the direct effects of concurrent climate 36 

anomalies5,6, but also on the ecosystem state, which itself is conditioned by antecedent climate7,8. 37 

For example, a period that is favorable to growth but followed by a water deficit can first stimulate 38 

biomass accumulation, and as a result, further deplete soil moisture and increase drought risks. 39 

This sequence of events represents a class of state dynamics known as structural overshoot9, where 40 

an ecosystem temporarily exceeds the time-varying, climatologically-defined baseline carrying 41 

capacity and in the process depletes potentially limiting water resources. Several previous studies 42 

examined the lagged impact of structural overshoot for specific drought events and regions7,8,10,11. 43 

Understanding of the global occurrence and impact of structural overshoot is limited, however, as 44 

ecosystem states are conditioned across multiple different time scales, and both the timescales of 45 

importance and the ecosystem states change over time. This lack of a global understanding of 46 

overshoot constitutes a large uncertainty in understanding drought development and its impacts on 47 

vegetation dynamics as well as the global carbon and water cycles. 48 

 49 

Here, we use a Bayesian dynamic linear model (DLM) approach12, in combination with long-term 50 

(1981-2015) satellite observations, high-resolution climate data, and a random forest analysis, to 51 

characterize droughts related to structural overshoot (referred to throughout as overshoot droughts) 52 

across global ecosystems and examine their impact on terrestrial vegetation-water relations 53 

(Extended Data Fig. 1,2, Methods). In this study, we characterize drought events using a 54 

combination of climatological drought index and associated vegetation greenness decline 55 

represented by normalized difference vegetation index (NDVI13, Methods). While structural 56 
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overshoot has been examined in the context of regional forest mortality9, here we consider a 57 

broader range of global ecosystems and negative lagged impacts on vegetation (Methods). The 58 

DLM method allows for the decomposition of satellite-retrieved NDVI time series, into multiple 59 

components (trend, seasonal, and de-seasonalized and detrended anomalies) through a Kalman 60 

filtering process (see Methods). The anomaly components consist of the direct drought stress, 61 

temperature, and direct and lagged effects from past vegetation anomalies at different time scales 62 

(sub-seasonal, seasonal, intra-annual and inter-annual). This approach allows for the separation of 63 

the timescales of importance for all drought events globally, which enables us to robustly identify 64 

and characterize the role of structural overshoot in the timing, speed, frequency and impact of 65 

drought (see Methods, Supplementary Text S1-4).  66 

 67 

Spatial patterns of overshoot droughts 68 

Our approach quantifies the spatial distribution of the number of droughts and those related to 69 

structural overshoot during 1981-2015 (Fig. 1a,b). Globally, 11.2% of the drought events are 70 

overshoot related, and lagged adverse effects explain 34.7% of the NDVI declines for these 71 

overshoot drought events. The number of overshoot droughts generally follows the spatial 72 

distribution of droughts (r=0.45, p<0.001, t-test), with exceptions in southern central US, northeast 73 

Brazil and Australia, where overshoot occurrence relative to drought numbers is low. Spatial 74 

autocorrelation does not show strong influence on this covariation and is therefore not considered 75 

further in our analysis (Supplementary Text S5, Fig. S2). The fraction of drought events related to 76 

overshoot shows a clear latitudinal pattern, with a decreasing trend from north to south (Fig. 1c, 77 

Supplementary Fig. S3). Overshoot droughts are influenced by lagged adverse effects at different 78 

time scales (Extended Data Fig. 3), with a strong dependence on growing season length (Extended 79 
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Data Fig. 4). The sub-seasonal scale overshoot component contributes most to the global overshoot 80 

events, especially in northern high latitudes10. Lagged adverse effects from the sub-seasonal scale 81 

also have the largest impact on NDVI decline (51.8%), which also dominates hotspot regions such 82 

as boreal ecosystems in Alaska and Siberia, and agroecosystems in North China Plain and northern 83 

India (Fig. 1d,e, Extended Data Fig. 3).  84 

 85 

Controlling factors and underlying mechanisms 86 

To understand which factors contribute to the number and impact of overshoot droughts, we build 87 

a random forest model using various climate variables and ecosystem characteristics to predict the 88 

spatial pattern of fraction of drought related to overshoot and fraction of lagged adverse effects to 89 

total drought impact (see Methods). The resulting models can explain 63.9% and 50.5% of the 90 

spatial out-of-bag variance for the fraction of overshoot number and impact, respectively. Based 91 

on these models, we obtain the rank importance of variables that drive these spatial patterns, and 92 

the partial dependence of the fraction of overshoot number and impact along each variable (Fig. 93 

2).  94 

 95 

Overshoot droughts are more prevalent in stressed or seasonally stressed environments, usually 96 

with a shorter growing season (Fig. 2k). Positive climate anomalies in stressed environments can 97 

act as a stimulus for vegetation growth, allowing temporary exceedance of climatologically-98 

defined ecosystem carrying capacity. Temperature stress, in comparison to water stress, can lead 99 

to more frequent and greater impacts of overshoot drought events (Fig. 2a,h). In cold regions (mean 100 

annual temperature less than 0℃), temperature is the primary limiting factor for both vegetation 101 

phenology and productivity during the entire growing seasons14,15. A positive temperature anomaly 102 
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in the early growing season exponentially increases water consumption16, potentially leading to 103 

higher drought risk and stronger lagged effect. In comparison, mean annual precipitation plays a 104 

less important role. This is likely due to the fact that soil water is mostly low and has limited 105 

buffering capacity in dry regions, ecosystems are therefore more responsive to concurrent 106 

precipitation anomalies and relatively less dependent on the lagged effect17. As expected, the 107 

number and impact of overshoot drought events also increases with larger interannual variations 108 

of mean annual temperature (MAT) but much less with precipitation (Fig. 2b,f). Increases in 109 

climate variability not only increase the chances of a more favorable environment for plant growth 110 

in earlier periods, but also induce more frequent extreme heat and dry anomalies, leading to water 111 

deficit and potential drought.  112 

 113 

Ecosystem biodiversity also plays a critical role in regulating overshoot drought occurrence. The 114 

number and impact of overshoot droughts decrease when the number of native species is greater 115 

than 500 (Fig. 2d). Low biodiversity is associated with synchronous plant behavior (e.g., expansive 116 

growth when the environment is favorable, and soil water depletion at similar rooting depths18). In 117 

addition, ecosystems with low biodiversity are expected to have weaker drought resistance, and 118 

thus lagged adverse effects tend to have a greater proportional impact19. Vegetation coverage, 119 

represented by mean annual NDVI, also positively affects the number of overshoot drought events 120 

(Fig. 2g). Higher vegetation coverage increases the plants’ role in linking the energy and water 121 

fluxes between soils and the atmosphere20. Anomalies in high vegetation coverage ecosystems 122 

would therefore have a greater impact on soil water and are more likely to induce a lagged adverse 123 

effect. Land cover type also plays an important role, with a higher number and impact of overshoot 124 

drought events for boreal forest and woody savannas (Fig. 2e). 125 
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 126 

In contrast, soil characteristics (clay fraction), terrestrial water decay time estimated from Gravity 127 

Recovery and Climate Experiment satellites (GRACE𝜏, Methods), and asynchronicity between 128 

peak temperature and precipitation show little role in determining the number and impact of 129 

overshoot drought events. We also test the robustness of these results by predicting the absolute 130 

overshoot drought number and lagged effect instead of their fractions with two other random forest 131 

models, and find similar environmental dependences (see Methods, Supplementary Fig. S4). 132 

 133 

Overshoot and compound drought and heat 134 

We further analyze the temporal occurrence of overshoot droughts. In the northern mid- to high- 135 

latitudes (>30°N), 51.2% overshoot drought events happen in July and August (Fig. 3a). For the 136 

Southern Hemisphere, two peaks can be observed in March and September, which is likely due to 137 

the double growing season experienced in many water-limited regions. This is also likely to occur 138 

for parts of dry Mediterranean climate regions in the Northern Hemisphere, where overshoot 139 

drought may happen in either peak growing season. We also compare the start date for overshoot 140 

drought and non-overshoot droughts. To make these dates comparable across space, they are 141 

normalized by the peak growing season, and the results are summarized in four aridity regions 142 

(Fig. 3b-e). For dry regions, non-overshoot droughts are more likely to happen before the peak 143 

growing season, while overshoot droughts are more likely to happen in the mid- to late growing 144 

season. These significant differences in drought timing (P<0.0001, paired two-sided t-test) also 145 

suggests that overshoot droughts are more likely to happen in warmer months, especially for semi-146 

arid and dry sub-humid regions (Fig. 3f-i, Extended Data Fig. 5a). Considering the positive 147 

temperature anomalies during the drought period, overshoot droughts tend to have higher risk of 148 
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extreme temperature. This compound drought and heat can be detrimental to ecosystem 149 

functioning and related ecosystem services, particularly for the mid-latitude semi-arid to dry sub-150 

humid regions21–23, which are major crop production areas and densely populated. 151 

 152 

Overshoot and the development speed of drought impacts 153 

Globally, overshoot droughts are associated with a faster NDVI decline than non-overshoot 154 

droughts (P<0.0001, paired two-sided t-test) (Fig. 4). Similar patterns can also be found if 155 

comparing the maximum NDVI decrease speed or the NDVI changes at the zero-crossing month 156 

(Extended Data Fig. 6). This faster decrease in NDVI is often accompanied with larger differences 157 

in NDVI anomalies between the start and end of the drought development period (Fig. 4b-g). Using 158 

soil moisture data from ERA5 reanalysis24 and a machine learning approach25, we also find faster 159 

soil moisture decline for overshoot droughts than non-overshoot droughts (P<0.0001, paired two-160 

sided t-test) (Extended Data Fig. 7). However, the differences in soil moisture changes are much 161 

smaller than the differences in vegetation declines (P<0.0001, unpaired two-sided t-test), 162 

potentially because the interannual variations of vegetation is not used as a forcing in these datasets, 163 

and their effects on soil moisture may thus be underestimated.  164 

 165 

Due to the rapid onset and intensification of vegetation deterioration, the majority of overshoot 166 

droughts we identify can also be classified as flash droughts26,27. Flash droughts occur most 167 

frequently in mid latitude semi-arid or dry sub-humid regions where overshoot impacts are 168 

dominated by the sub-seasonal and seasonal lagged effects (Extended Data Fig. 3). Most overshoot 169 

droughts develop very quickly (mostly 2-3 months), and are on average 1-2 months shorter than 170 

non-overshoot droughts in these semi-arid regions (Extended Data Fig. 8). 171 
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 172 

In addition, overshoot droughts usually lead to stronger drought impacts for dry sub-humid and 173 

humid regions, as shown by a more negative NDVI anomaly compared to the standardized 174 

precipitation evapotranspiration index (SPEI) anomaly (Extended Data Fig. 9). SPEI is a widely 175 

used drought severity indicator which calculates the standardized surface water balance anomaly 176 

from meteorological variables. To understand how overshoot modulates the drought severity 177 

(assessed by minimum SPEI) and impact (assessed by minimum of standardized NDVI, NDVIz) 178 

relationship, we build three nested linear models to predict NDVIz anomalies from SPEI values 179 

during droughts. The first model does not consider overshoot effect. The second considers the 180 

effect on intercepts only, and the third considers the effect on both the regression slopes and 181 

intercepts (Methods, Extended Data Fig. 10). The results from this model comparison can be 182 

summarized into five types of severity-impact responses (see Methods, Fig. 5b). For about a 183 

quarter of the area where the three models are evaluated, overshoot exacerbates drought impact to 184 

the same degree across different drought severities (Type 1 in Fig. 5). The nested models predict 185 

an additional NDVIz decline of -0.58±0.30. In another quarter of area, overshoot leads to stronger 186 

impact when drought severity is low, causing a decrease of NDVIz by -0.07±0.28 (Type 2 in Fig. 187 

5). By contrast, only 3% of area indicates overshoot has stronger impact when drought severity is 188 

high, with an additional NDVIz decline by -0.27±0.24 (Type 3 in Fig. 5). Overshoot alleviates the 189 

drought impact for only 4% of the area (Type 4 in Fig. 5). This may be due to a mismatch in timing 190 

when drought or overshoot impact reach their maximum. 191 

 192 

Our analysis, based on a dynamic statistical learning approach applied to long-term satellite 193 

vegetation records, provides a global understanding of the role of vegetation structural overshoot 194 
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in the timing, speed and impact of drought events. Overshoot droughts are found to develop faster 195 

and be more likely to compound with extreme heat than non-overshoot droughts, exacerbating the 196 

drought impact on ecosystem function and the associated societal services. Overshoot droughts are 197 

also expected to be associated with increased competition, changes in species composition and 198 

functional groups. It is not possible however to analyze these ecological processes at global scales 199 

in our study and they therefore warrant further analysis. Soil water balance may be the key to link 200 

the lagged adverse effects, but land-atmosphere feedbacks28,29 and other processes such as plant 201 

phenology30,31, and fire disturbance play potentially important roles. Current drought indices, 202 

including those relying on potential evapotranspiration, do not consider vegetation status in 203 

calculating the water balance, may therefore underestimate drought severity when structural 204 

overshoot happens. Global climate change can promote faster vegetation growth32 and soil water 205 

depletion33, together with more frequent and severe climate extremes, potentially increasing the 206 

overshoot drought occurrence and impact. Continuous satellite monitoring and improved model 207 

simulation are needed to help better understand the changes of overshoot and improve the 208 

prediction of future drought impacts. 209 

  210 
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Methods 211 

GIMMS NDVI and Climate datasets 212 

We use the normalized difference vegetation index (NDVI) from GIMMS 3gv1 (1981-2015, ref13) 213 

which provides long-term records for vegetation activity. NDVI is a remotely sensed indicator 214 

based on the unique spectral characteristics of vegetation and has been demonstrated to be strongly 215 

related to ecosystem leaf area index and photosynthetic capacity34–36. It can therefore represent the 216 

aggregated ecosystem response to climatic anomalies and drought stress. This dataset is first 217 

quality checked and aggregated to monthly 0.5° × 0.5° resolution to match the resolution of other 218 

datasets and to reduce the uncertainty. In many northern regions, the quality flags are not always 219 

effective, especially when mixed snow pixels exist. Since the DLM is sensitive to these de-220 

seasonalized anomalies, and drought and water limitations are not likely to happen during these 221 

cold and snow-covered periods, we therefore use an additional temperature threshold to filter out 222 

these potential contaminated pixels: if the mean air temperature for a specific month is below 0 ℃, 223 

the land surface may be covered by snow and the corresponding NDVI is set to NA. 224 

 225 

We use both precipitation and temperature as environmental variables in the DLM. The 226 

precipitation dataset is from GPCC37. This dataset provides monthly precipitation at a 0.5° × 0.5° 227 

spatial resolution. The dataset is generated using a spatial statistical method based on observations 228 

from global gauge network which extends beyond Global Historical Climatology Network 229 

(GHCN). Compared to other precipitation datasets (for example, CRU TS4.04), this dataset uses 230 

more stations and is often considered to be  a more reliable estimate of precipitation at the global 231 

scale39. We use the monthly air temperature dataset from CRU TS 4.04 (ref38). CRU generates 232 

gridded climate dataset from weather station data and a spatial statistical method. We also use a 233 
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standardized precipitation evapotranspiration index (SPEI40) dataset for drought identification and 234 

drought severity assessment. SPEI is a widely used climatological drought index that calculates 235 

the standardized water balance anomalies (precipitation minus potential evapotranspiration) at 236 

different time scales. It is therefore an optimal index to evaluate the drought severity-impact 237 

relationship and the role overshoot plays in this process. We use a 3-month SPEI dataset based on 238 

the CRU dataset so that it can capture the short-term water deficit.  239 

 240 

Bayesian multivariate dynamic linear model (DLM) 241 

The multivariate dynamic linear model is a type of linear model for time series analysis12. 242 

Compared to a multivariate regression model, it allows the regression coefficients to change over 243 

time, which can better capture the time-varying relationship between vegetation status in the past 244 

and at present. This method was introduced by Harrison and Stevens41 and well documented by 245 

West and Harrison12. In this study, we modify the model structure used by Liu et al. (ref42), by 246 

further considering the lagged effect of vegetation anomalies from previous months along with 247 

concurrent climate anomalies. For each pixel, the DLM predicts the time series of the target 248 

variable (𝑦!, satellite retrieved NDVI) using an observation equation (Eq. 1) and a state evolution 249 

equation (Eq. 2): 250 

𝑦! = 𝐅!"𝛉! + 𝜐!																																																																		(1) 251 

𝛉! = 𝑮𝛉!#$ +𝐰!																																																															(2) 252 

where 𝑦! is the observed NDVI at each month 𝑡 after removing the mean. 𝐅! is a vector consisting 253 

of three components, a constant for local mean and trend (𝐅!%&'( = [1,0]), a constant for three 254 

seasonal components ( 𝐅)&*) = [1,0,1,0,1,0] ), and a regression component including the 255 

temperature, precipitation and NDVI anomalies (𝛿) from previous months which change with time 256 
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𝑡  (𝐅!"#,% = [𝛿Temp% , 𝛿Prec%&',%&(, 𝛿NDVI%&', 𝛿NDVI%&),%&(, 𝛿NDVI%&*,%&+, 𝛿NDVI%&,,%&'), 𝛿NDVI%&'(,%&)*]). 257 

The subscript of each variable indicates the starting and ending months used to calculate the mean 258 

value, using the de-seasonalized and detrended temperature, precipitation and NDVI. We do not 259 

consider radiation in this default model setup because the interannual variations of radiation is 260 

small and can have strong correlation with temperature or precipitation at monthly scale. 𝛉! is the 261 

state vector at time 𝑡, which also consists of three components: coefficients representing local 262 

mean and trend, coefficients representing seasonal dynamic and regression coefficients for the 263 

previous months’ precipitation and NDVI, as well as current month temperature. 𝜐! is the state 264 

evolution noise at time 𝑡 assuming it has a zero mean with a Gaussian distribution. 𝑮 is a known 265 

state evolution matrix that is block diagonally connected with three small matrices, corresponding 266 

to the local mean and trend component, seasonal component, and regression component. 𝐰! is the 267 

state evolution noise at time 𝑡, following a zero mean multivariate Gaussian distribution. Starting 268 

with non-informative priors of 𝛉+ and noises of 𝜐! and 𝐰!, we estimate the posterior distribution 269 

of 𝛉! using the forward filtering method. This method uses Kalman Filtering to get the posterior 270 

of 𝑦! , and takes a step further to back propagate the difference between prior and posterior 271 

estimates of 𝑦!  to get the posterior distribution of 𝛉! . In this study, we focus on the posterior 272 

estimates of the regression coefficients for the previous months’ NDVI, named DLM sensitivities. 273 

These sensitivities, together with the corresponding NDVI anomalies were used to identify 274 

overshoot droughts. Since the DLM uses a Kalman Filter at each time step, in order to get a reliable 275 

prediction of the coefficient, especially in the early study period, we use a “spin-up” period by 276 

recycling the first five years (1981-1986) of satellite NDVI and climate observations two times 277 

prior to the start of the dataset. It should be noted that although the model is a class of “linear 278 

models”, its sensitivities change through time, and thus can capture temporal non-linearity. A 279 
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detailed description of this method can be found in the Supplementary Text S1. In addition to this 280 

“default model” setup which considers both temperature and precipitation in the regression 281 

component, we also test a “reduced model” which does not consider temperature, and an “extended 282 

model” that considers precipitation, temperature, and radiation. A detailed description on these 283 

experimental setups together with other sensitivity analysis can be found in Supplementary Text 284 

S2. 285 

 286 

Drought and overshoot identification 287 

We use a combination of SPEI and NDVI together with outputs from the DLM to identify drought 288 

events. Both indices are directly calculated from observations and represent the climatological 289 

drought severity and the drought impact on vegetation, respectively. After the NDVI time series 290 

for each pixel is decomposed by the DLM, we identify all negative anomalies from the de-291 

seasonalized and detrended NDVI (original NDVI time series minus trend and seasonal 292 

components obtained from DLM decomposition). For each consecutive negative NDVI anomaly, 293 

a minimum value is first retrieved. A drought starts when the NDVI anomaly turns negative and 294 

ends when the NDVI anomaly recovers above 70% of the minimum value. Three criteria need to 295 

be met in order to be considered as a drought event: (1) drought should be at least two months long 296 

and the minimum NDVI anomaly should be smaller (more negative) than 10% of the mean NDVI 297 

in order to exclude events due to random noise in NDVI; (2) the average SPEI during the 298 

corresponding period is below -0.5. It should be noted that we used a relaxed threshold for SPEI 299 

(“-0.5” compared to commonly used “-1”), since overshoot droughts may happen with only 300 

moderate precipitation decline; (3) the temperature component during the drought period should 301 

be greater than the precipitation component (less negative) or the temperature sensitivity 302 
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(coefficient for 𝛿Temp!) should be negative. This is to exclude the NDVI decline due to low 303 

temperature rather than low soil water. 304 

 305 

Overshoot in this study is defined as vegetation’s temporary exceedance of the ecosystem carrying 306 

capacity, which leads to increased soil water consumption and causes a lagged adverse effect on 307 

latter vegetation activity due to water stress. It should be noted that because of the seasonal 308 

dynamics of vegetation and climatic factors, the carrying capacity, i.e., the maximum plant canopy 309 

that can be supported, is also time-varying. Soil water dynamics contain the overshoot information 310 

but cannot be directly observed, so the approach we use to identify structural overshoot is to 311 

examine the lagged adverse linkage between de-seasonalized anomalies of NDVI. 312 

 313 

In practice, after drought events are identified for each pixel, we calculate the average NDVI 314 

anomaly and DLM sensitivity during each drought period for each of the four previous-month 315 

NDVI components, i.e., previous 2-3 months, previous 4-6 months, previous 7-12 months, and 316 

previous 13-24 months (Extended Data Fig. 1). For each drought event, if any of the four previous-317 

month NDVI components have a positive anomaly associated with a significantly negative (CI=0.9) 318 

sensitivity coefficient, that is, the total contribution (the product of NDVI anomaly and sensitivity) 319 

to the prediction of current NDVI is negative, this NDVI component is regarded as an overshoot 320 

component. For a drought event, if the summation of all overshoot component contributions is 321 

greater than the non-overshoot contributions by absolute value, and the minimum of the overshoot 322 

component is less than -0.01, this drought event is considered as an overshoot drought event. Since 323 

we use several arbitrary thresholds in the drought and overshoot drought identification, we also 324 

test the uncertainties caused by the model structure and thresholds chosen. The results show that 325 
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different models and thresholds can affect the absolute number of droughts and overshoot droughts, 326 

however, the spatial patterns are quite similar and the fraction of overshoot drought numbers to 327 

total drought numbers is conservative, ranging from 9.93% to 18.49%, with a median value of 328 

11.22%. Detailed information is provided in Supplementary Text S2, Table S1 and Fig. S5-11. In 329 

addition to GIMMS NDVI, we also use NDVI from the Moderate Resolution Image Spectrometer 330 

(MODIS) MOD13C2 and identify overshoot during 2000-2018. The resulting spatial patterns are 331 

similar with those obtained using GIMMS NDVI (Fig. S12). 332 

  333 

To understand the differences in development speed of drought impact between overshoot and 334 

non-overshoot drought, we first define the drought impact development period which begins with 335 

the monotonical decrease of the de-seasonalized detrended NDVI and ends when it reaches its 336 

minimum within a drought event. Within each drought development period, we first calculate the 337 

speed of changes as the differences in de-seasonalized detrended NDVI between months. We 338 

compare three metrics to characterize the development speed of drought impact: the speed of 339 

changes at its maximum (75 percentile), median (50 percentile) and at its zero-crossing month (i.e., 340 

when the drought starts).  341 

 342 

Timing of overshoot 343 

We identify the starting month for each drought event to examine drought timing. For each pixel, 344 

the average starting months for overshoot and non-overshoot drought events are calculated 345 

separately. We fit a probability density function (PDF) of the overshoot drought starting date for 346 

each pixel and determined the months when the probability reaches its maximum. Since December 347 

and January are also nearby months but the PDF cannot be correctly fitted under this condition, 348 
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we shift the starting date by 3- 6- 9- months and fitted three other PDFs. The final starting date is 349 

determined by the months corresponds to the maximum probability across all four PDFs. If the 350 

maximum probabilities for the four PDFs are the same, it indicates that the starting dates of 351 

overshoot drought do not have any tendency and this pixel is not used. This only happens for a 352 

very small proportion of the total area (~0.55%). To make these timings comparable across space, 353 

we normalize the starting months of each drought event by the peak growing season. These 354 

differences are then rescaled to -6 to +6 months. 355 

 356 

Drought impact assessment 357 

Drought impact on vegetation is often related to meteorological water deficit, however, this 358 

relationship may be altered when overshoot happens. We use three nested models to assess the 359 

overshoot impact on this relationship:  360 

𝑁𝐷𝑉𝐼, = 𝑎 ∙ 𝑆𝑃𝐸𝐼3 + 𝑏																																																												(3) 361 

𝑁𝐷𝑉𝐼, = 𝑎 ∙ 𝑆𝑃𝐸𝐼3 + 𝑏 ∙ 𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 + 𝑐																																											(4) 362 

𝑁𝐷𝑉𝐼, = (𝑎 + 𝑐 ∙ 𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡) ∙ 𝑆𝑃𝐸𝐼3 + 𝑏 ∙ 𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 + 𝑑																											(5) 363 

The first model (null model) only considers water deficit as indicated by 3-month SPEI. The 364 

second model assumes that when overshoot happens, it will change the intercept of the regression. 365 

The third model assumes that when overshoot happens, both the intercept and the sensitivity of 366 

SPEI will change. Since there is a limited number of overshoot drought events for each pixel, we 367 

evaluate these three models on 2.5° × 2.5° windows, so that each window has at least 10 overshoot 368 

droughts and 10 non-overshoot droughts during the study period. To make NDVI declines 369 

comparable within each window, the NDVI declines are standardized by the standard deviation of 370 

de-seasonalized detrended anomalies (𝑁𝐷𝑉𝐼,, z-score). The best model is selected based on an 371 
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ANOVA comparison, second and third models are only selected when they are significantly better 372 

than the first model (p<0.1). 373 

 374 

Based on the comparison of these three models, we categorize overshoot impact into five groups 375 

(Fig. 5). (1) overshoot has no effect on the NDVI-SPEI relationship. This is considered when the 376 

first model is chosen; (2) overshoot decreases the intercept of the NDVI response to SPEI, but the 377 

NDVI response to SPEI remain the same. This is considered when second model is chosen and 378 

coefficient 𝑏 is negative; (3) overshoot decreases the intercept of the NDVI response to SPEI, but 379 

the sensitivity of NDVI to SPEI is reduced. This is considered when the third model is chosen and 380 

both coefficient 𝑏 and 𝑐 are negative. (4) overshoot increases the intercept of the NDVI response 381 

to SPEI, and the sensitivity of NDVI to SPEI is increased. This is considered when the third model 382 

is chosen and both coefficient 𝑏 and 𝑐 are positive. (5) overshoot alleviates the drought impact. 383 

This is considered when all other cases happen. To assess the overshoot impact on drought, we 384 

predict the effect related to overshoot based on the best model selected and average SPEI values 385 

for all overshoot drought events within this 2.5° × 2.5° window. 386 

 387 

Randomized experiment 388 

We set up a randomized experiment to test if the DLM can effectively capture the linkages between 389 

the previous positive NDVI anomalies and current NDVI decline, that is, the overshoot. It has the 390 

following four steps: 391 

(1) Twelve months are grouped into 6 groups, with each group have two consecutive months 392 

(e.g., January and February, March and April).  393 



 19 

(2) NDVI, temperature, and 3-month precipitation and SPEI for each group are shuffled 394 

together across years, so that the NDVI for each month still corresponds to the temperature 395 

and precipitation for that month, and their relative positions within a year remain unchanged, 396 

e.g., July and August from 2012 may be swapped to July and August, 1998, following May 397 

and June from 2007. 398 

(3) Using this randomized dataset, we again run the DLM model and identified the drought 399 

and overshoot drought events for 1981-2015. 400 

(4) This process is repeated 5 times with different random seed for the step (2). After the 401 

drought and overshoot drought events are identified, we swap them back to their original 402 

position so that they are comparable between randomized experiments. If three out of five 403 

experiments identify any two months as a drought event, this event is considered as a valid 404 

drought event. If three out of five experiments identify a drought event as an overshoot 405 

drought event, this event is considered as a valid overshoot drought event.  406 

We swap the months by 2-month group sizes because during the drought identification step, a 407 

negative anomaly should be at least two-month long so that it can be considered as a potential 408 

drought event. This step should have limited effect on drought identification since droughts are 409 

identified based on NDVI with concurrent climate anomalies which are swapped together. In the 410 

randomized experiment, however, this random swap is likely to break up most of the lagged effects. 411 

 412 

We also test if the lagged effect can be partially retained if we choose larger group sizes. To do so, 413 

instead of swapping the NDVI by two-month groups in step (1), we use larger group sizes of 6-414 

month, and 24-month during the swap. For example, March to August in 2012 will be moved 415 

together to March to August in 1999 (6-month group) or September 2010 to August 2012 will be 416 



 20 

moved together to September 1982 to August 1984 (24-month group). By using larger groups, 417 

partial lagged effects may be retained, for example, the lagged effects at sub-seasonal scale may 418 

be kept using the 6-month group size, and the effect at intra-annual scale may be kept if we use 419 

24-month group size. 420 

 421 

We find that when using a group size of two months, the spatial pattern of drought numbers does 422 

not change much, while most of the overshoot droughts are no longer identified. With the increase 423 

of the group sizes, more overshoot drought events are identified, and the spatial patterns become 424 

similar to the one we obtained without randomization. This suggests the DLM can effectively 425 

capture the lagged effect and help identify overshoot drought. More detailed information is 426 

provided in Supplementary Text S3 and Supplementary Fig. S14-16. 427 

 428 

Synthetic data experiment 429 

We also generate a synthetic dataset to test if overshoot drought events can be effectively identified 430 

using our methodology. To do this, we first build a simple vegetation model that considers both 431 

the direct effect of environment and the lagged effect of previous months NDVI through soil water 432 

dynamics (Supplementary Text S4). We focus on the 2012 overshoot drought in central US8. Using 433 

this simple model, we set up four different scenarios to simulate vegetation dynamics, and applied 434 

the overshoot identification algorithm used in this study: 435 

(1) Control run, spring warming and low summer precipitation  436 

(2) No spring warming, low summer precipitation 437 

(3) Spring warming, normal summer precipitation 438 

(4) Spring warming, abundant summer precipitation but with other disturbances 439 
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These four scenarios differ in their environmental drivers and, consequently, NDVI anomalies 440 

simulated by the simple model. Based on the synthetic data, only Scenario 1 is considered as an 441 

overshoot drought event, while for the other three, they either do not have a lagged adverse effect 442 

or the NDVI decline is not caused by drought. It should be noted that in the real world, Scenario 3 443 

may develop into overshoot drought for certain ecosystems. Our objective here is not to verify the 444 

performance of the simple model, but to test the effectiveness of the overshoot identification 445 

algorithm based on these synthetic data. Our overshoot identification algorithm correctly identifies 446 

the overshoot drought in Scenario 1, and correctly identifies the other scenarios as non-overshoot 447 

droughts (Supplementary Fig. S17-19). This experiment demonstrates the effectiveness of our 448 

algorithm in identifying the overshoot drought. More detailed information is provided in 449 

Supplementary Text S4 and Fig. S17-19. 450 

 451 

Machine learning models to predict the numbers and impacts of overshoot drought events 452 

We use two random forest algorithms with 13 independent variables each to predict the fraction 453 

of drought events related to overshoot and the fraction of lagged effect to the total impacts of 454 

overshoot droughts, respectively. The 13 shared variables include climate variables, e.g., mean 455 

annual temperature (MAT), interannual variation of MAT, mean precipitation, interannual 456 

variation of precipitation, asynchronicity between the months of maximum temperature and 457 

precipitation. Ecosystem vegetation characteristics, including biodiversity, i.e., number of native 458 

species within a grid (Data available from http://ecotope.org/anthromes/biodiversity/plants/data/), 459 

mean NDVI, interannual variability of NDVI, length of the growing season (from MODIS derived 460 

phenology, data available from https://vip.arizona.edu/) and hydroclimate indicators, e.g., aridity 461 

index (precipitation over potential evapotranspiration), terrestrial water decay time from GRACE 462 
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(GRACE 𝜏)43 and soil characteristic, e.g., the fraction of clay calculated as the average of clay 463 

fraction for the top layer and the lower layer (data from Regridded Harmonized World Soil 464 

Database v1.2, https://daac.ornl.gov/SOILS/guides/HWSD.html). The climate variables are all 465 

calculated using the CRU dataset during 1982-2015. As the contribution of one precipitation event 466 

to the total water storage decays exponentially over time, GRACE𝜏 describes the time length (in 467 

days) when the contribution decreases to 1/e (≈ 37%) of its initial value. Drought recovery time44 468 

and elevation are also tested in the model, but both showed very little contribution (<0.001) and 469 

are not used in the analysis. In addition to these two random forest models, we also build two other 470 

models which directly predict the overshoot numbers and lagged impacts, with the total drought 471 

number and total NDVI decline during overshoot droughts as additional independent variables, 472 

respectively. 473 

 474 

The random forest is a machine learning algorithm consisting of multiple regression tress using 475 

bootstrapped samples. In this study, each random forest consists of 500 regression trees with a leaf 476 

node size no smaller than 5. A regression tree recursively splits samples into two categories (i.e., 477 

branches) using a binary rule at each step (for one independent variable), minimizing the variance 478 

within each branch. Based on the number of times each variable is used for the split, the variable 479 

importance metric can be calculated using the fitted random forest and the entire dataset. A larger 480 

number of splits indicates the variable is more important for the prediction of the response variable. 481 

The variable importance factors are normalized to unity (summation equals to one) for the two 482 

random forests.  483 

 484 



 23 

The response function of fraction of overshoot drought numbers or impacts to each individual 485 

factor is shown as a partial dependent plot (PDP). The PDP calculates the predicted mean response 486 

of the target variable (e.g., number or impact of overshoot drought) to one independent variable 487 

(e.g., biodiversity), allowing other variables to change in their domain. In practice, it can be 488 

calculated as: 489 

𝑓W-!(𝑥)) =
1
𝑛Z𝑓W(𝑥), 𝑥.

(0))
'

02$

 490 

where 𝑓W-! is partial dependent function with respect to variable 𝑥), 𝑥. are the other variables used 491 

in the random forest. The superscript “(𝑖)” indicates one incident in the dataset.  492 

 493 

Data Availability 494 

The NDVI 3g v1 dataset is available at https://ecocast.arc.nasa.gov/data/pub/gimms/, the CRU 495 

climate dataset is available at https://crudata.uea.ac.uk/cru/data/hrg/, the GPCC precipitation data 496 

is available at https://www.dwd.de/EN/ourservices/gpcc/gpcc.html, phenology metrics derived 497 

from MODIS are available at https://vip.arizona.edu/viplab_data_explorer.php, the SPEI dataset 498 

is available at https://spei.csic.es/database.htmlt, the ERA5 soil moisture data is available at 499 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means, the 500 

SoMo.ml soil moisture data is from https://www.bgc-jena.mpg.de/geodb/projects/Home.php 501 

 502 

Code Availability 503 

The codes for the dynamic linear model and overshoot identification are available at 504 

https://github.com/zhangyaonju/Overshoot/. 505 

 506 
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 623 

Figure Legends 624 

Fig. 1 | Spatial patterns of the number and impact of overshoot drought events. a,b number 625 

of droughts and number of overshoot droughts during 1981 to 2015. c latitudinal distribution of 626 

the fraction of drought related to overshoot. The black line indicates the total overshoot fraction, 627 

colored lines indicate the fraction of overshoot happening at sub-seasonal to interannual scales 628 

(see Methods). d summation of NDVI declines for the overshoot drought events. e NDVI declines 629 

caused by the lagged adverse effect (direct overshoot impact). f fraction of total overshoot 630 

contribution to the NDVI decline (black) and fraction for each overshoot component (colored 631 

lines). The drought events are identified by a combination of climatological drought severity and 632 

their impact on vegetation (see Methods). 633 

 634 

Fig. 2 | Response functions for the fraction of drought events related to overshoot and 635 

fraction of drought impact attributed to overshoot. a-m, Response functions obtained from the 636 

random forest models. The left axis shows the fraction of drought events related to overshoot and 637 

the right axis shows the fraction of lagged adverse impact to total NDVI decline for overshoot 638 

droughts (see Methods). The numbers in the top-left and top-right corners indicate the order of 639 

importance for predicting the fraction of occurrence and lagged impacts of overshoot drought, 640 

respectively. n-o normalized variable importance for predicting occurrence fraction (n) and impact 641 
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fraction (o). MAT: mean annual temperature; IAV: inter-annual variability; LGS: length of 642 

growing season; GRACE𝜏: terrestrial water decay time from GRACE. Biodiversity is assessed by 643 

the number of native species within each grid cell (see Methods). Types of major land cover types 644 

in e are evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous needleleaf 645 

forest (DNF), deciduous broadleaf forest (DBF), mixed forest (MF), close shrubland (CSH), open 646 

shrubland (OSH), woody savannas (WSA), savannas (SAV), grassland (GRA), wetland (WET) 647 

and cropland (CRO). 648 

 649 

Fig. 3 | Temporal distribution and temperature differences for overshoot droughts. a Months 650 

when overshoot droughts are most likely to start. b-e temporal distribution of overshoot (red) and 651 

non-overshoot (blue) droughts for four aridity regions using peak growing season as a reference 652 

(b arid, c semi-arid, d dry sub-humid, e humid). Negative values indicate the droughts happen 653 

before the growing season peaks. f-i temperature differences for overshoot droughts for four aridity 654 

regions. Red bars indicate the mean climatological temperature difference for overshoot (T34) and 655 

non-overshoot (T534) drought events. Climatological temperature for each month is calculated 656 

during 1981-2015 for each pixel. Orange bars indicate the mean temperature anomaly for 657 

overshoot droughts after removing the climatological mean (∆T34). Error bars indicate the 95% 658 

confidence interval from bootstrap analysis (n=2000). An asterisk above the bar indicates the 659 

temperature difference is significantly different from zero (P<0.0001, paired two-sided t-test).  660 

 661 

Fig. 4 | A comparison of the development speed of drought impacts on vegetation between 662 

overshoot and non-overshoot drought events. a Differences between mean development speed 663 

of drought impacts for all overshoot and non-overshoot drought events. The inset in a shows the 664 
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histogram of these differences, with the dashed vertical line showing the mean value. The 665 

development speed for each drought event is calculated as the median value of the NDVI change 666 

rate during the drought development period. b-g changes in standardized NDVI anomalies during 667 

drought development periods for six regions across the globe. The de-seasonalized detrended 668 

NDVI anomalies are standardized using their standard deviations so that changes can be compared 669 

across pixels in each region. Month 0 corresponds to the start of the drought event (first negative 670 

NDVI anomaly). Subsets in each region show the comparison between NDVI decline speed during 671 

the drought development stage for overshoot (red) and non-overshoot (blue) drought events (see 672 

Methods). The mean and s.d. are calculated from all drought events from all pixels within the 673 

region. 674 

 675 

Fig. 5. NDVI changes due to overshoot. a The spatial pattern of different types of overshoot 676 

effects on modulating drought impact based on results from three nested models. White area 677 

indicates insufficient samples for model fitting (see Methods). b Average NDVI changes due to 678 

overshoot. These changes are predicted by the nested models together with the mean standardized 679 

precipitation evapotranspiration index (SPEI) values for all overshoot droughts. The widths of the 680 

bars indicate the areal fractions for each type. Error bars indicate the s.d. of spatial variations. The 681 

subplots in b show five types of responses of how overshoot modifies the NDVI and SPEI 682 

relationship. These five types of responses differ in their regression intercepts and slopes for 683 

overshoot and non-overshoot droughts. The x-axis indicates the drought severity (minimum SPEI 684 

values during drought) and the y-axis indicates the drought impact (minimum standardized NDVI). 685 

The direction of arrows indicates a decrease for both (stronger drought severity and impact).  686 

  687 
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Figure Legends for Extended Data 688 

Extended Data Fig. 1. Framework of DLM. The DLM is composed of five terms, i.e., 689 

temperature component, precipitation component, direct and lagged vegetation components from 690 

previous months, trend component, and seasonal component. Numbers in the dashed box indicate 691 

the previous months used to calculate anomalies for NDVI, precipitation and temperature. The 692 

three seasonal components are harmonic functions with different frequencies.  693 

 694 

Extended Data Fig. 2. An example of DLM decomposition of the NDVI time series, and the 695 

identification of an overshoot drought event. a Satellite retrieved time series of NDVI (black) 696 

and DLM predicted NDVI (red) in a grassland at Kansas, USA (latitude = 38.05°N, longitude = 697 

96.44 °W). b-k, Zoom-in of comparison of DLM components during 2011-2012. b NDVI 698 

anomalies (NDVI minus long-term mean). c Trend component in DLM. d Three seasonal 699 

components. e de-seasonalized detrended NDVI observation (black, NDVI observation – trend 700 

and seasonal components) and predicted by the DLM (red, summation of precipitation, 701 

temperature components and previous month NDVI components). Pink shade indicates drought 702 

period. f Precipitation component (solid red line, left axis) and coefficient for precipitation (dashed 703 

blue line, right axis). g Temperature component (solid red line, left axis) and coefficient for 704 

temperature (dashed blue line, right axis). h-l Lagged effects (left) and the corresponding 705 

coefficients (right) from previous month (h), 2-3 months (sub-seasonal) (i), 4-6 months (seasonal) 706 

(j), 7-12 months (intra-annual) (k), 13-24 months (inter-annual) (l). Orange shades indicates the 707 

overshoot periods, with hatched ones indicate the overshoot components identified by our 708 

algorithm. Shaded areas around the blue dashed lines represent the 90% confidence interval. Take 709 

this 2012 summer drought event as an example, among the four lagged effects, previous month 2-710 
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3 shows a strong negative sensitivity and a negative contribution during the drought period, 711 

therefore it is considered as an overshoot component, its contribution also dominates all the lagged 712 

effect during the drought, this drought event is therefore considered as an overshoot drought event. 713 

 714 

Extended Data Fig. 3. Contribution of each component to overshoot number and impact. a-715 

d Numbers of overshoot component at different time scales. e-h Impact of overshoot component 716 

at different time scales. Sub-seasonal indicates lagged effect from previous 2-3 months, seasonal 717 

indicates 4-6 months, intra-annual for 7-12 and inter-annual for 13-24 months. 718 

 719 

Extended Data Fig. 4. Dominant overshoot component along growing season length. a 720 

Average number of overshoot component along growing season length. b Average fraction of 721 

overshoot component numbers to drought numbers along growing season length.  722 

 723 

Extended Data Fig. 5. Difference in temperature for overshoot droughts. a Temperature 724 

differences between overshoot and non-overshoot droughts with the climatological means. b 725 

Average temperature anomalies relative to the climatological means for overshoot droughts. Insets 726 

show the histograms of the anomalies. 727 

 728 

Extended Data Fig. 6. Comparisons of the development speed of drought impact between 729 

overshoot and non-overshoot drought events. a The decline speed is calculated as the 1st 730 

quantile value of the NDVI changes during the start of the decline to the minimum of the de-731 

seasonalized detrended NDVI anomalies for each drought event. b Same as a, but using the change 732 
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of NDVI at the zero-crossing date based on the de-seasonalized detrended NDVI anomalies. Insets 733 

show the histogram of the development speed. 734 

 735 

Extended Data Fig. 7. Differences in soil moisture declining speed between overshoot and 736 

non-overshoot drought events. a Speed differences from ERA5 reanalysis soil moisture during 737 

1981-2015. b Speed differences from a machine learning based soil moisture dataset (SoMo.ml) 738 

during 2000-2018. For ERA5, we used overshoot droughts derived from GIMMS NDVI (Fig. 1); 739 

for SoMo.ml, we used overshoot droughts derived from MODIS NDVI (Supplementary Fig. S12). 740 

Both soil moisture datasets were de-seasonalized and detrended first so that we only focus on the 741 

soil moisture anomalies. Soil moisture were integrated for top 1m for ERA5 and 0.5m for SoMo.ml. 742 

The pixel-level comparisons were only conducted when at least two overshoot and two non-743 

overshoot drought events happened during the study period. The insets show the histogram of the 744 

differences, with negative values indicating average soil moisture declining speed is greater (more 745 

negative) for overshoot drought than non-overshoot drought. Units are in m3 m-3 mon-1. 746 

 747 

Extended Data Fig. 8. Comparisons between the drought development time and drought 748 

lengths. a average drought development time for overshoot drought event (in months). b 749 

Differences in drought development time between overshoot and non-overshoot droughts (in 750 

months). Drought development time is defined as the monotonical decrease period from local 751 

maximum to local minimum in the de-seasonalized detrended NDVI anomalies. Inset in b show 752 

the histogram of the differences. 753 

 754 
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Extended Data Fig. 9. Comparisons of drought severity and impact between overshoot and 755 

non-overshoot droughts. a Differences in minimum de-seasonalized detrended NDVI between 756 

overshoot and non-overshoot drought events. c Differences in minimum 3-month SPEI anomalies 757 

between overshoot and non-overshoot drought events. b and d, similar as a and c, but for 758 

differences of integrated sum of NDVI and SPEI during drought. Overshoot droughts, compared 759 

to the non-overshoot ones, usually have weaker drought stress (bottom panel), but relatively 760 

stronger impact on vegetation (upper panel). Insets show the differences in anomalies. 761 

 762 

Extended Data Fig. 10. Comparison of the coefficients of the nested models that predict 763 

drought impact as a function of drought severity and overshoot occurrence. a, spatial pattern 764 

of best model (see Methods). b-d, coefficients for the model that overshoot only affects intercept. 765 

e-h, coefficients for the model that overshoot affects both intercept and regression slope between 766 

NDVIz and SPEI. Insets show the histogram of the coefficients. Dotted areas indicate that the 767 

coefficient is significant at p<0.05. 768 

 769 


