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Abstract. We describe a general and exact method to considerably
speed up linear object detection systems operating in a sliding, multi-
scale window fashion, such as the individual part detectors of part-based
models. The main bottleneck of many of those systems is the compu-
tational cost of the convolutions between the multiple rescalings of the
image to process, and the linear filters. We make use of properties of the
Fourier transform and of clever implementation strategies to obtain a
speedup factor proportional to the filters’ sizes. The gain in performance
is demonstrated on the well known Pascal VOC benchmark, where we
accelerate the speed of said convolutions by an order of magnitude.
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1 Introduction

A common technique for object detection is to apply a binary classifier at every
possible position and scale of an image in a sliding-window fashion. However,
searching the entire search space, even with a simple detector can be slow, es-
pecially if a large number of image features are used.

To that end, linear classifiers have gained a huge popularity in the last few
years. Their simplicity allows for very large scale training and relatively fast
testing, as they can be implemented in terms of convolutions. They can also
reach state-of-the-art performance provided one use discriminant enough fea-
tures. Indeed, such systems have constantly ranked atop of the popular Pascal
VOC detection challenge [1,2]. Part-based deformable models [3,4] are the latest
incarnations of such systems, and current winners of the challenge.

The algorithm we propose leverages the classical use of the Fourier trans-
form to accelerate the multiple evaluations of a linear predictor in a multi-scale
sliding-window detection scheme. Despite relying on a classic result of signal
processing, the practical implementation of this strategy is not straightforward
and requires a careful organization of the computation. It can be summarized in
three main ideas: (a) we exploit the linearity of the Fourier transform to avoid
having one such transform per image feature (see Sect. 2.2), (b) we control the
memory usage required to store the transforms of the filters by building patch-
works combining the multiple scales of an image (see Sect. 3.1), and finally (c)
we optimize the use of the processor cache by computing the Fourier domain
point-wise multiplications in small fragments (see Sect. 3.2).
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Our implementation is a drop-in replacement for the publicly available sys-
tem from [5], and provides close to one order of magnitude acceleration of the
convolutions (see Table 3). It is available under the GPL open source license at
http://www.idiap.ch/scientific-research/resources.

1.1 Related Work

Popular methods to search a large space of candidate object locations include
cascades of simple classifiers [6], salient regions [7], Hough transform based de-
tection [8], branch-and-bound [9]. Regarding part-based model, only the first
method, building a cascade of classifiers, was investigated [10]. Cascades in gen-
eral and [10] in particular are approximate methods, with no guaranteed speedup
in the worst case. Their thresholds are also notoriously hard to tune in order to
obtain good performance without sacrificing too much accuracy, often requiring
a dedicated validation set [11,6]. The approach we pursue here is akin to [12],
taking advantage of properties of the Fourier transform to speed up linear object
detectors using multiple features.

Besides accelerating the evaluation of the detector at each possible location,
other works have already dealt with the problem of the efficient computation
of the feature pyramid and, in the case of part-based models, of the optimal
assignment of the parts’ locations. The fast construction of the complete image
pyramid and associated features computation at each scale has been addressed by
[13]. Their idea is to compute such features only once per octave and interpolate
the scales in-between, making the whole process typically an order of magnitude
faster with only a minor loss in detection accuracy. [14] provides linear time
algorithms for solving maximization problems involving an arbitrary sampled
function and a spatial quadratic cost. By using deformation costs of this form,
the optimal assignment of the parts’ locations can be efficiently computed.

Table 1. Notations

Cstd Computational cost in flops of a standard convolution
F size (number of coefficients) of a fragment (see Sect. 3.2)
K number of features
L number of linear filters
R number of patchworks (see Sect. 3.1)
ρ rescaling factor of the image pyramid
u(F )† time it takes to point-wise multiply together two planes of F coefficients
v(F )† time it takes to read (resp. write) F coefficients to (resp. from) the CPU cache
M ×N size on an image
xk ∈ R

M×N the kth feature plane of a particular image
P ×Q size of a filter
yk ∈ R

P×Q the kth feature plane of a particular filter
z ∈ R

(M+P−1)×(N+Q−1) the scores of a particular filter evaluated on a particular image

†u(F ) and v(F ) are linear for large enough values of F

http://www.idiap.ch/scientific-research/resources
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2 Linear Object Detectors and Fourier Transform

Typical linear object detectors – including the individual part detectors of part-
based models – extract low-level features densely from every scale of an image
pyramid. Those features are arranged in a coarse grid with several features ex-
tracted from each grid cell. For example, the Histogram of Oriented Gradients
(HOG) [15] correspond to the bins of an histogram of the gradient orientations
of the pixels within the cell. Typically cells of size 8 × 8 pixels are used [15,4],
while the number of features per cell vary from around ten to a hundred (32 in
[5], that we use as a baseline). An alternative description of the arrangement of
the features is to view them as organized in planes as depicted in Fig. 1. Those
planes are analogous to the RGB channels of standard color images, but instead
of colors they contain distinct features from each cell of the grid. The filters
trained by the detector are similar in composition.
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Fig. 1. The top figure shows the standard process, convolving and summing all image
and filter planes. The bottom figure depicts how such a process can be sped up by
taking advantage of the fact that the inverse Fourier transform that produces the final
detection score needs to be done only once per image / filter pair, and not once per
feature, since the sum across planes can be done in the Fourier domain.

2.1 Evaluation of a Linear Detector as a Convolution

Let K stands for the number of features, xk ∈ R
M×N for the kth feature plane

of a particular image, and yk ∈ R
P×Q for the kth feature plane of a particular

filter. The scores z ∈ R
(M+P−1)×(N+Q−1) of a filter evaluated on an image are

given by the following formula:
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zij =

K−1∑

k=0

P−1∑

p=0

Q−1∑

q=0

xk
i+p,j+qy

k
pq (1)

that is the sum across planes of the Frobenius inner products of the image’s
sub-window of size P × Q starting at position (i, j) and the filter. Computing
the responses of a filter at all possible locations can thus be done by summing
the results of the (full) convolutions of the image and the (reversed) filter, i.e.

z =
K−1∑

k=0

xk ∗ ȳk (2)

where ȳ is the reversed filter (ȳij = yP−1−i,Q−1−j).
The cost of a standard convolution between an image of size M × N and a

filter of size P ×Q is O(MNPQ). More precisely the number of floating point
operations of a standard (full) convolution is

Cstd = 2MNPQ (3)

corresponding to one multiplication and one addition for each image and each
filter coefficient. Ultimately one needs to convolve L filters and sum them across
K feature planes (see Fig. 1), bringing the total number of operations per image
to

Cstd/image = KLCstd. (4)

2.2 Leveraging the Fourier Transform

It is well known that convolving in the original signal space is equivalent to point-
wise multiplying in the Fourier domain. Convolutions done by first computing
the Fourier transforms of the input signals, multiplying them in Fourier domain,
before taking the inverse transform of the result can also be more efficient if the
filter size is big enough. Indeed, the cost of a convolution done with the help of
the Fourier Transform is O(MN logMN).

If we define

CFFT ≈ 2.5MN log2 MN (5)

Cmul = 4MN (6)

the costs of one FT (the approximation of CFFT comes from [16]) and of the
point-wise multiplications respectively, the total cost is approximately

CFourier = 3CFFT + Cmul (7)

per product for the three (two forward and one inverse) transforms using a Fast
Fourier Transform algorithm [16]. Note that the filters’ forward FTs can be done
off-line, and thus should not be counted in the overall detection time, and that
an image’s forward FT has to be done only once, independently of the number
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of filters. Moreover, in the case of learning methods based on bootstrapping
samples, the images’ forward FTs can also be done off-line for training.

Taking all this into account, and using the linearity property of the FT, one
can drastically reduce the cost per image from KLCFourier. Since the FT is
linear, it does not matter if the sum across planes is done before or after the
inverse transforms. If done before, only one inverse transform per filter will be
needed even if there are multiple planes. Together with the fact that the forward
transforms need to be done only once per filter or per image, the total cost per
image is

CFourier/image = KCFFT︸ ︷︷ ︸
forward FFTs

+ LCFFT︸ ︷︷ ︸
inverse FFTs

+ KLCmul︸ ︷︷ ︸
multiplications

(8)

enabling large computational gains if K + L � KL.
Plugging in typical numbers (M,N = 64, P,Q = 6, K = 32, L = 54 as in [5]),

doing the convolutions with Fourier results in a theoretical speedup factor of 13.
The cost is independent of the filters’ size P ×Q, resulting in even larger gains
for bigger filters. The FT is also very numerically accurate, as demonstrated by
our experiments. There is no precision loss for small filter sizes, and even an
increase in precision for larger ones. Finally, one can also reduce by half the
cost of computing the FTs of the filters if they are symmetric [4], or come by
symmetric pairs [5].

3 Implementation Strategies

Implementing the convolutions with the help of the Fourier transform is straight-
forward, but involves two difficulties: memory over-consumption and lack of
memory bandwidth. Those two problems can be remedied using methods pre-
sented in the following subsections.

3.1 Patchworks of Pyramid Scales

The computational cost analysis of Sect. 2.2 was done under the assumption
that the Fourier Transforms of the filters were already precomputed. But the
computation of the point-wise multiplications between the FT of an image and
that of a filter requires to first pad them to the same size. Images can be of
various sizes and aspect-ratio, especially since images are parsed at multiple
scales, and precomputing filters at all possible sizes as in Fig. 2(a) is unrealistic
in term of memory consumption. Another approach could be to precompute the
FTs of the images and the filters padded only to the biggest image size, as shown
in Fig. 2(b). This would require as little memory as possible for the filters, but
would result in an additional computational burden to compute the FTs of the
images, and more importantly to perform the point-wise multiplications.

However, a simpler and more efficient approach exists, combining the advan-
tages of both alternatives. By grouping images together in patchworks of the
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(b)(a) (c)

Fig. 2. The computation of the point-wise multiplications between the Fourier Trans-
form of an image and that of a filter requires to pad them to the same size before
computing the FTs. Given that images have to be parsed at multiple scales, the naive
strategy is either to store for each filter the FTs corresponding to a variety of sizes
(a), or to store only one version of the filter’s FT and to pad the multiple scales of
each image (b). Both of these strategies are unsatisfactory either in term of memory
consumption (a) or computational cost (b). We propose instead a patchwork approach
(c), which consists of creating patchwork images composed of the multiple scales of
the image, and has the advantages of both alternatives. See Sect. 3.1 and Table 2 for
details.

size of the largest image, one needs to compute the FTs of the filters only at
that size, while the amount of padding needed is much less than required by the
second approach. We observed it experimentally to be less than 20%, vs. 87%
for the second approach. The performance thus stays competitive with the first
approach while retaining the memory footprint of the second (see Table 2 for
an asymptotical analysis). The grouping of the images does not need to be opti-
mal, and very fast heuristics yielding good results exist, such as the bottom-left
bin-packing heuristic [17].

3.2 Taking Advantage of the Cache

A naive implementation of the main computation, that is the point-wise multipli-
cations between the patchworks’ Fourier Transforms and the filters’ FTs would
simply loop over all patchworks and all filters. This would require to reload both
from memory for each pairwise product as they are likely too large to all fit in
cache. We observed in practice that such an implementation is indeed memory
limited.

However, reorganizing the computation allows to remove this bottleneck. Let
R be the total number of patchworks to process, L the number of filters, K the
number of features, M × N the size of the patchworks’ FTs, u(F ) the time it
takes to point-wise multiply together two planes of F coefficients, and v(F ) the
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Table 2. Asymptotic memory footprint and computational cost for the three ap-
proaches described in Sect. 3.1, to process one image of size M × N with L filters,
at scales 1, ρ, ρ2, . . . The factor 1

1−ρ2
=

∑+∞
k=0 ρ

2k accounts for the multiple scales of

the image pyramid, while logMN
1−ρ2

≈ − logMN
log ρ2

for ρ ≈ 1 is the number of scales to
visit. Taking the same typical values as in Sect. 2.2 for M,N = 64, and ρ = 0.9 gives

1
1−ρ2

≈ 5.3 and logMN
1−ρ2

≈ 44. Our patchwork method (c) combines the advantages of

both methods (a) and (b).

Approach Memory (image + filters) Computational cost

(a) 1
1−ρ2

MN + 1
1−ρ2

LMN 1
1−ρ2

LMN

(b) logMN
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Fig. 3. To compute the point-wise products between each of the Fourier Transform
of the R patchworks, and each of the FT of the L filters, the naive procedure loops
through every pair. This strategy unfortunately requires multiple CPU cache violations,
since the transforms are likely to be too large to all fit in cache, resulting in a slow
computation of each one of the LR products. We propose to decompose the transforms
into fragments (here shown as red rectangles), and to have an outer loop through them.
With such a strategy, by loading a total of L+R fragments in the CPU cache, we end
up computing LR point-wise products between fragments. See Sect. 3.2 for details.
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time it takes to read (resp. write) F coefficients from (resp. into) the memory
to (resp. from) the CPU cache.

A naive strategy going through every patchwork / filter pair results in a total
processing time of

Tnaive = KLR 2v(MN)︸ ︷︷ ︸
reading

+ KLRu(MN)︸ ︷︷ ︸
multiplications

+ LRv(MN)︸ ︷︷ ︸
writing

. (9)

This is mainly due to the bad use of the cache, which is constantly reloaded with
new data from the main memory.

We can improve this strategy by decomposing transforms into fragments of
size F , and by adding an outer loop through these MN

F fragments (see Fig. 3).
The cache usage will be K(R + 1)F , and the time to process all patchwork /
filter pairs will become

Tfast =
MN

F︸ ︷︷ ︸
number of fragments

(
K(L+R)v(F )︸ ︷︷ ︸

reading

+ KLRu(F )︸ ︷︷ ︸
multiplications

+ LRv(F )︸ ︷︷ ︸
writing

)
(10)

= K(L+R)v(MN)︸ ︷︷ ︸
reading

+ KLRu(MN)︸ ︷︷ ︸
multiplications

+ LRv(MN)︸ ︷︷ ︸
writing

. (11)

By making F small, we could reduce the cache usage arbitrarily. However, CPUs
are able to load from the main memory in bursts, which makes values smaller
than that burst size sub-optimal (see Fig. 4). The speed ratio between the naive
and the fast methods is

Tnaive

Tfast
=

(2 + 1
K ) + u(MN)

v(MN)

(L+R
LR + 1

K ) + u(MN)
v(MN)

(12)

≈ 2
v(MN)

u(MN)
+ 1 (13)

In practice, the cache can hold at least one patchwork of size MN and the actual
speedup we observe is around 5.7. Decomposing the transforms into fragments
also scales better across multiple CPU cores, as they can focus on distinct parts
of the transforms, instead of all loading the same patchwork or filter.

4 Experiments

To evaluate our approach for linear object detector acceleration we compared it
to the publicly available system from [5]. We used the trained models already
present in the system, trained on the Pascal VOC 2007 challenge [1] dataset,
which achieve state-of-the-art detection results. Note that [5] provides several
implementations of the convolutions, ranging from the most basic to the most
heavily optimized.
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Fig. 4. Average time taken by the point-wise multiplications (in seconds) for different
fragment sizes (number of coefficients) for one image of the Pascal VOC 2007 challenge

The evaluation was done over all 20 classes of the challenge by looking at the
detection time speedup with respect to the fastest baseline convolution imple-
mentation on the same machine. The baseline is written in assembly and makes
use of both CPU SIMD instructions and multi-threading. As our method is ex-
act, the average precision should stay the same up to numerical precision issues.
The results are given in Table 4 for verification purposes.

We used the FFTW (version 3.3) library [16] to compute the FFTs, and the
Eigen (version 3.0) library [18] for the remaining linear algebra. Both libraries are
very fast as they make use of the CPU SIMD instruction sets. Our experiments
show that our approach achieves a significant speedup, being more than seven
times faster (see Table 3). We compare only the time taken by the convolutions
in order to be fair to the baseline, some of its other components being written in
Matlab, while our implementation is written fully in C++.The average time taken
by the baseline implementation to convolve a feature pyramid (10 scales per oc-
tave) with all the filters of a particular class (54 filters, most of them of size 6× 6)
was 413 ms. The average time taken by our implementation was 56 ms, including
the forward FFTs of the images. For comparison, the time taken in our implemen-
tation to compute the HOG features (including loading and resizing the image)
was on average 64 ms, while the time taken by the distance transforms was 42 ms,
the time taken by the remaining components of the system being negligible.

We also tested the numerical precision of both approaches. The maximum ab-
solute difference that we observed between the baseline and a more precise im-
plementation (using double precision) was 9.5 × 10−7, while for our approach it
was 4.8 × 10−7. The mean absolute difference were respectively 2.4 × 10−8 and
1.8× 10−8.

While the speed and numerical accuracy of the baseline degrade proportionally
with the filters’ sizes, they remain constant with our approach, enabling one to
use bigger filters for free. For example if one were to use filters of size 8 × 8
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instead of 6 × 6 as in most of the current models, the speedup of our method
over the baseline would increase by a factor 8×8

6×6 ≈ 1.78 and similarly for the
numerical precision.

Table 3. Pascal VOC 2007 challenge convolution time and speedup

aero bike bird boat bottle bus car cat chair cow table

V4 (ms) 409 437 403 414 366 439 352 432 417 429 450

Ours (ms) 55 56 53 56 57 56 54 56 56 57 57

Speedup (x) 7.4 7.8 7.6 7.4 6.4 7.9 6.5 7.7 7.5 7.5 8.0

dog horse mbike person plant sheep sofa train tv mean

V4 (ms) 445 439 429 379 358 351 425 458 433 413

Ours (ms) 57 59 57 54 54 55 57 58 55 56

Speedup (x) 7.8 7.5 7.6 7.0 6.6 6.4 7.4 7.9 7.9 7.4

Table 4. Pascal VOC 2007 challenge results

aero bike bird boat bottle bus car cat chair cow table

V4 (%) 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3

Ours (%) 29.4 58.9 10.0 13.4 25.3 50.6 57.6 18.9 22.6 24.9 24.4

dog horse mbike person plant sheep sofa train tv mean

V4 (%) 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6 32.3

Ours (%) 11.5 56.7 47.3 42.4 13.0 19.2 34.8 46.3 40.4 32.4

5 Conclusion

The idea motivating our work is that the Fourier transform is linear, enabling
one to do the addition of the convolutions across feature planes in Fourier space,
and be left in the end with only one inverse Fourier transform to do. To take ad-
vantage of this, we proposed two additional implementation strategies, ensuring
maximum efficiency without requiring huge memory space and/or bandwidth,
and thus making the whole approach practical.

The method increases the speed of many state-of-the-art object detectors sev-
eralfold with no loss in accuracy when using small filters, and becomes even faster
and more accurate with larger ones. That such an approach is possible is not
entirely trivial (the reference implementation of [5] contains five different ways
to do the convolutions, all at least an order of magnitude slower); nevertheless,
the analysis we developed is readily applicable to many other systems.
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