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Abstract

This thesis presents exact means for solving a family of NP-hard
problems. Starting with the well-studied Exact Satisfiability problem
(Xsat) parents, siblings and daughters are derived and studied, each
with interesting practical and theoretical properties. While develop-
ing exact algorithms to solve the problems, we gain new insights into
their structure and mutual similarities and differences.

Given a Boolean formula in cnf, the Xsat problem asks for an
assignment to the variables such that each clause contains exactly
one true literal. For this problem we present an O (1.1730n) time
algorithm, where n is the number of variables. Xsat is a special
case of the General Exact Satisfiability problem which asks for an
assignment such that in each clause exactly i literals be true. For
this problem we present an algorithm which runs in O

(
2(1−ε)n

)
time,

with 0 < ε < 1 for any fixed i; for i = 2, 3 and 4 we have running
times in O (1.4511n), O (1.6214n) and O (1.6848n) respectively.

For the counting problems we present an O (1.2190n) time algo-
rithm which counts the number of models of an Xsat instance. We
also present algorithms for #2satw and #3satw, two well studied
Boolean problems. The algorithms have running times in O (1.2561n)
and O (1.6737n) respectively.

Finally, we study optimisation problems: As a variant of the Max-
imum Exact Satisfiability problem, consider the problem of finding an
assignment exactly satisfying a maximum number of clauses while the
rest are left with no true literal. This problem is reducible to #2satw

without introducing new variables and thus is solvable in O (1.2561n)
time. Another interesting optimisation problem is to find two Xsat

models which differ in as many variables as possible. This problem is
shown to be solvable in O (1.8348n) time.
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Chapter 1

Introduction

Even the ancient Greeks concerned themselves with efficient algo-
rithms. One celebrated example is the “sieve of Eratosthenes” [24]
which enumerates all prime numbers up to n in time O (n log log n)1.
Despite the often speculative nature of Greek thinking, the Greeks
apparently never asked the question of which problems allow efficient
algorithms and which do not. At least we have no records left of any
such lines of thought.

Many centuries later, in 1736, Leonhard Euler wrote his famous
paper “The Seven Bridges of Königsberg” [32]. It treats a graph prob-
lem known as Euler walk: Given a number of islands connected by
bridges, is it possible to visit every island, crossing each bridge exactly
once? Euler proved that this problem is efficiently solvable: If there
are more than two islands having an odd number of bridges, then the
Euler walk is impossible, otherwise there must be such a walk! In
Figure 1.1 an instance of this problem is given. Note that using Eu-
ler’s algorithm, we do not actually need to find a solution in order to
give a yes or no answer. Now, what about this almost identical prob-
lem: Given a number of islands connected by bridges, is it possible
to visit every island exactly once in a walk? This problem is called

1The cover of the thesis uses two pages from
� ����� ���
	
��� �������� �����������

(Introduc-
tion to arithmetic) [44] by Nicomachus of Gerasa (flourished circa a.d. 100), where
the sieve of Eratosthenes is first described.
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Figure 1.1: Euler walk: Visit all vertices, using each edge exactly once.
For this graph, there is an Euler walk
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Figure 1.2: Hamilton walk: Visit every vertex once. This graph has no
Hamilton path

Hamilton walk and we know no efficient algorithm for it. That is,
all known real-world algorithms run in time that grows exponentially
in the number of islands. Figure 1.2 presents an example of a graph
without a Hamilton path.

The last century saw the foundation of a science capable of clas-
sifying computational problems in a more satisfactory way. In 1936
Alan Turing [72] presented imaginary machines, that can be seen as
a form of computers, able to run algorithms. It is a widely held belief
that these machines can compute everything that is computable, be-
cause all other known models of computation have been shown to be
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equivalent to Turing machines with respect to what can be computed.
When it comes to the question of how a solution to a problem

can be computed, refined models of the Turing machines have been
proposed. The original Turing machine works in a deterministic, non-
parallel way. Though somewhat exotic in design, it is still reasonable
in the sense that it can be mimicked by a real-world computer without
too much loss in time and memory. At the end of the 1950’s, non-
deterministic Turing machines were considered [70]. These models are
unreasonable in the sense that during a computation, the right choices
are always made (if the problem is solvable.) Using the Hamilton path
as an example, such a machine would look at all the edges, and then
pick the first one in a Hamilton path, then the second one in the
path and so on until a full Hamilton path is obtained. Thus, for this
model of computation, we can solve the problem in polynomial time.
With these machines (and other variants) as a tool, it has become
possible to classify computational problems. For instance, Euler walk
belongs to the class of problems which can by solved by a deterministic
machine in polynomial time, while the Hamilton walk, as we believe,
would require a non-deterministic machine if we wanted to solve it in
polynomial time.

The set of problems that can be solved in polynomial time on a
deterministic Turing machine is called P and the set of problems that
can be solved in polynomial time on a non-deterministic machine is
called NP. It is clear that P ⊆ NP, and it is a widely held belief that
P ⊂ NP, see [39]. This is known as the P 6= NP conjecture and, if
true, it implies, among other things, that Hamilton path cannot be
solved in polynomial time on an ordinary computer. The formulation
of the P 6= NP conjecture and the definition of the class NP by
Karp [48] in 1972 must be seen as a breakthrough in the process of
classifying computational problems. We are certainly better off than
the ancient Greeks.
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1.1 General Background

Boolean formulae play an important rôle in this thesis. We will there-
fore start with a small toy example from propositional logic. Let p
be the statement “It rains” and q the statement “The sun is shining.”
The two statements are either true or false, and therefore p and q can
be seen as (Boolean) variables that are assigned either true or false.
Now the compound statement “If it rains the sun is not shining” can
be written as p→ q̄ (where q̄ is the negation of q.) Let us add the as-
sumption that q is true so that we get the formula q∧ (p→ q̄). Given
this formula, one can ask if there is an assignment to p and q such that
the entire formula becomes true, i.e. satisfied. Such an assignment is
known as a model and there is clearly only one for this formula, namely
q = true, p = false. The problem of deciding whether a propositional
logic formula has a model is called Satisfiability, abbreviated Sat.

There are many logical connectives such as ∧,∨,→,↔ etc, and it
is a well known fact that not all are needed. As a convention, the
instances of Sat are written in conjunctive normal form (cnf.) This
means that the variables (possibly negated) appear in disjunctions
(i.e. they are glued together using logical or (∨)) called clauses. The
clauses in turn appear in conjunctions, (i.e. they are glued together
using logical and (∧).) Our example given in cnf:

(p̄ ∨ q̄) ∧ (q)

In the rest of the thesis we will omit the and-symbols, sometimes
replacing them with commas, which is easier to read for larger for-
mulae. We will return to Sat several times.

Hamilton path, Euler walk and Sat are decision problems, i.e. we
expect to get a ‘yes’ or ‘no’ answer. This thesis will treat not only
decision problems but also counting problems and optimisation prob-
lems. As an example of a counting problem, we have the problem
of how many Hamilton paths a graph contains. For a related opti-
misation problem, assign weights to the edges of a graph and search
for a Hamilton path minimising the overall weight of the edges. Note
that as soon we know the solution to either the optimisation prob-
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lem or the counting problem, then we also know the solution to the
decision problem. When we have this situation — that the answer to
problem A with only polynomial computational costs can be trans-
formed to an answer to problem B — then we say that A is at least
as hard as B and that there is a (polynomial) reduction from A to
B. It turns out that Hamilton path is at least as hard as every other
problem in NP — it is NP-hard (as are the derived optimisation and
counting problems.) Sat is interesting not only because it can be
used to model real-world phenomena; it also plays a special rôle in
the history of complexity theory. In 1971, Sat was the first problem
to be proved NP-complete by Cook [12] (NP-complete means that it
is both in NP and NP-hard.)

Many of the NP-hard problems, such as Sat, have important prac-
tical applications, and in order to solve them, different approaches
have been tried. One can try to use heuristic methods. Such meth-
ods make no guarantee that we will obtain a solution, but practise
has shown that they often work. They perform a relatively limited
exploration of the search space and produce solutions within mod-
est computing times. One of the most common heuristic methods is
simulated annealing [50]. It is based on an analogy from the anneal-
ing process of steel or some other solid. First the steel is heated to
high temperatures and then it is gradually cooled. Thus, at first, the
atoms have high energy and move at high speed, but at later stages
their movements are more constrained. In terms of solving Sat the
analogy works as follows:

Every assignment to the variables satisfies a certain number of
clauses, the more the better. During the process, we flip the assign-
ments to single variables to obtain better solutions. In the beginning,
with a certain high probability (the analogue of high temperature) we
may make assignments that satisfy fewer clauses, but gradually the
probability decreases and we converge towards a solution. The idea
behind this heuristic is that the initial high temperature (probability)
will help us avoid getting stuck at local optima. Note that “solution”
here does not mean model, but rather an assignment satisfying an
unspecified (hopefully high) number of clauses.
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Apart from the heuristic algorithms, there are polynomial time
algorithms for many hard problems that can make guarantees on the
output produced. Randomised algorithms return an acceptable so-
lution with a certain (guaranteed) probability. Approximation algo-
rithms return solutions within a bounded distance from an optimal
solution. Returning to Sat, we have the following, trivial, approxi-
mation algorithm: Choose an assignment at random, and if less than
half of the clauses are satisfied, assign each variable the opposite value.
This algorithm guarantees that at least half of the clauses are satis-
fied. Of course, there are non-trivial algorithms also. Yannakakis [78]
for instance, shows how 3/4 of the clauses can be satisfied.

This thesis is concerned with exact algorithms for NP-hard prob-
lems. Although such algorithms all run in super-polynomial time in
the worst case (and always will be, assuming that P 6= NP), they
must be taken into account. In many cases, approximation algo-
rithms cannot return acceptable results and then we have to use al-
gorithms with exponential time complexity. For instance, an assign-
ment q = false, p = false in our toy Sat example (p̄ ∨ q̄) ∧ (q) may
be theoretically satisfying (because it is an approximation satisfying
half of the clauses) but the solution we really want is a model. The

price to pay for solving Sat exactly is that an O
(

2n−2
√

n/ log n
)

time

algorithm must be used, where n is the number of variables. This
algorithm was presented by Dantsin et al. [21] in 2004 and is so far
the best when measuring formula size in the number of variables.

When constructing exponential time algorithms, which have run-
ning times in O (cµ) for some constant c and some measure µ of the
instance size, it is crucial to reduce c as much as possible — reducing
c to its square root doubles the size of the largest instance possi-
ble to solve. Resorting to the use of exponential space algorithms,
the time complexity can sometimes be considerably improved. One
example of this are the best known algorithms for Maximum Inde-

pendent Set (Mis) problem; the problem is depicted in Figure 1.3.
Mis is NP-complete (see [38]) and the so far fastest algorithm for this
problem by Robson [64] runs in O (1.1889n) and uses an exponential
amount of memory. This is to be compared with the fastest poly-
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Figure 1.3: Mis: A maximum independent set is a largest possible subset
of the vertices of a graph such that no pair in the subset is joined by an edge.
In this graph, the set {V2, V4} constitutes a Mis

nomial space algorithm, also by Robson, which runs in O (1.2025n)
time. We will encounter this phenomenon later in this thesis, in the
context of Xisat, which is the problem treated in Chapter 4. For
practical use, exponential space requirements of an algorithm are of
course highly undesirable.

1.2 Objectives and Problem Descriptions

In this thesis we will investigate a family of NP-hard Boolean prob-
lems. Their common property is that the problems are concerned
with the question of how a clause is satisfied. As opposed to the
archetype Boolean problem, Sat, which considers a clause satisfied if
it contains at least one true literal (a literal is variable or a negated
variable), Exact Satisfiability (Xsat) requires exactly one true
literal. Xsat can be seen as the starting point for deriving a num-
ber of other interesting problems. A generalised decision problem of
Xsat is Xisat where we require a clause to contain exactly i true
literals. One can also generalise Xsat to a optimisation problem by
searching for an assignment such that a maximum number of clauses
are satisfied. Other members of the family are the problem of count-
ing the number of solutions, and the problem of finding two solutions
that are as different as possible. Treating all these different problems
together has proved fruitful, since the same techniques can often be
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reused. This is foremost seen in the so-called canonical rules, which
we will treat in Chapter 2.

As will be seen in this thesis, this family of problems is interesting
not only for theoretic reasons. Xisat (and its special case Xsat)
can enhance Sat modelling tools. Counting models for certain Xsat

instances is equivalent to a problem called computing the permanent of
a 0/1 matrix which has many applications, see e.g. [47]. The academic
study of the problems concerned with finding solutions that are as
different as possible has just begun, but the practical applications
are manifold. For instance, when scheduling a collection of activities,
one typically wants to present substantially different alternatives to
choose between. Other examples are given by Hebrard et al. [42].

1.2.1 Exact Satisfiability

Xsat is a well studied problem. This Boolean problem, even when re-
stricted to formulae with maximum clause length 3 (a problem called
X13sat), was proved NP-complete by Schaefer [67] in 1978. We will
in general refer to the solutions as models, sometimes x-models, when
there is a need to distinguish them from Sat solutions. Note that un-
like Sat, there are no partial assignments that can be easily verified
to guarantee a model. Just because all clauses are satisfied we are not
necessarily done — we must also make sure no clause is over-satisfied.

Exact algorithms for Xsat have been presented by several authors
[10, 18, 26, 28, 43, 63, 68]. The algorithm presented in this thesis is the
currently fastest when measuring in the number of variables. Xsat

can of course be solved within the trivial time bound of O (2n), where
n is the number of variables. This is done by exhaustively trying all
2n assignments to the variables. The first algorithm to beat this was
presented in 1981 by Schroeppel and Shamir [68]. Their algorithm
runs in time O (1.4143n) and space O (1.1893n). (In Chapter 4 we
will give a more thorough description of this algorithm.) Also in 1981
an algorithm running in time O (1.1843n) was presented by Monien
et al. [60]. This, and all the following algorithms, have polynomial
space requirements and are built on two ideas: Canonical rules and
good branching variables.
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x = (a ∨ b ∨ c ∨ d) x′ = (b ∨ c ∨ d)
y = (a ∨ b̄ ∨ f ∨ g) y′ = (b̄ ∨ f ∨ g)
z = (h ∨ i)

Figure 1.4: Two formulae: For F = {x, y, z} canonical rules are applicable;
F ′ = {x′, y′} is the result of applying two canonical rules on F

To illustrate the first idea: Consider the Xsat instance F of Figure
1.4. Given the fact that only one literal must be true in each clause,
a must be false. Otherwise, if a is true, then either b or b̄ will make a
clause over-satisfied. Hence, we can assign a false and remove it. This
is an example of a canonical rule, i.e. a polynomial time reduction of
an Xsat instance. The same figure may also illustrate another rule:
If there is a clause of length 2, such as z, we may reduce the formula.
As only one literal is allowed to be true in z, h and i must be assigned
opposite values. This means that we can substitute every occurrence
of h by ī and every occurrence of h̄ by i and so we have removed the
variable h from the formula. The resulting formula is shown as F ′ of
1.4.

As for the second idea, one systematic approach to solve an in-
stance of Xsat is built on the simple observation that a variable a
is either true or false. This gives us two smaller Xsat instances to
consider, one where a is true, and one where a is set to false and
then canonical rules are applied. The two smaller instances can be
solved by repeating the procedure. Of course, in practice we do not
have the two instances at the same time, but rather first explore one
instance, and then, if no solution is found, we explore the other. For
an example, consider this instance:

x = (a ∨ b ∨ c)
y = (a ∨ d ∨ e ∨ f)
z = (d ∨ g ∨ h ∨ i)

Let us choose e to branch on (i.e. tentatively assign it true or
false.) We start by assigning e true. By the nature of the Xsat
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problem, we deduce that a, d and f must be assigned false and that
b can be replaced by c̄ (because x shrunk to length 2.) The only
remaining clause in the instance is (g ∨ h ∨ i). We now choose h to
branch on and assign it true. The last clause is satisfied and g and
i are set to false. Now we have found a model. This procedure was
first presented by Davis et al. [22] for solving Sat and is known as
dpll branching. In the example, we were lucky and found a model
without having to try other assignments to the branching variables,
but this is of course not always the case. In general, an exponential
running time can be expected. Note that when a variable occurs in
more than two clauses, it will have many neighbours and so is often
a good choice for branching. Such variables are called heavy.

In 1999, Drori and Peleg presented a dedicated X13sat algorithm
running in time O (1.1545n). This far, the improved upper bounds
on the running time was due only to invention of canonical rules and
clever choices of branching variables. The next major leap forward
came with Porschen et al. [63] who in 2002 presented an O (1.1382n)
time X13sat algorithm. The improved running time is due to the dis-
covery that polynomial time matching techniques can be used when
the instance contains no heavy variables, thereby avoiding the ne-
cessity to deal with non-heavy variables using branching. The next
improvement was done by Byskov et al. [10] and Dahllöf et al. [18],
who, independently of each other, developed the concept of “sparsity.”
The idea is that when the ratio heavy variables to non-heavy variables
is small enough (the instance is sparse), one can afford to examine all
possible assignments to the heavy variables. When all heavy vari-
ables are assigned values, the rest of the instance can be solved by
the matching techniques. The previously best algorithm is the Bysko-
vian with a running time in O (1.1749n). Our new algorithm has a
running time in O (1.1730n).

Our main focus in this thesis will be on exact algorithms that
measure their running times in the number of variables. However, it is
interesting to relate other known results. Measuring the formula size
in the number of clauses, m, Madsen [58] in 2006 showed that Xsat

can be solved in exponential space and time O (2m) or polynomial
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Figure 1.5: A 3-colourable graph

space and time O (m!). In a still unpublished paper by Björklund
and Husfeldt [8], this has been improved to polynomial space and
time O (2m).

1.2.2 General Exact Satisfiability

Sat is often a convenient modelling tool. However, there are cases
when large formulae are needed to express quite simple things. Con-
sider for instance the graph in Figure 1.5. Assume that we have three
colours and want to assign them to the vertices V1, V2, V3 and V4

of the graph with the following two constraints: 1) each vertex gets
exactly one colour and 2) two vertices that share an edge do not have
the same colour. This problem is known as the 3-colourability

problem.

In Figure 1.6 we see how the 3-colourability problem for the graph
of Figure 1.5 can be expressed in terms of Sat. Twelve Boolean
variables are created, each with an intended meaning such as “Vertex
Vi has colour Q.” For instance, c2

R can be interpreted as “Vertex V2

has colour RED.” The first line (i.e. the first four clauses) ensures
that each vertex is assigned at least one colour. The following three
lines make sure that each vertex is assigned at most one colour. Lines
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Figure 1.6: An instance of 3-colourability expressed in Sat

5 – 9 express the fact that two vertices joined by an edge cannot have
the same colour. The reader may verify for herself that assigning
c1
R, c2

B, c3
G and c4

B true and the remaining variables false, we have a
model.

Several extensions to the basic Sat language have been proposed
with names such as equality, pseudo-boolean constraints and cardi-
nality atoms (c-atoms), see e.g. [3, 25, 54]. Of interest to us are the c-
atoms, which have been studied by several authors, e.g. [6, 25, 57, 69]
(although Simons [69] does not use the name, he does use the con-
cept.) A c-atom is an expression k{a1, . . . , an}m, where a1, . . . , an are
boolean variables and the expression is true iff at least k and no more
than m of the ai’s are true. Revisiting the 3-colourability example
using c-atoms, it may be formulated as in Figure 1.7. We see that the
c-atoms come in handy. We also see that there is a close connection
between these c-atoms and Xsat. As a matter of fact, each of these
c-atoms can be seen as a clause in an Xsat instance — exactly one
literal is true.

It is now time to present the next member of our family of prob-
lems. A natural extension of Xsat is the problem Xisat, asking if a
formula allows an assignment to the variables such that exactly i liter-
als are true in each clause. Note that an Xisat clause (a1∨a2∨. . .∨an)
is not just a special case of the c-atom h{a1, a2, . . . , an}i, for some
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Figure 1.7: The same 3-colourability instance expressed in Sat extended
with c-atoms

h < i. If we add the new variable b into the Xisat clause, then
finding a satisfying assignment for the modified clause (b ∨ a1 ∨ a2 ∨
. . . ∨ an) is tantamount to finding a satisfying assignment for the c-
atom (i − 1){a1, a2, . . . , an}i. Repeating the procedure, we obtain a
transformation that introduces i− h new variables. Additionally, we
see that Xisat well captures interesting properties of c-atoms. To
the best of our knowledge, no one has tried to exactly solve instances
of this extended Sat variant, without transforming the c-atoms into
Sat clauses.

In [57] Liu and Truszczyński describe three possible ways to solve
the extended Sat language; two are reductions to the basic Sat lan-
guage. First a method that does not introduce any new variables
but increases the number of clauses exponentially. They dismiss this
technique:

“This approach . . . is practical only if k and m are small
(do not exceed, say 2.) Otherwise the size . . . quickly gets
too large for Sat solvers to be effective.”

They also present a second method that does not have this problem.
However, the reduction more than doubles the number of variables.
Rather than compiling away the c-atoms, Liu and Truszczyński inves-
tigate the possibility of keeping them and then applying an incomplete
(i.e. randomised) search method. In effect, they deal with a formula
having different kinds of clauses (ordinary Sat clauses as well as dif-
ferent kinds of c-atoms.)
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We propose a fourth way which combines treats of the second and
third approach: Compile the c-atoms into Xisat clauses (as described
above) and then solve the instance exactly. As a motivating example,
let us again consider the formula in Figure 1.7. As Xsat is solvable in

time O (1.1730n) (shown in Chapter 3) and Sat in O
(

2n−2
√

n/ log n
)

time (see [21]), it seems like a waste to compile the c-atoms into Sat

clauses. As will be seen below, also the Xisat problem seems to
be nicer than Sat in terms of running times for known algorithms.
To the best of our knowledge, there is no previous exact algorithm
proposed to take advantage of the structure of the c-atoms, which,
näıvely speaking, seems to be nicer than the structure of the Sat

problem. We will not provide algorithms for solving formulae with
both Sat and Xisat clauses as this is beyond the scope of this thesis,
but our algorithms provide a foundation for such research.

Chapter 4 shows that Xisat is solvable in time O (1.4143n), where
n is the number of variables, if a O (1.1893n) space consumption is
allowed. This method is an application of a general algorithm for a
special class of NP-complete problems described by Schroeppel and
Shamir [68]. We previously mentioned this algorithm in section 1.2.1,
since in the original paper Xsat was shown to belong to this class.
Showing that the running time does not necessarily depend upon
i i of theoretical interest, however, the use of exponential space is
of course highly undesirable. For practical use, in the context of
c-atoms, we present a branching algorithm with polynomial space
requirements that obtains a running time in O

(
2(1−ε)n

)
, where the

value of ε depends on i. For i = 2, i = 3 and i = 4 we obtain upper
time bounds in O (1.5157n), O (1.6202n) and O (1.6844n) respectively.
We also present a dedicated X2sat algorithm running in polynomial
space and time O (1.4511n).

1.2.3 Counting Exact Satisfiability

Most of the efforts in algorithm construction have been dedicated to
algorithms for decision problems, i.e. finding a solution to the prob-
lem instance. This can involve finding an Euler walk in a graph or a
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Figure 1.8: A bipartite graph

satisfying assignment to a Boolean formula. As a natural extension
we have the counting problems, where one wants to not merely decide
the existence of a solution, but to find the number of solutions. In
the 1970’s Valiant [74] proposed the counting complexity class #P for
such problems. It is interesting to note that both NP-complete prob-
lems as well as some decision problems, known to be in P, can have
a counting counterpart which is #P-complete. For instance, 2sat

(Sat restricted to maximum clause length 2) is in P (see [23]), 3sat

is NP-complete (see [38]), but both #2sat and #3sat (the derived
counting problems) are #P-complete [52, 75]. The reader may note
that, as a convention, counting problems have names starting with a
‘#’. For instance, the problem of counting models for Sat is denoted
#sat.

While algorithms for many NP-complete decision problems are
fairly well-studied, this is not the case for their #P-complete counter-
parts. One of the first algorithms for a counting problem came in the
early 1960’s with Ryser’s [66] O (2n) time algorithm for counting the
number of perfect matchings in a bipartite graph, a problem which is
equivalent to a matrix problem known as computing the permanent
of a 0/1 matrix. This problem was proved complete for #P in 1979
by Valiant [74]. Some definitions are needed here: A perfect matching
for a graph is a subset of the edges such that all vertices are cov-
ered (“touched” by an edge) exactly once. A graph is bipartite if one
can partition its vertices into two sets such that within each set, no
two vertices are joined by an edge. In Figure 1.8 a bipartite graph
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is given. The set {(V1, U3), (V2, U1), (V3, U2)} constitutes a perfect
matching for this graph. We return to the problem of counting per-
fect matchings later in this section. For a long time Ryser’s algorithm
was the only exact algorithm for a #P-complete problem. However,
the interest in #P-complete problems has increased recently. There
have been a number of papers on counting problems and the class
#P, for instance Greenhill [41], Zhang [79], Dahllöf and Jonsson [17],
Vadhan [73], Goldberg and Jerrum [40], and Valiant [75].

Counting models for Boolean formulae, mainly #sat, has been
studied by several authors, e.g. [7, 29, 46]. The problem of model
counting is not only mathematically interesting, it has important ap-
plications within, for instance, artificial intelligence. Many ai reason-
ing tasks require counting the number of models or are reducible to
this problem [7, 65].

When it comes to the problem of counting models for Xsat,
#xsat, it is interesting to note that the exactness property makes
the problem similar to the problem of counting the number of per-
fect matchings in a graph. Consider the following reduction: Given
a graph G = (V, E), let each edge in E form a variable ei. For each
vertex in V make a clause vj consisting of all ei incident to it. The
conjunction of these clauses gives a formula FG. Any Xsat model
of FG corresponds to a perfect matching in G, since all vertices are
covered, but only once, and so the number of models equals the num-
ber of perfect matchings. If we let a = (V1, U3), b = (V2, U2), c =
(V2, U2), d = (V2, U3) and e = (V3, U2) then the problem of counting
perfect matchings for the instance given in Figure 1.8 can be expressed
as the #xsat instance (a), (b ∨ c ∨ d), (e), (b), (c ∨ e), (a ∨ d). We see
that the answer is 1, as there is only one model, namely

a = true, b = true, c = false, d = false, e = true

The best algorithm so far for counting matchings in a bipartite
graph is still the Ryser algorithm running in O (2n) [66], where n is
the number of vertices. Using the above reduction and our algorithm
for #xsat, we get a running time in O

(
1.2190|E|), where |E| is the
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Formula: (a ∨ b ∨ c)
Weights: w(a) = 1 w(ā) = 5

w(b) = 2 w(b̄) = 7
w(c) = 2 w(c̄) = 3

Figure 1.9: For this formula, a = false, b = false, c = true is a maximum
weighted x-model of weight 14

number of edges. As the number of edges may be quadratic in the
number of vertices, our algorithm is inferior in the general case. How-
ever, for graphs with a maximum degree of up to 7 (i.e. no vertex has
more than seven edges) we have a better running time. As far as we
know, this is the first algorithm for sparse graphs (a graph is sparse
when its degree is bounded by some (small) constant.)

The first non-trivial upper time bound for solving #xsat was
presented in 2002 by Dahllöf and Jonsson [17]. By reduction to the
#Maximum Independent Set problem an upper time bound of
O (1.7548n) was achieved. In 2004 Dahllöf and Jonsson [18] presented
an exact algorithm for #xsat with a running time in O (1.2190n). In
2005 Porschen [62] presented a O (1.3247n) time algorithm for #xsat

(or rather a variant where weights are associated to the variables and
the number of minimum weighted models is wanted). The algorithm
#D presented in Chapter 5 is essentially the same as in [18], how-
ever, we extend the algorithm to counting maximum weighted models.
That means that there are non-negative weights associated to each
literal, see Figure 1.9 for an example. For decision problems, the
adding of weights often makes a problem harder, 2sat, for instance is
in P (see [23]), while the weighted version is NP-complete as we shall
see. It is therefore interesting to see that for #xsat, the adding of
weights can be done without major modifications of the algorithm.

Our algorithm #D for #xsat is not as fast as our Xsat algo-
rithm, which is mainly due to the fact that Xsat can be solved in
polynomial time when there are no heavy variables. This is unlikely
to be the case for #xsat, since it would allow us to solve #Per-

fect Matching in polynomial time (because of the reduction shown
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Formula: (a ∨ b), (c ∨ b̄)
Weights: w(a) = 1 w(ā) = 1

w(b) = 1 w(b̄) = 7
w(c) = 2 w(c̄) = 3

Figure 1.10: For this 2sat formula, a = true, b = false, c = true is a
maximum weighted model of weight 10

above — no heavy variables are introduced.) Furthermore, there are
canonical rules that do not extend to counting, to the best of our
knowledge. One such example is resolution which, in the context
of Xsat, allows us to remove any variable a appearing both as a
and ā in an Xsat instance. Using clever choices of branching vari-
ables and the canonical rules we have at our disposal, we arrive at an
O (1.2190n) time bound for #D. We also present a dedicated algo-
rithm for #x3sat running in O (1.1461n) time, built along the same
lines.

1.2.4 Counting 2sat and Counting 3sat

In this thesis we will also consider #2sat and #3sat, i.e. the prob-
lems of counting models for 2sat and 3sat formulae. At a first glance,
they do not seem to belong to the Xsat family. However, it turns out
that #2sat is closely related to Max x2sat (to be presented in the
next section) and thus well defends its place here; #3sat is included
as a generalisation of #2sat.

Algorithms for #2sat and #3sat with better time bounds than
the trivial O (2n) bound have been presented by Dubois [29], Zhang
[79], Littman et al. [56] and Dahllöf, Jonsson and Wahlström [19]. In
Chapter 6, which extends the work in [17] and [19], and reproduces
[20], we improve on the previously best running times for both these
problems, with algorithms that count maximum weighted models. For
an example see Figure 1.10. Considering weights of solutions is not
only of theoretical interest in this context, but also opens the field for
more applications, as many reductions from other problems become
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possible, as seen for instance in [4] and later in Chapter 6.

For the problem of counting the number of maximum weighted
models for a 2sat formula, here referred to as #2satw, we present an
algorithm with a running time in O (1.2561n), significantly improving
on the previously best bound for #2sat of O (1.3247n), achieved in
[19]. There are several factors behind this improvement. One is a trick
that among other things provides a way to remove variables which
occur only once in a formula (i.e. in only one clause) in polynomial
time. Another factor is our method of analysis, where we use a special
measure of formula complexity combining the number of variables and
the number of clauses into a single value which is more representative
for formula complexity than the standard measure n, where n is the
number of variables. In a technical report by Fomin et al. [34] about
recent trends in the area of development of exponential algorithms,
this kind of approach seen as a new promising technique. In the
report they call it“Measure and Conquer”and they give examples of a
number of NP-hard problems that benefit from this technique, among
them the 3-colourability problem and other graph problems.

In an unpublished paper by Fürer and Kasiviswanathan [35], our
algorithm is re-analysed and the authors claim that they can prove
an O (1.2461n) time bound. In this paper, no new techniques are
introduced, the analysis is just refined.

To say something about the decision problem corresponding to
#2satw, we see that it is not 2sat, but rather a weighted variant,
2satw. We are not aware of any dedicated algorithms for this prob-
lem, but to get some idea of its hardness, one can note that it contains
Maximum Independent Set as a special case. It is thus NP-hard.

For #3satw, our algorithm has a running time inO (1.6737n), and
the previously best result for #3sat is O (1.6894n), achieved in [19].
This improvement is mainly due to a more precise complexity analysis,
where we use another measure of formula complexity to better capture
the effects of having 2-clauses in the formula. This measure is then re-
translated back to the useful measure n, the number of variables. As
for the corresponding decision problem, we are not aware of any non-
trivial worst-case time bounds for 3satw or any related optimisation
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problems, but one can note that the so far best exact polynomial
space algorithm for 3sat runs in O (1.4802n) time. One can also
mention that Khanna et al. [49] have obtained approximability results
for a number of problems, two of which are similar to #2satw and
#3satw, namely weighted Max Ones 2sat and weighted Max Ones

3sat. They are found to be poly-APX-hard, i.e. provided NP 6= P

there is no polynomial time algorithm that can return an answer
guaranteed to be within a constant factor from the correct answer.

Note that there is a close connection between graphs and 2sat

formulae, since disregarding any negations, a clause of length two can
be viewed as an edge in a graph, which is called the constraint graph
of a 2sat formula. In Chapter 6 we also present an algorithm that
counts weighted models for 2sat formulae having separable constraint
graphs. Simply speaking, a graph is separable if one relatively easy
can remove a subset of the vertices such that the graph falls apart in
two or more components of about the same size and these components
are not joined by any edges. While this class of formulae may sound
exotic, we will present interesting graph applications. The separable
graphs form a broad class, including many well-studied subclasses
such as geometric graphs, graphs embeddable on surfaces of bounded
genus, planar graphs, forests, grids, graphs with an excluded minor
and graphs with bounded tree width. Counting in many of those
classes still remains #P-complete as shown by Vadhan [73]. Yet the
restrictions can be used to obtain fast running times as we will show.

1.2.5 Maximum Exact Satisfiability

We have indicated the usefulness of Xisat and Xsat in the con-
text of propositional logic modelling. This suggests that the problem
of deciding the maximum number of simultaneously exactly satisfied
clauses is of interest. For that problem, Max xsat, some results are
already known. Madsen and Rossmanith [59] present results for two
restricted variants of the problem but no algorithm for the Max xsat

problem itself.

Max xksat is Max xsat restricted to formulae of maximum
clause length k. For k = 2 Madsen and Rossmanith present an
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Figure 1.11: Max Cut is the problem of finding and removing a set of the
vertices such that a maximum number of edges get “cut off,” i.e. get exactly
one endpoint removed. In this example, {V1, V3} is such a set

O
(
2m/4

)
time algorithm, where m is the number of clauses. Max

x2sat without unit clauses (clauses of length one) and variables that
appear both negated and unnegated, is equivalent to the Max Cut

problem, see Figure 1.11 (the clauses correspond to edges.) There is
an algorithm for Max Cut by Fedin and Kulikov [33] with a running
time in O

(
2|E|/4

)
(where |E| is the number of edges.) The algo-

rithm of Madsen and Rossmanith is almost identical to the one of
Fedin and Kulikov. It seems that the addition of unit clauses and
negation contributes little or nothing to the complexity of the prob-
lem. This reminds us of the situation for Xsat, where unit clauses
and negations can be dealt with using canonical rules. The currently
best algorithm for Max Cut, Max 2sat and Max x2sat by Kneis
and Rossmanith [51] runs in time O

(
1.1421K

)
, where K is m or |E|

depending on the problem.

The second problem for which Madsen and Rossmanith present
an algorithm is Restricted max xsat, which is Max xsat with the
additional restriction that no clause may contain more than one true
literal (i.e. clauses must be exactly satisfied or otherwise not satisfied
at all.) Their algorithm runs in O (1.3248n) time, which we improve
by reduction to #2satw to O (1.2561n) time.

Max xsat can of course be solved within O (2n) time, testing all
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assignments. No better upper time bound is known and in Chapter
7 we show that for every fixed k, Max xksat is at least as hard as
Max ksat, i.e. the corresponding Sat problem. Given the lack of
results for Max sat, we get an indication of the hardness of Max

xsat in terms of upper time bounds. We will make more comparisons
between Max xsat and Max sat in Chapter 7.

1.2.6 Max Hamming Exact Satisfiability

Most previous algorithms for optimisation problems have contented
themselves with producing one best or good-enough solution. How-
ever, there is often an actual need for several solutions that are as
different as possible. The notion of “as different as possible” can be
captured using the concept of Hamming distance. The Hamming
distance between two assignments to a set of variables is the num-
ber of variables on which they disagree. Somewhat surprisingly, the
maximum Hamming distance problems have only recently become an
area of academic research. The first paper (to the best of our knowl-
edge) by Crescenzi and Rossi [14] came in 2002. In their paper they
present some results on the hardness of approximating solutions to
various Boolean problems. Angelsmark and Thapper [5] present ex-
act and randomised algorithms for the general finite domain problem
(i.e. not only Boolean problems) as well as dedicated algorithms for
Max hamming sat. Hebrard et al. [42] consider a broader range of
problems, including finding solutions that are similar. They also test
some heuristic methods. The so far best exact algorithm for Max

hamming sat by Angelsmark and Thapper [5] runs in O (4n) time
(where n is the number of variables) and polynomial space.

When it comes to other Boolean problems of interest, one can note
that Max hamming nae sat (where a model is an assignment such
that every clause is satisfied, but there is at least one false literal in
each clause) is trivial if one model is known. Due to the nature of
the problem, every model has a symmetrical twin where the opposite
assignments are made. Hence, if the instance is satisfiable, there are
always two models at Hamming distance n and so the problem is
solvable in time O (2n).
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Exact algorithms for Max hamming xsat have not been con-
sidered before, and as the problem is not efficiently approximable
(see [14]), exact algorithms are not only of theoretical interest.

We will present two polynomial space algorithms P and Q for Max

hamming xsat and prove that they run in O (2n) and O (1.8348n)
time respectively. Previous algorithms for maximum Hamming prob-
lems have relied on an external solver for the base problem. P is
also such an algorithm. However, there is a novelty: By using a
polynomial time test, many unnecessary calls to the solver can be
avoided. Thereby the running time is improved substantially. Q rep-
resents something totally new in this area, because it works directly
on the inherent structure of the Max hamming xsat problem. More
precisely, a new kind of dpll branching is introduced. Though the
running time of P is slightly inferior to the running time of Q, there
are good reasons to present both algorithms: P resembles previous
algorithms and gives a hint on how they can be improved, and it is
easy to implement given an external Xsat solver. Furthermore, if
one is content with getting two models that have at least the Ham-
ming distance d, for some constant d, then P can be easily modified
to have a provably better upper time bound than Q. Apart from the
immediate interest of the Max hamming xsat problem itself, we
hope that the ideas presented here will also be applicable for other
problems such as Max hamming scheduling, Max hamming mis

and the like.

1.3 Summary of Results

We here summarise the main result of the thesis:

– For Xsat a polynomial space algorithm running in O (1.1730n)
time is presented.

– We show that Xisat is solvable in time O (1.4143n) (where n is
the number of variables) regardless of i if exponential space is
allowed. For polynomial space, we present an algorithm which
solves Xisat for all i strictly better than the trivial O (2n)
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bound. For i = 2, 3 and 4 we obtain upper time bounds in
O (1.5157n), O (1.6202n) and O (1.6844n) respectively. We also
present a dedicated X2sat algorithm running in polynomial
space and time O (1.4511n).

– For #xsat we present an O (1.2190n) time algorithm. We also
present an O (1.1487n) time algorithm for #x3sat .

– We present algorithms for counting maximum weighted models
for 2sat and 3sat formulae. They use polynomial space and
run in time O (1.2561n) and O (1.6737n) respectively, where n is
the number of variables. We also provide an algorithm for the
restricted case of separable 2sat formulae, with fast running
times for well-studied input classes.

– Regarding Max xsat, we show that for every fixed k there is
a polynomial reduction from Max ksat to Max xksat that
does not increase the instance in terms of variables. It is thus
reasonable to argue that Max xsat is at least as hard as Max

sat. By reduction to #2satw we also show that Restricted

max xsat is solvable in time O (1.2561n).

– We present two exact algorithms for Max hamming xsat,
i.e. the problem of finding two Xsat models at maximum Ham-
ming distance. Using the Xsat solver of chapter 3 as an aux-
iliary function, an O (2n) time algorithm can be constructed,
where n is the number of variables. This upper time bound can
be further improved to O (1.8348n) by introducing a new kind of
branching, more directly suited for finding models at maximum
Hamming distance.

1.4 Outline of the Thesis

After this first introductory chapter, Chapter 2 deals with prelimi-
naries, notation and problem definitions. We also relate a well known
method for estimating the worst case running time of branching algo-
rithms. The special requirements for how a clause gets satisfied yield
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a great deal of possibilities to reduce a formula in polynomial time,
when the formula contains certain structures. This is also elaborated
upon in this chapter. The special case where no variable occurs more
than twice in a formula is also known to be polynomial time decid-
able. For the sake of completeness a matching algorithm to that end
is given.

After the preliminaries and polynomial time procedures we treat
the various members of our family of problems. The thesis is divided
into three major parts given by the complexity classes of the problems.

The first part deals with the NP-complete decision problems Xsat

and Xisat. In the second part counting problems are considered.
The third part is devoted to optimisation problems. In each chapter
we present exact algorithms and/or reductions to obtain interesting
upper time bounds and hardness results. Finally we discuss the results
and give possible future research directions for our family of problems
and NP-hard problems in general.
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Chapter 2

Preliminaries

In this chapter we give the notation and definitions used in the thesis.
We also relate known results for estimating worst case running times
for branching algorithms; furthermore, canonical rules are given and
a matching technique for solving Xsat instances when there are no
heavy variables is presented.

2.1 Formula Related Concepts

A Boolean variable (or variable for short) has either the value true or
false. A literal b is either a variable a or the negation of a variable ā;
we say that the literal b is derived from the variable a. For a literal
b, V ar(b) is the variable from which it is derived.

The literal a is true iff V ar(a) is true and the literal ā is true
iff V ar(a) is false. When flipping a literal a (ā) one gets ā (a.)
A clause is a multiset of literals and the constants true and false.
The length of a clause x, denoted |x|, is its cardinality. The clause
with length 0 is called the empty clause. An n-clause has length n.
As a convention, a clause is presented with its members separated
by logical or (∨.) We sometimes need a subclause notation in this
way: (a ∨ b ∨ C), such that C is not a literal or constant, but rather
summarises several members of x. For instance, if C = c ∨ true then
(a∨ b∨C) = (a∨ b∨ c∨ true). As a convention, literals are indicated
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by lower-case letters and subclauses by upper-case letters.

For a clause x, V ar(x) is the set of variables from which the
literals of x are derived. Two clauses x and y are said to connect
if |V ar(x)∩ V ar(y)| > 0; if |V ar(x)∩ V ar(y)| > 1 we say that x and
y overlap. We say that a variable a occurs in a clause x if a ∈ V ar(x).

A formula is a set of clauses. As a convention, a formula is pre-
sented with its members separated by logical and (∧.) The formula
F such that |F | = 0 is called the empty formula. For a formula F ,
Var(F ) is ∪x∈F V ar(x).

Let b and b̄ be the two literals derived from the variable a; a is
said to be constant (in the formula F ) if only b or only b̄ occurs in
clauses of F . The degree of the variable c in a formula F , denoted
δF (c), is the number of clauses that contain at least one literal derived
from c. We omit the subscript F from δF (c) when there is no risk of
confusion. If δ(c) = 1 we call c a singleton. If δ(c) ≥ 3 we say that c is
heavy. δk(c) indicates the number of clauses of length k that contains
literals derived from c. The maximum degree of any variable in F is
denoted δ(F ).

To measure the complexity of a formula, we introduce the follow-
ing: n(F ) = |V ar(F )| and nd(F ) denotes the number of variables of
degree d; m(F ) is the number of clauses in F ; l(F ) denotes the length
of F , i.e. l(F ) =

∑

x∈F |x|.
A satisfying assignment or model is an assignment to every variable

of a formula such that there is at least one true member in each clause.
Note that the constant true is considered true under any assignment;
the constant false is false under every assignment. An extendible
assignment is an assignment to a subset of the variables, such that
no clause becomes false. Note that an empty formula has one model
and a formula containing the empty clause has no model.

An x-model is an assignment to the variables of a formula F such
that there is exactly one true member in every clause. The member
that exactly satisfies a clause is called a satisfactor. Given a formula
F , an assignment to the variables is inconsistent if any clause has
no true literal (it is unsatisfied) or more than one true literals (it is
over-satisfied.)
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The Hamming distance between two assignments is the number of
assignments to the individual variables that disagree.

Let a be a literal and α a literal or one of the constants true or
false, then F (a/α) denotes substitution of every occurrence of a by
α in the formula F . It is convenient to drop the restriction that both
a and α are a single element, and thus we also have the following two
variants:

1. Let a be a literal and C a multiset of literals, then F (a/C)
denotes substitution of every occurrence of a by C in the formula
F .

2. Let C be a multiset of literals and β one of the constants true
or false, then F (C/β) denotes substitution of every occurrence
of a member of C by β in the formula F .

The notation F (a/δ; b/γ) indicates repeated substitution: F (a/δ)(b/γ)
(first a is replaced and then b.)

For a given multiset of literals B = (a ∨ b ∨ c̄ ∨ . . .), the multiset
B̄ is the result of flipping all literals of B, i.e. B̄ = (ā ∨ b̄ ∨ c ∨ . . .).

2.2 Graph Related Concepts

A graph G = (V, E) is an ordered pair consisting of a finite (possibly
empty) set V of vertices and a set E of unordered pairs (u, v) of
distinct vertices, called edges. The size of a graph G, denoted |G|, is
its number of vertices. A set S of vertices is independent if (u, v) 6∈ E
for all u, v ∈ S.

We now define the constraint graph of a formula F as the graph
where the vertex set is the variables of F and the set of edges is

{(a, b) | the set (a, b) is a subset of V ar(x) for some x ∈ F}.

This graph is also known as a Gaifman graph, see [37].
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The neighbourhood of a vertex x in a graph G, denoted NG(x),
is the set of vertices having an edge in common with x. The neigh-
bourhood of a vertex set X is the union of the neighbourhoods of
the vertices of X. The neighbourhood of a variable in a formula F
is defined to be the corresponding neighbourhood in the constraint
graph. The extended size of the neighbourhood of x, S(x), we will
measure as S(x) = δ(x) +

∑

y∈N(x) δ(y).
A path x0, . . . , xk is a sequence of vertices such that each xi has

an edge to xi+1. We say that a formula is connected iff in the cor-
responding constraint graph, there is a path from each variable to
every other. Otherwise, the formula consists of connected components
and within each connected component this path-condition holds. The
components can be found in polynomial time by breadth-first search.

A graph is said to be n-regular if every vertex has degree n.

2.3 Problem Definitions

We are now able to give more precise problem definitions. Most of
the problems defined here belong to the Xsat family, while the others
are of interest due to kinship, either by reduction or from similarities
in structure.

– Maximum Independent Set (Mis):

Instance: A graph G.

Question: What is the size of the largest subset I of the vertices
of G such that no pair of the vertices of I is joined by an edge?

– Satisfiability (Sat):

Instance: A formula F .

Question: Is it possible to assign values to the variables of F
such that each clause contains at least one true literal?

– k-Satisfiability (ksat):

Instance: A formula F such that no clause contains more than
k literals.
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Question: Is it possible to assign values to the variables of F
such that each clause contains at least one true literal?

– Exact Satisfiability (Xsat):

Instance: A formula F .

Question: Is it possible to assign values to the variables of F
such that each clause contains exactly one true literal?

– General Exact Satisfiability (Xisat):

Instance: A formula F .

Question: Is it possible to assign values to the variables of F
such that each clause contains exactly i true literals?

The languages Xsat, X2sat, X3sat etc. are referred to as
sublanguages of Xisat.

– Counting Exact Satisfiability (#xsat):

Instance: A formula F .

Question: What is the number of x-models for F?

– Counting Weighted Exact Satisfiability (#xsatw):

Instance: A formula F with weights associated to every literal.

Question: What is the number of maximum weight x-models
for F?

– Counting Satisfiability (#sat):

Instance: A formula F .

Question: What is the number of models for F?

– Counting Weighted Satisfiability (#satw):

Instance: A formula F with weights associated to every literal.

Question: What is the number of maximum weight models for
F?
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– Maximum Satisfiability (Max sat):

Instance: A formula F .

Question: What is the maximum number of simultaneously sat-
isfiable clauses of F?

– Maximum Exact Satisfiability (Max xsat):

Instance: A formula F .

Question: What is the maximum number of simultaneously x-
satisfiable clauses of F?

– Restricted Maximum Exact Satisfiability (Restricted

max xsat):

Instance: A formula F .

Question: Under the additional restriction that no clause must
be over-satisfied, what is the maximum number of simultane-
ously x-satisfiable clauses of F?

– Maximum Hamming Exact Satisfiability (Max hamming

xsat):

Instance: A formula F .

Question: What is the maximum Hamming distance between
any two x-models of F?

2.4 Branching Algorithms and Estimations of

their Running Times

A common approach to exactly solve Boolean problems is to use so
called dpll style branching [22]. In its basic form, one variable a is
selected from the formula F and the problem of finding a model is
reduced to the problem of finding a model for either F1 = F (a/true)
or F2 = F (a/false); we say that we branch on a. A note here: strictly
speaking, we need to construct F1 and F2 as F1 = F (a/true; ā/false)
and F2 = F (a/false; ā/true), but for convenience we use the shorter
form.
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The basic dpll style branching can be generalised so that, given
an instance F , we branch on one or more variables, i.e. we assign
values to the variable(s) such that the problem for F is reduced to
the problem for two or more formulae F1, . . . , Fk with fewer variables.
Most of our algorithms to be presented are based on this principle.
By the nature of this approach, the running times will, in the worst
case, be exponential in the number of variables. In order to obtain
non-trivial worst case running times we want each Fi to shrink as
much as possible.

In the complexity analysis of our algorithms, we will often dismiss
some cases as ‘easy’ and not candidates for being the worst case.
One such easy case is when the instance is not connected: Assume
that we are using an exponential time algorithm β(F ) with a running
time in O

(
c|F |) for some measure |F | of the size of the formula F .

Furthermore, assume that the constraint graph of F falls apart into
two components F1 and F2 such that solving F1 and F2 separately,
their solutions can in polynomial time be combined to a solution for
F . We then get a running time in O

(
c|F1| + c|F2|

)
which is in O

(
c|F |),

i.e. the running time will never be worse if we have such a situation.
This of course also holds if we have more than two components.

In what follows, when presenting upper time bounds for expo-
nential time algorithms, any polynomial factor will be suppressed.
Furthermore, when giving time bounds in terms of the number of
variables, polynomial factors in the length of the formula will be sup-
pressed.

For the analysis of most of our algorithms, a method by Kullmann
will be used [53]. Consider the branching tree that the algorithm
(implicitly) constructs when applied to a problem instance. If a node
v in the tree has d branches, which are labelled with real, positive
numbers t1, . . . , td (think of these labels as measures of the reduction
of complexity in the respective branch), then the branching tuple for
v is (t1, . . . , td) and the branching number is the positive real-valued
solution of

d∑

i=1

x−ti = 1.
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The branching number of a branching tuple B is denoted by τ(B).
A branching tuple (t1, . . . , td) is said to dominate another branch-
ing tuple (u1, . . . , ud) if ti ≤ ui for all 1 ≤ i ≤ d, ensuring that
τ(t1, . . . , td) ≥ τ(u1, . . . , ud).

In most of our analyses, the labels of the branches will be the
decrease in the number of variables, i.e. for a branch from the formula
F to the formula F ′, the label will be ti = n(F )−n(F ′). In this case,
we will have a running time in O (αn) such that α is the largest
branching number found in the branching tree. In Chapter 6 we
encounter other ways to measure formula complexity.

Let R =
∑k

i=1 ri and note that due to the nature of the func-

tion f(x) = 1−∑k
i=1 x−ri , the smallest possible real-valued root will

appear when each ri is as close to R/k as possible, i.e. when the de-
crease of size of the instance is balanced through the branches. Say
for instance that R = 4, k = 2. Then τ(1, 3) = τ(3, 1) ≈ 1.4656 and
τ(2, 2) ≈ 1.4142. We will refer to this as the balanced branching ef-
fect. We will use the shorthand notation τ(rk, . . .) for τ(r, r . . . r

︸ ︷︷ ︸

k

, . . .),

e.g. τ(52, 33) for τ(5, 5, 3, 3, 3).

2.5 Canonisation

In [27] Drori and Peleg introduced the name canonical instance for an
instance of Xsat that cannot be simplified by a given set of polyno-
mial time pruning rules. The concept comes in handy when reasoning
about the time complexity — assuming that the instance is canonical
we can limit the number of possible cases to analyse. Foremost, how-
ever, it is used in the algorithms where a major goal is to create
non-canonical instances that can be pruned in polynomial time.

Canonical instances enjoy certain properties that we will list. Along
with the properties we describe transformations (rules) that guaran-
tee they are true. Although some rules may create violations of other
properties, we can continue transforming until all properties hold.
This process is guaranteed to terminate because each transformation
shrinks the formula F .
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Many of these transformations can be applied to other members
of our family of problems if extra structures are used, as we shall see.
Let F be a formula, F is said to be canonical if:

1. For every constant variable, only the positive literal
appears in the clauses.

If there is a variable a that appears only negatively, then let
F ← F (a/ā).

2. No clause contains the constants true or false.

If F contains a clause x = (true ∨ C) (where C is a multiset),
then remove x and let F ← F (C/false)

If F contains a clause x = (false ∨ C), then let x← C.

3. There are no 1-clauses.

If F contains the clause (a), then let F ← F (a/true).

4. There are no 2-clauses.

If F contains the clause (a ∨ b), then let F ← F (a/b̄).

5. No clause contains the same variable more than once.

If F contains the clause (a ∨ a ∨ C), then let F ← F (a/false).

If F contains the clause (a ∨ ā ∨ C), then let F ← F (C/false)
and remove the clause.

6. There is no constant variable a such that

(a) a occurs only in clauses with singletons or

(b) a occurs always with another constant variable b
and singletons, such that b always appears in clauses
with a.

If F contains such a variable a, then let F ← F (a/false).
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7. If two variables a and b both appear in two clauses x
and y, then a and b have the same sign in x and in y.

If x = (a∨ b∨C) and y = (ā∨ b∨D), then let F ← F (b/false)

If x = (a ∨ b ∨ C) and y = (ā ∨ b̄ ∨D), then let F ← F (a/b̄)

8. All variables are constant.

If there is a variable a such that there are two clauses x =
(a ∨ C1) and y = (ā ∨ C2), then

(a) Replace every clause (a ∨ C ′) by (C ′ ∨ C2)

(b) Replace every clause (ā ∨ C ′′) by (C ′′ ∨ C1)

(c) For every literal b ∈ C1 ∩ C2 let F ← F (b/false)

This rule is called resolution.

9. Any r-clause and any s-clause have at most r − 2 vari-
ables in common.

If there are two clauses x = (A ∨ b) and y = (A ∨ B), then let
x← (A ∨ b) and y ← (b̄ ∨B).

10. If there are clauses (a∨b1∨C1), (a∨b2∨C2), . . . , (a∨bk∨Ck)
(not necessarily distinct), then x = (b1 ∨ · · · ∨ bk) is not a
clause in F .

If such clauses exist, then let F ← F (a/false).

11. There is no pair of clauses x, y such that x ⊂ y.

If such clauses exist, then let F ← F (a/false) for each a ∈
y, a /∈ x and remove x.

12. There are no three clauses x = (a∨b∨c∨e), y = (a∨b∨C1)
and z = (a ∨ c ∨ C2) such that δ(a) = 3, e is a singleton
and δ(c) = δ(b) = 2

If the above configuration exists, then replace x, y and z by
(b ∨ C1) and (c ∨ C2)
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Lemma 1. The process of applying the above transformations on a
formula F terminates in polynomial time, measuring in n(F ).

Proof. All transformations but the first two run in polynomial time
and are guaranteed to remove variables. When transformation 2 does
not remove any variables it takes constant time (remember that when
measuring in n we disregard any polynomial factors in the length of
the formula) and the same holds for transformation 1. Then note
that the first transformation can be applied at most n times after any
transformation that removes variables, and that the non-removing
variant of the second transformation can be applied at most once.
Hence they contribute only a polynomial factor to the total running
time.

Note that resolution as formulated here may increase the length
of the formula, but only with a constant factor.

Lemma 2. Every transformation above preserves the x-satisfiability
of a formula F .

Proof. For most of the transformations the correctness is easily seen,
however, some transformations may need further clarification:

– Transformation 6: In a model where a is true, b and the single-
tons will be false. This implies that removing a, the formula is
still x-satisfiable (by b and singletons.) Similarly, a model where
a is false will still be a model for the formula with a removed.

– Transformation 9: In a model where b is true all of A must
be false, and one in B true. This is still the case after the
transformation. Similarly for the case b = false.

– Transformation 10: If a is true, x cannot be satisfied.

– Transformation 12: The configuration in the boldface allows
C1 = C2 =false, C1 = C2 = true, C1 = false when C2 = true
and C1 = true when C2 = false. This is still the case after the
transformation.
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Algorithm MatchDecide(F )

1. If there are any non-constant variables, apply resolution.

2. Let each clause form a vertex and add an edge between every
two clauses having a variable in common. This forms the graph
GF = (V, E).

3. Let S ⊆ V contain the clauses having no singleton variable. Let
the weight of an edge e be the number of endpoints it has that
belong in S (zero, one, or two.)

4. Find a maximum weighted matching in G. If that weight is
equal to |S|, then return ‘Yes’ otherwise ‘No’. Note that the
empty graph will produce ‘Yes’.

Figure 2.1: An algorithm for deciding Xsat when there are no heavy vari-
ables

2.6 Reduction to Matching

In this section we will present a polynomial time algorithm for decid-
ing the existence of models for instances of X13sat and Xsat where
all variables have degree at most 2, i.e. there are no heavy variables.
Such an instance, F , will be transformed into a graph GF , and a max-
imum weighted matching of a certain weight found in GF corresponds
to a model of the instance. Some more graph definitions are necessary
here: For an edge e = (u, v), u and v are called the endpoints of e. A
matching for a graph G = (V, E) is a subset of edges without com-
mon endpoints, not necessarily covering all vertices. Assuming each
edge has a non-negative weight, a maximum weighted matching is a
matching such that no other matching has higher weight. A maxi-
mum weighted matching is computable in polynomial time [36]. This
transformation technique was first presented by Porschen et al. in [63]
for use in their algorithm for X13sat. We here give our own, slightly
different, proof for the sake of completeness.
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Lemma 3. For an instance F of Xsat such that all variables have at
most degree 2, MatchDecide(F ) will in polynomial time return ‘Yes’
iff F is satisfiable and ‘No’ otherwise.

Proof. The first line ensures that all the variables of the instance are
constant.

To see that the maximum weighted matching found corresponds
to a model: For the clauses in S, make true the literals pointed out
by the edges of the perfect matching and all other literals false. For
the clauses of V − S, each clause covered by an edge assigns true to
the literal pointed out and false to the other literals of that clause.
For the uncovered clauses: Assign true to the singleton and false to
the other variables. This is a model since:

1. Each clause is satisfied.

2. No clause is over-satisfied. Each vertex/clause is covered by at
most one edge in the matching. Further, since each variable of
the instance is constant, making a literal false in any clause
will never cause over-satisfaction.

The algorithm runs in polynomial time since the number of ver-
tices is a polynomial in n.

Note that an empty clause makes the algorithm produce ‘No’,
and that the empty set of edges is a maximum weighted matching of
weight |S| for a graph without vertices, i.e. an empty formula has one
model.
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Chapter 3

Exact Satisfiability

In this chapter we encounter the archetype member of our family of
problems. We will here present an exact, polynomial space algorithm,
prove it correct and give an upper bound on its running time.

3.1 A Polynomial Space Exact Algorithm

A basic idea in our algorithm for Xsat is that when the ratio heavy
variables to the total number of variables is small enough (i.e. the
formula is sparse) we need only test all assignments to the heavy
variables, because for each such partial assignment it is possible to
use Lemma 3 to decide the x-satisfiability of the whole instance. The
procedure of testing all possible assignments to the heavy variables
and then deciding the instance using matching techniques, is referred
to as test-and-match.

The algorithm to be presented here improves upon the previous
ones by exploiting more thoroughly the concept of sparsity. The previ-
ous algorithms by Byskov et al. [10] and Dahllöf et al. [18] consist of a
series of cases. In the last case there is just one possible configuration
for heavy variables left and then test-and-match is used. In Figure
3.1 the configuration left by Dahllöf et al. is shown. We see that if
all heavy variables occur in this way, the ratio heavy variables to all
variables is at most 2 to 11. This is because in the worst case, all the
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(a ∨ b ∨ c ∨ d)
(a ∨ e ∨ f ∨ g)
(a ∨ h ∨ i ∨ j)

Figure 3.1: Part of an Xsat instance. δ(a) = 3 and the degree of the other
variables is at most 2

non-heavy variables have degree two, and every non-heavy variable
occurs in clauses with heavy variables. This gives a running time in
O
(
22n/11

)
⊆ O (1.1344n), using test-and-match. Näıvely branching

on a we would have a running time in O (τ(10, 1)n) ⊆ O (1.1975n)
(in the branch where a is true all variables are removed, in the other
branch only a.) We thus see that the test-and-match technique allows
us to avoid this branching.

The algorithm presented here leaves several configurations of heavy
variables and so many disadvantageous branchings can be avoided. In
the complexity analysis it is shown that the ratio n3(F )/n(F ) (the
only heavy variables left at the end are variables of degree three) is
still small enough with respect to the upper time bound we want to
establish.

The overall strategy of the algorithm DX for Xsat is to ensure a
certain sparsity so that the test-and-match technique can be efficiently
applied, at the same time avoiding disadvantageous branchings. In
particular, by dpll style branching we remove various kinds of over-
lapping clauses and other configurations that would allow too high a
ratio n3(F )/n(F ). In so doing we make a branching that in the worst
case removes one variable in one branch and 12 variables in the other.
That will decide the overall worst case running time of O (1.1730n).

The algorithm DX can be seen as a switch statement: Given
the instance F , apply the first line that is applicable. As for the
canonisation, we will assume that there is a line 0 that applies all the
rules of Chapter 2. This ensures that each of the following lines is
applied to a canonical instance.

For the sake of convenience we will denote sets of variables by
their extremal members, for instance, “b− e” is short for b, c, d, e.
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Algorithm DX(F )

1. Pick a variable a such that |N(a)| ≥ 11; return DX(F (a/true))
or DX(F (a/false))

2. For two clauses x = (C1∨C) and y = (C∨C2) such that |C| ≥ 3
or such that |C| = 2, in the latter case with these restrictions: If
|x| = 5, then |y| cannot be 5 or 6 and if x = (a∨b∨c∨d∨e), y =
(a ∨ b ∨ f ∨ g) and δ(b) = 2, then y must contain no singleton;
return DX(F ∧ C) or DX(F (C/false)).

3. For two clauses x = (a∨b∨C1) and y = (a∨b∨C2) such that a oc-
curs in a 3-clause; return DX(F (a/true)) or DX(F (a/false))

4. For three clauses x = (a ∨ b ∨ c ∨ d ∨ e), y = (a ∨ b ∨ C1) and
z =(a ∨ c ∨ C2) such that d and e are not singletons; return
DX(F ∧ (d ∨ e)) or DX(F (d/false; e/false))

5. For three clauses x = (a ∨ b ∨ c ∨ d ∨ e), y = (a ∨ b ∨ C1) and
z = (a ∨ c ∨ C2) such that e is a singleton and δ(b) = δ(c) = 2;
return DX(F (d/true)) or DX(F (d/false))

6. For three clauses x = (a ∨ b ∨ c ∨ d ∨ e), y = (a ∨ b ∨ f ∨ g ∨
h ∨ i) and z = (a ∨ c ∨ f ∨ j ∨ k); return DX(F ∧ (a ∨ b)) or
DX(F (a/false; b/false))

7. Pick a heavy variable a such that a does not occur in three 4-
clauses, two 4-clauses and a 5-clause, or two overlapping clauses;
return DX(F (a/true)) or DX(F (a/false))

8. (a) For a clause x = (a ∨ b ∨ c ∨ d) such that no member of x
is a singleton and a and b are heavy variables.

(b) or a clause y = (a ∨ b ∨ c ∨ d) such that δ(a) = 3 and
|N(b)| = 10

(c) or a clause z = (a ∨ b ∨ c ∨ d) such that no member of z is
a singleton, |N(a)| = 10 and |N(b)| ≥ 7
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(d) or a clause w = (a ∨ b ∨ c ∨ d) such that no member of w
is a singleton, δ(a) = δ(b) = 2 and a and b both appear in
a clause with a singleton;

return DX(F (a/true)) or DX(F (b/true)) or DX(F (a/false;
b/false))

9. For four clauses x = (a ∨ b ∨ c ∨ d ∨ e), y = (a ∨ b ∨ f ∨ g ∨ h),
z = (a∨C1) and w = (b∨C2) such that some of c – h are heavy
or appears in a 4-clause w′ = (α ∨ C3) such that α is heavy;
return DX(F ∧ (a ∨ b)) or DX(F (a/false; b/false))

10. For two clauses x = (a ∨ b ∨ c ∨ d ∨ e), y = (a ∨ b ∨ f ∨ g)
such that some of c – e are heavy or appears in a 4-clause
w′ = (α ∨ C3) such that α is heavy; return DX(F ∧ (a ∨ b)))
or DX(F (a/false; b/false))

11. For two clauses x = (a ∨ b ∨ c ∨ d) and y = (b ∨ e ∨ f ∨ g) such
that a is heavy and no member of x or y is a singleton; return
DX(F ∧ (b ∨ e)) or DX(F (b/false; e/false))

12. For two clauses x = (a ∨ b ∨ c ∨ d) and y = (c ∨ e ∨ f ∨ g)
such that a and e are heavy and such that no member of x
is a singleton; return DX(F (a/true)) or DX(F (b/true)) or
DX(F (a/false; b/false))

13. Test all possible assignments to the remaining heavy variables.
For each such partial assignment to the variables, apply the
canonical rule 2 and then use Lemma 3 to decide whether there
is a model. Return ‘True’ if such a model is found and ‘False’
otherwise.

Theorem 4. DX(F ) decides Xsat.

Proof. We proceed by inspecting the lines of DX. The invisible line
0 with all the canonical rules is correct by Lemma 2. The correctness
of lines 1 – 12 is obvious. Line 13 is correct by Lemma 3.

We now consider the worst case time complexity of DX.
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Theorem 5. DX(F ) runs in time O (1.1730n) where n = n(F ).

Proof. The time complexity analysis consists of a number of case and
subcase analyses. Typically the analysis of a case m will establish an
upper time bound Uα “for this case” which should be interpreted: If
throughout the whole execution of the algorithm, α is the only case
applicable, then Uα is an upper bound of the execution time. Hence
one can easily see that an overall upper time bound for the algorithm
is the maximum Uj established for all cases j.

1. This case clearly runs in time O (τ(1, 12)n) ⊆ O (1.1730n).

2. By the canonical rules 9 and 8, |C1|, |C2| ≥ 2. If |x| = |y| = 4
we get a running time in O (τ(5, 4)n) ⊆ O (1.1674n); if |x| = 5
and |y| = 4 we get a running time in O (τ(7, 3)n) ⊆ O (1.1586n)
(if a and b occur together in another clause at least one more
variable will be removed in the first call; if they occur in different
clauses both will be removed by resolution) or O (τ(6, 4)n) ⊆
O (1.1510n) (if no member of y contains a singleton, then the
second call will remove at least 4 variables); if |x| = 5, |y| = 5
and x and y overlap in 3 variables, we get a running time in
O (τ(5, 4)n); if |x| = |y| = 6 and |C| = 2, we get a running time
in O (τ(9, 2)n) ⊆ O (1.1618n). These cases dominate all other,
and so we get a running time in O (τ(5, 4)n) ⊆ O (1.1674n).

3. As |C1|+|C2| is 5, 6 or 7 the first call removes at least 9 variables.
In the second call, the 3-clause shrinks to a 2-clause which will
be removed by canonical rule 4. Thus this case runs in time
O (τ(9, 2)n) ⊆ O (1.1618n).

4. In the first call the variables c – e are removed. If d and e do not
occur together in another clause both will be removed; else they
must appear together in a clause of length 4, 5 or 6 and then
at least 2 more variables are removed. In any case, the first call
removes at least 5 variables. The second call and canonisation
creates the clauses x = (a∨b∨c), y = (c̄∨b∨C1) z = (a∨ b̄∨C2).
By resolution, b and c will be removed. Hence this case runs in
time O (τ(5, 4)n) ⊆ O (1.1673n).
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Remark 1 By now no variable a occurs more than thrice. Af-
ter line 1 it is still possible for a variable a to occur four times.
However, after lines 2 and 3 all such instances consist of over-
lapping 5-clauses (and possibly 4-clauses.) By lines 2 and 4 all
of these will contain a singleton and so a will be removed by
canonisation (rule 6.)

5. Since e is a singleton, d must occur in at least another clause
and so, when d is true, 7 variables are removed. When d is false
rule 12 is applicable and so this case runs in time O (τ(7, 3)n) ⊆
O (1.1586n).

Remark 2 Note that by now, the only remaining cases for a
5-clause to overlap with a 4-clause are these two: x = (a ∨
b ∨ c ∨ d ∨ e), y = (a ∨ b ∨ f ∨ g), z = (a ∨ h ∨ i ∨ j) or x =
(a∨ b∨ c∨ d∨ e), y = (a∨ b∨ f ∨ g), z = (a∨ h∨ i∨ j ∨ k) such
that both x and y contain a singleton and δ(b) = 2.

6. This is the only remaining case for a 5-clause x = (a∨b∨c∨d∨e)
and a 6-clause y = (a ∨ b ∨ f ∨ g ∨ h ∨ i) sharing two variables.
Because, by canonicity a must appear in at least one other clause
z. By line 1, z must contain no more than two variables not
seen in x and y. The case |z| = 3 is taken care of by line 3.
That leaves the only possibilities that z = (a ∨ c ∨ f ∨ j ∨ k)
or z = (a ∨ c ∨ j ∨ k). By lines 4 and 2 e and j must be
singletons. If b occurs elsewhere we trivially end up with a
running time in O (τ(9, 2)n) ⊆ O (1.1618n). Else, after the first
call z will contain two singletons and so we get a running time
in O (τ(9, 2)n) ⊆ O (1.1618n) here too.

Remark 3 By now, no 5-clause overlaps with a 6-clause.

7. If a occurs in two 3-clauses we will have a running time in
O (τ(3, 7)n) ⊆ O (1.1586n), if a occurs in two 4-clauses and
one 3-clause a running time in O (τ(9, 2)n) ⊆ O (1.1618n) and
if a occurs in two 4-clauses and one 6-clause a running time in
O (τ(13, 1)n) ⊆ O (1.1632n). These cases dominate all other.
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8. We look at the subcases:

(a) The case with x gives a running time in O (τ(10, 10, 4)n) ⊆
O (1.1610n),

(b) the case with y gives a running time in O (τ(10, 11, 3)n) ⊆
O (1.1721n),

(c) the case with z gives a running time in O (τ(11, 8, 4)n) ⊆
O (1.1694n),

(d) and as for the case with w, in both calls all members of
w will be removed and in the first call a clause with two
singletons will be created. Thus this subcase runs in time
O (τ(5, 4)n) ⊆ O (1.1674n).

For the entire case with all subcases we get a running time in
O (τ(10, 11, 3)n) ⊆ O (1.1721n).

9. As a and b occur without the other, in the first call at least
8 variables are removed and in the second at least 2 variables.
Now, if in either of these two calls a 2-clause is created we will
have a running time in O (τ(9, 2)n) or O (τ(8, 3)n). Otherwise
no new variables of degree higher than 2 are created and we will
have a limited number of possibilities as for what case of DX
will become applicable next. If one of c – h appears in w′, then
after the first call line 3 or 7 will be applicable and in the worst
case we get a running time in O (τ(17, 10, 2)n) ⊆ O (1.1720n).

Before we look at the other cases — that one of c – h is heavy —
we need to enumerate the remaining configurations of heavy
variables. In the following enumeration some variables are ob-
viously heavy, such as a. The status of the other is unspecified,
unless otherwise stated.

(a) 5-5-5a: x = (a ∨ b ∨ c ∨ d ∨ e), y = (a ∨ b ∨ f ∨ g ∨ h),
z = (a ∨ c ∨ i ∨ j ∨ k) and w = (b ∨ f ∨ l ∨m ∨ n).

(b) 5-5-5b: x = (a ∨ b ∨ c ∨ d ∨ e), y = (a ∨ b ∨ f ∨ g ∨ h),
z = (a ∨ c ∨ i ∨ j ∨ k) and w = (b ∨ l ∨m ∨ n).
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(c) 5-5-4a: x = (a ∨ b ∨ c ∨ d ∨ e), y = (a ∨ b ∨ f ∨ g ∨ h),
z = (a ∨ i ∨ j ∨ k) and w = (b ∨ l ∨m ∨ n).

(d) 5-5-4b: x = (a ∨ b ∨ c ∨ d ∨ e), y = (a ∨ b ∨ f ∨ g ∨ h),
z = (a ∨ i ∨ j ∨ k) such that δ(b) = 2.

(e) 5-5-4c: x = (a ∨ b ∨ c ∨ d ∨ e), y = (a ∨ b ∨ f ∨ g), z =
(a ∨ h ∨ i ∨ j ∨ k)

(f) 5-4-4: x = (a∨b∨c∨d∨e), y = (a∨f∨g∨h), z = (a∨i∨j∨k)

(g) 4-4-4: x = (a∨b∨c∨d), y = (a∨e∨f∨g), z = (a∨h∨i∨j)

Clearly, after the second call line 3 or 7 will be applicable and
we get a running time in O (τ(8, 11, 4)n) ⊆ O (1.1694n). Hence,
for the entire case we get a running time in O (τ(17, 10, 2)n) ⊆
O (1.1720n).

10. In the first call 6 variables are removed and in the second at
least 2 variables. Reasoning as in the previous case we see that
this case runs in time O (τ(15, 8, 3)n) ⊆ O (1.1709n).

11. In both calls all members of y will be removed and after the
second call line 7 will be applicable. Hence, this case runs in
time O (τ(13, 7, 4)n) ⊆ O (1.1694n).

Remark 4 Consider a 4-clause ω that contains at least one
heavy variable and has no singleton. By line 8(a) it contains
only one heavy variable. By line 11, if it shares a variable with
another 4-clause ω′, then ω′ must contain a singleton. By line
8(d), ω′ is the only 4-clause ω shares variables with.

12. In the first call at least 10 variables are removed. And in
the third at least 4. As for the second call, by Remark 4, b
must appear in another clause of length at least 5 and so at
least 8 variables are removed. Hence, this case runs in time
O (τ(10, 8, 4)n). However, in the last call the heavy variable e
occurs in a 3-clause which in the next step of DX will give a
running time in at worst O (τ(9, 2)n), and so this case runs in
O (τ(10, 8, 6, 13)n) ⊆ O (1.1718n) time.
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Remark 5 By Remark 4 and line 12 a 4-clause ω containing
a heavy variable and no singletons shares no variables with an-
other 4-clause containing heavy variables.

On the other hand, consider ω′ which is a 4-clause containing
a singleton and at least one heavy variable. By canonicity it
shares no non-heavy variables with another similar 4-clause.

13. We will again look at the above enumeration of configurations
to decide the ratio of heavy variables to all variables. For some
configurations we “claim” a number of non-heavy variables to
each heavy variable. We thus need to ensure that a claimed
variable is claimed only once. Consider the clause

w = (a ∨ b ∨ c ∨ d).

Say that a is heavy and b – d have degree two and are guaranteed
not to appear in another clause containing a heavy variable. As
a is the only neighbouring heavy variable, a may safely claim
all of b – d. However, sometimes the situation is more compli-
cated. For some configurations we cannot ensure that a claimed
variable is not claimed by other heavy variables. We then claim
fractions of non-heavy variables. For an example, consider again
w, but now say that a is heavy, and so are possibly also b and
c. However, d is guaranteed to be a singleton. Provided that b
and c do not claim more than one third each of d, a may also
claim one third.

(a) 5-5-5a: By line 4 both x and y must contain a singleton and
so by canonicity both c and f must be heavy. That means
that line 9 has already removed all appearances of this
configuration and we do not need to consider it anymore.

(b) 5-5-5b: To a and b we claim all of c, e, l, m, n and half of
d, f , g and h.

None of the wholly claimed can be claimed by another pair
of heavy variables in a 5-5-5b configuration because in x
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only a and b are heavy, c has degree 2 and by line 9 z cannot
play the role of x or y in another 5-5-5b configuration; e is
a singleton by line 7 and x cannot contain another heavy
variable by line 9. As for l – n, by line 9 none of them
can participate in x or y of a 5-5-5b configuration, by line
8 none of them are heavy and by Remark 5 none of them
can appear in another 4-clause having a heavy variable.

For this configuration we have a ratio of 2/9.

(c) 5-5-4a: To a and b we claim all of i – n and half of c – h.
The claiming of i – n is defended as the variables of w in
5-5-5b. By line 9 none of c – h can play the role of e or c
in a 5-5-5b configuration.

For this configuration we have a ratio of 2/11.

(d) 5-5-4b: To a we claim all of b, i – k.

For this configuration we have a ratio of 1/5.

(e) 5-5-4c: To a we claim all of b, f , g and half of c – e.

For this configuration we have a ratio of 2/11.

(f) 5-4-4: To a we claim all of f – k.

For this configuration we have a ratio of 1/7.

(g) 4-4-4: At least one clause, say x has no singleton and we
may safely claim b – d. In the worst case e, f , h and j are
heavy. We then claim one third of g and one third of j.

For this configuration we have a ratio of 3/14.

As 1/7 < 2/11 < 3/14 < 2/9 we see that this case runs in

O
(

2
2

9
n
)

⊆ O (1.1666n) time.

Examining all of the above cases we conclude that the running
time of DX is in O (1.1730n).
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Chapter 4

General Exact

Satisfiability

In this chapter we study a natural generalisation of Xsat. We first
present some features of the language Xisat, including canonical
rules. Then follow Sections 4.2 and 4.3, which present and anal-
yse two exact polynomial space algorithms: One for Xisat and one
dedicated algorithm for X2sat. Section 4.4 shows how to deal with
Xisat using exponential space.

4.1 Properties of the Xisat Problem

The Xisat problem is obviously NP-complete since Xsat ≤p
m Xisat:

Any occurrence of the literal a is replaced by i occurrences. (The
reader may recall that the notation p1 ≤p

m p2 means that there ex-
ists a polynomial reduction from the problem p1 to the problem p2.)
As one could imagine, for higher i our polynomial space algorithms
have worse running times. Surprisingly, this does not hold for the
exponential space algorithm to be presented.

We will use Roman numerals to indicate the number of true literals
a clause requires to be satisfied. For instance, x = (a ∨ b ∨ c ∨ d)ii is
a clause in an X2sat instance.
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One property of Xisat that will prove useful in the branching
algorithms is given in the following lemma:

Lemma 6. A formula F , where each variable occurs at most twice,
can be reduced in polynomial time to a formula F ′, such that F ′ ∈
Xsat iff F ∈ Xisat. Furthermore, the number of variables is in-
creased only by a polynomial amount and each variable in F ′ occurs
at most twice.

Proof. For a clause (a1 ∨ a2 ∨ a3 ∨ . . . ∨ ak)i we make the following
Xsat clauses, where the b’s are new variables:

x1 = (ā1 ∨ b1
1 ∨ b2

1 ∨ . . . ∨ bi
1)I y1 = (b1

1 ∨ b1
2 ∨ b1

3 ∨ . . . ∨ b1
k)I

x2 = (ā2 ∨ b1
2 ∨ b2

2 ∨ . . . ∨ bi
2)I y2 = (b2

1 ∨ b2
2 ∨ b2

3 ∨ . . . ∨ b2
k)I

x3 = (ā3 ∨ b1
3 ∨ b2

3 ∨ . . . ∨ bi
3)I y3 = (b3

1 ∨ b3
2 ∨ b3

3 ∨ . . . ∨ b3
k)I

...
...

... yi = (bi
1 ∨ bi

2 ∨ bi
3 ∨ . . . ∨ bi

k)I

xk = (āk ∨ b1
k ∨ b2

k ∨ . . . ∨ bi
k)I

First note that an assignment satisfying (a1 ∨ a2 ∨ a3 ∨ . . . ∨ ak)i

also allows an assignment satisfying the new Xsat clauses: Assume
w.l.o.g. that a1 – ai are true and ai+1 – ak false. One solution is to
assign all bl

l (i.e. a1
1, a

2
2, . . . , a

i
i) true and the other b’s false. For the

other direction: If we consider the clauses x1 – xk as a matrix X (as
depicted, i.e. the first column is ā1 – āk), then we see that the clauses
y1 – yi force exactly one true literal in each column of X, except the
first column. As the number of y’s is i, that means that i of the
clauses in X get satisfied and in these i of the a’s will become true
(because the āx’s will be false.) In the other clauses of X, the a’s will
be false.

In the reduction we need to add i ·k new variables for each Xisat

clause. As each variable occurs at most twice in F , the number of
clauses of F is a polynomial in n, and so n(F ′) is a polynomial in
n(F ).

To illustrate this reduction, consider the clause x = (a∨b∨c∨d)ii.
The resulting Xsat clauses are shown in Figure 4.1.
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(ā ∨ k ∨ l)i (k ∨m ∨ o ∨ q)i

(b̄ ∨m ∨ n)i (l ∨ n ∨ p ∨ r)i

(c̄ ∨ o ∨ p)i

(d̄ ∨ q ∨ r)i

Figure 4.1: An instance of Xsat equivalent to the clause (a ∨ b ∨ c ∨ d)ii

We now conclude the following:

Corollary 7. For a formula F where each variable occurs at most
twice, it is polynomial time decidable whether F ∈ Xisat.

The corollary follows from Lemma 3 and Lemma 6.
In the branching algorithm for Xisat to be presented later, the

recursive decomposition will create various kinds of constraints repre-
sented as clauses, that is, when setting the variables of a clause, other
clauses will be affected. For instance, the clause (a∨b∨c∨d)ii, which
requires two true literals to be satisfied, will become (a∨ b∨ c)i if d is
set to true. When there are different types of clauses (that require a
different number of true literals) in a formula, we say that it is mixed.

Some of the canonical rules of Chapter 2 extend to Xisat, others
do not. For clarity of presentation we here present the ones used in
this chapter. It is straightforward to see that they can be enforced in
polynomial time and that they do not change the Xisat satisfiability
when applied to a formula F . For our general Xisat solver we use
only the first rule, but the dedicated algorithm for X2sat uses all of
them.

1. Pick an Xisat clause with i+k singletons. Remove k singletons.

2. Pick a clause (a ∨ b)i, remove it and let F ← F (a/b̄)

3. Pick an Xisat clause A such that |A| = i. Remove it and let
F ← F (aj/true) for all literals aj of A.

4. Pick two clauses (a ∨ b ∨ A)i and (ā ∨ b ∨ B)i and let F ←
F (b/false)
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5. For two Xisat clauses (A) and (A ∨B) let F ← F (B/false)

6. If there are two clauses x = (A ∨ B)ii and y = (A ∨ B̄)ii, such
that |B| (mod 2) = 1 or |B| > 4, then let F ← {()}

7. If there are two clauses x = (A ∨ b ∨ c)ii and y = (A ∨ b̄ ∨ c̄)ii,
then let F ← F (b/c̄)

8. For two Xisat clauses (a ∨A) and (A ∨ b), let F ← F (a/b)

9. If there are two clauses (a ∨ A ∨ b)ii and (ā ∨ A ∨ c)ii, then let
F ← F (b/c̄)

10. If there are two clauses (a ∨ b ∨ A ∨ c)ii and (ā ∨ b̄ ∨ A ∨ d)ii,
then let F ← F (c/d̄)

11. If there are two clauses (a ∨ b ∨ c ∨ d ∨ e ∨A)ii and (ā ∨ b̄ ∨ c̄ ∨
d̄ ∨ ē ∨B)ii, then let F ← {()}

12. If there are two clauses (a∨b∨c∨d∨A)ii and (ā∨ b̄∨ c̄∨ d̄∨B)ii,
then let F ← F (A/false; B/false)

13. If there are two clauses (a∨ b∨ c∨A)ii and (ā∨ b̄∨ c̄∨B)ii, then
let F ← F (A/false; B/false)

4.2 A Polynomial Space Exact Algorithm

The basic idea behind all known polynomial space algorithms for
Xsat has been dpll style branching. One way to deal with Xisat

is to generalise the approach, so that for a certain clause y, we
test all

(|y|
i

)
assignments to the variables of y making i literals true.

That makes
(|y|

i

)
recursive calls, in each of which |y| variables are re-

moved — when i literals are true, the rest have to be false and so |y|
variables are set. Of course the length of y is crucial for the running
time. Short clauses (in comparison with i) are good w.r.t. the running
time. However, long clauses are also good. In Table 4.1 is an overview
of the first sublanguages of Xisat and the first clause lengths. Each

entry is calculated as
(|y|

i

)n/|y|
. Using this table, we can easily find



4. General Exact Satisfiability 59

L Xsat X2sat X3sat X4sat

1 * * * *
2 * * * *
3 3n/3 < 1.45n 3n/3 < 1.45n * *
4 4n/4 < 1.42n 6n/4 < 1.57n 4n/4 < 1.42n *
5 5n/5 < 1.38n 10n/5 < 1.59n 10n/5 < 1.59n 5n/5 < 1.38n

6 6n/6 < 1.35n 15n/6 < 1.58n 20n/6 < 1.65n 15n/6 < 1.58n

7 7n/7 < 1.33n 21n/7 < 1.55n 35n/7 < 1.67n 35n/7 < 1.67n

8 8n/8 < 1.30n 28n/8 < 1.52n 56n/8 < 1.66n 70n/8 < 1.71n

9 9n/9 < 1.28n 36n/9 < 1.49n 84n/9 < 1.64n 126n/9 < 1.72n

10 10n/10 < 1.26n 45n/10 < 1.47n 120n/10 < 1.62n 210n/10 < 1.71n

Table 4.1: Running times for Di should it always encounter the same kind
of clause; the first column indicates clause length and ‘*’ indicates polyno-
mial time

a clause which is the best choice, i.e. gives the fastest running time.
We call such a clause preferable. We need a lemma showing that it is
polynomial time computable to find a preferable clause.

Lemma 8. For any instance of Xisat, where i is fixed, it is polyno-
mial time computable to find a preferable clause.

Proof. Looking at Table 4.1, we see that it consists of real numbers,
which we cannot represent. And obviously, for long clauses the float
number representation will not do. However, note that we actu-
ally only need to compare all the clauses pairwise in order to find

a preferable clause and due to the fact that
(|y1|

i

)n/|y1|
<
(|y2|

i

)n/|y2|
iff

(|y1|
i

)n·|y2|
<
(|y2|

i

)n·|y1|
, this obstacle can be overcome.

We also need to show that the longest clause length is a polynomial
in n. We will assume that no clause contains the same literal a more
than i times (in this trivial case a can be directly set to false.) Thus,
the longest clause has length at most 2in (then it contains all possible
literals.)

As the formula changes during the recursive decomposition of gen-
eralised dpll branching, different clauses will become preferable. Our
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Algorithm Di(F )

1. If there is an Xisat clause with i + k singletons, then remove k
of those singletons;

2. If 3/5 or less of the variables are heavy, then test all possible
assignments to these variables. For each such partial assignment
to the variables, use Corollary 7 to decide if there is a model.

3. Pick a preferable clause y with as few singletons as possible
and make

(|y|
i

)
recursive calls, where each call is on the form

Di(F (a1/true; a2/true, . . . ,∨ai/true, ai+1/false, . . .)).

Figure 4.2: Algorithm Di for deciding Xisat

algorithm Di, as shown in Figure 4.2, elaborates on this idea. For clar-
ity of presentation we assume that a variable occurs in each clause at
most once. (Loosening of this restriction would not introduce any new
worst cases, but it would introduce some uninteresting technicalities.)
We also assume that in the substitution, if a (partial) assignment is
made such that any clause becomes over-satisfied or too short to ever
be satisfied, then the unsatisfiable formula F = {()} is the result. The
purpose of line 2 is to limit the number of singletons in the following
lines. It works by forcing a certain percentage of the variables to be
heavy. The choice of 3/5 is made so that it works well for the first
sublanguages. A higher ratio would give a worse upper time bound
for X2sat, while a lower would not limit the number of singletons
sufficiently. As will become clear in the time complexity analysis, it
is reasonable to believe that for higher i a larger constant will give
a better trade-off. Note that when F is small enough, line 2 is ap-
plicable and so the recursion ends. Line 1 will limit the number of
singletons in a preferable clause when the clause is long. The benefit
of this will become clear in the time complexity analysis.

Theorem 9. Di(F ) decides whether F ∈ Xisat.

Proof. Line 1 is a canonical rule. Line 2 is correct by Corollary 7.
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Line 3 is correct since all models for F must have i literals true in
y.

We now examine Di w.r.t. time complexity. Let TDi indicate the
running time of Di(F ).

Theorem 10. For every fixed i, TDi is in

O
(

max

{

max
m≤n
i≤m

(
m

i

)1/m

, 1.5157

}n)

⊆ O
(

2(1−ε)n
)

for some ε such that 0 < ε < 1.

Proof. Line 1 takes polynomial time to execute. As for line 2, we
can safely disregard the polynomial time work spent on matching.
Hence the interesting thing is the size of the recursion tree, which is
23n/5 ≈ 1.5157n. Similarly for line 3, we disregard the polynomial

work done. The recursion tree of Di(F ) has size at most
(
m
i

)n/m
and

so the first big-Oh expression is justified.

To justify the O
(
2(1−ε)n

)
inclusion, first note that

(
m
i

)n/m
=

2log2 (m
i )

n/m

= 2
n
m

log2 (m
i ). Then, remember that

(
m
i

)
is the number of

subsets of size i whose elements are picked from a set of size m. As
the power set has size 2m,

(
m
i

)
is always smaller than that. Hence

it follows that log2

(
m
i

)
< m and so 2

n
m

log2 (m
i ) = 2(1−ε)n for some ε

0 < ε < 1.

We now try to refine the analysis to achieve a tighter upper time
bound. Unfortunately, in order to do that we need to know the worst
clause length for every sublanguage. Looking again at Table 4.1 one
could think that the worst clause length is 2i+1. However, that is not
always the case. Extending the table, one can see that the pattern
is changed for x12sat where the worst clause length is 26. It is still
an open problem where to find the worst clause length for a given
sublanguage. However, for the first sublanguages we can perform a
better analysis:
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Theorem 11. For X2sat, X3sat and X4sat TDi is in O (1.5157n),
O (1.6214n) and O (1.6848n) respectively.

Proof. Starting with X2sat, we need to take a closer look at line 3.

Once line 3 has been applied, the formula is likely to have become
mixed, and so in the general case, y might be a clause requiring one or
two true literals. If y requires one true literal we have a worst clause
length of 3, where 3 branches are made, in each of which 3 variables are
removed. If the algorithm always did this branching, we would have
a branching tree of size O (1.4423n). If y requires two true literals, we
will have a worst case when |y| = 5. If Di always had to branch upon

such a y, we would have a running time in O
((

5
2

)n/5
)

⊆ O (1.5849n).

However, note that due to the previous lines and the fact that y has
the smallest possible number of singletons, at most one variable of y
is a singleton. (Line 1 is not strong enough to impose this, but line 2
ensures that there are clauses with at least 4 heavy variables.) That
means that in each of the 10 calls, other clauses will be affected. As
y was most preferable, all clauses must be X2sat clauses of length
5, and of the 10 calls at most one call will not set a literal true
in another clause (even in the worst case, only one combination of
the non-singletons will not set a literal true, see Figure 4.3.) Hence,
for the worst case, in 9 of the recursive calls the algorithm will in
the immediately following step encounter an Xsat clause of length
4 and in one recursive call encounter an X2sat clause of length 4.
This means that we will have an upper time bound O (cn) where
c = τ(96, 99·4) ≈ 1.5149. In this case, line 2 will decide the overall
running time of the algorithm.

Looking at Table 4.1, let us examine the other clause lengths that
are possible worst-case candidates.

1. Clause length 4: In this case there will be at most one singleton
in the clause picked and so we get c = τ(75·3, 73) ≈ 1.5113.

2. Clause length 6: As 2·6
5 = 2.4 there may be two singletons in the

clause we picked. Hence we get c = τ(1114·5, 112·10) ≈ 1.5055.
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(a ∨ b ∨ c ∨ d ∨ e)ii (ā ∨ a1 ∨ a2 ∨ a3 ∨ a4)ii

(b ∨ b1 ∨ b2 ∨ b3 ∨ b4)ii

(c ∨ c1 ∨ c2 ∨ c3 ∨ c4)ii

(d ∨ d1 ∨ d2 ∨ d3 ∨ d4)ii

Figure 4.3: For this configuration and the assignment a = e = true, no
Xsat clause will be created, instead the next step of Di will branch on some
X2sat clause of length 4

3. Clause length 7: As 2·7
5 = 2.8 there may be two singletons in the

clause we picked. Hence we get c = τ(1319·6, 132·15) ≈ 1.4657.

4. Clause length 8: 2·8
5 = 3.2 but line 2 prevents the possibility of

three singletons. Hence we get c = τ(1526·7, 152·21) ≈ 1.4345.

When it comes to X3sat and X4sat the analysis is almost iden-
tical. Here c will be τ(1333·15, 132·20) and τ(17123·56, 173·70) respec-
tively.

4.3 An Algorithm for X2sat

The use of canonisation has proved fruitful in the construction of
algorithms for Xsat, and so one could hope that the use of more
canonical rules would improve Di further (in terms of proved upper
time bounds.) However, the problem is that while canonisation helps
improve many cases such as overlaps between clauses, many single-
tons and few occurrences of heavy variables, yet the worst case of
the algorithm still remains, namely: All clauses have the worst possi-
ble length, no pair of clauses share more than one variable and there
are many heavy variables. For X2sat we have constructed an al-
gorithm that obtains a better upper time than Di. The algorithm
D2(F ), as shown in Figure 4.4, carefully chooses variables to branch
on, uses canonisation, and arrives at the bad case described. Then
the algorithm picks a clause that has two heavy variables a and b. It
makes three recursive calls, D2(F (a/true; b/true)), D2(F (a/b̄)) and
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D2(F (a/false; b/false)). By a careful case analysis of how D2 be-
haves in the three calls, an interesting time bound can be established.
When this case is no longer applicable, it can be shown that there are
sufficiently few heavy variables left and the test and match technique
can be used.

The following theorem establishes the correctness of D2:

Theorem 12. D2(F ) will correctly decide whether F has an X2sat

model.

Proof. We look at the non-trivial cases of D2:

1. Correct, as a model must be a model for all components.

2. If the clause is an Xsat clause, then both a and b cannot be
true, so the two cases 1) one of a and b is true; 2) both are
false, cover all possibilities. If the clause is (ā∨ b̄∨ c̄)ii, it is in
effect identical to (a ∨ b ∨ c)i and so this is also correct.

3. The two cases cover all possibilities: Either it holds that one of
a and b and one of c and d are true, or it holds that both a and
b are true and the other two false or vice versa.

4. When c = true it holds that a 6= b.

5. Both of b and c cannot be true, and so all possible cases are
covered.

6. One of b = true and b = false holds. In the first case one of
a = true and a = false holds.

7. Zero, one or two literals of A are true.

8. The second branch covers the two possibilities a = true, b =
false and a = false, b = true.

9. Correct by Lemma 3 and Lemma 6.
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Algorithm D2(F )

0. Canonise F and if n(F ) < 10, then perform an exhaustive search
to find a model

1. If F is not connected, then, for the connected components
F1, . . . , Fj return ‘Yes’ if all calls D2(Fi) produces ‘Yes’ and
return ‘No’ otherwise

2. Pick a clause (a∨b∨A)i or a clause (ā∨b̄∨c̄)ii; return D2(F (a/b̄))
or D2(F (a/false; b/false))

3. Pick a clause (a ∨ b ∨ c ∨ d)ii; return D2(F (a/b̄; c/d̄)) or

D2(F (a/b; c/d; b/d̄))

4. Pick two clauses (a ∨ b ∨ c ∨A)ii and (ā ∨ b̄ ∨ c ∨B)ii such that
the intersection between V ar(A) and V ar(B) is empty; return
D2(F (c/true; a/b̄)) or D2(F (c/false))

5. Pick two clauses (a ∨ b ∨ c ∨ A)ii and (ā ∨ b ∨ c ∨ B)ii; return
D2(F (b/c̄; a/true)) or D2(F (b/c̄; a/false)) or D2(F (b/false;
c/false))

6. Pick two clauses (a∨b∨A)ii and (ā∨b∨B)ii; return D2(F (a/true;
b/true)) or D2(F (a/false; b/true)) or D2(F (b/false))

7. Pick two clauses x = (A∨B)ii and y = (A∨C)ii such that |A| ≥
2; return D2(F ∪ (A)ii) or D2(F ∪ (A)i) or D2(F (A/false)).

8. Pick a clause x = (a∨b∨A)ii where a and b are heavy variables;
return D2(F (a/true; b/true)) or D2(F (a/b̄) or D2(F (a/false;
b/false).

9. Cycle through all possible assignments to the heavy variables.
For each such partial assignment to the variables, transform the
instance to an Xsat instance, using the reduction of Lemma 6,
then use the matching techniques by Lemma 3.

Figure 4.4: Algorithm D2 for deciding X2sat
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Theorem 13. Algorithm D2 runs in time O (1.4511n).

Proof. We examine each of the cases:

0. Runs in polynomial time.

1. This case will not increase the running time.

2. We look at the possible subcases:

(a) We picked a clause (a ∨ b ∨ c ∨ d)i: In the first branch, in
the call D2(F (a/b̄)) we will have the following steps: The
clause will become (b̄∨b∨c∨d)i which will become (true∨
c ∨ d)i. Then the clause is removed and c and d replaced
by false and hence 3 variables are removed. The second
branch will result in the following steps: (false ∨ false ∨
c∨d)i, (c∨d)i. The clause (c∨d) will then be immediately
taken care of by the canonisation step following. Hence,
this case runs in O (τ(3, 3)n) ⊆ O (1.2600n) time.

(b) We picked a clause (a ∨ b ∨ c)i: In the first branch, when
a is replaced by b̄, c will be put to false, so two variables
are removed. In the other branch, when a = b = false,
the clause (c)i is created and three variables are removed
in this branch. Hence, this case runs in time O (τ(3, 2)n) ⊆
O (1.3248n).

(c) We picked an Xsat clause longer than 4. The worst case is
when the clause has length 5. This case runs in O (τ(4, 2)n)
⊆ O (1.2721n) time.

(d) We picked a clause (ā ∨ b̄ ∨ c̄)ii. This case runs in time
O (τ(3, 2)n) ⊆ O (1.2721n).

3. This case runs in O (τ(2, 3)n) ⊆ O (1.2600n) time.

4. As the formula has been canonised, |A ∪ B| ≥ 3 and so in the
first branch at least 5 variables are removed (c is true and b∨ b̄
equals true so the literals of A and B are set to false.) Hence,
we have a running time in O (τ(5, 1)n) ⊆ O (1.3248n) time.
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5. This case runs in O (τ(4, 4, 2)n) ⊆ O (1.4143n) time.

6. By case 2, both clauses are longer than 4 and so this case runs
in O (τ(5, 5, 1)n) ⊆ O (1.4511n) time.

7. Doing a näıve analysis like in previous cases, looking only at
the direct effects, we would obtain very bad figures. For ex-
ample, assuming |x| = |y| = 5 and |A| = 2, we would reason
that in the first branch 2+3+3 variables are removed, in the
second 1 variable and in the third 2 variables, giving an up-
per bound in O (τ(8, 1, 2)n) ⊆ O (1.6408n). However, doing
the same reasoning as in Di, broadening the perspective to the
branchings that will be done immediately afterwards, we end
up with better time bounds. In our example, the first branch
we cannot say more about, and so we stay with 8 variables re-
moved. In the second branch, however, we will have the two
clauses (B)i = (a∨ b∨ c) and (C)i = (d∨ e∨ f), and case 1 will
be applicable twice. Following their way downward the recur-
sion tree, see Figure 4.5, we see that effectively, there will be
four branches and the number of variables removed are 6, 5, 6
and 7 respectively (the one variable removed by the explicit cre-
ation of (A)i included.) We may continue and reason similarly
about the third branch, however, the figures we obtained are
good enough: O (τ(8; 6, 5, 6, 7; 2)n) ⊆ O (1.4401n). Note that
the sign ‘;’ is used to help the reader see how the expansion is
done. We now look at the remaining cases:

(a) For |A| = 2, we have already described the worst case,
because if any of B and C are longer than 3 we will be
able to remove more variables.

(b) For |A| = 3; if |B| = |C| = 2 we note that the second
branch can be expanded to two branches due to the ex-
plicit creation of (A)i and so we get a running time in
O (τ(4; 5, 4; 3)n) ⊆ O (1.4253n). If |B| = 2, |C| = 3 we note
that the second branch can be expanded to four branches
and we get a O (τ(5; 5, 6, 6, 7; 3)n) ⊆ O (1.4276n) running
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2 3

3 2 2 3

PSfrag replacements

(a ∨ b ∨ c)

(d ∨ e ∨ f)(d ∨ e ∨ f)

a = b̄

d = ēd = ē

a = b = false

d = e = false d = e = false

Figure 4.5: Two steps of D2 applying the first case on Xsat clauses of
length 3; the numbers indicate how many variables are removed
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time. If |B| = |C| = 3 we may expand each of the three
branches, the first to two branches, the second to eight
branches and the third to two, thereby obtaining a running
time in O (τ(9, 8; 8, 8, 7, 7, 7, 6, 9, 8; 8, 7)n) ⊆ O (1.3993n).
When we look back in the complexity analysis we see that
the worst case possible for any Xsat clause or any X2sat

clause shorter than 5 is that in one branch 2 variables are
removed and in the other 3. As this was the case for all
extra branchings when |B| = |C| = 3 we are now done
with the subcase of |A| = 3.

(c) For |A| = 4, we note that due to the canonical rules it
holds that |x|+ |y| > 10 so the first subcase to consider is
|B| = 1, |C| = 2. As a matter of fact, we will have only
two branches, because in the third branch the formula will
immediately be found unsatisfiable by the canonisation.
Hence this case runs in O (τ(3, 2)n) ⊆ O (1.3248n) time. If
|B| = |C| = 2 a näıve analysis show that we have a running
time in O (τ(4, 2, 4)n) ⊆ O (1.4143n). For |B| = |C| = 2
we also have the bound O (τ(4, 2, 4)n) ⊆ O (1.4143n). For
|B| = 2, |C| = 3 we get the bound O (τ(5; 4, 4; 4)n) ⊆
O (1.3888n). If |B| = |C| = 2, then we get a running
time in O (τ(6; 3, 3; 4)n) ⊆ O (1.4459n) and this is clearly
the worst case for |A| = 4.

(d) For |A| = 5, when |B| = 1, |C| = 2, we get a running time
in O (τ(3, 2, 5)n) ⊆ O (1.4300n). The case |B| = |C| = 2
gives a bound O (τ(4, 2, 5)n) ⊆ O (1.3803n). If |B| = 2 and
|C| = 3, then we get a running time in O (τ(5, 1, 5)n) ⊆
O (1.4511n). For |B| > 2 and |C| = 3 we have a bound
O (τ(6; 4, 2; 5)n) ⊆ O (1.4352n) (the second branch is ex-
panded by making use of the clause (A)i.) The other cases
are all better than this last one. We also see that for
|A| > 5 we will have no case worse than the ones already
analysed.

8. We know that there are X2sat clauses y, y′ and z such that
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a ∈ y, a ∈ y′, b ∈ z and b ∈ z′ which, by the earlier cases, are all
different from x, do not share any other variables than a and b
and are at least 5 in length. That means that there is a subset
of the formula looking like this (ȧ indicates a or ā):

y = (ȧ ∨ c ∨ c′ ∨ C)ii

y′ = (ȧ ∨ d ∨ d′ ∨D)ii

x = (a ∨ b ∨ a′ ∨ a′′ ∨A)ii

z = (ḃ ∨ e ∨ e′ ∨ E)ii

z′ = (ḃ ∨ f ∨ f ′ ∨ F )ii

We will examine the cases depending on |x|, using the same
expanded view as in the previous case:

(a) If |x| = 5, then there are five variants depending on the
actual look of ȧ and ḃ — none of the dotted variables is
negated, one is negated, etc.

None of the dotted is negated: This case runs in O (τ(21,
194, 176, 154, 13; 3, 4; 4, 5)n

)
⊆ O (1.4413n) time. The first

branch can be extended into 16 branches, taking care of
the four Xsat clauses created by a = b = true. The first
figure, 21, is 5 (obtained from x) +4 + 4 + 4 + 4 (obtained
from the other four clauses.) Note that due to the balanced
branching effect, the worst case will be when |y| = |y′| =
|z| = |z′| = 6.

One of the dotted is negated: This case runs inO
(
τ(17, 153,

133, 11; 3, 4; 8, 6, 9, 7)n
)
⊆ O (1.4138n) time.

Two of the dotted are negated: This case runs inO (τ(13, 11,
11, 9; 3, 4; 12, 10, 10, 8, 13, 11, 11, 9)n) ⊆ O (1.4001n) time.

Three of the dotted are negated: This case runs inO (τ(9, 7;
3, 4; 16, 143, 123, 10, 17, 153, 133, 11)n

)
⊆ O (1.3934n) time.

All of the dotted are negated: For this case we will have a
running time inO

(
τ(5; 3, 4; 20, 184, 166, 144, 12, 21, 194, 176,

154, 13)n
)
⊆ O (1.3920n).
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(b) For |x| = 6 we can of course make the same subcase analy-
sis as above, however, by now we have seen that due to the
balanced branching effect, we only need to look at the case
when no dotted is negated. This case has a running time
in O

(
τ(22, 20, 203, 186, 164, 14; 4, 4; 4, 5)n

)
⊆ O (1.4396n).

(c) For |x| = 7, in the third branch, when a = b = false,
there will be a X2sat clause of length 5 created. We will
not expand that branch and so we get a running time
in O

(
τ(23, 214, 196, 174, 15; 5, 3; 2)n

)
⊆ O (1.4400n) time.

Clearly, there is no need to examine the cases when |x| > 7
as they will all be better than this one.

9. As each clause has length at least 5 and contains at most one
heavy variable, the ratio heavy variables to the total number of
variables is at most 2/6. Thus, this case runs in time O

(
21/3

)
⊆

O (1.12600n).

Inspecting all the above cases, we conclude that the overall running
time is in O (1.4511n).

4.4 Solving Xisat in Exponential Space

From the above algorithms and properties presented, it seems reason-
able that the running time of an algorithm for deciding Xisat should
always depend heavily upon the actual i. However, that is not the
case. In the early 1980’s, Shroeppel and Shamir found a way to solve
a class of NP-complete problems in time O

(
2n/2

)
⊆ O (1.4143n) and

space O
(
2n/4

)
⊆ O (1.1893n). There has been a recent interest in

this kind of algorithms, for instance, Williams’ [77] exponential space
algorithm for Max 2sat and related problems.

One member of this class is Xsat, and in order to illustrate the
algorithm, the reader may have a look at Figure 4.6. The formula
shown contains 5 variables. We now divide these into four groups.
Within each group we test all possible assignments to the variables
and for each such assignment we make a multiset of the clauses that
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x = (a ∨ b ∨ c ∨ e), y = (ā ∨ d ∨ b), z = (c ∨ b)

a e S(a, e) b S(b) c S(c) d S(d)

0 0 {y} 0 {} 0 {} 0 {}
0 1 {x, y} 1 {x, y} 1 {x, z} 1 {y}
1 0 {x}
1 1 {x, x}

Figure 4.6: Solving Xsat in exponential space

become exactly satisfied. We then proceed by picking one multiset
from each group such that adding all these multisets, we get a multiset
{x, y, z}, i.e. all clauses are satisfied exactly once. In the example, we
pick the first multiset from S(a, e), the first from S(b), the second
from S(c) and the first from S(d). We see that this corresponds to
the model a = false, e = false, b = false, c = true, d = false.

There are two conditions a problem must satisfy in order for the
algorithm of Shroeppel and Shamir to be applicable: First, that given
a solution (or rather an assignment in the solution space), the problem
instances satisfied by the solution must be enumerable in polynomial
time and space, and second, that a problem instance can be split in a
way such that the split operation enjoys certain algebraic properties.

One could think that the enumerability requirement makes the
algorithm inapplicable to problems involving Boolean formulae (given
an assignment one can construct an infinite set of formulae for which
that is a model.) However, as explained by Shroeppel and Shamir,
we may consider the formula fixed (namely the input formula) and so
the requirement boils down to simple evaluation.

In the context of Xisat, a possible implementation of their algo-
rithm is just extending the Xsat algorithm above: If we want two
literals true in y, we want the resulting overall multiset to contain
two occurrences of y etc. The multiset can be represented by a list
indicating the number of true literals in each clause.

To make this a little bit more formal: The Xisat instance is
described by a list of variables and a list of numbers indicating for
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each clause how many true literals it needs to be satisfied, i.e. i.
Now split the variable list in four parts and for each part, tabulate all
possible assignments to the variables, and for each assignment make a
list indicating for each clause how many literals become true. We now
have four tables and want to scan them to see if there are four lists
which can be piece-wise added so that the list (i, i, i, . . .) is obtained.
If these four lists are found the formula has an Xisat model. We will
not go into details on how the search is done. Instead, we will restate
the main theorem of Shroeppel and Shamir and then prove that the
split-operation described for Xisat makes the theorem applicable.
First however, we need to define the following:

A binary operator ⊕ is a monotonic composition operator iff

1. for all problem instances P ′ and P ′′, |P ′ ⊕ P ′′| = |P ′|+ |P ′′|

2. for any two solutions x′ to P ′ and x′′ to P ′′ there is a simple
concatenation x′x′′ which is a solution to P ′ ⊕ P ′′.

3. for every solution x to P any any representation of x as x′x′′,
there are problems P ′ and P ′′ such that x′ solves P ′, x′′ solves
P ′′ and P = P ′ ⊕ P ′′.

4. P ′ ⊕P ′′ can be computed in polynomial time (in the lengths of
P ′ and P ′′.)

5. There is a total ordering < such that |P ′| = |P ′′| and P ′ < P ′′

imply that P ′ ⊕ P < P ′′ ⊕ P and P ⊕ P ′ < P ⊕ P ′′.

Theorem 14. (Shamir and Shroeppel) If a set of problems is
polynomially enumerable and has a monotonic composition operator,
then its instances of size n can be solved in time T = O

(
2n/2

)
and

space S = O
(
2n/4

)
.

In the above described representation of Xisat the requirement of
polynomially enumerability is satisfied as, for a fixed formula, simple
evaluation reveals whether an assignment satisfies the formula. Fur-
thermore, in our case, ⊕ is the concatenation of the variable lists of
P ′ and P ′′ and the piece-wise addition of the list of numbers. It is
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easy to see that it is monotonic (for property 5 use lexicographical
ordering.)

Two final remarks here: As pointed out already by Shamir and
Shroeppel, Sat cannot be solved by this method, because there is no
monotonic composition operator (property 5 fails.) Furthermore, the
method requires that the size of the formula is a polynomial in the
number of variables.
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Part III

Counting
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Chapter 5

Counting Exact

Satisfiability

This chapter deals with the counting problems corresponding to the
decision problems Xsat and X13sat. We first give some extra pre-
liminaries needed in this and the following chapter. We then present
the algorithms, prove them correct and analyse them with respect to
worst case time complexity.

5.1 Preliminaries

Recall that two clauses are said to connect if there is at least one
variable p occurring in both clauses. If p occurs as the same literal,
the connection is in the same sign. We say that the clauses x and y
n-connect iff they share n variables. This is a generalisation of the
concept of overlapping clauses (the reader may recall that two clauses
overlap if they share at least two variables.)

The canonical rule 6 can be used to remove superfluous singletons.
Say for instance that there is a clause (a ∨ b ∨ c) such that a and b
are singletons. The choice of variable to remove — a or b — is rather
arbitrary. For every model where a = true and b = false there is
a model where a = false and b = true. This means that in order
to use the canonical rules in a counting algorithm we must introduce
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x = (a ∨ b ∨ c), y = (a ∨ d)

M1 : {a = true, b = false, c = false, d = false}
M2 : {a = false, b = true, c = false, d = true}
M3 : {a = false, b = true, c = false, d = true}

Figure 5.1: In this Xsat instance, b and c are singletons. As can be seen,
there are three models

additional structures to keep track of removed variables. For this we
have the following:

To each literal ai a variable c(ai) ∈ N is associated; the vector c
containing these weights is called a cardinality vector. Its purpose is
to keep track of the number of maximum weighted models.

Similarly to the cardinality vector, we introduce a weight vector for
keeping track of the contribution to the weight of the models arising
from eliminated variables.

Let F be a formula, and let L be the set of all literals for all
variables occurring in F . Given a weight vector w and a model M for
F , we define the weight of M as

W(M) =
∑

{l∈L | l is true under M}
w(l)

We use the acronym mwm for maximum weighted model.

Given a cardinality vector c and a model M for F , we define the
cardinality of M as

C(M) =
∏

{l∈L | l is true under M}
c(l)

This intuitively means that in a dpll style canonising algorithm,
“remaining” models carry the information about symmetrical models
that have been removed using canonisation.

To give an example of the use of the cardinality vector, we have the
formula of Figure 5.1. For clarity of presentation, we will not consider
weights here. Initially, each entry of the cardinality vector holds 1.
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Now, assume that we want to remove the superfluous singleton c.
Then the remaining singleton b must represent both. In a model
where b is true, c is false. However, we know that there is a model
where b is false and c is true. When b is false, c must also be false.
Therefore, when removing c, we update the cardinality vector in this
way: c(b̄)← c(b̄) · c(c̄) = 1 and c(b)← c(b) · c(c̄) + c(b̄) · c(c) = 2. The
formula now consists of the clauses x = (a∨ b), y = (a∨d). Assigning
a true, we get a model with cardinality c(a) · c(b̄) · c(d̄) = 1; assigning
a false we get a model with cardinality c(ā) · c(b) · c(d̄) = 2. Thus, we
see that the number of models has not changed by the removal of c.

We will now give the following definition of #xsatw, which some-
what modifies our previous definition. Let M ′ be an arbitrary mwm

for F if any exist and S(F ) denote the set of x-models for F :

– Counting Weighted Exact Satisfiability (#xsatw):

Instance: A formula F , a cardinality vector c and a weight
vector w.

Question: What is the tuple
(
∑

M∈S(F ) C(M),W(M ′)
)

?

If F has no x-models, then the tuple is (0, 0).

We will assume that canonisation is performed in the function
Prop, which takes a formula F and applies canonical rules. When a
variable a is removed its weight (or rather the weight of the literals a
and ā) must be preserved and similarly for the cardinality. We have
seen one example of how the cardinality is preserved when removing
singletons. However, as we will see, there are other situations that
require other solutions. Prop returns a tuple (F ′, C, W, c′, w′) such
that F ′ is the canonical formula obtained from F , C is a multiplicative
contribution to the number of mwm’s coming from removed variables,
W is a similar (additive) weight contribution to the maximum weight,
and c′ and w′ are modified cardinality and weight vectors.

The following rules of Chapter 2 will be used: 2 – 7, 9 and 11.
Rule 6, however, is weakened to the following:

No clause contains more than one singleton.
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For a clause (a ∨ b ∨ . . .) such that a and b are singletons we remove
a.

Rule 9 is weakened to the following:

There is no pair of clauses x = (A ∨ a) and y = (A ∨ b).

If there are two clauses x = (A ∨ a) and y = (A ∨ b), then let F ←
F (a/b̄).

In case an inconsistency is discovered, the tuple ({()}, 0, 0, c, w) is
returned. When we substitute a constant or expression for a literal
in F , we need to update the structures accordingly. Below let a and
b denote any literals. The first thing that happens in Prop is that W
and C are initialised to 1. We then apply the canonical rules and the
following modifications:

1. When we set a ← false (a ← true), we set C ← C · c(ā) (C ←
C · c(a)) and W ←W + w(ā) (W ←W + w(a).)

2. If a variable a is removed without being assigned a definite value
(such as might be the case in rule 5, second case, where a clause
w = (a ∨ ā ∨ . . .) is removed without assigning a a value) we
have three cases:

(a) if w(a) = w(ā), then let W ←W +w(a) and C ← C(c(a)+
c(ā))

(b) if w(a) < w(ā), then let W ←W + w(ā) and C ← C · c(ā)

(c) if w(a) > w(ā), then let W ←W + w(a) and C ← C · c(a)

3. When applying rule 4 (for 2-clauses), removing a we set w(b)←
w(b) + w(ā), c(b)← c(b) · c(ā), w(b̄)← w(b̄) + w(a) and c(b̄)←
c(b̄) · c(a).

4. When applying the weakened rule 6 removing a, we set c(b̄)←
c(b̄) · c(ā), w(b̄)← w(b̄) + w(ā) and then we have three cases:

(a) if w(b) + w(ā) = w(b̄) + w(a), then let w(b)← w(b) + w(ā)
and c(b)← c(b) · c(ā) + c(b̄) · c(a).
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(b) if w(b) + w(ā) < w(b̄) + w(a), then let w(b)← w(b̄) + w(a)
and c(b)← c(b̄) · c(a).

(c) if w(b) + w(ā) > w(b̄) + w(a), then let w(b)← w(b) + w(ā)
and c(b)← c(b) · c(ā).

Lemma 15. Let (F ′, C, W, c′, w′) ← Prop(F, c, w) and (C ′, W ′) ←
#xsatw(F ′, c′, w′). Then, (C · C ′, W + W ′) =#xsatw(F, c, w).

Proof. By Lemma 2 we know that the canonical rules are correct for
deciding the existence of a model. Let us now inspect the modifica-
tions above:

1. Obviously correct.

2. We choose the value of a such that a mwm is obtained.

3. If a is true b must be false and vice versa.

4. The remaining singleton b represents both singletons. If b is
false, then a must also be false. We then have the three cases
when a singleton is true: If both possibilities have equal weight,
we add their cardinalities. Otherwise, we keep only the maxi-
mum weighted possibility.

Because of the bookkeeping involved in using the Prop(F, c, w)
auxiliary function and the c and w vectors, the actual process of
branching on a variable or performing an assignment and making a
number of recursive calls in the algorithms is somewhat lengthy, and
will not be written explicitly in the algorithms. Instead we will use
the phrase (recursively) branch on F1, . . . , Fk as a shorthand for the
procedure below. Before presenting it we need some more preliminar-
ies.

We say that given a formula F and a set Γ = {F1, . . . , Fk} of
formulae, such that V ar(Fi) ⊆ V ar(F ) for the members Fi of Γ, Γ
covers F if the following holds:
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1. For different Fi, Fj ∈ Γ, Fi and Fj have no models in common.

2. Every model for F is a model for some Fi.

For an example, consider any formula F and F1 = F (a/true),
F2 = F (a/false). Clearly, F1 and F2 have no models in common
(because they assign different values to a), and every model for F is
a model for either F1 or F2. For Xsat we have more complicated
situations. For instance, if F contains the clause (a ∨ b ∨ c), then
F1 = F (a/true), F2 = F (b/true), F3 = F (c/true) cover F .

We assume that our algorithm, here denoted β, is given a formula
F and that F1, . . . , Fk cover F . Let wA(Fi) denote the weight of
the literals that are explicitly created when Fi is derived from F ,
for instance, wA(F (a/false)) = w(ā); cA(Fi) is defined accordingly,
i.e. cA(F (a/false)) = c(ā). Now, branching on F1, . . . , Fk refers to
the following:

1. Let (F1, C1, W1, c1, w1) ← Prop(F1, c, w), . . . , (Fk, Ck, Wk, ck, wk)
← Prop(Fk, c, w).

2. Let (C ′
1, W

′
1)← β(F1, c1, w1), . . . , (C ′

k, W
′
k)← β(Fk, ck, wk).

3. Let W1 ← wA(F1)+W1 +W ′
1, W2 ← wA(F2)+W2 +W ′

2, . . . , Wk ←
wA(Fk) + Wk + W ′

k and C1 ← cA(F1) · c1 · c′1, C2 ← cA(F2) · c2 ·
c′2, . . . , Ck ← cA(Fk) · ck · c′k.

4. Let Wheavy ← {WI , WII , . . . , Wj} be the (possibly singleton) set
of maximum valued W ’s and return (CI + CII + . . . + Cj , WI).

Intuitively, the first line will canonise all the formulae to branch
on; the second line performs all the recursive calls on these now canon-
ical formulae; the third line “glues together” the result of canonising
formula Fi with the result of recursively solving the canonical Fi; in
the fourth line the mwm’s are collected. We need a lemma for the
correctness of this construct:

Lemma 16. The result of recursively branching on F1, . . . , Fk given
the formula F equals #xsatw(F, c, w).
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Algorithm #D3(F, c, w)

1. If n(F ) ≤ 9, then return #DE(F, c, w)

2. If F is not connected, then assuming the connected components
are F1, . . . , Fk, let (Ci, Wi)← #D3(Prop(Fi, w)) for each of the
connected components and return (

∏
Ci,
∑

Wi)

3. Pick any c such that δ(c) ≥ 3 and branch on F (c/true) and
F (c/false)

4. Pick any non-constant c and branch on F (c/true) and
F (c/false)

5. For two clauses x = (a ∨ b ∨ c) and y = (c ∨ d ∨ e) such that x
contains no singleton, branch on F (c/true) and F (c/false)

6. Pick any non-singleton variable c and branch on F (c/true) and
F (c/false)

Figure 5.2: The algorithm #D3 for solving #x3sat

Proof. Lines 1 and 2 are straightforward. Line 3 is correct by Lemma
15. Line 4 is correct by the fact that F1, . . . , Fk cover F , and the
observation that we choose the mwm’s only.

5.2 Algorithm for #x3satw

In this section we will present the algorithm #D3 for #xsatw when
the clause length is at most 3. We assume there will be an auxiliary
algorithm #DE that performs an exhaustive search on smaller in-
stances of bounded size in order to solve the problem. The algorithm
is shown in Figure 5.2.

For the correctness of #D3 we have the following theorem:

Theorem 17. #xsatw(F, c, w) = #D3(F, c, w).
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(a ∨ b ∨ c)

(c ∨ d ∨ ē)

(ē ∨ f ∨ g)

(g ∨ h ∨ ī)

(̄i ∨ j ∨ a)EDBC@A

Figure 5.3: A canonical formula where each clause connects with two other,
and each connection is in the same sign

Proof. We look at the cases of #D3:

1. This case is correct by assumption.

2. Having connected components F1, . . . , Fk, any mwm of Fi can
be combined with any mwm of Fj (i 6= j).

3. This and the remaining cases are correct by Lemma 16.

As usual, we want as many clauses as possible to be removed by
an assignment of a variable. The following lemma deals with the
clauses surrounding any pair of clauses, and it will come in handy in
the complexity analysis:

Lemma 18. For any two connected 3-clauses x and y in a canonical
formula, there are clauses x′ and y′ such that x connects with x′ and
y connects with y′.

Proof. For a 3-clause z to connect with only one other clause z ′, the
connection must be in two variables since there are no clauses having
two singletons, by the weakened rule 6. However, this cannot be, as
rule 9 prohibits two 3-clauses to share two variables. This means that
every clause connects with at least two different clauses and so the
lemma follows.
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x = (a ∨ b ∨ c)
y = (c ∨ d ∨ e)
x′ = y′ = (a ∨ f ∨ e)

Figure 5.4: A canonical formula where each clause connects with two other

Note that it might be that x′ = y′, as in Figure 5.4. This will create
some extra cases to consider in the analysis.

Theorem 19. #D3 runs in O (τ(5, 5)n) ⊆ O (1.1487n) time.

Proof. We look into the cases of #D3 to find the one which gives
the upper time bound. Let T (n) denote the running time of #D3.
Note that as all clauses have length at most three, a shrinking clause
means that at least one variable is removed. For clarity we will often
show how a 3-clause shrinks to a 2-clause. We say that an assignment
yields a certain number of removed variables and shrunken clauses.

1. This case takes constant time, as the exhaustive search will be
applied only to instances of fixed size.

2. Connected components will not increase the running time.

3. When c participates in three clauses, x, y and z, we know that
there is no other connection among these clauses, since the in-
stance is canonical. There are two cases:

(a) c has the same sign in all clauses: x = (a ∨ b ∨ c), y =
(c∨ d∨ e), z = (c∨ f ∨ g). The assignment c = true yields
{ā, b̄, d̄, ē, f̄ , ḡ}. Furthermore, since the three clauses are
not the whole of the instance (by case 1) and are connected
(by case 2) there will be at least one more clause v connect-
ing with x, y or z. In the worst case v will not be satisfied,
but it will anyhow shrink. The second branch, c = false,
yields {(a∨ b), (d∨ e), (f ∨ g)}. Thus, T (n) ∈ O (τ(8, 4)n).
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(b) c has not the same sign in all clauses: x = (a ∨ b ∨ c), y =
(c∨ d∨ e), z = (c̄∨ f ∨ g). The assignment c = true yields
{ā, b̄, d̄, ē, (f ∨ g)} and at least two more shrunken clauses
while c = false yields {(a ∨ b), (d ∨ e), f̄ , ḡ} and at least
one more shrunken clause; T (n) ∈ O (τ(7, 5)n).

It is obvious that c occurring in three clauses is the worst case
for c participating in more than two clauses.

4. Let x and y be the clauses containing c and c̄ and x′ and y′ the
clauses in contact with x, y, which we know exist by Lemma 18:

(a) x′ = y′. If x and y connect with x′ in one variable each, say
a and e, then the worst case will have x′ = (a∨ e∨ f) and
then c = true yields {ā, b̄, (d ∨ e), (e ∨ f)} and c = false
yields {d̄, ē, (a ∨ b), (a ∨ f)}; T (n) ∈ O (τ(5, 5)n).

(b) x′ 6= y′. The clause satisfied by c will yield {ā, b̄} and since
at least one of these participates in another clause, that
clause will at least shrink. The clause containing c̄ will
shrink as well. That removes at least five variables and
the branch for c̄ is symmetric; T (n) ∈ O (τ(5, 5)n).

5. We know that there are two other clauses x′ and x′′ connecting
with x and by Lemma 18 there is one clause y′ (and possibly
another clause y′′) connecting with y:

(a) x′ = y′ = (a∨d∨f), x′′ = y′′ = (b∨e∨g). We know that f 6=
g holds as the instance is connected, the instance contains
more than three clauses and no variable occurs more than
twice. The assignment c = true yields {ā, b̄, d̄, ē, f, g} and
since either f or g (or both) occur in another clause z, the
two other variables of z will be removed and in turn cause
other variables to be removed or clauses to shrink. The
assignment c = false yields {(a ∨ b), (d ∨ e), f̄ , ḡ} and at
least one shrunken clause; T (n) ∈ O (τ(11, 6)n).
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(b) x′ = y′ = (a ∨ d ∨ f), x′′ = (b ∨ g ∨ h). The assignment
c = true yields {ā, b̄, d̄, ē, f, (g ∨ h)} and since either d or
f connects with another clause z, the two other variables
of z are removed which causes at least two more clauses to
shrink. The assignment c = false yields {(a ∨ b), (d ∨ e)};
T (n) ∈ O (τ(10, 3)n).

(c) x′ = (a ∨ f ∨ g) 6= y′ = (e ∨ h ∨ i), x′′ = (b ∨ j ∨ k). The
assignment c = true yields {ā, b̄, d̄, ē, (f ∨g), (j∨k), (h∨i)}
and c = false yields {(a∨ b), (d∨ e)}; T (n) ∈ O (τ(8, 3)n).

6. As for the last case, each clause connects with exactly two other
clauses, and the connection is in the same sign — a circle-like
form, see Figure 5.3. The substitution F (c/true) will open the
circle and the ending clauses will contain two singleton vari-
ables each. Prop will then consume the entire formula. The
other branch works similarly. By Lemma 1 this case runs in
polynomial time.

Straightforward calculations give that O (τ(8, 3)n) ⊆ O (1.1461n),
O (τ(5, 5)n) ⊆ O (1.1487n) and the other cases are dominated by these
two cases. Thus, #D3 runs in O (1.1487n) time.

5.3 Algorithm for #xsatw

In this section we will present #D which counts models for instances
of arbitrary clause length. Its correctness and a bound for its running
time will also be proved. The algorithm can be seen in Figure 5.5.

Theorem 20. #xsatw(F, c, w) = #D(F, c, w).

Proof. The correctness proof of #D(F, w) is similar to the one for
Theorem 17. The only thing that needs justification is that the cases
of the algorithm are actually exhaustive, i.e. all possibilities are cov-
ered.

Let us study the possible structure of the instance after each case:
After case 3 all variables must be constant; after case 4 all clauses
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Algorithm #D(F, c, w)

1. If |F | ≤ 9, then return #DE(F, c, w)

2. If F is not connected, then assuming the connected components
are F1, . . . , Fk, apply (Ci, Wi)#D(Prop(Fi, w)) to each of the
connected components and return (

∏
Ci,
∑

Wi)

3. Pick any non-constant variable c and branch on F (c/true) and
F (c/false)

4. Pick a variable c and a variable d such that there are two clauses
x and y where c, d ∈ x and c, d ∈ y; branch on F ∪ (c ∨ d) and
F (c/false; d/false)

5. Pick any non-singleton variable c in a clause x of length 3 and
branch on F (c/true) and F (c/false)

6. Pick any non-singleton c occurring in no clause of length 4 and
branch on F (c/true) and F (c/false)

7. Pick a clause (a∨b∨c∨d) where all variables are non-singletons
and branch on F (a/true), F (b/true), F (c/true) and F (d/true)

8. The instance contains this structure: (a∨b∨c∨d), (a∨C1), (b∨
C2), (c∨e∨f∨g), where d and e are singletons and |C1| and |C2|
are at least 3; branch on F (a/true), F (b/true) and F ∪ (c ∨ d).

Figure 5.5: The algorithm #D for #xsat
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connect in one variable only; after case 5 all clauses have length at
least 4; after case 6 each clause either has length 4 or has length ≥ 5
and connects only with clauses of length 4; after case 7 each clause
of length 4 has one singleton and each such clause must connect with
at least one other clause of length 4 (since the longer clauses do not
connect.) Thus, for the instances remaining, case 8 will be applicable
and the algorithm is correct.

Theorem 21. #D runs in O (τ(7, 7, 7, 7)n) ⊆ O (1.2190n) time.

Proof. We look at the non-trivial cases:

3. The worst case here is obviously when c appears in only two
clauses c ∈ x and c̄ ∈ y.

(a) |x| = |y| = 3: c = true removes the two other variables in
x and makes y shrink. The other branch is symmetric and
so this case runs in O (τ(4, 4)n).

(b) |x| = 3, |y| = 4: c = true removes the two other variables
in x. The other branch removes the three other variables in
y and makes x shrink. Thus, this case runs in O (τ(3, 5)n).

(c) |x| ≥ 4, |y| ≥ 4: c = true removes the three other variables
in x. The other branch is symmetric. Hence this case runs
in O (τ(4, 4)n). We also see that any increase of length in
either x or y will make the running time even better.

4. The worst case here is x = (a∨b∨c∨d∨e), y = (c∨d∨e∨f ∨g)
which runs in O (τ(6, 2)n) time.

5. Due to the previous cases of #D, we know that the connection
is in one variable only and that the variables are constant. Let
x = (a ∨ b ∨ c). The case |y| = 3 runs in O (τ(4, 4)n) time and
the remaining cases run in O (τ(|y|+ 1, 3)n). Hence the worst
running time is O (τ(5, 3)n).

6. Obviously, the worst case involves two clauses of length 5, which
gives O (τ(9, 1)n) time.
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7. The worst case is when each of the non-singletons appears in
one other 4-clause. This gives O (τ(7, 7, 7, 7)n) time.

8. This case gives O (τ(7, 7, 4)n) time: For the 4 in τ(7, 7, 4), one
removed variable comes from the substitution F (c/d̄), two comes
from ā, b̄ and the last removed variable comes from (d̄∨e∨f∨g)
since c and e both are singletons and one of them will be re-
moved by Prop.

Straightforward calculations give that O (τ(4, 4)n) ⊆ O (1.1892n),
O (τ(7, 7, 4)n) ⊆ O (1.2085n), O (τ(3, 5)n) ⊆ O (1.1939n), O (τ(6, 2)n)
⊆ O (1.2106n), O (τ(9, 1)n) ⊆ O (1.2131n) and O (τ(7, 7, 7, 7)n) ⊆
O (1.2190n). Thus the overall running time is in O (1.2190n).
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Chapter 6

Counting 2sat and

Counting 3sat

This chapter treats #2satw and #3satw. We start with some ad-
ditional preliminaries, definitions and technical tools in Section 6.1.
Section 6.2 deals with a procedure Prop to simplify a formula while
keeping track of certain information, similar to Prop in the previ-
ous chapter. Then follow Sections 6.3 and 6.4 on the algorithms for
#2satw and #3satw. In Section 6.5 we present an algorithm for
counting in separable 2sat formulae. Section 6.6 deals with applica-
tions for the algorithms.

6.1 Algorithm analysis

So far, when estimating the size of a branching tree in order to get an
upper bound of the running time, we have used a simple variant of the
method described by Kullmann [53]: As a measure we have simply
used the number of variables. We have then analysed all possible
worst cases and obtained a global worst case with a branching number
α, and finally concluded that our algorithm runs in time O (αn).

In this chapter, we will use more complicated measures of formula
complexity which enable us to obtain tighter worst case time bounds.
For Kullmann’s method of analysis to work, our measure f(F ) must
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be non-negative. Fortunately, this (natural) restriction will be easy
to enforce. In order to make ∆f behave nicely we want f to be
continuous. For the method to be useful, we want to be able to re-
translate f(F ) to the standard measure n(F ). Defining fmax(n) =
maxn(F )=n f(F ), this ensures a running time of O

(
αfmax(n)

)
, where

α is the highest branching number of any branching tuple that can
occur in the tree.

The ordinary measure of n(F ) contains little information in itself
regarding the possible branchings — when n(F ) is sufficiently large
any case can occur. Here we will use measures richer in such infor-
mation. In our algorithm C for #2satw, f(F ) will be a function
f(n, l) whose behaviour changes with the quotient l/n. This enables
us to divide our analysis into cases depending on the average degree
of a formula, and capture and quantify the beneficial effects of having
an algorithm which ensures that the average degree of a formula will
be gradually decreasing. In our algorithm D for #3satw, f(F ) is
a function f(n, k), where k is the number of 2-clauses. As 2-clauses
offer other possibilities for branching than 3-clauses, the number of
2-clauses is an important factor in the estimation of the size of the
recursion tree.

In what follows, for any measure h, ∆h (e.g. ∆n or ∆l) is under-
stood to mean h(F ) − h(F ′) in the context of a branch from some
formula F to some formula F ′. If there are more than one possible
F ′, say F1 and F2, then ∆ih = h(F )− h(Fi).

6.2 Propagation

Similarly to the previous chapter, we will have a function Prop that
performs polynomial time reductions of our formula F . We see that
these reductions are in effect canonical rules. However, since that
name is not used in the context of Sat, we will follow the conventions
and just speak of reductions. Instead of saying that a formula is
canonical we will here say that it is maximally reduced. The reductions
are the following (we will later add one more):

1. No clause contains the constants true or false.
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If F contains a clause x = (true ∨ C), then remove x.

If F contains a clause x = (false ∨ C), then let x← C.

2. There are no 1-clauses.

If F contains the clause (a), then let F ← F (a/true).

3. There is no pair of clauses x, y such that x ⊂ y.

If such clauses exist, then remove y.

4. There is no pair of variables a, b such that a and b occur
together in more than one 2-clause.

If there are two clauses (a ∨ b) and (a ∨ b̄), then let F ←
F (a/true). If there are two clauses (a ∨ b) and (ā ∨ b̄), then
let F ← F (a/b̄).

Just like in the previous chapter, when dealing with #xsatw, we
cannot use the reductions without extra structures. This is illustrated
by the following: Let F{a = true} denote substitution of true for a
and reduction to simplify F . Then consider this example:

F = {(a ∨ b ∨ c)}
Note that #3sat(F ) = 7. It would seem that #3sat(F{b = true})+
#3sat(F{b = false}) = #3sat(F ) but this is not the case. We
see that the expression (a ∨ b ∨ c){b = true} is simplified to the
empty formula (which has 1 model by definition) and #3sat(F{b =
true})+#3sat(F{b = false}) = 4. The problem is that the variables
a and c (which can be given arbitrary values) are eliminated in the
simplification process.

To keep track of eliminated variables — the impact they have on
the number of solutions as well as their weights — we will use the four
structures of the previous chapter:

1. An integer variable C ≥ 0 for keeping track of the contribution
to the number of models arising from the eliminated variables.

2. A cardinality vector c.
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3. An integer variable W ≥ 0 for keeping track of the contribution
to the weight of the models arising from the eliminated variables.

4. A weight vector w.

We will now give the following definition of #satw, which some-
what modifies our previous definition. Let M ′ be an arbitrary mwm

for F if any exist and S(F ) denote the set of maximum weighted
models for F :

– Counting Weighted Satisfiability (#satw):

Instance: A formula F , a cardinality vector c and a weight
vector w.

Question: What is the tuple
(
∑

M∈S(F ) C(M),W(M ′)
)

?

If F has no models, then the tuple is (0, 0).

The function Prop returns a tuple (F ′, C, W, c′, w′) such that F ′ is
the maximally reduced formula obtained from F , C is a multiplicative
contribution to the number of mwm’s coming from removed variables,
W is a similar (additive) weight contribution to the maximum weight,
and c′ and w′ are modified cardinality and weight vectors. The four
steps of the algorithm are performed until not applicable. Initially,
let W ← 0 and C ← 1. We see that this is a procedure similar to
Prop of the previous chapter. The modifications of the structures are
also most similar:

1. When we set a ← false (a ← true), we set C ← C · c(ā) (C ←
C · c(a)) and W ←W + w(ā) (W ←W + w(a).)

2. If F contains an empty clause, then return ({()}, 0, 0, c, w)

3. If a variable a is removed without being assigned a definite value,
then there are three cases:

(a) if w(a) = w(ā), then C ← C ·(c(a)+c(ā)); W ←W +w(a)

(b) if w(a) < w(ā), then C ← C · c(ā); W ←W + w(ā)
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(c) if w(a) > w(ā), then C ← C · c(a); W ←W + w(a)

4. When we have two clauses (a ∨ b) and (ā ∨ b̄), removing a we
set w(b)← w(b) + w(ā), c(b)← c(b) · c(ā), w(b̄)← w(b̄) + w(a)
and c(b̄)← c(b̄) · c(a).

The following lemma extends of course to #2satw as well. Its
proof is almost identical to the proof of Lemma 15 and is therefore
omitted.

Lemma 22. Let (F ′, C, W, c′, w′) ← Prop(F, c, w) and (C ′, W ′) ←
#3satw(F ′, c′,′ w), then #3satw(F, c, w) = (C · C ′, W + W ′).

We will also use the phrase recursively branch on as in the previous
chapter.

6.2.1 Multiplier Reduction

This subsection deals with an additional reduction rule. The reason
for presenting it separately is that it is more complicated and requires
more space for justification.

F cannot be partitioned into two formulae F1 and F2 such
that |V ar(F1) ∩ V ar(F2)| = 1, and such that that every clause
in F belongs to either F1 or F2.

If this rule is violated, then assume γ is an algorithm for #2satw

or#3satw, V ar(F1) ∩ V ar(F2) = {a} and do the following:

1. (ct, wt)← γ(F1(a/true), c, w), (cf , wf )← γ(F1(a/false), c, w)

2. Let c(a) ← ct · c(a), c(ā) ← cf · c(ā), w(a) ← wt + w(a) and
w(ā)← wf + w(ā)

This procedure is referred to as removing F1 by multiplier reduction,
and if it is possible to partition F into F1 and F2 in this way, with
n(F1), n(F2) > 1, then we say that multiplier reduction applies. In
Figure 6.1 we see a formula where multiplier reduction applies.
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(c ∨ a)
(d ∨ a) (a ∨ b)
(c̄ ∨ d)

Figure 6.1: For this formula multiplier reduction applies

Assuming that c′ and w′ are the vectors c and w as modified in
the second step of the reduction, we have the following lemma (which
of course also extends to #2satw):

Lemma 23. #3satw(F, c, w) = #3satw(F2, c
′, w′).

Proof. Suppose that F is partitioned into F1 and F2 with a as the
common variable, and that F1 is removed by multiplier reduction.

Every model M for F , with an assignment a = β, consists of a
model M1 for F1 and a model M2 for F2, with both M1 and M2

assigning a = β. In other words, M consists of a model M2 for
F2, assigning a = β, and a model M1,β for F1(a/β). Conversely,
every model M2 for F2, assigning a = β, can be combined with a
model M1,β for F1(a/β) into a model M for F . As F1(a/β) and F2

have disjoint variable sets, C(M) = C(M1,β) · C(M2) and W(M) =
W(M1,β) +W(M2). The maximum W(M) that can be achieved by
extending some particular M2 assigning a = β is W(M2) + wβ , and
the weighted model count for the models for M1,β that achieve weight
Wb is Cβ , for a combined weighted model count for M of C(M2) · cβ .

After the modifications to c and w have been made by multiplier
reduction, C(M2) andW(M2) produce exactly these numbers for each
model M2 for F2, which means that the final return value will be the
same.

Consider again the formula of Figure 6.1 and note that F1 =
{(a ∨ b)}. This means that singletons are removed in polynomial
time. We will not consider a formula maximally reduced if multiplier
reduction applies.
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6.3 Algorithm for #2satw

Here we present the algorithm C for #2satw, prove it correct and
prove an upper time bound. We have three subsections for various
degrees of F : the case δ(F ) ≤ 3, the case δ(F ) ≤ 5 and the general
case.

6.3.1 The function C3

The algorithm C is split into three functions depending on δ(F ) of
the input formula F . The main function C, given in Section 6.3.3,
is used whenever δ(F ) > 5, and it has three auxiliary functions: C5,
given in Figure 6.4, which is used when 4 ≤ δ(F ) ≤ 5, C3, given in
Figure 6.2, which is used when δ(F ) ≤ 3. The auxiliary function CE

performs an exhaustive search on small instances in order to solve the
problem. This subsection deals with the auxiliary function C3. We
first give a correctness lemma for it and then prove an upper limit on
its running time.

Lemma 24. C3(F, c, w) = #2satw(F, c, w) when δ(F ) ≤ 3.

Proof. We examine the cases of C3:

1. Correct by assumption.

2. As every mwm of a component can be combined with every
mwm of the other components this case is correct.

3. Correct by Lemma 23.

4. Correct by Lemma 16.

Lemma 25. For a maximally reduced formula F with l ≤ 2n, we
have a polynomial running time for C3(F, c, w).
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Algorithm C3(F, c, w)

1. If n(F ) < 10, then return CE(F )

2. If F is not connected, return (c, w) where c =
∏j

i=0 ci, w =
∑j

i=0 wi and (ci, wi) = C(Fi, c, w) for the connected components
F0, . . . , Fj .

3. If multiplier reduction applies, then apply it, removing the part
with the lowest n3(F ) value.

4. If δ(F ) = 3, pick a variable a, δ(a) = 3, with as many neighbours
of degree 3 as possible, and recursively branch on it. Otherwise,
recursively branch on any variable.

Figure 6.2: Auxiliary function for computing #2satwwhen δ(F ) ≤ 3

(a ∨ b)
(a ∨ d) (b ∨ c)

(d ∨ c̄)

Figure 6.3: A polynomial time solvable instance of #2sat

Proof. The existence of a singleton variable a in F implies that n(F ) =
2, and this is surely polynomial time solvable by CE .

Otherwise, every variable occurs exactly twice. This means that
the constraint graph is either a cycle or a number of cycles. If there
are several cycles they will each be solved separately, as they form
disconnected components. Assume therefore that we have one cycle
as in Figure 6.3. Assigning any literal true, we open the chain and
singletons arise that will be taken care of, in turn creating new single-
tons. Assigning any literal false will also create singletons in a similar
fashion.

Lemma 26. C3(F, c, w) runs in O (τ(4, 4)n) ⊆ O
(
τ(4, 4)n3(F )

)
⊆

O
(
1.1892n3(F )

)
time.
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Proof. We will derive the result by using the number of variables of
degree 3 in a formula F , n3(F ), as a measure: Clearly O (τ(4, 4)n) ⊆
O
(
τ(4, 4)n3(F )

)
. We assume that F is maximally reduced, connected,

and that there are no variables of higher degree than 3. By Lemma
25, if n3(F ) = 0, then we have a polynomial running time, so we will
assume this is not the case. As F is maximally reduced, there are
no singletons, and so, n3(F ) = l(F )− 2n(F ). We want to prove that
∆n3 ≥ 4 along any branch F ′ and this is equivalent to proving that
∆l ≥ 2∆n + 4:

∆n3 ≥ 4
n3(F )− n3(F ′) ≥ 4

l(F )− 2n(F )− (l(F ′) + 2n(F ′)) ≥ 4
l(F )− l(F ′) ≥ 2(n(F )− n(F ′)) + 4

We will assume that when branching on a variable a, we eventually
end up with two maximally reduced formulae F1 and F2. It is of
course possible that the branching results in more than two maximally
reduced formulae, if case 2 or case 3 applies, but as we know, solving
components separately will not give a worse upper time bound.

Let V be the variables of F , and V1 the variables of F1, let
V ′ = V −V1 and C be the clauses of F . Note that a clause x = (a∨b)
in F1 means that the same clause exists in F and that both a, b ∈ V1,
otherwise x would have been removed during the branching. There-
fore, the reduction ∆l in l is

∑

b∈V ′

δ(b)+ |{C ′ ∈ C | C ′ contains variables from both V ′ and V1}|

Since δ(a) = 3 and since there are no singletons in F , the first
term is at least 2∆n + 1. As for the second term, note that F is
maximally reduced, and since multiplier reduction does not apply, at
least two variables from V1 occur in clauses with variables from V ′,
and so the second term is at least 2. We now know that we have at
least 2∆n + 3. Using that l(F ) is twice the number of clauses in F
and therefore even, we have ∆l ≥ 2∆n + 4, so n3(F ) − n3(F1) ≥ 4.
The same argument applies to F2.
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Algorithm C5(F, c, w)

1. If n(F ) < 10, then return CE(F )

2. If F is not connected, return (c, w) where c =
∏j

i=0 ci, w =
∑j

i=0 wi and (ci, wi) = C(Fi, c, w) for the connected components
F0, . . . , Fj .

3. If δ(F ) < 4, return C3(F, c, w).

4. If multiplier reduction applies, apply it, removing the part with
lowest f(F ) value.

5. Pick a variable a of maximum degree such that S(a) is max-
imised.

(a) If N(a) is connected to the rest of the graph through only 2
external vertices b and c such that δ(b) ≥ δ(c), then branch
on b.

(b) Otherwise, branch on a.

Figure 6.4: Auxiliary function for computing #2satwwhen 4 ≤ δ(F ) ≤ 5.
The function f is defined in the text; recall that S(a), measuring the size of
a neighbourhood N(a), is defined by S(a) = δ(a) +

∑

b∈N(a) δ(b)

6.3.2 The function C5

This subsection treats the function C5, given in Figure 6.4. The
correctness comes from an argument very similar to that concerning
the correctness of C3(F, c, w) and therefore we give no correctness
theorem.

When it comes to the running time of C5, we know that if δ(F ) ≤
3, then we have a running time in O (τ(4, 4)n) ⊆ O (1.1893n). Doing
a simple analysis, using only the number of variables as a measure,
we could reason as follows:

We say that a branching is maximally unbalanced if the branching
variable a appears only as a or ā. The worst case for a in C5 must
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be when δ(a) = 4 and the branching is maximally unbalanced. This
gives a running time in O (τ(1, 5)n) ⊆ O (1.3248n): When a is true
one variable, viz. a, is removed; when a is false all neighbours must
be true.

This analysis, while correct, is quite unfair, because our choice of
branching variable guarantees that in every worst case situation, the
quotient l(F )/n(F ) will decrease. This means that we come closer and
closer to C3 being applicable. We will try to remedy the unfairness
by using a better measure of formula complexity. The time bound we
want to prove is O (1.2561n). For δ(F ) ≥ 6, when C is applicable,
this is accomplished already by a trivial analysis (because τ(1, 7) <
1.2555) and so, we need the better formula measurement only for the
analysis of C5.

Thus, for the analysis of C5, we use a piecewise linear function
f(n, l) as a measure of complexity, with a behaviour determined by
the quotient l(F )/n(F ). When l > kn we can always find a variable
with degree at least k + 1. Since C5 picks a variable of maximum
degree we get a sequence of worst cases, depending on the average
degree of F . If we define f(n, l) such that all these worst cases have
the same branching number α, the bound O

(
αfmax(n)

)
gets closer to

the actual worst-case running time.

In our analysis, we will find a sequence of worst cases as we con-
sider higher l/n quotients, and with each worst case we associate a
linear function fi(n, l) = ain+bil, a lower limit ki for the l/n quotient
below which worse cases appear, and an upper limit ki+1 for the l/n
quotient above which the case does not appear. Each function fi(n, l)
has its parameters chosen so that the worst-case branching number
in the range ki < l/n ≤ ki+1 will be equal to τ(4, 4) for every i. The
range ki–ki+1 is referred to as section i, for each i, and f(n, l) is par-
titioned into functions fi(n, l) in the same way as the l/n quotient
axis is partitioned into sections.

The bottom-most non-zero function f1(n, l) corresponds to the
algorithm C3, and is applicable for l/n values from k1 = 2 to k2 = 3,
as this is the range of l/n where C3 is the worst case, as we shall
see. The rest of the functions fi(n, l) corresponds to worst cases for
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i ki χi Running time

0 0 0 O (1)
1 2 0 O (poly(n))
2 3 1 O (1.1892n)
3 3.5 1.1340 O (1.2172n)
4 3.75 1.1914 O (1.2294n)
5 4 1.2410 O (1.2400n)
6 4+4/29 1.2536 O (1.2427n)
7 4+4/9 1.2788 O (1.2481n)
8 4+4/7 1.2881 O (1.2501n)
9 4.8 1.3033 O (1.2534n)
10 5 1.3154 O (1.2561n)

Table 6.1: ki, χi and running times

C5. Our measure f(n, l) is undefined for l > 5n, because as already
indicated, we do not need it for those cases.

To simplify the presentation of the time complexity proof, we give
the definitions of f(n, l) and related terms here, then proceed to state
some of its properties. Definitions:

f(n, l) = fi(n, l) if ki < l/n ≤ ki+1, 0 ≤ i ≤ 9 (6.1)

fi(n, l) = χin + (l − kin)bi, 0 ≤ i ≤ 9 (6.2)

χ0 = 0 (6.3)

χi = χi−1 + (ki − ki−1)bi−1, 1 ≤ i ≤ 10 (6.4)

ai = χi − kibi (6.5)

Note that we now have two equivalent ways of expressing fi(n, l):
χin + (l − kin)bi and ain + bil. The exact values of ki can be found
in Table 6.1, along with rounded-off values for χi and τ(4, 4)χi , the
latter being c in the O (cn) upper limit on the running time for a
formula F with l(F )/n(F ) ≤ ki. Hence, our fmax(n) = max f(n, l),
ki < l/n ≤ ki+1 for all l ∈ N is χin.
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i bi, definitions bi ai

0 0 0 0
1 1 1 −2
2 τ(1 + 5b2, 5 + 5b2) = τ(4, 4) 0.2680 0.1961
3 τ(χ3 + 4.5b3, 5χ3 + 4.5b3) = τ(4, 4) 0.2295 0.3308
4 τ(χ4 + 4.25b4, 5χ4 + 5.25b4) = τ(4, 4) 0.1987 0.4461
5 τ(χ5 + 6b5, 6χ5 + 2b5) = τ(4, 4) 0.0914 0.8755
6 τ(χ6 + (5 + 25/29)b6, 6χ6 + (3 + 5/29)b6) = τ(4, 4) 0.0821 0.9139
7 τ(χ7 + (5 + 5/9)b7, 6χ7 + (3 + 1/3)b7) = τ(4, 4) 0.0736 0.9517
8 τ(χ8 + (5 + 3/7)b8, 6χ8 + (4 + 4/7)b8) = τ(4, 4) 0.0665 0.9841
9 τ(χ9 + 5.2b9, 6χ9 + 5.2b9) = τ(4, 4) 0.0602 1.0143

Table 6.2: bi and ai parameters

The expressions defining the values of bi can be found in Table
6.2, along with rounded-off numerical values for bi and ai. These
expressions come from the branching numbers for the worst case in
each section i. We see that f(n, l) satisfies the requirements for our
method of analysis:

1. The function f(n, l) is continuous, as fi−1(n, kin) = χi−1n +
(kin−ki−1n)bi−1) = (χi−1+(ki−ki−1)bi−1)n = χin = fi(n, kin)
for all i.

2. For a formula without singletons, f(n, l) is obviously never neg-
ative.

The properties of f(n, l) that will be used in the analysis are next
presented as four lemmas. The first two follow easily from Table 6.2.

Lemma 27. f(n, l) > f(n− 1, l) if l > 3n.

Lemma 28. f(n, l) > f(n, l − 1) if l > 2n.

Intuitively, the following lemma says that when doing a branching
from F to F1 such that F1 belongs in another section than F , then
this will not be a worst case.



104 6.3. Algorithm for #2satw

Lemma 29. f(n, l)− f(n1, l1) ≥ fi(n, l)− fi(n1, l1) when kin ≤ l ≤
ki+1n.

Proof. We first prove that the lemma holds when l1/n1 < l/n. The
equality certainly holds if kin1 ≤ l1 ≤ ki+1n1 so assume this is not the
case. We will focus on the transition of a single barrier ki, i.e. that
l/n belongs in section i while l1/n1 belongs in section i − 1. If the
property holds for all such barriers, then it holds globally.

Assume that kin ≤ l ≤ ki+1n, ki−1n1 ≤ l1 ≤ kin1, n1 < n and
l1 < l. We want to check that fi(n1, l1) ≥ fi−1(n1, l1), i.e.

fi(n1, l1)− fi−1(n1, l1) = (ai − ai−1)n1 + (bi − bi−1)l1 ≥ 0

We have that

ai− ai−1 = (χi− kibi)− (χi−1− ki−1bi−1) = (χi−1 + (ki− ki−1)bi−1−
kibi)− (χi−1 − ki−1bi−1) = ki(bi−1 − bi)

Inserting this into the previous inequality, we get (bi−1−bi)(kin1−
l1) ≥ 0, and as kin1 ≥ l1 by assumption, we see that the first part
of the lemma follows from the observation that bi is decreasing with
increasing i.

As for the case when l1/n1 > l/n, we reason similarly: We want
to check that fi(n1, l1) ≥ fi−1(n1, l1), i.e.

(ai − ai+1)n1 + (bi − bi+1)l1 ≥ 0

We have that ai − ai+1 = ki+1(bi−1 − bi) and inserting this into the
inequality, we get (bi+1 − bi)(ki+1n1 − l1) ≥ 0. We see that both
factors are less than or equal to 0 and we have proved the lemma.

The following lemma can be used to justify that solving compo-
nents separately will not increase the running time when measuring
in f(n, l).

Lemma 30. f(n, l) ≥ f(n1, l1) + f(n− n1, l − l1) if 0 ≤ n1 ≤ n and
0 ≤ l1 ≤ l.

Proof. Let a and c be constants so that n1 = an and l1 = al + c.
Furthermore, let ki ≤ k = l/n ≤ ki+1 and χ = f(n, l)/n. Now
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consider the constant c. If c ≥ 0, then l1/n1 ≥ l/n; we will here
w.l.o.g. assume that this is the case. We now derive some intermediate
results to show the lemma. Let α be any number.

f(αn, kαn) = χiαn + (kαn− kiαn)bi =
α(χin + (kn− kin)bi) = α(χin + (l − kin)bi) =

αf(n, l) = χαn

The next intermediate step:

f(an, kan + c) = χan + cbup for some bup

To explain the part bupc: Assume that l/n belongs in section i
and that l1/n1 belongs in section i + j. Then bupc is shorthand for

fi+j(an, kan + c)− fi(an, kan)
=
(fi+j(an, kan + c)− fi+j(an, ki+jan))+
(fi+j(an, ki+jan)− fi+j−1(an, ki+j−1an))+
. . . +
(fi+2(an, ki+2an)− fi+1(an, ki+1an))+
(fi+1(an, ki+1an)− fi(an, kan))
=
(kan + c− ki+jan)bi+j+
(χi+j−1 + (ki+j − ki+j−1))bi+j−1an− χi+j−1an
. . . +
(χi+1 + (ki+2 − ki+1)bi+1)an− χi+1an+
(χi + (ki+1 − ki)bi)an− (χi + (k − ki)bi)an
=
(kan + c− ki+jan)bi+j+
(ki+jan− ki+j−1an)bi+j−1+
. . . +
(ki+2an− ki+1an)bi+1+
(ki+1an− kian)bi − (kan− kian)bi

Note that cbup can be expressed as c1bi +c2bi+1 + . . .+cjbi+j with
c1 + c2 + . . . + cj = c so that bupc ≤ bic (because bi is decreasing with
higher i.) The next intermediate step:
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f((1− a)n, k(1− a)n− c) = χ(1− a)n− cbdown for some bdown

As for the part cbdown, it is a summation similar to cbup. Doing
the same formula manipulation as for cbup, one sees that cbdown ≥ bic.
Thus,

f(n1, l1) + f(n− n1, l − l1) =

f(an, kan + c) + f((1− a)n, k(1− a)n− c) =

(χan + cbup) + (χ(1− a)n− cbdown) =

χn + (bup − bdown)c ≤
χn = f(n, l)

We need a lemma that allows us to make a connection between the
value of l(F )/n(F ) and worst-case branchings. The following lemma
gives a means to deduce a minimum value for S(a) for a given value
of l(F )/n(F ). We will soon give an example to illustrate its use.

Lemma 31. Let F be a non-empty formula such that l(F )/n(F ) = k,
and define α(a) and β(a) such that

α(a) = δ(a) + |{b ∈ N(a) | δ(b) < k}|
β(a) = 1 +

∑

{b∈N(a) | δ(b)<k}
1/δ(b)

Then there exists some variable a ∈ V ar(F ) with δ(a) ≥ k such that
α(a)/β(a) ≥ k.

For an example of the use of the lemma (before the proof): Say
that the formula F is in Section 2, i.e. l/n ∈ [3, 3.5] and that δ(F ) = 4.
We then know that there is a variable a such that δ(a) = 4 and such
that α(a)/β(a) ≥ 3. If a has one neighbour b of degree 2 and three
other neighbours, we have that α(a)/β(a) = (4 + 1)/(1 + 1/2) =
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10/3 > 3.33. However, it is not possible that two neighbours have
degree 2, because then α(a)/β(a) = (4 + 2)/(1 + 1) = 3. This means
that the maximum S(a) must be at least 15 (for the case that the
neighbours have degrees 2, 3, 3 and 3.) Note that this only tells us
that S(a) ≥ 15; we have no guarantees that α(a)/β(a) > 3 for the
chosen variable a. We now proceed to the proof of the lemma:

Proof. Consider the following sums:

A =
∑

{a∈V ar(F ) | δ(a)≥k}
α(a)

B =
∑

{a∈V ar(F ) | δ(a)≥k}
β(a)

We may view every variable a with δ(a) ≥ k as contributing exactly
δ(a) to A and 1 to B, and each variable b with δ(b) < k, i to A and
i/δ(b) to B, for some integer i ≤ δ(b) (i is not guaranteed to equal
δ(b) because b may occur with other variables of degree less than k.)
We find that there are numbers n′

i(F ) with n′
i(F ) ≤ ni for i < k and

n′
i(F ) = ni(F ) for i ≥ k such that the following holds:

A =
∑

i

in′
i(F ) = l(F )−

∑

i<k

i(ni(F )− n′
i(F ))

B =
∑

i

n′
i(F ) = n(F )−

∑

i<k

(ni(F )− n′
i(F ))

Here, we used
∑

i i · ni(F ) = l(F ) and
∑

i ni(F ) = n(F ). As l(F ) =
k · n(F ), we have:

A ≥ k ·B (6.6)

The set {a ∈ V ar(F ) | δ(a) ≥ k} is clearly not empty. Hence, if
we had α(a) < kβ(a) for all a with δ(a) ≥ k, inequality (6.6) could
not hold. Therefore there is an a with δ(a) ≥ k such that α(a) ≥
kβ(a).

Now, we can proceed by proving an upper bound for the running
time of C5. The proof will be divided into lemmas according to the
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value of l(F )/n(F ). We will need to prove that the worst-case branch-
ing number in each section is τ(4, 4), i.e. that we have chosen the right
values for the parameters of f(n, l).

As a final thing before the proof, a note on case 5a of the algorithm.
If case 5a of the algorithm is applied, we remove b by assignment and
N(a) by multiplier reduction. In total, we reduce n by at least δ(a)+2
and l by at least S(a) + 4 in both branches. We will see that when
using case 5b, the largest worst-case reduction is ∆n = δ(a) + 1 and
∆l = S(a) + 4. When l > 3n, by Lemma 27, this is clearly a harder
case than case 5a.

Lemma 32. C5(F, c, w) runs in time O
(
τ(4, 4)f(F )

)
for a maximally

reduced formula F with l ≤ 3n.

Proof. In this lemma, we will use f1(n, l) as a measure, with b1 = 1
and a1 = −2. We inspect the cases:

1. Polynomial time solvable by assumption.

2. By Lemma 30 this will not be a worst case.

3. Recall that in the analysis of C3 we measured the number of
variables of degree 3 as l − 2n and this is the same as b1 = 1
and a1 = −2.

4. By Lemma 30 this will not be a worst case.

5. For a branching from a maximally reduced F to a maximally
reduced F1 or F2, f is reduced by at least 6: We know that δ(a)
is at least 4. In any branch, at least a is removed, along with r
other variables, 0 ≤ r ≤ δ(a). This means that ∆l = 2δ(a) + 2r
and ∆n = 1 + r. With the current parameters of f , we get
∆f = 2(δ(a) + r)− 2(1 + r).

Lemma 33. C5(F, c, w) runs in time O
(
τ(4, 4)f(F )

)
for a maximally

reduced formula F with l ≤ 4n.
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(a ∨ b) (b ∨ d)
(a ∨ c) (c ∨ e)
(a ∨ d) (d ∨ f)
(a ∨ e) (e ∨ b)
(a ∨ f) (f ∨ g)

(c ∨ h)

Figure 6.5: For this part of a formula, assigning a true results in ∆n1 = 1
and ∆l1 = 10; assigning a false results in ∆n2 = 6 and ∆l2 = 22

Proof. This lemma uses f2(n, l) through f4(n, l) as measures, with
parameters as previously defined.

The main algorithm C takes care of variables of degree 6 and
higher and non-constant variables of degree 5. This means that the
first case to consider is δ(F ) = 5 such that all variables of degree 5 are
constant. Note that the first priority of the algorithm when choosing a
branching variable is that it have maximum degree. This means that
we have no guarantees concerning S(a). For instance, a might be
the only variable of degree 5 and the variable guaranteed by Lemma
31 has degree 4. To find the possible worst cases to examine one can
argue like this: Trying to minimise ∆l by finding scenarios with many
neighbours of degree 2 we increase ∆n because those neighbours will
get removed either by multiplier reduction or the assignment of a. Let
us therefore examine all possible cases of the number of neighbours
of degree 2. The reader should keep in mind that we are examining
case 5b. This means that there must be at least three neighbours
in contact with external variables. For instance, we can disregard
scenarios such as the one depicted in Figure 6.5.

1. 5 neighbours of degree 2: This scenario is depicted in Figure
6.6. We have that ∆1n = ∆2n = 6, ∆1l = ∆2l = 20 and

τ(f4(6, 20), f4(6, 20)) < τ(6.6506, 6.6506) < τ(4, 4)
τ(f3(6, 20), f3(6, 20)) < τ(6.5748, 6.5748) < τ(4, 4)
τ(f2(6, 20), f2(6, 20)) < τ(6.5366, 6.5366) < τ(4, 4)
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(a ∨ b) (b ∨ g)
(a ∨ c) (c ∨ h)
(a ∨ d) (d ∨ i)
(a ∨ e) (e ∨ j)
(a ∨ f) (f ∨ k)

Figure 6.6: For this part of a formula, assigning a either value results in
∆n = 6 and ∆l = 20

(a ∨ b) (b ∨ g)
(a ∨ c) (b ∨ h)
(a ∨ d) (c ∨ d)
(a ∨ e) (e ∨ i)
(a ∨ f) (f ∨ j)

Figure 6.7: For this part of a formula, assigning a true results in ∆n1 = 5
and ∆l1 = 16; assigning a false results in ∆n2 = 6 and ∆l2 = 20

2. 4 neighbours of degree 2: This scenario is depicted in Figure
6.7. We have that ∆1n = 5, ∆1l = 16, ∆2n = 6, ∆2l = 20 and

τ(f4(5, 16), f4(6, 20)) < τ(5.4097, 6.6506) < τ(4, 4)
τ(f3(5, 16), f3(6, 20)) < τ(5.326, 6.5748) < τ(4, 4)
τ(f2(5, 16), f2(6, 20)) < τ(5.2685, 6.5366) < τ(4, 4)

3. 3 neighbours of degree 2: This scenario is depicted in Figure
6.8. We have that ∆1n = 4, ∆1l = 14, ∆2n = 6, ∆2l = 20 and

τ(f4(4, 14), f4(6, 20)) < τ(4.5662, 6.6506) < τ(4, 4)
τ(f3(4, 14), f3(6, 20)) < τ(4.5362, 6.5748) < τ(4, 4)
τ(f2(4, 14), f2(6, 20)) < τ(4.5364, 6.5366) < τ(4, 4)

4. 2 neighbours of degree 2: This scenario is depicted in Figure
6.9. We have that ∆1n = 3, ∆1l = 12, ∆2, n = 6∆2l = 22.
The following branching numbers are not dominated by τ(4, 4),
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(a ∨ b) (b ∨ c)
(a ∨ c) (d ∨ g)
(a ∨ d) (e ∨ f)
(a ∨ e) (e ∨ h)
(a ∨ f) (f ∨ i)

Figure 6.8: For this part of a formula, assigning a true results in ∆n1 = 4
and ∆l1 = 14; assigning a false results in ∆n2 = 6 and ∆l2 = 20

(a ∨ b) (b ∨ c)
(a ∨ c) (d ∨ g)
(a ∨ d) (e ∨ h)
(a ∨ e) (f ∨ i)
(a ∨ f) (d ∨ e)

(f ∨ j)

Figure 6.9: For this part of a formula, assigning a true results in ∆n1 = 3
and ∆l1 = 12; assigning a false results in ∆n2 = 6 and ∆l2 = 22

but we can easily show that they are smaller since 1.1892 <
τ(4, 4) < 1.1893.

τ(f4(3, 12), f4(6, 22)) < τ(3.7227, 7.048) < 1.1426 < τ(4, 4)
τ(f3(3, 12), f3(6, 22)) < τ(3.7464, 7.0338) < 1.1425 < τ(4, 4)
τ(f2(3, 12), f2(6, 22)) < τ(3.8043, 7.0726) < 1.1408 < τ(4, 4)

5. 1 neighbour of degree 2: This scenario is depicted in Figure
6.10. We have that ∆1n = 2, ∆1l = 12, ∆2n = 6, ∆2l = 22 and

τ(f4(2, 12), f4(6, 22)) < τ(3.2766, 7.048) < 1.1515 < τ(4, 4)
τ(f3(2, 12), f3(6, 22)) < τ(3.4156, 7.0338) < 1.1487 < τ(4, 4)
τ(f2(2, 12), f2(6, 22)) < τ(3.6082, 7.0726) < 1.1444 < τ(4, 4)

6. 0 neighbours of degree 2: This scenario is depicted in Figure
6.11. We have that ∆1n = 5, ∆1l = 10, ∆2n = 6, ∆2l = 24 and
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(a ∨ b) (b ∨ i)
(a ∨ c) (c ∨ d)
(a ∨ d) (d ∨ e)
(a ∨ e) (e ∨ g)
(a ∨ f) (f ∨ h)

(f ∨ c)

Figure 6.10: For this part of a formula, assigning a true results in ∆n1 = 2
and ∆l1 = 12; assigning a false results in ∆n2 = 6 and ∆l2 = 22

(a ∨ b) (b ∨ d)
(a ∨ c) (c ∨ e)
(a ∨ d) (d ∨ f)
(a ∨ e) (e ∨ g)
(a ∨ f) (f ∨ h)

(b ∨ i)
(c ∨ j)

Figure 6.11: For this part of a formula, assigning a true results in ∆n1 = 1
and ∆l1 = 10; assigning a false results in ∆n2 = 6 and ∆l2 = 24

τ(f4(1, 10), f4(6, 24)) < τ(2.4331, 7.4454) < 1.1681 < τ(4, 4)
τ(f3(1, 10), f3(6, 24)) < τ(2.6258, 7.4928) < 1.1617 < τ(4, 4)
τ(f2(1, 10), f2(6, 24)) < τ(2.8761, 7.6086) < 1.1537 < τ(4, 4)

Next, the actual worst cases, beginning with section 2. In order to
find the worst cases, we reason similarly as above. However, we now
have guarantees on the values of S(a). Given those minimum values
of S(a), we try to minimise the number of clauses where neighbours
participate and yet make sure that there are three external variables
in these clauses. Due to the balanced branching effect, the worst cases
are maximally unbalanced.

Section 2: l/n ∈ [3, 3.5], δ(F ) = 4 Lemma 31 guarantees that
there will be some variable a with α(a)/β(a) > 3, and the minimum
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(a ∨ b) (b ∨ f)
(a ∨ c) (c ∨ d)
(a ∨ d) (c ∨ g)
(a ∨ e) (d ∨ e)

(e ∨ h)

Figure 6.12: For this part of a formula, assigning a true results in ∆n1 = 2
and ∆l1 = 10; assigning a false results in ∆n2 = 5 and ∆l2 = 18

(a ∨ b) (b ∨ f) (a ∨ b) (b ∨ f)
(a ∨ c) (c ∨ d) (a ∨ c) (c ∨ d)
(a ∨ d) (c ∨ g) (a ∨ d) (c ∨ b)
(a ∨ e) (d ∨ e) (a ∨ e) (d ∨ e)

(e ∨ h) (e ∨ g)
(b ∨ i) (b ∨ h)

Figure 6.13: For these two configurations, assigning a true results in
∆n1 = 1 and ∆l1 = 8; assigning a false results in ∆n2 = 5 and ∆l2 = 20

S(a) for variables with this property is 15, occurring if the degrees of
the neighbours are 2, 3, 3 and 3.

There are two candidates for worst case recursion to examine in
this case.

1. With S(a) = 15, at least one neighbour has degree 2. The worst
variant of this case is shown in Figure 6.12, with a branch-
ing number of τ(2a2 + 10b2, 5a2 + 18b2) = τ(2(χ2 − k2b2) +
10b2, 5(χ2 − k2b2) + 18b2) = τ(2(1 − 3b2) + 10b2, 5(1 − 3b2) +
18b2) = τ(2 + 4b2, 5 + 3b2) < τ(4, 4).

2. The worst possible case without neighbours of degree 2 is when
every neighbour has degree 3, with S(a) = 16, as shown in
Figure 6.13. We have τ(a2 + 8b2, 5a2 + 20b2) = τ(1 + 5b2, 5 +
5b2) = τ(4, 4) by definition of b2. This case also occurs with
S(a) = 17, with neighbours of degrees 3, 3, 3, and 4.

We find that the second case is harder than the first, and that both
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are at most τ(4, 4). As given in the tables, we have b2 ≈ 0.2680,
a2 ≈ 0.1961, and χ3 = 1 + 0.5b2 ≈ 1.1340.

Cases with S(a) = 17 can occur when l(F )/n(F ) ≤ 3.5, so the
next section begins when l(F )/n(F ) > 3.5.

Section 3: l/n ∈ [3.5, 3.75], δ(F ) = 4 The minimum value
for S(a) for variables with α(a)/β(a) > 3.5 is 18, and S(a) = 18
and S(a) = 19 both provide worst-case branchings with branching
number τ(a3 + 8b3, 5a3 + 22b3) = τ(χ3 + 4.5b3, 5χ3 + 4.5b3) = τ(4, 4),
by definition of b3. We have b3 ≈ 0.2295, a3 ≈ 0.3308 and χ4 =
χ3 + 0.25b3 ≈ 1.1914.

Cases with S(a) = 19 can occur up to l(F )/n(F ) = 3.75, so the
next section begins at 3.75.

Section 4: l/n ∈ [3.75, 4], δ(F ) = 4 The only possible value
for S(a) is 20, resulting in a worst case branching number of τ(a4 +
8b4, 5a4+24b4) = τ(χ4+4.25b4, 5χ4+5.25b4) = τ(4, 4) by definition of
b4. We have b4 ≈ 0.1987, a4 ≈ 0.4461 and χ5 = χ4 + 0.25b4 ≈ 1.2410.

As we see, the worst-case branching number is τ(4, 4) for sections
2, 3 and 4.

Lemma 34. C5(F, c, w) runs in time O
(
τ(4, 4)f(F )

)
for a maximally

reduced formula F with l ≤ 5n.

Proof. This lemma uses f5(n, l) through f9(n, l) as measures, with
parameters as previously defined. We know that δ(F ) = 5, so we
proceed immediately with section 5.

Section 5: l/n ∈ [4, 4+4/29] The minimum value for S(a) for
variables with α(a)/β(a) > 4 is 23, with a worst-case branching with
branching number τ(a5 + 10b5, 6a5 + 26b5) = τ(χ5 + 6b5, 6χ5 + 2b5) =
τ(4, 4) by definition of b5. We have b5 ≈ 0.0914, a5 ≈ 0.8755 and
χ6 = χ5 + (4/29)b5 ≈ 1.2536.

S(a) = 23 can occur up to l(F )/n(F ) = 4 + 4/29 ≈ 4.1379, so the
next section begins at that point.

Section 6: l/n ∈ [4 + 4/29, 4 + 4/9] The minimum value for
S(a) for variables with α(a)/β(a) > 4+4/29 is 24, and S(a) = 24 and
S(a) = 25 both have worst-case branchings with a branching number
of τ(a6+10b6, 6a6+28b6) = τ(χ6+(5+25/29)b6, 6χ6+(3+5/29)b6) =
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τ(4, 4) by definition of b6. We have b6 ≈ 0.0821, a6 ≈ 0.9139 and
χ7 = χ6 + (4/9− 4/29)b6 ≈ 1.2788.

S(a) = 25 can occur up to l(F )/n(F ) = 4 + 4/9 ≈ 4.4444, so the
next section begins at that point.

Section 7: l/n ∈ [4 + 4/9, 4 + 4/7] The minimum value for
S(a) for variables with α(a)/β(a) > 4 + 4/9 is 26, and S(a) = 26 and
S(a) = 27 both have worst-case branchings with a branching number
of τ(a7 + 10b7, 6a7 + 30b7) = τ(χ7 + (5 + 5/9)b7, 6χ7 + (3 + 1/3)b7) =
τ(4, 4) by definition of b7. We have b7 ≈ 0.0736, a7 ≈ 0.9517 and
χ8 = χ7 + (4/7− 4/9)b7 ≈ 1.2881.

S(a) = 27 can occur up to l(F )/n(F ) = 4 + 4/7 ≈ 4.5714, so the
next section begins at that point.

Section 8: l/n ∈ [4 + 4/7, 4.8] The minimum value for S(a)
for variables with α(a)/β(a) > 4 + 4/7 is 28, and S(a) = 28 and
S(a) = 29 both have worst-case branchings with a branching number
of τ(a8 + 10b8, 6a8 + 32b8) = τ(χ8 + (5 + 3/7)b8, 6χ8 + (4 + 4/7)b8) =
τ(4, 4) by definition of b8. We have b8 ≈ 0.0665, a8 ≈ 0.9841 and
χ9 = χ8 + (0.8− 4/7)b8 ≈ 1.3033.

S(a) = 29 can occur up to l(F )/n(F ) = 4.8, so the last section
begins at that point.

Section 9: l/n ∈ [4.8, 5] The only possible value for S(a) is
30, with a worst case branching number of τ(a9 + 10b9, 6a9 + 34b9) =
τ(χ9 + 5.2b9, 6χ9 + 5.2b9) = τ(4, 4) by definition of b9. We have
b9 ≈ 0.0602, a9 ≈ 1.0143 and χ10 = χ9 + 0.2b9 ≈ 1.3154.

We have shown that C5 runs in O
(
τ(4, 4)f(F )

)
time.

Corollary 35. C5 runs in O (τ(4, 4)χ10n) ⊆ O (1.2561n) time.

6.3.3 The main function C

Now, we can finally give the last part of our algorithm: The function
C, applicable to a general formula F is shown in Figure 6.14.

The following theorem will establish an upper time bound for C:

Theorem 36. C(F, c, w) runs in O (1.2561n) time.
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Algorithm C(F, c, w)

1. If n(F ) < 10, then return CE(F )

2. If F is not connected, return (c, w) where c =
∏j

i=0 ci, w =
∑j

i=0 wi and (ci, wi) = C(Fi, c, w) for the connected components
F0, . . . , Fj .

3. If there exists a non-constant variable a with δ(a) ≥ 5, branch
on a.

4. If δ(F ) < 6, return C5(F, c, w).

5. Pick a variable a of maximum degree and branch on it.

Figure 6.14: The algorithm C for #2satw

Proof. Cases 1 and 2 are reductions, or take only polynomial time.
For case 3, the worst running time is T (n) = T (n−2)+T (n−5) with
solutions in O (τ(2, 5)n) ⊆ O (1.2366n). Case 4 takes O (1.2561n)
time by Corollary 35. For case 5, the worst case is T (n) = T (n−1) +
T (n− 7) with solutions in O (τ(1, 7)n) ⊆ O (1.2555n). All these cases
are contained in O (1.2561n).

6.4 Algorithm for #3satw

In this section we present the algorithm D for #3satw and provide
an upper bound on its running time. The complexity analysis is
somewhat delicate and requires numerical calculations to obtain a
solution to an optimisation problem.

There is a auxiliary function DE(F, c, w) that will use exhaustive
search to calculate #3satw(F, c, w). We will only apply it to instances
of constant size, and thus we consider its running time to be in O (1).

The main algorithm is given in Figure 6.15. When starting, as-
sume that F is maximally reduced.

Theorem 37. D(F, c, w) =#3satw(F, c, w)
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Algorithm D(F, c, w)

1. If n(F ) < 10, then return DE(F, c, w).

2. If F is not connected, then return (c, w) where c =
∏j

i=0 ci,

w =
∑j

i=0 wi and (ci, wi) = D(Fi, c, w) for the connected
components F0, . . . , Fj .

3. If multiplier reduction applies, then apply it, removing the part
with lowest n(F ) value.

4. If there exists a variable v such that δ(v) = δ3(v) = 1, then let a
be a neighbour of maximum degree and recursively branch on a.

5. If there exists a variable v such that δ(v) = 2 and δ2(v) > 0,
then let a be a neighbour that shares a 3-clause with v, if
possible, or else a neighbour of maximum δ2(a), and recursively
branch on a.

6. If there exists at least one 2-clause in F , then let v be a variable
with maximum δ(v) among all variables with maximum δ2(v),
and recursively branch on v.

7. If there exists a variable v such that δ(v) = δ3(v) = 2,
then, assuming that one 3-clause containing v is (v ∨ a ∨ b),
recursively branch on b = true, b = false ∧ a = true and
b = false ∧ a = false ∧ v = true.

8. Pick a variable v of maximum degree and recursively branch on
it.

Figure 6.15: The algorithm D for #3satw
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Proof. For cases 1 – 6 and 8 the correctness can be proved using the
same arguments as for Lemma 24. The correctness of case 7 follows
from Lemma 16 and the observation that F (b/false; a/false; v/true),
F (b/true) and F (b/false; a/true) cover F .

In the time complexity analysis, we will measure the formula com-
plexity using the function f(F ) = n−Ψ(k), where k is the number of
2-clauses in F . Ψ(k) is a real-valued function with the following two
properties:

1. 0 = Ψ(0) < Ψ(1) < . . . < Ψ(4) < 1, Ψ(k) = Ψ(4) for all k > 4.

2. Ψ(k + 1)−Ψ(k) ≥ Ψ(k + 2)−Ψ(k + 1) for all k.

In other words, we use a more fine-grained measure than just n(F ),
with four subdivisions between n and n + 1. Ψ(1) through Ψ(4) will
be given exact values, using numerical optimisation. Note that since
Ψ(k) < 1, we have n− 1 < f(F ) ≤ n and f(F ) ≤ 0 only if n = 0, and
since k = 0 whenever n = 0, we have f(F ) ≥ 0, as required by our
method of analysis. Note also that fmax(n) = n. Property 2 helps
simplify the complexity analysis by making it easier to find the worst
cases:

Lemma 38. Ψ(1) ≥ Ψ(k) − Ψ(k − 1), Ψ(2) ≥ Ψ(k) − Ψ(k − 2) and
Ψ(3) ≥ Ψ(k)−Ψ(k − 3) for all k.

Proof. The first part of the lemma is trivial. As for the second part,
Ψ(2) ≥ Ψ(2)−Ψ(0) obviously holds. To show Ψ(2) ≥ Ψ(3)−Ψ(1):

Ψ(2)−Ψ(1) ≥ Ψ(3)−Ψ(2)→
Ψ(2) ≥ Ψ(3)− (Ψ(2)−Ψ(1))→
Ψ(2) ≥ Ψ(3)−Ψ(1)

The inequalities Ψ(2) ≥ Ψ(4)−Ψ(2) and Ψ(3) ≥ Ψ(k)−Ψ(k− 3)
are shown similarly.
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k Ψ(k) Ψ(k)−Ψ(k − 1)

1 0.24478 0.24478
2 0.45956 0.21478
3 0.62457 0.16501
4 0.76707 0.14250

Table 6.3: Ψ(k) values

The optimised values of Ψ(k) are given in Table 6.3. Having them
available when the proof is presented makes it easier to verify the
claims.

A note: In the previous section we found the branching numbers
by applying our measuring function to ∆n and ∆l. Here the situation
is somewhat more complicated. For an example, let k(F ) be the
number of 2-clauses in F and say that n(F ) = 100, k(F ) = 1 and
n(F1) = 95, k(F1) = 2. We have that ∆n = 5 and ∆k = −1.
However, ∆f = (100−Ψ(1))− (95−Ψ(2)) = 5+(Ψ(2)−Ψ(1)) which
does not necessarily equal 5 + Ψ(1).

We now proceed to prove the time complexity of D(F ).

Theorem 39. D(F ) runs in O (1.6737n) time.

Proof. We will give the branching numbers for the various cases of
the algorithm, using the measure f(F ) = n − Ψ(k) with the values
for Ψ(k) given above.

Case 1 takes O (1) time. Cases 2 and 3 do not increase the time
complexity.

Case 4: In both branches, at least the variables v and a are
removed, as v will be removed by multiplier reduction when δ(v) =
δ2(v) = 1. If δ2(a) > 0, then at least one more variable is removed in
some branch and we will have a branching number smaller than τ(2−
Ψ(4), 3−Ψ(4)) < 1.5101. Otherwise, if δ2(a) = 0, we have ∆k ≤ 0 in
both branches and the branching number is at most τ(2, 2) < 1.4143.

Case 5: If δ2(v) = 2, assume w.l.o.g. that we have the 2-clauses
x = (v ∨ a), y = (v ∨ b). In both branches, at least the variables v
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and a are removed, as well as at least the two 2-clauses x and y. If
a is involved in some other 2-clause, then at least one more variable
is removed in some branch, leading to a branching number smaller
than τ(2 − Ψ(4), 3 − Ψ(4)) < 1.5101. Otherwise, when δ3(a) > 0,
by Lemma 38 we have a worst-case branching number smaller than
τ(2−Ψ(2), 2−Ψ(1)) < 1.5239.

If δ2(v) = 1, assume w.l.o.g. that there exists a 3-clause x =
(v ∨ a ∨ b) in F and that we are branching on a. In one branch,
v is removed, and in the other branch either v is removed by some
reduction or a new 2-clause y = (v ∨ b) is created. Let us enumerate
the possible cases:

1. If there is a 2-clause (v̄∨ b̄), (v̄∨b) or (v∨ b̄), then we will have a
reduction, and by Lemma 38 the branching number is at most
τ(2−Ψ(2), 2−Ψ(2)) < 1.5683.

2. If δ2(a) = 0 and v is not removed by some reduction, then there
are two variants depending on the sign of a in x and the other
3-clause y (which must exist by case 4.) If a has the same sign
in both x and y we have branching numbers τ(2−(Ψ(k)−Ψ(k−
1)), 1− (Ψ(k)−Ψ(k + 2))) ≤ τ(2− (Ψ(4)−Ψ(3)), 1− (Ψ(4)−
Ψ(6))) < 1.6507, else, if a has different signs, we have branching
numbers τ(2, 1− (Ψ(k)−Ψ(k + 1))) < τ(2, 1) < 1.6181.

3. Otherwise, if δ2(a) > 0 and v is not removed by some reduction,
at least one more variable is removed in some branch and we
have branching numbers smaller than τ(2 − Ψ(2), 2 − Ψ(1)) <
1.5239 and τ(3 − Ψ(2), 1 − Ψ(1)) < 1.6053 (the two cases for
δ2(a) = 1); τ(2−Ψ(3), 3−Ψ(2)) < 1.4413, τ(3−Ψ(3), 2−Ψ(1)) <
1.4330 and τ(4 − Ψ(3), 1 − Ψ(1)) < 1.4903 (the three cases for
δ2(a) = 2); τ(5−Ψ(4), 1−Ψ(3)) < 1.5576 (the most unbalanced
case for δ2(a) = 3); τ(6 − Ψ(5), 1 − Ψ(4)) < 1.5583 (the most
unbalanced case for δ2(a) = 4.)

Case 6: We will give the possible worst case branchings for each
value of δ2(v). Note that the worst case branching for a particular
value of δ2(v) will always have a minimum δ3(v): If v is a literal in
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Ref. Tuple Number

1 (1−Ψ(1), 2 + (Ψ(2)−Ψ(1))) 1.6701
2 (1− (Ψ(2)−Ψ(1)), 2 + (Ψ(3)−Ψ(2))) 1.6674
3 (1− (Ψ(3)−Ψ(2)), 2 + (Ψ(4)−Ψ(3))) 1.6504
4 (1− (Ψ(4)−Ψ(3)), 2 + (Ψ(5)−Ψ(4))) 1.6737

5 (1−Ψ(2), 3− (Ψ(2)−Ψ(1))) 1.6664
6 (1− (Ψ(2)−Ψ(1)), 3−Ψ(2)) 1.5933
7 (2− (Ψ(2)−Ψ(1)), 2−Ψ(2)) 1.5184

8 (1− (Ψ(3)−Ψ(1)), 3− (Ψ(3)−Ψ(1))) 1.6533
9 (1− (Ψ(3)−Ψ(2)), 3−Ψ(3)) 1.6034
10 (2− (Ψ(3)−Ψ(1)), 2−Ψ(3)) 1.5902

11 (1− (Ψ(4)−Ψ(2)), 3− (Ψ(4)−Ψ(1))) 1.6448
12 (1− (Ψ(4)−Ψ(3)), 3−Ψ(4)) 1.6222
13 (2− (Ψ(4)−Ψ(2)), 2− (Ψ(4)−Ψ(1))) 1.5496

14 (1−Ψ(3), 4−Ψ(3)) 1.6737
15 (1− (Ψ(4)−Ψ(1)), 4−Ψ(4)) 1.6268

16 (1−Ψ(4), 5−Ψ(4)) 1.6737

Table 6.4: Branching tuples and branching numbers for case 6
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a 3-clause, then this 3-clause contributes nothing when v = true and
increases k by 1 when v = false.

Since there are so many hard worst case branchings for this case,
the branchings and the branching numbers are given in Table 6.4 for
overview. The branching numbers are all at most 1.6737.

If δ2(v) = 1, the worst case is when δ(v) = 3 (by case 5, δ(v) 6= 2),
and supposing that the 2-clause is (v ∨ a), we know that δ2(a) = 1,
so only one 2-clause is removed in both branches. Also, δ3(v) = 2,
resulting in two newly created 2-clauses. The worst case, because of
the balanced branching effect, is the case where both 3-clauses include
the literal v, so that we have τ(1− (Ψ(k)−Ψ(k− 1)), 2 + (Ψ(k + 1)−
Ψ(k))). The branching tuples and branching numbers for these cases
are lines 1 – 4 of Table 6.4. Cases with k > 4 result in τ(1, 2) < 1.6181.

If δ2(v) = 2, we similarly have δ(v) = 3 and, if the neighbours of
v in the 2-clauses are a and b, δ2(a) ≤ 2 and δ2(b) ≤ 2. For the non-
constant case (v ∨ a), (v̄ ∨ b) we have, disregarding the 3-clause, two
variables and two or three 2-clauses removed both when v = true and
v = false. For the constant case (v ∨ a), (v ∨ b), we have one variable
and two 2-clauses removed when v = true, and three variables and two
to four 2-clauses removed when v = false. In both cases, one 2-clause
will be created in one of the branches, guaranteeing that k ≥ 1 in that
branch. Because of this guarantee, the results are different depending
on the value of k. Lines 5 – 7 of Table 6.4 contain the cases for k = 2,
beginning with the constant case. Lines 8 – 10 contain the cases for
k = 3 and lines 11 – 13 contain the cases for k = 4, both beginning
with the constant case. Having k > 4 will not bring about any new
worst cases, as Ψ(k) flattens out and Ψ(k)−Ψ(k1) decreases.

If δ2(v) ≥ 3, the worst case is when δ3(v) = 0. When k = 3, we
have δ2(v) = 3 resulting in τ(1−Ψ(3), 4−Ψ(3)) or τ(2−Ψ(3), 3−Ψ(3)),
where the former is clearly the worst case. When k = 4, we have
δ2(v) = 3 resulting in τ(1 − (Ψ(4) − Ψ(1)), 4 − Ψ(4)), which is a
candidate for the worst case, or τ(2 − Ψ(4), 3 − Ψ(4)) < τ(1, 2) <
1.6181, and δ2(v) = 4 resulting in τ(1−Ψ(4), 5−Ψ(4)), τ(2−Ψ(4), 4−
Ψ(4)) and τ(3 − Ψ(4), 3 − Ψ(4)), where the first case is clearly the
worst case. The worst of these cases are lines 14 – 16 of Table 6.4.
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Case 7: Note that k = 0 when this case is met. In the first two
branches, either v is removed by some reduction, and/or case 4 is met.

1. If v is removed in the first branch, then the branching number
is at most τ(2, 2, 3) < 1.6181. If v is removed in the second
branch, then case 4 is met in the first branch. As the worst
branching number of case 4 is smaller than τ(2−Ψ(4), 3−Ψ(4)))
we here have a branching number smaller than τ(3−Ψ(4), 4−
Ψ(4)), 3, 3) < 1.6322.

2. Otherwise, in both of the two first branches case 4 is met. We
need to refine the analysis of case 4 for this case. Note that here,
in case 7, at most one 2-clause is created that can be destroyed in
the subsequent step. As τ(2−Ψ(1), 3−Ψ(1))) < τ(2, 2) we here
get a worst case branching number of τ(3, 3, 4, 4, 3) < 1.6181.

Case 8: Since δ(v) ≥ 3 for all variables in F , the only situation
where δ(v) = 3 for the chosen variable v is when F is 3-regular. How-
ever, in the general case we may assume that δ(v) ≥ 4, because the
3-regular situation only occurs once along each path down the branch-
ing tree. To see this, note that with one exception, every modification
of the formula that our algorithm performs is either a deletion of a
variable or clause, or a shortening of a clause. The exception is when
Prop performs the following:

If there are two clauses (a ∨ b) and (ā ∨ b̄), then let F ←
F (a/b̄).

Now, note that if the degrees of a and b are at most 3 (as is the
case when there has been a 3-regular situation), then the remaining
variable b has degree at most two. Hence, we will not encounter this
situation more than once.

When δ(v) ≥ 4, if there are i 3-clauses that contain v, and j 3-
clauses that contain v̄, then the branching number for this case is
τ(1 + Ψ(i), 1 + Ψ(j)). Because of the balanced branching effect, the
worst case branching number is τ(1, 1 + Ψ(4)) < 1.6737.
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We will now give a description of how the values for Ψ(k) were
found. The branchings that can not be proved to have a branching
number of at most 1.6737 when Ψ(k) is unknown are two cases from
case 5, fourteen cases from case 6 and one case from case 8. Let
B1(x), . . . , B17(x) be the value of each of these branching numbers
given a vector x = (Ψ(1), . . . , Ψ(4)). Then the running time of D(F )
is O (m(x)n) where m(x) = max1≤i≤17 Bi(x), and the optimisation
problem we have to solve is to find the x which minimises m(x) under
the conditions that 0 < Ψ(1) < . . . < Ψ(4) < 1. Note that since
each Bi(x) is continuous as long as these conditions hold, m(x) is
also continuous, which is a sufficient condition for standard tools to
find at least a local optimum. The result of this optimisation is the
values given in Table 6.3.

6.5 Algorithm Csep

In this section we present an algorithm for #2satw for a special class
of formulae, namely those with a separable constraint graph. Due to
the kinship between 2sat formulae and graphs, this class of formulae
enjoys interesting properties as we shall see. Before that, however, we
need some additional preliminaries.

A graph is complete if every pair of distinct vertices is joined by
an edge. The complete graph with n vertices is denoted Kn. H =
(VH , EH) is a subgraph of G = (VG, EG) iff VH ⊆ VG and EH ⊆ EG.
For an edge e = (u, v), u and v are called its endpoints. If S is a set
of edges of G, the operation of deleting S from G and identifying the
endpoints is called contracting S. A minor of a graph G is any graph
H obtained from G by a series of vertex deletions, edge deletions and
edge contractions.

Let S be a class of graphs closed under the subgraph relation and
f(n) be a non-negative function. In [55], Lipton and Tarjan define an
f(n)-separator theorem for S as follows:

Definition 40 (Separator theorem). There exist constants α < 1
and β > 0 such that if G is any n-vertex graph in S, then the vertices
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of G can be divided into three sets A, B and C such that no edge joins
a vertex in A with a vertex in B, max(|A|, |B|) ≤ αn and |C| ≤ βf(n).

A separator algorithm is a polynomial time algorithm Sep that
takes a graph G as input and returns the tuple (A, B, C) of Defini-
tion 40. The constants α, β and f differ between different separator
algorithms, but we require that f(n) ∈ o(n). If there is an f(n)-
separator theorem for S we say that S is a separable graph class and
that G ∈ S is a separable graph. The class of separable 2sat formulae
we define as the class of formulae having separable constraint graphs.

Let F be a separable 2sat formula with the constraint graph GF ,
such that GF = (V, E), where |V | = n, and let Sep be a separator al-
gorithm for the class that GF belongs to. The algorithm Csep(F, Sep)
will return a tuple (m, w), such that m is the number of maximum
weighted models for F and w is the weight of any such model. The al-
gorithm recursively breaks down its input until a constant size, say b,
of the input is reached. The constant sized subproblems are solved by
calling CE which will exhaustively search for the number and weight
of the mwm’s. To break down the input, Sep will be used to obtain
A, B and C. If A and B were both disjoint and their union would
equal GF we would need just two recursive calls, but that is not possi-
ble in general. Instead, we are required to do a recursive call for every
assignment of the variables of C, or rather every assignment of C that
is extendible. The idea is that we check every possible configuration
of C, deciding which variables should be set to 1, and which should
be set to 0. Let FA (FB) denote the formula obtained from collecting
just the clauses where variables in A (B) participate. The weight of a
partial assignment κC is the sum of the weights of the literals which
are true under κC .

Csep uses a function (c′, w′) = comb(a, (c1, w1), (c2, w2), (c, w))
with the following definition:

(c′, w′) =







(c, w) if a + w1 + w2 < w
(c + (c1 · c2), w) if a + w1 + w2 = w
(c1 · c2, a + w1 + w2) if a + w1 + w2 > w
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Algorithm Csep(F, Sep)

1. If n(F ) < b, return CE(F )

2. c← 0; w ← 0

3. Let (A, B, C) = Sep(GF )

4. For each extendible assignment κC to the variables of C:
(c, w) = comb(w(κC), Csep(FA, Sep), Csep(FB, Sep), (c, w))

5. Return (c, w)

Figure 6.16: The algorithm Csep for #2satw

We will use comb to combine the results so far with the current
recursive calls. Thus the algorithm reads as in Figure 6.16. We have
the following theorem for the correctness of Csep(GF , Sep):

Theorem 41. Csep(GF , Sep) returns the tuple (c, w), where c is the
number of mwm’s in F and w the weight of any such mwm.

Proof. We note that if n(F ) < b, then the output is correct by as-
sumption. Else, we calculate A, B and C, and since every extendible
assignment of C is checked, the algorithm is sound and complete.
Note that if no assignment is extendible, (0, 0) will be returned.

We now give an upper time bound on the running time of Csep:

Theorem 42. The running time T (n) of Csep is in
O (poly(n)· 2βf(n)z log n

)
, where z = − 1

log α .

Proof. Any tree of depth k having maximum degree t has at most
tk+1−1

t−1 nodes. Let us first establish an upper bound on k:

Looking at a particular node y in the recursion tree, it processes
the subgraph Gy

F ⊆ GF . We know that |GF | = n, and that in each

child y′ of y it holds that |Gy′

F | ≤ α|Gy
F |. Following one path down-

wards the recursion tree, at the last level the node processes a sub-
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graph of constant size, say 1. Hence, αkn ≤ 1 ⇔ log αkn ≤ log 1 ⇔
k log α + log n ≤ 0⇔ k ≤ − log n

log α

As for the degree, we know that t = 2βf(n), and hence the number
of nodes is

(2βf(n))k+1 − 1

2βf(n) − 1

In each node the work is O (poly(n)) and so we have

T (n) ∈ O

(

poly(n) · (2βf(n))(z log n)+1

2βf(n) − 1

)

= O
(

poly(n) · 2βf(n)z log n
)

We next look at some particular instance classes to see how re-
strictions on the constraint graph can be exploited.

Graphs with an excluded minor H: Alon et al. [2] have pre-
sented a separator algorithm that guarantees |C| ≤ h3/2n1/2 and
α ≤ 2/3, where h = |H|. Hence, for this class, #2satw can be

solved in time O
(

2h3/2
√

nz′ log2 n
)

, where z′ ≈ 1.7. For two special

subclasses we have even faster running times:

1. Graphs of bounded genus: Aleksandrov and Djidjev [1] have
presented a separator algorithm for splitting a graph G = (V, E)
that is embeddable on a surface of bounded genus g. It runs
in O (n + g) time and guarantees that |C| ≤ 4

√

gn + n/ε, ∀ε ∈
(0, 1) and |F | ≤ εn for every connected component F obtained
from G − C. We choose ε = 1/2 and get α ≤ 2/3 and so we

have that T (n) ∈ O
(

24
√

gn+2nz′ log2 n
)

.

2. Planar graphs: The classical separator theorem for planar
graphs by Lipton and Tarjan [55] has α ≤ 2/3 and |C| ≤ 2

√
2n.

This gives a running time in O
(

22
√

2nz′ log2 n
)

.
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A complexity theoretical note is appropriate here: Vadhan [73] has
proved that #Maximum Independent Set remains #P-complete
even for planar bipartite graphs of degree ≤ 3. As we shall see,
#2satw is at least as hard as #Maximum Independent Set, and
so one can say the following about the complexity of the graphs in
the previous paragraph: #2satw for the last class is obviously #P-
complete, and the same holds for the second class. As for the first
class, there are subclasses for which #2satw is polynomial time solv-
able (e.g. an excluded K2 minor.) However, for many interesting
subclasses e.g. graphs with no Kh minor (and h > 2), the problem is
#P-complete.

We now look at a polynomial time solvable case:
Graphs with bounded tree width: For a graph G with a

bounded tree width w, one can in O (nw) time separate G such that
|C| ≤ w + 1 and α = 2/3 (see for instance [9].) Using Theorem 42
we would get an upper time bound in O

(
n2w

)
, but we can do better.

The running time T (n) can be described by the recurrence

T (n) ≤ 2w+1T (2n/3) + nw.

Applying the Master Theorem for divide and conquer recurrences

(see for instance [13]), we get a running time in O
(

nlog3/2 2w+1
)

⊆
O
(
n1.71w+1.71

)
. This is better than O

(
n2w

)
for w ≥ 6.

The matter of counting in this class has been previously dealt with
by Dı́az et al. [30]. Their main result is an algorithm that counts
homomorphisms in linear time for fixed w. This algorithm can be
used for counting, among other things, the number of independent
sets in a bounded tree width graph in linear time. Their results
are however not fully comparable with ours: Using their algorithm
for counting maximum independent sets would take time exponential
in the number of vertices of the graph (see Corollary 5.10 in [30]),
whereas our reduction (to be shown later in this chapter) implies an
O
(
n1.71w+1.71

)
time algorithm. On the other hand, modifying our

reduction for maximum independent sets to allow all independent
sets still gives an O

(
n1.71w+1.71

)
time algorithm.
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6.6 Applications

We here give some interesting applications for the counting of mwm’s
for 2sat and 3sat formulae. We start with an application for D.
This reduction first appeared in an article by Valiant [75].

– #Circuit Satisfiability can be solved inO (1.6737n+m) time,
where n is the number of inputs and m the number of gates.

Instance: A one-output boolean combinatorial circuit consisting
of and, or and not gates.

Question: How many (different) inputs make the output 1?

Reduction: Each gate has (at most) two inputs and one output.
Hence it can be mimicked using (at most) three variables. So,
at the first level of the circuit each input translates to a variable
and then each gate gives a variable.

There is a kinship between #2sat and many graph problems
which we will exploit in the following. We first look at the #Maxi-

mum Independent Set and #Independent Set problems.

– #Maximum Independent Set and #Independent Set for
general graphs is solvable in O (1.2561n) time; for graphs with

an excluded H minor in time O
(

2|H|3/2
√

n1.7 log2 n
)

, for graphs

of bounded genus g in O
(

24
√

gn+2n1.7 log2 n
)

time, for planar

graphs within time O
(

22
√

2n1.7 log2 n
)

and for graphs with a

bounded tree width of w in O
(
n1.71w+1.71

)
time.

Instance: A graph G = (V, E), with a weight w(x) for each
vertex x ∈ V .

Question: What is the number of independent sets/maximum
independent sets?

Reduction: For the #Maximum Independent Set problem,
let each vertex xi of G form a boolean variable xi, each edge
(xj , xk) give rise to a clause (x̄j ∨ x̄k), and each z ∈ V that
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has no edge the clause (z) (since z must be in every maximum
independent set.) The weights associated with each vertex xi

of G is transferred to the positive literal xi and w(x̄i) = 0.
Clearly, the number of mwm’s equals #Maximum Indepen-

dent Set. For the #Independent Set problem one simply
assigns w(x) = w(x̄i) = 1 and each z ∈ V that has no edge gives
rise to the clause (z ∨ z̄).

As we now have algorithms for the #Maximum Independent

Set problem, we can employ the following reductions:

– #Exact Cover for general graphs can be solved inO (1.2561n)
time (and for separable graphs time bounds are given above.)

Instance: A finite set U and a collection C of subsets c1, . . . , cn

of U .

Question: If C contains an exact cover for U , i.e. a subcollection
C ′ ⊆ C such that every element of U occurs in exactly one
member of C ′, what is the number of exact covers?

Reduction: Let (U, C) be an arbitrary instance of the #Exact

Cover problem. Construct a weighted graph W = (V, E) as
follows: Let each ci ∈ C give rise to a vertex vi ∈ V whose
weight is |ci|. Add an edge between vi and vj if and only if
ci ∩ cj 6= ∅. Clearly, no independent set in W can have a weight
greater than |U |. Furthermore, the independent sets of weight
|U | in W corresponds to solutions of (U, C).

– #Exact Hitting Set can be solved in O (1.2561n) time.

Instance: A finite set U and a collection C of subsets c1, . . . , cn ⊆
U such that

⋃

ci
= U

Question: A solution is a minimum size subset H ⊆ U hitting
each ci exactly once, i.e. |ci ∩ H| = 1. What is the number of
solutions?

Reduction/Modification: To ensure the minimum size property
we will have to add a slight modification to the algorithms such
that whenever a heavier solution is preferred over lighter ones,
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there is also a preferment of having as few true positive literals
as possible. Then, let (U, C) be an arbitrary instance of the
#Exact Hitting Set problem. Construct a weighted graph
W = (V, E) as follows: Let each element xj ∈ U form a vertex.
Add an edge between each pair of elements that are contained
within the same ci. The weight w(xj) is the number of subsets
xj appears in. Obviously, a maximum independent set mis such
that the weight of mis equals |C| covers all subsets.

– #Weighted Set Packing for general graphs can be solved in
time O (1.2561n).

Instance: A finite set U and a collection C of subsets c1, . . . , cn ∈
U and for each ci there is an associated weight w(ci).

Question: A solution is a collection C ′ ⊆ C of disjoint sets of
maximum weight. What is the number of such solutions?

Reduction: Let (U, C) be an instance of the #Weighted Set

Packing problem. Construct a weighted graph W = (V, E)
as follows: Introduce one vertex vi for each ci ∈ C and assign
it weight w(ci). Add an edge between vi and vj if and only if
ci ∩ cj 6= ∅. Obviously, a maximum weighted, independent set
found in W constitutes a solution.
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Part IV

Optimising
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Chapter 7

Maximum Exact

Satisfiability

In this chapter we study Max xsat and its variant Restricted

max xsat. Unlike previous chapters, the main results are obtained
by reductions to other problems. For Restricted max xsat this
means a non-trivial upper time bound for solving it, while for Max

xsat we get yet an indication about its hardness.

7.1 On the Hardness of Max xsat

To the best of our knowledge, measuring in the number of variables,
there is no algorithm for Max xsat with a better running time than
the trivial O (2n) bound. As we will show in this section, such results
would be surprising, given the lack of results for Max sat. In the
concluding Chapter 9 we will also compare the results for algorithms
measuring the running time in m = m(F ). For now, we concentrate
on measuring in n(F ) and note the following for Max xksat and
Max ksat:

1. Using polynomial space there are no non-trivial results even for
k = 2.
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2. Resorting to the use of exponential space, Williams [77] has
shown that Max x2sat and Max 2sat are solvable in time
O (1.7314n).

3. For k > 2 no results are known.

The following theorem shows that a O (cn) time algorithm for
Max xksat implies a O (cn) time algorithm for Max ksat.

Theorem 43. Every instance F of Max ksat is polynomial time
reducible to an instance G of Max xksat such that n(F ) = n(G).

Proof. Let F be an arbitrary instance of Max ksat and consider the
following reduction from Max ksat to Max xksat: for every clause
C = (a1∨a2∨ . . .∨aj−1∨aj) in F we mimic the allowed assignments
by creating a number of new Xsat clauses. The first class of allowed
assignments for C is the ones making exactly one of the literals true.
This is captured by the Xsat clause C1

1 = (a1 ∨ a2 ∨ . . .∨ aj−1 ∨ aj).
The second class of allowed assignments is the ones making two of the
literals true. This can be mimicked by creating the Xsat clauses

C1
2 = (ā1 ∨ ā1 ∨ a2 ∨ . . . ∨ aj−1 ∨ aj)

C2
2 = (a1 ∨ a1 ∨ ā2 ∨ ā2 ∨ . . . ∨ aj−1 ∨ aj)

...

Cj−1
2 = (a1 ∨ a1 ∨ a2 ∨ a2 ∨ . . . ∨ āj−1 ∨ āj−1 ∨ aj)

These clauses can be understood as “a1 true and yet another un-
specified literal true; a1 false, a2 true and yet another unspecified
literal true” etc. The other classes are modelled accordingly, ending
with C1

i = (a1 ∨ ā2 ∨ ā2 ∨ . . . ∨ āj−1 ∨ āj−1 ∨ āj ∨ āj) for all literals
true. We say that the Sat clause C yields the Xsat clauses Ck

h . Note
that we here view G as a multiset, allowing multiple occurrences of a
clause. Another possibility would be to assign weights to the clauses.

In order to prove the theorem we first need to prove that every
assignment that satisfies µ clauses in F satisfies at least µ clauses in
G. It is easy to see that this holds: By construction of G, for every
assignment satisfying any clause C ∈ F there is at least one clause
yielded by C that is satisfied.
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x = (ā) y = (a ∨ b ∨ c) z = (a ∨ b̄) w = (a ∨ c̄)

Figure 7.1: An instance of Max sat with answer 3

x1
1 = (ā)

y1
1 = (a ∨ b ∨ c) z1

1 = (a ∨ b̄) w1
1 = (a ∨ c̄)

y1
2 = (ā ∨ ā ∨ b ∨ c) z1

2 = (a ∨ b ∨ b) w1
2 = (a ∨ c ∨ c)

y2
2 = (a ∨ a ∨ b̄ ∨ b̄ ∨ c)

y1
3 = (a ∨ b̄ ∨ b̄ ∨ c̄ ∨ c̄)

Figure 7.2: An instance of Max xsat with answer 3

Secondly, we need to prove that an assignment A that satisfies µ
clauses in F satisfies at most µ clauses in G. We note that due to
the construction of G, no clause C ∈ F that is unsatisfied under A
yields a clause that is satisfied under A. Further, for a set Γ of clauses
yielded by C ∈ F , there is no assignment that satisfies two clauses of
Γ simultaneously.

We will illustrate how the reduction works by an example. In
Figure 7.1 an instance of Max sat is shown. We pick each clause
and apply the rules. Starting with x = (ā), it simply translates to
x1

1 = (ā). For y = (a ∨ b ∨ c) we get y1
1 = (a ∨ b ∨ c) which captures

the case when only one literal is true. For two literals true we get
y1
2 = (ā ∨ ā ∨ b ∨ c) and y2

2 = (a ∨ a ∨ b̄ ∨ b̄ ∨ c) and all three true
is modelled by y1

3 = (a ∨ b̄ ∨ b̄ ∨ c̄ ∨ c̄). The translation of the two
remaining clauses is trivial and the overall result is shown in Figure
7.2.

7.2 Solving Restricted max xsat

As we have already pointed out, even when restricting Max xksat to
k = 2, for polynomial space the best known upper time bound is still
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the trivial O (2n) bound. It is therefore somewhat surprising that an-
other, seemingly minor restriction can allow much faster algorithms.
As already mentioned, Madsen and Rossmanith [59] have shown how
to solve Restricted max xsat in timeO (1.3248n). We will improve
this to O (1.2561n) by means of a reduction to 2satw. We recall that
Restricted max xsat is Max xsat with the restriction that no
clause may be over-satisfied. Note that the restriction makes at least
one canonical rule available: given the clauses (a ∨ b) and (a ∨ b̄), a
must be false, because otherwise one clause gets over-satisfied. Thus,
this problem seems to have a nicer structure compared to Max xsat

which, as far as we know, allows no canonical rules at all. The known
algorithms also give a strong indication of this.

Lemma 44. An instance F of Restricted max xsat is polynomial
time reducible to an instance G of 2satw such that n(F ) = n(G).

Proof. Construct the 2satw instance G as follows:
For every pair of literals a and b occurring in a clause of F , make

the clause (ā ∨ b̄). Each variable a in G carries two integer weights:
w(a) and w(ā). Let w(a) be number of clauses containing a and w(ā)
be the number of clauses containing ā.

First note that by the construction of the clauses of G, for G to
have a model at all, no clause of F must be over-satisfied. Second,
any literal a that is true under a model for G satisfies w(a) number
of clauses in F , and correspondingly for a false literal. Therefore, a
max-weighted model of G correspond to an assignment to F such that
a maximum number of clauses are x-satisfied.

The number of clauses in G is at most (2n)2 (assuming that clauses
are not duplicated) and so the reduction is polynomial. No new vari-
ables are introduced.

For an example of the reduction, consider the following instance
of Restricted max xsat, with answer 1:

(a), (a ∨ b), (a ∨ b̄)

Applying the reduction we get the weighted 2sat formula of Fig-
ure 7.3. Note that every model must have a = false. We now arrive
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Formula: (ā ∨ b̄), (ā ∨ b)
Weights: w(a) = 3 w(ā) = 0

w(b) = 1 w(b̄) = 1

Figure 7.3: For this weighted 2sat formula, a = false, b = false is a
maximum weighted model of weight 1

at the following theorem which proves a new upper time bound for
Restricted max xsat:

Theorem 45. Restricted max xsat for a formula F is solvable in
polynomial space and time O (1.2561n).

Proof. Follows from Lemma 44 and Theorem 36.
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Chapter 8

Max Hamming Exact

Satisfiability

In this chapter we present two algorithms for solving Max hamming

xsat, prove them correct and provide upper bounds on their running
time. For the sake of conciseness, we phrase the algorithms in such a
way that they answer the question “what is the maximum Hamming
distance between any two models?” However, it is trivial to see how
they can be modified to actually produce two such models.

8.1 Using an External Xsat Solver

Instead of directly presenting an algorithm for Max hamming xsat,
let us first discuss another, similar problem. Consider the following
Xsat instance, I:

x = (a ∨ b), y = (ā ∨ c).

The question is whether there are two models M and M ′ that differ
in their assignment to the variable a. One systematic approach to this
problem is to build a new instance I ′ such that I ′ is x-satisfiable iff
there are two such models. One such instance I ′ is this:

x = (a ∨ b), y = (ā ∨ c), x′ = (a′ ∨ b), y′ = (ā′ ∨ c), z = (a ∨ a′).
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We see that the clauses containing a are copied and that a new
variable a′ is introduced, replacing a in the copied clauses. The addi-
tion of the clause z now forces a 6= a′ and we see that I ′ is x-satisfiable
iff I allows two models differing on a. We can use this principle to
produce an algorithm for Max hamming xsat: For every subset X
(in our example X = {a}) of the variables, build a new instance I ′
by copying the clauses where variables from X occur, replacing the
variables from X with new variables X ′ and finally adding clauses
such that a 6= a′ for every variable a ∈ X and its copy a′ ∈ X ′. The
time for this would be in O

(
2n1.17302n

)
⊆ O (2.7519n): There are 2n

possible subsets X and for each such subset we need to check whether
the corresponding I ′ is x-satisfiable, and I ′ might be twice the size of
the original instance. However, we can do better.

The first step towards a faster algorithm is an observation made
by Angelsmark and Thapper [5]: We do not need to introduce any
new variables. Since the constraint is a 6= a′ and we have a Boolean
domain, in the copied clauses, we flip every occurrence of a literal
from X. For our example above, I ′ is constructed thus:

x = (a ∨ b), y = (ā ∨ c), x′ = (ā ∨ b), y′ = (a ∨ c)
By the observation that I ′ does not have to contain new variables

(and this works for Sat also), Angelsmark and Thapper [5] were able

to solve Max hamming sat in time O
(

22n−2
√

n/ log n
)

: 2n subsets

to consider and Sat is solvable in time O
(

2n−2
√

n/ log n
)

(see [21].)

Using the same technique, Max hamming xsat can be solved in time
O (2.3460n). However, we can do even better, because we do not have
to consider every instance I ′ and thus can skip a number of calls to
the Xsat solver. This is shown in the following lemma:

Lemma 46. Assume that M and M ′ are x-models for F and that X
is the subset of variables assigned different values. Then each clause
of F contains either zero or two literals derived from X.

Proof. For the sake of contradiction, assume there is a clause contain-
ing exactly one literal a from X. The clause cannot be (a) because
then it would be unsatisfied under one model. Therefore the clause
must be (a ∨ A) where all members of A have the same value under
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Algorithm P (F )
1 ans← ⊥
2 for k ← 0 to n do
3 for every subset X ⊆ V ar(F ) of size k do
4 Let C be the set of clauses containing any literal derived

from X
5 Let C ′ be a copy of C where every literal derived from X is

flipped
6 if all clauses of C contain either 0 or 2 literals from X then
7 if F ∪ C ′ is x-satisfiable then ans← k
8 return ans

Figure 8.1: The algorithm P for Max hamming xsat

both models. If one literal of A is true, then a must be false under
both models (to avoid over-satisfaction), clearly a contradiction. If all
literals of A are false, a must be false so this also is a contradiction.

Again for the sake of contradiction, assume there is a clause con-
taining three literals a, b and c, from X. In M one, say a is true, and
the other consequently false. However, a = false, b = c = true can
never hold in M ′. We see that this also holds for the case of more
than three literals from X in any clause.

We will return to the question of how many of the I ′s that can
comply to Lemma 46. First, however, we will present our algorithm,
which can be seen in Figure 8.1. If the formula is x-unsatisfiable, then
⊥ is returned. The answer 0 of course indicates that there is only one
model.

Theorem 47. P (F ) decides Max hamming xsat for F .

Proof. For completeness: Assume there are two models M and M ′

at maximum hamming distance k and that the differing variables are
collected in X. The clauses containing zero literals from X remain the
same under both models, the interesting case is a clause (a ∨ b ∨ C)
where a and b are from X (by Lemma 46 this is the only possible
case.) Assume w.l.o.g. that a is true and b is false under M and the



144 8.1. Using an External Xsat Solver

l 1 2 3 4 5 6 7

g(l) 1 1.4143 1.5875 1.6266 1.6154 1.5875 1.5552

l 8 9 10

g(l) 1.5234 1.4937 1.4665

Table 8.1: The first ten values of g

opposite holds for M ′. Then the clause (ā∨ b̄∨C) is x-satisfied under
both models.

For soundness: Assume we have a model M for F ∪C ′. Consider
the clauses in the set C ∪ C ′. We see that each clause have two
members from X such that one is true and the other false. Thus, it
is possible to form another model M ′ by assigning all variables of X
the opposite values.

We can now start examining the running time of P . Let an allowed
subset S of variables in a formula F be a subset such that each clause
of F contains either zero or two members of S. The following lemma
establishes an upper bound for the number of allowed subsets.

Lemma 48. For any formula F the number N of allowed subsets is
in O (λn) = O

(
7n/4

)
⊆ O (1.6266n).

Proof. Consider an arbitrary variable a. When calculating the num-
ber N of allowed subsets a can participate in, it is clear that the
higher the degree of a, the lower the N . Hence, a formula consisting
only of singletons has maximum N .

Which clause length l maximises N? We see that N = (
(

l
2

)
+

1)n/l = (l2/2 − l/2 + 1)n/l. Hence, we now need to maximise g(l) =
(l2/2 − l/2 + 1)1/l for integer values of l. In Table 8.1 are given the
first 10 values for g. They can be interpreted as “Clause length 2
makes N ∈ O

(
2n/2

)
⊆ O (1.4143n)” etc. We see that for these 10

values, g has a maximum at clause length 4, making N ∈ O
(
7n/4

)
⊆

O (1.6266n).
We need to establish that this is a global maximum, i.e. that this

series is decreasing for all values l > 10. We do that by overestimating
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g. Note that f(l) = (l2)1/l is greater than g for l > 2. The derivative
of f is f ′(l) = (l2)1/l · (2/l2 − 2 ln(l)/l2) and we see that for l > e,
where e = 2.712 . . ., f ′ is always negative, which means that f is
always decreasing. As f(10) < 1.5849, we know that we have found
a global maximum.

Theorem 49. P (F ) runs in polynomial space and time O (2n).

Proof. Clearly P uses polynomial space. Furthermore, the running
time is O (2n + λnCn), where λ is the constant of Lemma 48 and C is
a constant such that Xsat is solvable in polynomial space and time
O (Cn). The currently best value for C is 1.1730 and so the upper time
bound isO (2n + 1.6266n · 1.1730n) ⊆ O (2n + 1.9079n) = O (2n).

Note that if we are not searching for the maximum Hamming
distance, but are content with a constant distance d, then P can be
easily modified for this, and we obtain a running time in O (1.1730n).

8.2 Using Branching

We will now move on to another polynomial space algorithm Q with
a provably better running time than P . Its description and prelimi-
naries are quite lengthy, and so we will divide this section into sub-
sections. The first subsection will introduce the principles and extra
structures used in the algorithm. In subsection 8.2.2 a working, but
somewhat inefficient algorithm Q′ is presented. This is done because
adding the extra lines of code to speed up the algorithm will obscure
the structure of it. In this section we also prove the correctness of Q′

and its auxiliary algorithms. Finally, in subsection 8.2.3, we add the
extra lines to speed up the algorithm and then prove an upper time
bound.

8.2.1 Extra Preliminaries

The algorithm Q is a dpll style algorithm relying on the following
observation: In two models M and M ′ at a maximum Hamming
distance, we have a limited number of possibilities for a variable a:
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1. a is true under both

2. a is false under both

3. a has different values under the two models

For an example, branching on a, the clause w = (a ∨ b ∨ c ∨ d)
gives 5 recursive calls:

1. Q(F (a/true))

2. Q(F (a/false))

3. Q(F ∧ (a ∨ b))

4. Q(F ∧ (a ∨ c))

5. Q(F ∧ (a ∨ d))

In the first call, when a is true under both models, we know that
the other literals will be false and so they can be removed in the usual
way. The second call is also straightforward, we assign a false, but
cannot in general remove any other variables. The last three calls
cover the case when a has different values under the two models. By
Lemma 46 there is exactly one more variable a′ in w that has different
values and we need to examine all possible cases of a′. Of course, in
the last three calls we may also assign false to the literals that are not
a or a′.

In Q, during the branching, canonical rules are used. Two of
these will force the use of some additional structures, similar to the
situation when counting x-models and models in Chapters 5 and 6.
Therefore the following is needed: For every clause y in the instance
F , we will have a clause yσ that initially is empty. The formula Fσ

consists of all the yσ’s along with a number of 2-clauses which we
will return to soon. To give a first hint about the use of the yσ’s,
consider a clause (a ∨ b ∨ c), where b and c are singletons. Assume
that we remove c, and that later, in a leaf of the recursive tree of the
algorithm, a model M is found such that b is true. Then we know that
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there is another model M ′ assigning b = false and c = true, i.e. the
Hamming distance between M and M ′ is at least 2. Hence, we have
to keep track of removed singletons. As for the 2-clauses of Fσ, let
us for now say the following: Q will never directly assign a singleton
true. Instead there will arise 2-clauses like w = (a ∨ b), where a is a
non-singleton and b is a singleton. In this situation, w will be moved
to Fσ, renamed to (a ∨ b)ρ. Note that a still occurs in F and that
its future value will decide the value of b, and thus it is important to
know that the relation between a and b is (a ∨ b)ρ. We will use the
subscripts σ and ρ to distinguish between the two types of clauses of
Fσ.

We will tacitly assume that there is a line 0 of the algorithm
applying the following canonical rules: 2, 3, 5 and 11. These are the
rules that remove the constants true and false, 1-clauses, variables
that occur more than once in a clause, and make sure that no clause
is a strict subset of the other. For these, no extra structures are
needed.

As a consequence of the use of the canonical rules, in the leaves
of the recursion tree a kind of generalised models are found, that
summarise several models, and this is represented by Fσ. We will
return to this later. For now, we hide the details in the auxiliary
algorithm U which we will come back to after the presentation of the
main algorithm Q. The reason for doing so, is that we first need to
see how the canonical rules and the branchings work in detail.

Some more technicalities: Like the algorithm P , Q may return
⊥ if F is unsatisfiable. Therefore we define ⊥ < 0 and ⊥ + j = ⊥,
for all j; furthermore, max⊥(⊥, Z) returns Z, even if Z = ⊥. For
both types of clauses of Fσ, the order of the literals is of importance.
That means for instance that (a ∨ b)rho 6= (b ∨ a)rho. To motivate
this, consider again the case of a clause (a ∨ b) in F , such that b is a
singleton and a is not. As we shall see, the algorithm will later need
to know which variable was singleton and which was not. As for the
order within σ clauses, the first literal in such a clause will be the last
one to have been removed from F , and this is also an important piece
of information. We assume furthermore that no variable occurs twice
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in any clause. If the literal a is added to yσ = (a ∨ b ∨ c)σ, the result
is still (a ∨ b ∨ c)σ.

8.2.2 The Algorithm Q′

For clarity of presentation we first give a simplified algorithm Q′,
which is shown in Figure 8.2. We will later add an optimisation to
improve the running time. When applying the algorithm, the original
instance F is assumed to contain no clause where all variables are
singletons. To see that that is no restriction, consider the following
lemma:

Lemma 50. For a formula F with a clause x (|x| > 1) such that all
members of x are singletons, two x-models M and M ′ at a maximum
Hamming distance will assign different members of x true.

The proof is trivial, and we see that one consequence is that all
clauses consisting only of singletons can be removed, adding 2 to the
maximum Hamming distance.

In order to illustrate the use of Fσ, the reader may have a look
at Figure 8.3. To get an idea about the possible construction of this
particular Fσ, consider this series of steps: In F there is a clause
x = (α ∨ h ∨ a ∨ b ∨ c ∨ d ∨ e) such that a – e are singletons. In a
first canonising step, the clause xσ becomes (a ∨ b ∨ c ∨ d ∨ e) and
x becomes x = (α ∨ h ∨ a). Next, Q assigns α false and x becomes
(h∨a), which will be removed by canonisation; to Fσ is now added the
clause (h∨a)ρ. The variable h also occurs in the clause z = (δ∨h∨r),
such that r is a singleton and zσ = (r ∨ s ∨ t ∨ u). Q then assigns δ
false and the clause (h ∨ r)ρ is added to Fσ. The variable h is now a
singleton occurring in the clause y = (β ∨ γ ∨ l∨h). Since previously,
Fσ contains the clauses yσ = (l ∨m ∨ n)σ, (m ∨ o)ρ and (o ∨ p ∨ q)σ

and canonisation now adds h into yσ, removing it from y. Finally, γ
is assigned true, and consequently l is set to false.

Now, how to compute the maximum Hamming distance that this
particular Fσ contributes? As l = false, m, n and h must also be
false (remember that l was the singleton left in F to represent all
singletons.) That means that a, o and r are true, and each of the
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Algorithm Q′(F )
1 For a clause y = (a1 ∨ a2 ∨ . . .∨ aj ∨ b∨ . . .) such that a1 – aj are

singletons, add all the singletons to yσ and remove a2 – aj from
y. The copying is done so that a1 will be the first literal of yσ.

2 For a 2-clause w = (a∨b) such that neither a nor b is a singleton,
let F ← (a/b̄) and remove w. If one, say b, is a singleton, then
remove w and create the copy (a ∨ b)ρ in Fσ.
If a singleton was created, by any of these two operations, goto
the previous line.

3 if F = {()} then return ⊥
4 elsif F = {} then return U(Fσ)
5 elsif F is not connected then assume the components are

F1, . . . , Fk and return
∑k

i=1 Q′(Fi)
6 else
7 Pick a longest clause w = (a1 ∨ a2 ∨ . . . ∨ ak) and assume

w.l.o.g. that a1 is a non-singleton. Now do the following:
8 anstrue ← Q′(F (a1/true))
9 ansfalse = Q′(F (a1/false))

10 if anstrue = ⊥ or ansfalse = ⊥ then
11 return max⊥(anstrue, ansfalse)
12 else
13 for i = 2 to k do
14 Let ansi ← Q′(F ∧ (a1 ∨ ai))
15 return max⊥(anstrue, ansfalse, (ans2 + 1), . . . , (ansk + 1))

Figure 8.2: The algorithm Q′ for Max hamming xsat

yσ = (l ∨m ∨ n ∨ h)σ

(m ∨ o)ρ wσ = (o ∨ p ∨ q)σ

(h ∨ a)ρ xσ = (a ∨ b ∨ c ∨ d ∨ e)σ

(h ∨ r)ρ zσ = (r ∨ s ∨ t ∨ u)σ

Figure 8.3: A possible Fσ
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clauses wσ, xσ and zσ will contribute 2 to the maximum Hamming
distance. In toto, the maximum Hamming distance in this case is 6.

We will next present a more complicated example. Before that,
however, we need some more preliminaries. In the example of Figure
8.3, the constraint graph of Fσ was connected. However, as is easily
seen, that is not the case in general. Note that each component G can
be seen as a tree TG in the following way: Each clause yσ is a vertex
and each wρ is an edge, and due to the construction, there are no
cycles. We will consider the edges directed towards the leaves. When
zρ points at a clause yσ (such as (m∨o)ρ does at wσ = (o∨p∨q)σ) we
will say that yσ is the goal of zρ. Furthermore, let dual(a) denote the
set of ρ clauses having a as the first element. Let Link(a) denote the
set dual(a) ∪ {b ∈ C | C ∈ goal(a′) for all members a′ ∈ dual(a)}.
We say that a variable b is transitively linked to a if b ∈ Link(a)
or b is transitively linked to a member in Link(a). For instance, in
the example of Figure 8.3, {o, p, q} is the set of variables transitively
linked to m. Finally, the last variable to remain in F is called the
entry-point of the component.

In the example of Figure 8.3, the last variable to remain in F , l,
was set to false. As Q never directly assigns any singleton true, if
the last remaining variable is to be set true, we must have a situation
similar to the one in Figure 8.4. Here we see that the last remaining
variable might have been assigned false. Assuming that is the case,
we see that l is true and that the situation is more complicated than
in the previous figure.

In order to compute the maximum Hamming distance, we first
note that all models must have one of the members of yσ true. It
might be that two models M and M ′ at maximum distance assigns the
same member true. We also have the possibility that they assign two
different members true. In the first case we need a function Fix that
assigns a variable a a fixed value and then proceeds downwards in the
tree TG to find the maximum number of variables that can be assigned
different values under two different models. We can then tentatively
assign each member of yσ true and use Fix. For yσ = (l∨m∨n∨h)σ

that would mean that we assign l = true and m = n = h = false and
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(v ∨ l̄)ρ yσ = (l ∨m ∨ n ∨ h)σ

(m ∨ ō)ρ wσ = (o ∨ p ∨ q)σ

(h ∨ ā)ρ xσ = (a ∨ b ∨ c ∨ d ∨ e)σ

(h ∨ r)ρ zσ = (r ∨ s ∨ t ∨ u)σ

Figure 8.4: A possible Fσ

then calculate Fix(l) + Fix(m) + Fix(n) + Fix(h), next we try m =
true and l = n = h = false and so on. The maximum value found is
kept as k1. The function Fix can be seen in Figure 8.5.

The function Hf used by Fix, is given a clause wσ such that no
member of it must be true (i.e. a situation we saw for yσ in Figure 8.3),
and it returns the maximum number of variables, transitively linked
to any member of wσ that can be assigned different values under
any two models. Ht is actually the function we are in the middle of
describing. It is similar to Hf , but its argument is a clause wσ such
that one member of wσ must be true. We have so far discussed the
first case of Ht — that both M and M ′ assigns the same member of
wσ true.

We now discuss the other case — that M and M ′ assigns different
variables of wσ, a and a′, true. We will have to test all possible choices
of a and a′, and for each choice we will assign all the other members of
wσ false and calculate their contribution, κi. Then, for both a and a′,
we will use the function Di as shown in Figure 8.8 and add Di(a) and
Di(a′) to κi. Di(a) calculates the maximum number of transitively
linked variables that can assume one value in a model where a is true
and the other value in a model where a is false. The maximum κi

found is compared to k1 and the maximum is returned.

Before presenting U(Fσ), we need one more definition: Goals(a)
for an entry point a is the union of the goals of the members of dual(a).
Now, U(Fσ) is shown in Figure 8.9. Although F is an empty formula,
it is assumed that from it, every variable assigned a value during the
execution of Q can be reached.

Lemma 51. Using U(Fσ), the variables removed by lines 1 and 2 of
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1 Algorithm Fix(a)
2 k ← 0
3 for each x ∈ dual(a) do
4 Let C = (ḃ ∨ . . .) = goal(x)
5 if ḃ = true then
6 k ← k + Ht(C)
7 else
8 k ← k + Hf (C)
9 return k

Figure 8.5: The auxiliary function Fix

1 Algorithm Hf (C)
2 k ← 0
3 for each member aj ∈ C do
4 Let k ← k + Fix(aj)
5 return k

Figure 8.6: The auxiliary function Hf

1 Algorithm Ht(C)
2 for each member aj ∈ C do
3 Assign aj true and the other members of C false.
4 κi = Fix(a1) + Fix(a2) + . . . + Fix(a|C|)
5 k1 ← max(κ1, . . . , κ|C|
6 Try all choices of picking two members a′ and a′′ from C = (a2 ∨

. . .∨am). For each choice calculate κj ← Di(a)+Di(a′)+
∑

di(ai)
such that ai ∈ {a1, . . . , am} \ {a′ ∪ a′′}.

7 k2 ← max(κ1, . . . , κ(|C|
2 ))

8 return max(k1, k2)

Figure 8.7: The auxiliary function Ht
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1 Algorithm Di(a)
2 k ← 1
3 for each x ∈ dual(a) do
4 Let C = goal(x)
5 for each cj ∈ C do
6 κj = Di(cj)
7 k ← k + max(κ1, . . . , κ|C|)
8 return k

Figure 8.8: The auxiliary function Di

1 Algorithm U(Fσ)
2 k ← 0
3 for each component Ti do
4 Let a be the entry-point of Ti

5 if a is the first member of a clause yσ then
6 k ← k + Ux(yσ), where x ∈ {t, f} depending on the value

of a.
7 else
8 for each member yj

σ ∈ Goals(a) do
9 k ← k + Ux(yj

σ), where x ∈ {t, f} depending on the value
of the first member of yj

σ.
10 return k

Figure 8.9: The auxiliary function U
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Q′ will give the correct contribution to the overall maximum Hamming
distance between any two x-models. Furthermore, U(Fσ) runs in
polynomial time.

Proof. Starting with the topmost function U , note that the entry-
point a may appear in several clauses (a ∨ b)ρ, (a ∨ c̄)ρ etc, and that
this is correctly handled.

As for Hf (C), note how Fix is used to examine the transitively
linked variables to see if there are any possibilities for different as-
signments under the models that must have all members of C false.

When it comes to Hf (C), note that in Di(a), k is initialised to 1,
because, as Di(a) is the maximum number of variables that have one
value when a is true and the other when a is false, then a itself must
contribute 1.

Finally, as there are no cycles in any component, both Fix and Di
run in polynomial time. Also, neither Hf nor Ht calls these functions
more than a polynomial number.

Theorem 52. Q′(F ) decides Max hamming xsat for F .

Proof. We inspect the lines of Q′:

1. Correct by Lemma 51.

2. Correct by Lemma 51.

3. The formula {()} is unsatisfiable and thus ⊥ is returned.

4. Correct by Lemma 51.

5. If F is not connected every model for one component can be
combined with any model for another component in order to
form a model for F .

6. For this and the remaining lines: Assume there are two models
M and M ′ at maximum Hamming distance k. If a1 is true
under both models then the formula where all other literals
of w are set to false is x-satisfiable and the recursive call will
return k (assuming that the algorithm is correct for smaller
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1 if |W | 6= 4 then ansfalse = Q(F (a1/false))
2 else
3 let W = (a1∨a2∨a3∨a4) and assume that a2 is a non-singleton
4 ans1

f ← Q(F (a1/false; a2/true);

5 ans2
f ← Q(F (a1/false; a2/false)

6 if ans1
f = ⊥ or ans2

f = ⊥ then ansfalse ← max⊥(ans1
f , ans2

f )
7 else
8 ans3

f ← Q(F (a1/false; a2/ā3);

9 ans4
f ← Q(F (a1/false; a2/ā4)

10 ansfalse ← max⊥(ans1
f , ans2

f , (ans3
f + 1), (ans4

f + 1))

Figure 8.10: Some lines of code for speeding up Q′

input.) Similarly for line 9. If both lines 8 and 9 returned an
integer, we know that there are models under which a1 is false
and models under which a1 is true. Thus M and M ′ may assign
different values to a1. Assume this is the case. By Lemma 46
we know that M and M ′ differ in exactly one more variable in
w. Assume w.l.o.g. that a2 is that literal. Then we know that
a1 and a2 have different values and that the other literals of w
are false.

8.2.3 Improving and Analysing the Running Time

As for the running time of Q′, the handling of clauses of length 4 will
cause an unnecessarily bad upper time bound. The problem is that in
line 10 only one variable is removed. However, a clause of length 3 is
created which can be exploited. Hence, we replace line 10 in Q′ by the
lines shown in Figure 8.10, thereby obtaining the algorithm Q. The
correctness is easily seen, because it is the same kind of branching we
have already justified.

Theorem 53. Q(F ) runs in polynomial space and time O (1.8348n).
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Proof. Let T (n) be the running time for Q(F ). The analysis will
proceed by examining what the running time would be if Q always
encountered the same case. It is clear that the worst case will decide
an overall upper time bound for Q. We inspect the lines of Q:
Line 1–4: All these lines are polynomial time computable.
Line 5: This line does not increase the running time as clearly,
∑k

i=1 T (ni) ≤ T (n) when n =
∑k

i=1 ni.
Lines 6–: It is clear that the worst clause length will decide an overall
upper time bound for Q. Note that if there are variables left in F ,
then there will be at least two clauses left and one of the cases below
must be applicable.

1. |w| ≥ 5. Already a rough analysis suffices here: In the call
Q(F (a1/true)) a1 as well as all the other variables in w get a
fixed value and hence |w| variables are removed. The next call
only removes one variable, namely a1. In every of the other
|w| − 1 calls |w| − 1 variables are removed. Hence, the running
time will be in O

(
τ(|w|, 1, (|w| − 1)|w|−1)n

)
and the worst case

is O
(
τ(5, 1, 44)n

)
⊆ O (1.7921n).

2. |w| = 4. For a better readability, assume w = (a∨b∨c∨d). As a
and b are not singletons there are clauses a ∈ y and b ∈ z. There
are several possibilities for y and z, but due to the balanced
branching effect, we may disregard cases where a ∈ w but ā ∈ y
etc.

(a) y = (a∨e∨f∨g), z = (b∨h∨i∨j). The call Q(F (a/true))
removes 7 variables — all variables of w and y. The call
Q(F (a/false; b/true)) removes 7 variables — all variables
of w and z. The call Q(F (a/false; b/false)) removes 3
variables, because the clause w = (c ∨ d) will in the next
recursive step be simplified. The call Q(F (a/false; b/c̄))
removes 3 variables, because the clause w = (c ∨ c̄ ∨ d)
implies d = false, which will be effectuated by the sub-
stitution operation. The call Q(F (a/false; b/d̄)) removes
3 variables for the same reasons. The call Q(F (a/b̄)) re-
moves 3 variables — c and d must be false. Similarly for
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the remaining two calls. Hence, the running time is in
O
(
τ(72, 36)n

)
⊆ O (1.8348n).

Remark 1 If |z| = 3, then regardless of y we get cases
better than the above case:

(b) z = (b ∨ e ∨ f). Counting removed variables as previ-
ously we get that this case runs in time O

(
τ(6, 44, 33)n

)
⊆

O (1.7605n) .

(c) z = (a∨ b∨ e) or z = (b∨ c∨ e) or z = (b∨d∨ e). All these
cases run in time O

(
τ(52, 46)n

)
⊆ O (1.6393n).

Remark 2 If |y| = 3, then regardless of y we get cases
better than the so far worst:

(d) y = (a∨e∨f). This case runs in time O
(
τ(6, 5, 43, 33)n

)
⊆

O (1.7888n).

(e) y = (a ∨ b ∨ e). Already examined.

(f) y = (a ∨ c ∨ e) or y = (a ∨ d ∨ e). These cases run in time
O
(
τ(52, 45, 3)n

)
⊆ O (1.6749n).

Remark 3 If y shares more than one variable with w, then
regardless of z we get cases better than the so far worst:

(g) y = (a ∨ b ∨ c ∨ e) or y = (a ∨ c ∨ d ∨ e) or y = (a ∨ b ∨ e ∨
f). These cases run in time O

(
τ(52, 46)n

)
⊆ O (1.6393n),

O
(
τ(62, 5, 4, 34)n

)
⊆ O (1.7416n) and O

(
τ(54, 44)n

)
⊆

O (1.5971n) respectively.

(h) y = (a ∨ c ∨ e ∨ f) or y = (a ∨ d ∨ e ∨ f). These cases run
in time O

(
τ(6, 52, 4, 34)n

)
⊆ O (1.7549n).

Remark 4 If z shares more than one variable with w, then
regardless of y we get cases better than the so far worst:

(i) z = (a ∨ b ∨ . . .). Already examined.

(j) z = (b ∨ c ∨ d ∨ e). This case runs in O
(
τ(52, 46)n

)
⊆

O (1.6393n).

(k) z = (b ∨ c ∨ e ∨ f) or z = (b ∨ d ∨ e ∨ f). These cases run
in time O

(
τ(62, 5, 4, 34)n

)
⊆ O (1.7416n).
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3. |w| = 3. We know that there is another clause y such that
|y| = 3 and a ∈ y and y 6= w. Hence we have a running time in
O
(
τ(4, 3, 22)n

)
⊆ O (1.7107n).
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Chapter 9

Conclusions and Future

Work

In this final chapter we will summarise and discuss the results in
order to derive conclusions and point out possible directions for future
research.

The three following sections treat NP-complete decision problems,
counting problems and optimisation problems. In section 9.4 we dis-
cuss other members of our family not treated in this thesis. The last
section gives some concluding remarks.

9.1 Decision Problems

For Xsat we have presented a new faster exact polynomial space
algorithm. The algorithm builds on previous techniques but achieves
a better upper time bound by a more thorough exploitation of the
sparsity concept.

When it comes to the question of how to improve the algorithm
even further, one can note that the canonical properties presented so
far are not the only ones; we have found several others. These other
properties look somewhat exotic and were not useful in the algorithms
presented here, but they might find their future use. As an example:
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There is no constant variable d with neighbours c1, c2, . . . , cn

such that there is a clause x = (c1∨ c2∨· · ·∨ cn∨γ) where each
ci has the same sign in the clauses of c and in x.

The following Xsat instance violates the rule and we see that,
obviously, γ must have the same value as d:

(a ∨ b ∨ c ∨ d ∨ e)
(g ∨ f ∨ c ∨ d ∨ e)
(g ∨ h ∨ a ∨ d ∨ e)
(h ∨ b ∨ f ∨ c ∨ e ∨ γ)

Historically, algorithms for Xsat have been improved by the in-
vention of new canonical rules and clever new choices of variables to
branch on. It is not a bold statement to suggest that a faster algo-
rithm will be developed along these lines, too. The current upper time
bound of O (τ(1, 12)n) points out the need to find a means to further
reduce formula complexity when a literal is set to false. Perhaps a
new measure of formula complexity will be helpful, as was the case
for the #2satw algorithm.

Xsat can be seen as a restricted variant of Sat and one could
hope that the increased knowledge for other restricted Sat problems
would give some hints on how to improve the Xsat algorithms. For in-
stance, the 3sat problem is well studied. Unfortunately, although the
two problems have properties in common — both being NP-complete
Boolean decision problems — there is a fundamental difference in their
structure. Due to the exactness property of Xsat, each assignment
of a variable effectively constrains the allowed values of a number of
other variables. This is reflected in the considerably lower upper time
bounds for Xsat compared to 3sat.

The currently best algorithm for Sat, by Dantsin et al. [21],

achieves its time bound of O
(

2n−2
√

n/ log n
)

by local search in ‘small’

neighbourhoods. To be more precise: A number of assignments are
generated and a model is searched for in the Hamming ball of a cer-
tain radius around each assignment. For Xsat it is hard to see how
the use of Hamming spheres can be used to improve algorithms as the
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structure is very different. In terms of n, the running times are much
better for Xsat algorithms.

Rephrasing Xsat into a more general decision problem, Xisat,
we have shown its practical usefulness. When it comes to structural
insights gained, we note that our dpll style algorithm could still use
matching techniques to find a solution when the instance contains no
heavy variables. However, powerful canonical rules such as resolution
are lost. In the future, one can hope that other canonical rules are
found that can to some degree replace resolution.

Due to the low upper time bounds for Xsat (“low” for an NP-
complete problem), no randomised algorithms have been proposed,
to the best of our knowledge. However, such algorithms could be
of interest for the general Xisat problem if deployed in incomplete
model checkers. As an example of one simple algorithm: Choose an
assignment to all variables at random. Then choose a clause x that
has not been satisfied (here we count over-satisfied as not satisfied)
and contains heavy variables such that these heavy variables can be
used to satisfy the clause. Say for instance that x lacks two true
literals, then at random choose two of the heavy variables that are
false and assign them so that x is satisfied. Now consider all the
heavy variables of x fixed and move on to another similar clause.
This is performed until all heavy variables are instantiated and then
the matching technique is deployed.

9.2 Counting Problems

Just as for the decision problems our two algorithms for #xsatw

and #x3sat are dpll style algorithms. The algorithm for #xsat

improves the previous result through careful case analysis and ex-
ploitation of possible neighbourhood configurations. Our algorithm
for #x3sat is built along the same lines and is the first one to this
end. Unfortunately, when we move from deciding Xsat to counting
Xsat, we lose the possibility to find a solution in polynomial time
using the matching technique. Resolution also seems lost. This ac-
counts for the worse upper time bounds for Xsat (in O (1.1730n))
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compared to #xsat (in O (1.2190n).)

One question that naturally arises is how to construct counting
algorithms in a more systematic fashion. We note that many algo-
rithms for NP-complete problems search the entire search tree with
the exception of certain branches that can be easily pruned (i.e. if a
formula contains a unit clause (p), then we do not need to consider
branches where p is set to false.) Given such an algorithm, one could
assume that the algorithm could be modified to also count the so-
lutions along the way. Unfortunately, the modifications needed for
keeping track of the number of solutions are not always obvious. This
is illustrated by the introduction of extra structures in our algorithm
for #xsatw; the pruning rule is quite obvious but the method for
counting solutions is less so. Then there is also the seemingly insur-
mountable obstacle of canonical rules that do not extend to counting.
Thus, it is not likely that a general pattern can be found that will
take any algorithm for a NP-complete problem and transform it to
an algorithm for the corresponding counting problem.

For #2satw we have presented two algorithms C and Csep. C
improves the running time and introduces several novelties. The al-
gorithm Csep exploits the possibilities of separation to count fast in
2sat formulae. The algorithm for #3satw improves the running time
and has an interesting time complexity analysis.

The method of analysis used in chapter 6, combined with the ap-
propriate measures, provides a convenient way to capture and quan-
tify the effects of properties that might otherwise be difficult to anal-
yse, such as the decreasing average degree in C and the existence of
2-clauses in some branches in D. In algorithms with similar proper-
ties, it is likely that these measures can be reused.

When it comes to ways of even further improving algorithms for
#2sat and #3sat, one alternative might be to perform a more
careful analysis of the neighbourhood configurations, especially for
#2sat. Another option, if large memory usage is acceptable, might
be to employ various dynamic programming or caching techniques,
trading a decreased run-time for, possibly, an exponential memory
usage.
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The ideas in D might well be extended into an algorithm for
#ksat for any fix k, with a running time dependent on the param-
eter k but better than O (2n). We have examined this issue briefly,
and while the results seem promising, performing an analysis for the
general case is challenging.

In the context of decision problems, adding weights seems to in-
crease the complexity considerably. For instance, 2sat is polynomial
time solvable whereas the 2satw problem is NP-hard (it contains the
Maximum Independent Set problem.) It is thus interesting to note
that our algorithms for #2sat and #3sat were easily extended into
algorithms for #2satw and #3satw. To the best of our knowledge,
there are no dedicated algorithms for solving the 2satw and 3satw

problems in the literature.

The results using Csep can be seen as an extension to the work by
Dı́az et al. [30]. There the authors present an algorithm for counting
homomorphisms in graphs with a bounded tree width w. Among the
applications they show how to count independent sets in linear time,
while an algorithm for counting maximum independent sets would
take exponential time using their approach. Here we show how our
algorithm for counting in separable graphs, for the special case of
graphs with fixed tree width, yields algorithms for counting maximum
independent sets as well as independent sets, both with running times
in O

(
n1.71w+1.71

)
.

9.3 Optimisation Problems

We have studied two very different optimisation problems. Chapter
7 provides some new results for Max xsat. On the positive side,
a new upper time bound of O (1.2561n) for Restricted max xsat

was obtained. The restriction that no clause must be over-satisfied
has proved powerful. The main result, however, is a negative one. By
Theorem 43 it is clear that for any fixed k, a non-trivial upper time
bound for solving Max xksat implies the same time bound for Max

ksat. Let us now compare the known results for exact algorithms for
Max xsat and Max sat. Measuring in n we know that Williams’



164 9.3. Optimisation Problems

algorithm [77] can be used to solve Max 2sat and Max x2sat in
exponential space and time O (1.7314n). Apart from that no non-
trivial results are known. As for Restricted max xsat, it has
no corresponding Sat problem. Turning to algorithms that measure
their running times in m(F ) we have the following: Björklund and
Husfeldt [8] have given an Max xsat algorithm running in O (4m)
time. This is to be compared with Max sat which can be solved in
time O (1.3247m) as shown by Chen and Kanj [11]. Max x2sat and
Max 2sat can be solved in time O (1.1421m) as shown by Kneis and
Rossmanith [51].

There is something surprising about these results. For every other
type of problem — deciding, counting and maximum Hamming dis-
tance — Xsat seems to quite easily allow the construction of faster
algorithms than does Sat, at least when measuring in n. But in the
context of maximising the number of satisfied clauses this does not
hold. Let us also mention that we have tried without results to find
an inverted version of Theorem 43, i.e. a theorem that says that: If
we can solve Max sat in time O (cn), then we can solve Max xsat

within that same time.
Finally, we have presented two non-trivial, exact, polynomial space

algorithms for Max hamming xsat and provided non-trivial upper
bounds on their running time. Both algorithms point out new inter-
esting research directions and indicate that problems such as Max

hamming sat might be solvable in time better than O (4n). Using P
as a template when constructing an algorithm for a maximum Ham-
ming distance problem, the goal is to analyse the instance at hand to
see which calls to the external solver are superfluous. The algorithm
Q indicates that it is possible to take direct advantage of the inherent
structure of the problem itself; the algorithm can use two canonical
rules, namely rule 4 and the weakened rule 6 that can be used when
counting Xsat models.
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9.4 Other Problems of the Xsat family

Of course there are other problems of the Xsat family that deserve
interest, at least out of theoretical curiosity.

At the beginning of the 1980’s a new complexity class, Dp, was
introduced by Papadimitrious and Yannakakis [61]. It is the class of
languages that are the intersection of a language in NP and a language
in coNP, and it contains problems such as deciding the set of Boolean
formulae that has one unique model. It also contains so-called critical
problems, which ask if a structure lacks a property, but removing some
part of the structure, the property holds. One such critical problem
is critical satisfiability, Satcrit. A formula F is in Satcrit if F has
no model, but the removal of any clause makes F satisfiable. This
problem, which is also known as the minimal unsatisfiability problem,
has many industrial applications (e.g. see [45].) Unfortunately, for
the general problem, only the two obvious algorithms are known:

1. Test if the formula is unsatisfiable and then, for each clause, if
the removal makes the formula satisfiable.

2. Keep a list of all the clauses. Cycle through all possible assign-
ments and for every assignment that is a model except for one
clause C mark C as visited. The formula is in Satcrit iff no
assignment was a model and every clause is marked visited.

The first approach yields an polynomial space and O(22n) time
algorithm (the number of clauses may be 2n), the latter gives an
exponential space and O(2n) time algorithm.

Satcrit is fixed parameter tractable as shown by Szeider [71] who
proved an O(2k) running time, where k = m(F ) − n(F ) (no formula
with n(F ) ≥ m(F ) is unsatisfiable.)

The corresponding problem within the Xsat family would natu-
rally be defined like this:

– Critical Exact Satisfiability (Xsatcrit):

Instance: A formula F .
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Question: Is it the case that F is not x-satisfiable, but removing
any clause, the resulting formula is x-satisfiable?

Finding non-trivial algorithms for this problem would be of the-
oretical interest as well of practical importance. Perhaps we have a
situation similar to the Max hamming xsat case, where the struc-
ture of the problem can be directly taken advantage of. It would also
be interesting to know whether Xsatcrit is fixed parameter tractable.

While the Xsatcrit problem seems more complicated to solve than
Xsat, the problem of deciding whether F has one unique Xsat model
adds only a polynomial amount of work for any Xsat solver. The
algorithm to show this is trivial: choose any variable a and test F∧(a)
and F ∧ (ā). If both return ‘Yes’ we know that there are at least
two models. Otherwise, assume F ∧ (ā) has an x-model, next try
F ∧ (ā)∧ (b) and F ∧ (ā)∧ (b̄) and so on, until all variables have been
assigned a value and one x-model is found.

One can also imagine Xsat problems in the polynomial hierarchy
worth studying. Consider for instance this quantified formula:

∀α, β : (a ∨ b ∨ α), (a ∨ b ∨ β)

The question is: for every value of α and β, is there an x-model?
For our example the answer is ‘No’, because α = true, β = false
allows no x-model. Formulae similar to this one, in the context of
Sat, has been studied for instance by Williams [76].

9.5 Final Remarks

When considering Table 9.1 it seems that there is a close connection
between the running time and the canonical rules available. Though
it is possible to claim that new strong rules will be invented so that
there will be no differences in rules available to the various algorithms,
it seems more reasonable to say the lack of rules is a part of the struc-
tural differences between different computational problems. Here, like
in so many other parts in the area of computer science, we are waiting
for results that separate various time complexity classes.
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Problem Time #Can. Rules Matching

Xsat O (1.1730n) 12 Yes
X2sat O (1.4511n) 10 Yes
X3sat O (1.6214n) 2 Yes
X4sat O (1.6848n) 2 Yes
#xsat O (1.2190n) 10 No
Restricted max xsat O (1.2561n) 5 No
Max hamming xsat O (1.8348n) 2 No
Max xsat O (2n) None No

Table 9.1: Summarising results

Under the heading ‘Final Remarks’, one might also expect some
personal reflections on insights gained from the doctoral work. If so,
let us say that the remaining impression from working with canonical
formulae is a sense of interconnectedness in these structures. Or, to
put it differently:

No clause is an island.
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niques for propositional logic extended with cardinality con-
straints. In Proceedings of the 9th International Conference on
Principles and Practice of Constraint Programming (CP-2003),
pages 495–509, 2003.

[58] Bolette Ammitzbøll Madsen. An algorithm for exact satisfiability
analysed with the number of clauses as parameter. Information
Processing Letters, 97(1):28–30, 2006.

[59] Bolette Ammitzbøll Madsen and Peter Rossmanith. Maximum
exact satisfiability: NP-completeness proofs and exact algo-
rithms. Technical Report RS-04-19, Basic research in Computer
Science (BRICS), 2004.

[60] Burkhard Monien, Ewald Speckenmeyer, and Oliver Vornberger.
Upper bounds for covering problems. Methods of Operations Re-
search, 43:419–431, 1981.

[61] Christos Papadimitriou and Mihalis Yannakakis. The complex-
ity of facets (and some facets of complexity). In Proceedings of



176 Bibliography

the 12th Annual ACM Symposium on the Theory of Computing
(STOC-1982), pages 255–260, 1982.

[62] Stefan Porschen. On some weighted satisfiability and graph prob-
lems. In Proceedings of the 31st Conference on Current Trends
in Theory and Practice of Computer Science (SOFSEM-2005),
pages 278–287, 2005.

[63] Stefan Porschen, Bert Randerath, and Ewald Speckenmeyer.
X3SAT is decidable in time O(2n/5). In Proceedings of the 5th
International Symposium on the Theory and Applications of SAT
(SAT-2002), pages 231–235, 2002.

[64] Mike Robson. Finding a maximum independent set in time
O(2n/4). Technical Report 1251-01, LaBRI, Université Bordeaux
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