
Exact algorithms for L(2, 1)-labeling of graphs ∗

Frédéric Havet† Martin Klazar‡ Jan Kratochv́ıl‡

Dieter Kratsch§ Mathieu Liedloff¶‖

Abstract

The notion of distance constrained graph labelings, motivated by
the Frequency Assignment Problem, reads as follows: A mapping from
the vertex set of a graph G = (V, E) into an interval of integers
{0, . . . , k} is an L(2, 1)-labeling of G of span k if any two adjacent
vertices are mapped onto integers that are at least 2 apart, and every
two vertices with a common neighbor are mapped onto distinct inte-
gers. It is known that for any fixed k ≥ 4, deciding the existence of
such a labeling is an NP-complete problem. We present exact expo-
nential time algorithms that are faster than the naive O∗((k + 1)n)
algorithm that would try all possible mappings. The improvement is
best seen in the first NP-complete case of k = 4, where the running
time of our algorithm is O(1.3006n). Furthermore we show that dy-
namic programming can be used to establish an O(3.8730n) algorithm
to compute an optimal L(2, 1)-labeling.

1 Introduction

History. The Frequency Assignment Problem (FAP) asks that frequen-
cies are assigned to transmitters in a broadcasting network with the aim
of avoiding undesired interference. One of the graph theoretical models of

∗The extended abstract of this paper was presented at the conference “Mathematical
Foundations of Computer Science (MFCS 2007)”, Český Krumlov, Czech Republic, 26–31
August 2007 [20].

†Projet Mascotte I3S (CNRS & UNSA) and INRIA, INRIA Sophia-Antipolis,
2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex. E-mail:
Frederic.Havet@sophia.inria.fr. Partially supported by the european project FET-
AEOLUS.

‡Department of Applied Mathematics and Institute for Theoretical Computer Sci-
ence, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic. E-
mail: (klazar|honza)@kam.ms.mff.cuni.cz. Supported by Research grant 1M0545 of
the Czech Ministry of Education.

§Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine - Metz,
57045 Metz Cedex 01, France. E-mail: kratsch@univ-metz.fr.

¶Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, 45067
Orléans Cedex 2, France. E-mail: Mathieu.Liedloff@univ-orleans.fr.

1

FAP which is well elaborated is the notion of distance constrained labeling
of graphs. An L(2, 1)-labeling of a graph G is a mapping from the vertex set
of G into the nonnegative integers such that the labels assigned to adjacent
vertices differ by at least 2, and labels assigned to vertices of distance 2 are
different. The span of such a labeling is the maximum label used. In this
model, the vertices of G represent the transmitters and the edges of G ex-
press which pairs of transmitters are so close to each other that an undesired
interference may occur, even if the frequencies assigned to them differ by 1.
This model was introduced by Roberts [24] and since then the concept has
been intensively studied. Undoubtedly, distance constrained graph labelings
provide a graph invariant of significant theoretical interest. Let us mention
a few of the known results and open problems: Griggs and Yeh [13] proved
that determining the minimum possible span of G – denoted by L2,1(G) – is
an NP-hard problem. Fiala et al. [6] later proved that deciding L2,1(G) ≤ k
remains NP-complete for every fixed k ≥ 4, while Bodlaender et al. [2]
proved NP-hardness for planar inputs for k = 8. (For 4 ≤ k ≤ 7 and planar
inputs, the complexity is still open.) When the span k is part of the input,
the problem is nontrivial even for trees – though a polynomial time algorithm
based on bipartite matching was presented in [4], the existence of a linear
time algorithm for trees was open for a long time and such an algorithm
was established only very recently [14]. Moreover, somewhat surprisingly,
the problem becomes NP-complete for series-parallel graphs [5], and thus
the L(2, 1)-labeling problem belongs to a handful of problems known to sep-
arate graphs of treewidth 1 and 2 by P/NP-completeness dichotomy. From
the structural point of view, Griggs and Yeh [13] conjectured that every
graph of maximum degree ∆ satisfies L2,1(G) ≤ ∆2. Gonçalves [12] proved
the upper bound L2,1(G) ≤ ∆2 + ∆− 2 by analyzing an algorithm of Chang
and Kuo [4]. Very recently, using probabilistic arguments, Havet, Reed and
Sereni [15] settled Griggs and Yeh conjecture for large enough ∆. However,
for ∆ > 2, the Moore graphs are the only graphs known to require span ∆2,
and for large ∆ the graphs known to require the largest span are incidence
graphs of projective planes for which L2,1 ≥ ∆2 − ∆. It is an open problem
if there are infinitely many graphs satisfying L2,1(G) > ∆2 − o(∆).

Generalizations have been considered, both in the direction of taking into
account larger distances and in the direction of allowing a more complicated
structure of the frequency space. In the latter direction, the circular metric
was considered by Leese et al. [21] and Liu et al. [23], showing that in
a certain sense the circular metric is easier than the linear one (e.g., the
circular span of a tree is uniquely determined by its maximum degree and
can thus be determined in linear time). Fiala and Kratochv́ıl consider in
[7] in full generality the case when the metric in the frequency space can be
described by a graph, say H. They define the notion of an H(2, 1)-labeling
of G, which is a mapping from the vertex set of G into the vertex set of
H such that vertices adjacent in G are mapped onto nonadjacent (distinct)

2

vertices of H, and vertices with a common neighbor (in G) are mapped onto
distinct vertices of H. They also show that H(2, 1)-labelings are exactly
locally injective homomorphisms from G to H, the complement of H. In
particular, an L(2, 1)-labeling of span k is a locally injective homomorphism
into the complement of the path of length k. (The complement of the path
of length 4 is depicted in Figure 1(a).) The complexity of locally injective
homomorphisms was considered in [7, 8, 9] where a number of NP-complete
cases were identified, but the complete characterization is still open.

Regarding larger distance constraints, the general channel assignment
problem was addressed in [22] and [19]. This problem asks, given a graph
G and nonnegative integer weights w : E(G) → {0, 1, 2, . . .} on edges, for
a labeling f : V (G) → {0, 1, . . . , k} such that |f(u) − f(v)| ≥ w(uv) for
every edge uv ∈ E(G); the aim is to minimize k, the span of the assignment.
Král’ [19] shows that, using Dynamic Programming, this problem can be
solved in time O∗((l + 2)n), where l is the maximum edge weight and n the
number of vertices of G. Since an L(2, 1)-labeling on G can be expressed
as the channel assignment problem on G2 (the distance power of G) with
weights 1 and 2 only – weight 1 for pairs of vertices at distance 2 in G, weight
2 for the edges of G –, an O∗(4n) time exact algorithm for the L(2, 1)-labeling
problem follows.

Our results. The goal of this paper is to explore exact exponential
time algorithms for the L(2, 1)-labeling problem. Since one cannot hope for
polynomial time algorithms (unless P = NP), our aim is to design algorithms
with running time O∗(cn) and minimizing the constant c.1 As it became
standard in the area, and as it became clear in the Introduction, we always
express the upper bounds on the running time so that the exponent is n,
the order of the graph.

Before listing our results, let us emphasize that labeling problems differ
from the coloring ones in the fact that a permutation of labels does not pre-
serve validity of a labeling, and hence the recently developed clever methods
for coloring a graph in time O∗(2n) [3, 18] do not seem applicable to our
problem.

First we consider exact algorithms deciding whether the input graph has
an L(2, 1)-labeling of span at most k. We show that it is not difficult to
beat the trivial bound c ≤ k + 1 (which follows from merely checking all
possible mappings from V (G) into {0, 1, . . . , k}) by presenting an algorithm
of running time O∗((k − 2)n) which can also be generalized to the H(2, 1)-
labeling problem. Then we refine the branching algorithm for the case of
span k = 4 to achieve an algorithm of running time O∗(1.3161n) (beating
c = k − 2 = 2). By a refined analysis we establish an improved running
time of O∗(1.3006n) for the same algorithm. We also obtain a lower bound

1Here we use the so called O∗ notation: f(n) = O∗(g(n)) if f(n) ≤ p(n) · g(n) for some
polynomial p(n).

3

of Ω(1.2290n) for the worst-case running time of our algorithm.
Finally we study the problem of computing an optimal L(2, 1)-labeling,

i.e., one of the smallest span. By designing a general branching algorithm
similar to the one for span 4, we give a polynomial space algorithm for
computing an L(2, 1)-labeling of span k, if one exists, in time O∗((k−2.5)n).
Then, we show that by a dynamic programming approach the L2,1-span of a
graph can be computed and an optimal L(2, 1)-labeling can be constructed
in time O(3.8730n) and exponential space.

Preliminaries. Throughout the paper we consider finite undirected
graphs without multiple edges or loops. The vertex set (edge set) of a graph
G is denoted by V (G) (E(G), respectively). The open (closed) neighborhood
of a vertex u in G is denoted by NG(u) (NG[u], respectively). The size of
NG(u) is the degree of u, denoted by degG(u), and ∆(G) stands for the
maximum degree of a vertex in G. The symbol n is reserved for the number
of vertices of the input graph, which will always be denoted by G. The
subgraph of G = (V,E) induced by S ⊆ V is denoted by G[S]. A subset
S ⊆ V fulfilling NG[u] ∩ NG[v] = ∅ for all u, v ∈ S, is called a 2-packing of
G.

Figure 1: (a) The graph H = P5. (b) A graph G with an L(2, 1)-labeling of
span 4 as a locally injective homomorphism into H.

2 Exact algorithm for locally injective homomor-
phisms

A graph homomorphism is an edge preserving vertex mapping between two
graphs. More formally, a mapping f : V (G) → V (H) is a homomorphism
from G to H if f(u)f(v) ∈ E(H) whenever uv ∈ E(G). Such a mapping
is sometimes referred to as an H-coloring of G since homomorphisms pro-
vide a generalization of the concept of graph colorings – k-colorings of G
are exactly homomorphisms from G to the complete graph Kk. Hell and
Nešeťril [16] proved that from the computational complexity point of view,
homomorphisms admit a complete dichotomy – deciding existence of a ho-
momorphism into a fixed graph H is polynomial when H is bipartite and
NP-complete otherwise. The study of exact algorithms for graph homomor-
phisms was initiated in [11].

4

A homomorphism f : G → H is called locally injective if for every
vertex u ∈ V (G), its neighborhood is mapped injectively into the neighbor-
hood of f(u) in H, i.e., if every two vertices with a common neighbor in G
are mapped onto distinct vertices in H. When deciding the existence of a
locally injective homomorphism, one might try to utilize the known algo-
rithms that list all possible homomorphisms and then check if any of them
is locally injective. It is not surprising that using the local injectivity, one
can often do better. The trivial brute-force algorithm for enumeration of
H-homomorphisms, mentioned already in [11], relates the base of the expo-
nential function that expresses the running time to the number of vertices of
H. The same paper shows that the H-homomorphism problem can be solved
in time O∗((t+3)n) where t is the treewidth of H. One can quickly see that
labeling the vertices consecutively leads to an O∗((∆(H))n) algorithm since
a neighbor of an already labeled vertex can be labeled only in at most ∆(H)
ways. We show in Theorem 1 that H-locally-injective-homomorphism can
be solved in a slightly better time, namely O∗((∆(H) − 1)n). This speed-
up is achieved when we label the vertices consecutively while keeping the
labeled part of the graph connected.

Without loss of generality we may assume that G is a connected graph,
since otherwise we solve the problem on each connected component of G
separately. In the algorithm, f denotes a partial labeling of the vertices of
G by vertices of H which is a candidate for a locally injective homomorphism
from G to H. The algorithm is formally described by the pseudocode below,
but the verbal description that is used in the proof of its correctness describes
its idea informally and perhaps in a more understandable way.

Algorithm-H-LIH(G)
if ∃v ∈ V (G) s.t. v is unlabeled and v has at least one neighbor u
which was already labeled then

foreach c ∈ NH(f(u)) \ f(NG(u)) do
set f(v) = c
Algorithm-H-LIH(G)

else
if ∃u ∈ V (G) s.t. u is unlabeled then

foreach c ∈ V (H) do
set f(u) = c
Algorithm-H-LIH(G)

else
if the labeling f is a locally injective homomorphism from G
to H then

return the labeling

5

Theorem 1. The H-Locally-Injective-Homomorphism problem is solved in
time O∗((∆(H) − 1)n) by Algorithm-H-LIH.

Proof. In the first step the algorithm picks an unlabeled vertex, say u, and
labels it in |V (H)| ways. In the second step, the first if command makes
a neighbor v of u labeled in degH(f(u)) ≤ ∆(H) ways. From this time
on, the algorithm branches each time into at most ∆(H) − 1 ways. To
see this, let T = (V (G), E(T)) be an auxiliary graph which contains the
edges uv from the application of the first if command. The loop invariant
of the algorithm is that T is an acyclic graph consisting of one connected
component – containing the so far labeled vertices – and remaining isolated
(and unlabeled) vertices. Also, f(u)f(v) ∈ E(H) for every edge uv ∈ E(T).
From the third round on, the first if command makes one new edge uv added
to T . And since u had another neighbor w in T , f(w) ∈ NH(f(u)) and so
NH(f(u)) \ f(NG(u)) has at most ∆(H) − 1 available labels for v.

Corollary 2. The L(2, 1)-labeling problem of span k can be decided in time
O∗((k − 2)n). In particular, L(2, 1)-labeling of span 4 can be solved in time
O∗(2n).

Proof. The maximum degree of a vertex in the complement of the path of
length k is ∆(Pk+1) = k − 1.

On the other hand, the exact exponential time algorithm for channel
assignment of Král’ [19] when applied to the special case L(2, 1)-labeling
has running time O∗(4n). Thus only for small span can we hope to improve
on both, the running time O∗((k− 2)n) of Corollary 2 and the running time
O∗(4n) of the dynamic programming algorithm of Král’.

3 A branching algorithm for computing an L(2, 1)-
labeling of span 4

In this section we present a significantly faster algorithm for the case of
L(2, 1)-labeling of span 4. The main idea is the same as for Algorithm-H-
LIH – in the first two steps we label two adjacent vertices in all possible
(i.e., at most 12) ways. Then we keep labeling the vertices one by one
(and branching into several possibilities when necessary) so that the so far
labeled part of the input graph G remains connected. It follows that every
newly labeled vertex has (at least) one labeled neighbor, and this labeled
neighbor has another (at least one) labeled neighbor. The key idea of the
speed-up is two-fold. First, we list several rules and apply them in order of
their preferences, thus aiming at reducing the number of branching steps.
Secondly, we often label several vertices at a time which leads to a more
convenient recursion for the upper bound of the running time.

6

Throughout this section, we assume that we are in the middle of a run
of our algorithm and that f : X → {0, 1, 2, 3, 4} is a partial L(2, 1)-labeling
of G such that the labeled vertices X ⊆ V (G) induce a connected subgraph.
Note that in order to have a chance to admit a valid labeling, G must have
maximum degree at most 3. It is also clear that every vertex of degree 3
must be labeled by 0 or 4, and we will keep checking that this condition is
satisfied by each candidate labeling f . To avoid trivial cases we assume that
G has at least one vertex of degree 3.

Now we describe the rules, prove their correctness and discuss their effect
on the running time. When a rule is applied to a partially labeled graph,
there are at least two labeled vertices and its labeled vertices induce a con-
nected subgraph. In addition, it may be impossible to extend the partial
L(2, 1)-labeling in which case the algorithm stops. For the sake of clarity
and brevity, this is not written but implicitly assumed. Note that only Rules
4 and 5 use branchings.

Rule 1 - Forced extensions

(a) If u is an unlabeled vertex whose labeled neighbor v has two labeled
neighbors, then the possible label of u is uniquely determined by the
labels of v and its neighbors;

(b) if u is an unlabeled vertex with a neighbor v labeled by 1, 2 or 3,
then, since v has another labeled neighbor, the label of u is uniquely
determined by the labels of v and this neighbor;

(c) if u is an unlabeled vertex of degree 3 with a labeled neighbor v, then
the label of u is either 0 or 4 and is uniquely determined by the label
of v and its other labeled neighbor(s);

(d) if u is an unlabeled vertex of degree 2 such that one of its neighbors
is labeled and the other one is a (possibly unlabeled) degree 3 ver-
tex, then the label of u is uniquely determined by the labels of its
neighbor(s).

The configurations corresponding to these forced extensions are depicted
in Figure 2. In each case the label of vertex u is uniquely determined by the
ones of the already labeled vertices (in black).

Now we show the correctness of the four forced extensions. Let Ni =
{j : 0 ≤ j ≤ 4 and |j− i| ≥ 2}, 0 ≤ i ≤ 4, represent the set of possible labels
of neighbors of a vertex labeled by i.

Rule 1 (a): Suppose that there exists a labeled vertex v having two
labeled neighbors, say v1 and v2, and one unlabeled neighbor u. Thus, the
label of v is either 0 or 4, and the label of u must be the unique element of
Nf(v) \ {f(v1), f(v2)}.

7

Figure 2: Forced extensions.

Rule 1 (b): If there is a vertex v with f(v) ∈ {1, 2, 3} having a labeled
neighbor v′, then its remaining unlabeled neighbor must be labeled by the
unique element of Nf(v) \ {f(v′)}.

Rule 1 (c): Suppose that v is a vertex labeled by 2. The label of its
neighbors should be in N2 = {0, 4}. Thus, knowing the label of one of its
neighbors implies the label of the other. Otherwise, if v has a label different
from 2, then Nf(v) contains either 0 or 4, forcing the label of a degree-three
neighbor.

Rule 1 (d): Suppose that an unlabeled vertex u is adjacent to a labeled
vertex v and to u′, a vertex of degree 3. If f(v) = 0 then f(u) must be 2,
otherwise, there is no way to label u′. Symmetrically, if f(v) = 4 then f(u)
is set to 2. If f(v) is in {1, 2, 3} then, as in the second forced extension, the
label of u is the unique element of Nf(v) \ {f(v′)}, where v′ is the labeled
neighbor of v.

Note that if Rule 1 cannot be applied, every unlabeled vertex that is
adjacent to a labeled one has degree at most 2 and each of its adjacent
labeled vertices is labeled by 0 or 4.

Definition 3. A path in G is called an extension path if all inner vertices are
unlabeled and of degree 2, at least one endpoint is labeled and the unlabeled
endpoint (if there is one) has degree different from 2. (With a slight abuse
of notation we allow that the endpoints are the same vertex, so such an
extension path is in fact a cycle and the endpoint is labeled.) The length of
an extension path is its number of edges.

Lemma 4. Let P = v0v1 . . . vk be an extension path such that v0 is labeled
and vk has degree 1 (and is unlabeled). Let G′ = G[V (G)\{v1, . . . , vk}] be the
subgraph obtained by deleting the path P and let f ′ : V (G′) → {0, 1, 2, 3, 4}
be a valid extension of f to an L(2, 1)-labeling of G′. Then f ′ can be extended
to an L(2, 1)-labeling of the entire graph G.

Proof. Since deg(v0) ≤ 3 and f ′(v0) ∈ {0, 4} if deg(v0) = 3, there is always

8

a label, say !, available for v1. The edge f ′(v0)! belongs to a cycle in P5,
and we label the path P wrapping around this cycle.

Rule 2 - Easy extension

• If P is an extension path with one endpoint of degree 1, Lemma 4 says
that the unlabeled vertices of P are irrelevant – we delete them from
G and continue with the reduced graph.

Figure 3: Easy extension. An extension path with one unlabeled endpoint
of degree 1.

If neither Rule 1 nor Rule 2 can be applied, every unlabeled vertex that
is adjacent to a labeled one has degree 2.

Rule 3 - Cheap extensions

(a) If P is an extension path with both endpoints labeled and of degree
2, we can decide by dynamic programming whether P has an L(2, 1)-
labeling compatible with the labeling of the labeled neighbors of its
endpoints. In the affirmative case we just delete the unlabeled vertices
and continue with the reduced graph, otherwise we reject the current
f as allowing no extension.

(b) If P is an extension path with identical endpoints, we again decide by
dynamic programming if the path has an L(2, 1)-labeling compatible
with the label of the endpoint and its labeled neighbor. And we either
reduce G or reject f , depending on the outcome.

Figure 4: Cheap extensions. (a) An extension path with both endpoints
labeled and of degree 2. (b) An extension path with identical endpoints.

9

Figure 5: Extensions with strong (a) and weak (b) constraints.

The dynamic programming consumes only constant time – it can be
shown by case analysis that if the path is long enough, then any combination
of labelings of its terminal edges is feasible. So the dynamic programming
is only applied to short paths of constant length.

The analysis of the running time of our algorithm mainly relies on the
analysis of the branching rules 4 and 5. To indicate the contribution of
the reduction rules 1, 2 and 3, we emphasize that for an execution of our
branching algorithm the running time spent on any fixed subproblem before
branching into new subproblems is bounded by a polynomial, and thus the
running time on any subproblem is bounded by polynomial. To see this,
note that one can decide in polynomial time whether any of the three rules
applies, and that a sequence of reduction rules applied to a fixed subproblem
is of length at most n, since each reduction rule removes or labels at least
one vertex.

Similar arguments are also used in the Measure & Conquer analysis in
Section 4 and in the time analysis in Section 6; in each case to show that
the running time of the corresponding branching algorithm is bounded by
the number of generated subproblems times a polynomial.

Rule 4 - Extensions with strong constraints

• Let P be an extension path with both endpoints labeled, each with
0 or 4, such that each endpoint has only one labeled neighbor and at
least one of them has another unlabeled neighbor that does not belong
to P . In this case we branch along possible labelings of the (at most
4) unlabeled neighbors of the endpoints of P , while extending each of
these labelings to entire P (by dynamic programming approach).

Now we discuss the details of this branching rule and the consequences
for the running time. The illustrative Figure 5 (a) will be helpful. Let b and
c be the labeled endpoints of P , b of degree 3 and c of degree 2 or 3, and let
a and d, respectively, be their labeled neighbors. Let further x and y be the
unlabeled neighbors of b and c, respectively, on the path P , and let u += x
be the other unlabeled neighbor of b; and let v += y be the other unlabeled
neighbor of c, if it exists.

10

Length 2. If the length of P is 2, then the label of x = y is uniquely
determined (in fact, it has to be 2), and we do not really branch.
Length 3. The case analysis in Figure 6 shows all possible labelings of
paths of length 6. From this we see that if the length of P is 3, we have the
following possible labelings of ab..cd and their extensions to abxycd (up to
the symmetric labeling f ′ = 4 − f):

40xy40 → 403140 40xy42 → 403142 40xy02 → 402402
40xy03 → 402403 20xy03 → 204203 20xy04 → 204204
20xy40 → 203140 20xy42 → 203142 30xy02 → 302402
30xy04 → 304204 30xy03 → 302403, 304203.

We see that most cases allow only one extension of the labeling to P , except
for the last case, where branching into two cases occurs. If this happens, we
gain at least three newly labeled vertices (x, y, u and possibly also v).

To analyze the running time of our algorithm we determine an upper
bound on the maximum number T (n) of leaves in the search tree corre-
sponding to an execution of the algorithm on an input with n unlabeled
vertices. The overall running time will then be O∗(T (n)) since the appli-
cation of every rule takes only polynomial time and reduces the number of
unlabeled vertices by at least one.

From our above analysis for Rule 4, we obtain two recurrences: T (n) =
2T (n− 3) (if c does not have another unlabeled neighbor v or if v = u) and
T (n) = 2T (n − 4) (if the neighbor v exists and is distinct from u). The
solution of a recurrence T (n) = αT (n − β) is T (n) = Θ(cn) for c = β√α.
Here we obtain c = 3

√
2 for the first recurrence and c = 4

√
2 for the second

one.
Length 4. The maximum number of possible extensions of the labelings
of an extension path P of length 4 can be established from the exhaustive
search trees in Figure 6 depicting all L(2, 1)-labelings.

Table 1 summarizes the numbers of extensions and corresponding upper
bounds for T (n) for extension paths of lengths 2 to 4.

length
l of the
path P

maximum
number of
branchings t1
if deg(c) = 2

solution of the
recurrence

T (n) = t1T (n − l)

maximum
number of
branchings t2
if deg(c) = 3

solution of the
recurrence

T (n) = t2T (n− l−1)

2 1 no branching 1 no branching
3 2 O(2

n
3) = O(1.2600n) 2 O(2

n
4) = O(1.1893n)

4 2 O(2
n
4) = O(1.1893n) 2 O(2

n
5) = O(1.1487n)

Table 1: Branching on extension paths of length ≤ 4 with strong constraints.

Length at least 5. If the path is longer, we have two possible extensions of
the labeling to the vertices x and u, and two extensions to y and v. For each

11

2 0

3 1 4
0

2

3

2 0

4

1 3 0
2

4

2 0
3 1

4
1

2

3 0

2 4
0

2 4

3 1

1 3 0

4

1 3 0
2

4

2 0
3 1

4
1

2

4 0

2 4
0

2 4

3 1

1 3 0

3 1 4
0

2

3

2 0

0 4

1 3 0
2 4

4
1

2

2 0
3 1 4

4
1 3

2 0

1 4

0

2 4
0

2

3

1 3

3 1 4
0

2

2 0
3 1 4

4
1 3

2 0

2 4

0

2 4
0

2

3

1 3

3 1 4
0

2

1 3 0
2 4

4
1

2

Figure 6: The figures depict all possible L(2, 1)-labelings of a path starting
with labeled vertices a and b and ending with labeled vertices c and d. Recall
that the only possible labels of b and c are 0 or 4 when Rule 4 is applied.
For example, if f(a) = 2, f(b) = 0, f(c) = 0 and f(d) = 2, the first tree
shows that there are two possible labelings of a path abxyzcd : 2031402 and
2041302.

of these 4 cases we check (in polynomial time, by dynamic programming
as in Rule 3) if it extends to a labeling of P . If v exists and v += u, we
gain length(P) + 1 newly labeled vertices (the unlabeled vertices of P plus
u and v), which leads to the recurrences T (n) = 4T (n− length(P)− 1) and
T (n) = O(4

n
6) = O(1.2600n).

If v does not exist, it may seem to matter that we only gain length(P)
newly labeled vertices at the same cost of branching. However, in this case
we only consider two possible labelings of the pair x and u, and for each
of them we only check if it extends to a labeling of P or not. The actual
label of y is irrelevant since c has degree 2 in this case. This leads to the
recurrences T (n) = 2T (n − length(P)) and T (n) = O(2

n
5) = O(1.1487n).

If v = u, then u would be treated by Rule 1 since u is adjacent to c

12

and in that case c has degree 3. Thus v = u is not possible when applying
Rule 4.

Comparing all cases we see that the worst case is achieved when deg(c) =
2 and length(P) = 3. Thus using any branching of Rule 4 leads to T (n) =
O(1.2600n).

If none of Rules 1-4 can be applied, then every unlabeled vertex that is
adjacent to a labeled one belongs to an extension path with one unlabeled
endpoint of degree 3. This is treated by the last branching rule.

Rule 5 - Extensions with weak constraints

• Let P be an extension path with one unlabeled endpoint v of degree 3.
Let w be the neighbor of v in P , let the labeled endpoint of P be b, let
its labeled neighbor be a and let u be (if it exists) the unlabeled neigh-
bor of b not belonging to P (see Figure 5 (b)). In this case we branch
along possible labelings of v, w and (possibly) u, while extending each
of these labelings to entire P (by dynamic programming).

Table 2 summarizes the numbers of branchings for paths of length at
most 8 (these numbers can be established from the exhaustive search trees of
Figure 7 giving all such possible L(2, 1)-labelings). Again, when deg(b) = 2,
we only count the number of labelings of v and w that extend to a labeling
of P compatible with the labeling of a and b, since the actual label used on
the neighbor of b in P is irrelevant. On the other hand, when deg(b) = 3,
we count the number of labelings of v, w and u that allow an extension to
a labeling of P compatible with the labels of a and b. Note that in either
case both v and b may only receive labels 0 or 4.

In the case of a longer path, we have at most 6 possible labelings of v
and w, yielding the recurrence T (n) = 6T (n − length(P)) if deg(b) = 2. If
deg(b) = 3, we have at most 12 possible labelings of v,w and u, yielding the
recurrence T (n) = 12T (n − length(P) − 1).

Since 9
√

6 < 4
√

3 and 10
√

12 < 4
√

3, the overall worst case for Rule 5
is achieved when b is a degree 2 vertex and the extension path has length 5.
Hence T (n) = O(3

n
4) = O(1.3161n).

Summarizing the analysis of the algorithm, we obtain the following.

Theorem 5. The existence of an L(2, 1)-labeling of span 4 can be decided
in time O∗(1.3161n) using polynomial space. If such a labeling exists it can
be computed within the same time.

4 A refined time analysis

In this section, we report on an attempt to improve upon the upper bound
of O∗(1.3161n) for the running time of our algorithm. To do this we use a

13

2 0

3 1 4

0
2 4

0
2
3

1 3

3 1 4
0
2

2 0
3 1 4

4
1 3
2 0

4

1 3 0

2 4
0

2
3

1 3

4
1 3 0

2 0
3
4

2 0

3 1 4
0

2
3

2 0

4
1 3 0

2
4

2 0
3 1

4
1
2

3 0

2 4

0

2 4
0

2 4
3 1

1 3 0

3 1 4
0

2
3

2 0

1 3 0
2 4

0
1

4
1 3
2 0

4

1 3 0

2 4
0

2
3

1 3

4
1 3 0

2 0
3
4

2 0

3 1 4
0

2
3

2 0

4
1 3 0

2
4

2 0
3 1

4
1
2

4 0

2 4

0

2 4
0

2 4
3 1

1 3 0

3 1 4
0

2
3

2 0

1 3 0
2 4

0
1

4
1 3
2 0

3 1 4

0
2 4

0
2
3

1 3

3 1 4
0
2

2 0
3 1 4

4
1 3
2 0

0 4

1 3 0

2 4
0

2 4
3 1

1 3 0

4
1 3 0

2
4

2 0
3 1

4
1
2

2 0

3 1 4
0

2 4
3 1

2 0
3
4

4

1 3 0
2 4

4
1
2

2 0
3 1 4

4
1 3
2 0

1 4

0

2 4

0
2 4

0
2
3

1 3

3 1 4
0
2

1 3 0
2 4

4
1
2

3 1 4

0
2 4

0
1

3 1 4

2 0
3 1

4
1
2

2 0

3 1 4
0

2 4
3 1

2 0
3
4

4

1 3 0
2 4

4
1
2

2 0
3 1 4

4
1 3
2 0

2 4

0

2 4

0
2 4

0
2
3

1 3

3 1 4
0
2

1 3 0
2 4

4
1
2

3 1 4

0
2 4

0
1

3 1 4

2 0
3 1

4
1
2

1 3 0

2 4
0

2 4
3 1

1 3 0

4
1 3 0

2
4

2 0
3 1

4
1
2

Figure 7: The trees depict all possible L(2, 1)-labelings of extension paths
of length 8 (the root edge corresponds to first two labeled vertices).

14

length
l of the
path P

maximum
number of
branchings t1
if deg(b) = 2

solution of the
recurrence

T (n) = t1T (n− l+1)

maximum
number of
branchings t2
if deg(b) = 3

solution of the
recurrence

T (n) = t2T (n − l)

1 1 no branching 1 no branching
2 1 no branching 1 no branching
3 2 O(2

n
3) = O(1.2600n) 2 O(2

n
4) = O(1.1893n)

4 3 O(3
n
4) = O(1.3161n) 3 O(3

n
5) = O(1.2458n)

5 3 O(3
n
5) = O(1.2458n) 3 O(3

n
6) = O(1.2010n)

6 5 O(5
n
6) = O(1.3077n) 6 O(6

n
7) = O(1.2918n)

7 5 O(5
n
7) = O(1.2585n) 6 O(6

n
8) = O(1.2511n)

8 5 O(5
n
8) = O(1.2229n) 7 O(7

n
9) = O(1.2414n)

Table 2: Branching on extension paths of length ≤ 8 with weak constraints.

Measure & Conquer approach (see e.g. [10]) which aims at bounding more
precisely the progress made by the algorithm at each branching step. To do
this, we need to define a measure on the size of the input. Namely, to each
graph G with a partial labeling f we assign the measure

µ = µ(G, f) = ñ + εn̂

where ñ is the number of unlabeled vertices with no labeled neighbor and n̂
is the number of unlabeled vertices having a labeled neighbor. Furthermore,
ε is a constant to be chosen later such that 0 ≤ ε ≤ 1.

This means that the weight of a vertex is 0 if it is already labeled, it is
ε if it is unlabeled with a labeled neighbor, and it is 1 otherwise. Note that
µ(G, f) ≤ n, where n is the number of vertices of G.

Theorem 6. The algorithm of Section 3 has running time O∗(1.3006n) and
uses polynomial space.

Proof. Let G = (V,E) be a graph with a partial labeling f . We consider
the previously defined measure µ = µ(G, f) for analyzing the running time
of the algorithm presented in Section 3. The analysis of the running time
is quite similar to the one provided in Section 3, but since the measure
involves the use of different weights (i.e., ε or 1) depending on the status
– labeled or unlabeled – of the vertices in their neighborhoods, we obtain
new recurrences describing the running time of the algorithm. To simplify
the notation, given a vertex v we denote by w(v) the weight of v. Thus
we have w(v) = 1 for each unlabeled vertex v with no labeled neighbor,
w(v) = ε for each unlabeled vertex v with a labeled neighbor and w(v) = 0
for each labeled vertex v. Hence summing over all vertices of G the equality
µ(G, f) =

∑
v∈V w(v) follows. Note also that the weight of a labeled vertex

can never increase in any subsequent call of the algorithm since once a vertex
is labeled its status never changes.

15

Figure 8: Extensions with strong (a) and weak (b) constraints.

Rules 1, 2 and 3. For any fixed subproblem, any sequence of reduction
Rules 1, 2 and 3 applicable to this subproblem has a running time bounded
by a polynomial, since, as seen in the previous section, applicability of each
of these rules can be checked in polynomial time and each such sequence has
length at most n since any rule labels or removes at least one vertex. Finally
note that application of Rule 1, 2, or 3 does not increase the measure µ of
the subproblem.

Rule 4 - Extensions with strong constraints. We consider an extension
path P with both endpoints labeled and we branch on the possible labelings
of the unlabeled neighbors of the endpoints of P (see Section 3 and Figure 8
(a)).

Recall that by application of Rule 1 and Rule 2, the degrees of u and v (if
it exists) are precisely 2. Let u′ be the unlabeled neighbor of u. The weight
w(u′) can be either equal to 1 or equal to ε. We distinguish two cases:

• If w(u′) = 1, labeling u would decrease the weight of u′ to ε.

• If w(u′) = ε then denote by u′′ a labeled neighbor of u′. Due to Rule 1,
it follows that u′ has degree 2 and thus labeling u would create an
extension path P ′ = uu′u′′ of length two (u′ is the unlabeled vertex of
P ′) that can be labeled without any branching by Rule 4 (see analysis
of Rule 4 in Section 3). Thus, labeling u would decrease the weight of
u′ to 0.

Consequently, if v does not exists, labeling the path P and the vertex u would
decrease the measure by at least (2ε + (length(P) − 3) + ε + min(1 − ε, ε)),
which yield to the recurrence T (µ) ≤ t1 · T (µ − (2ε + (length(P) − 3) + ε +
min(1 − ε, ε))) where the number t1 is given by Table 1 for length(P) ≤ 4
and t1 = 2 otherwise (see the analysis of Rule 4 in Section 3). If v exists, we
can assume that u and v are different since otherwise if u = v, Rule 1 (d)
would label u. However, in the case that v exists it is possible that u′ = v.
Thus, labeling the path P and the vertices u and v would decrease the
measure by at least (2ε+(length(P)−3)+2ε) giving the recurrence T (µ) ≤
t2 · T (µ − (2ε + (length(P) − 3) + 2ε)), where t2 is the maximum number
of branchings given by Table 1 for length(P) ≤ 4 and t2 = 4 whenever
length(P) ≥ 5 (see Section 3).

16

Rule 5 - Extensions with weak constraints. We consider an extension
path P with one unlabeled endpoint of degree 3 and we branch on the
possible labelings of v, w and (possibly) u (see Section 3 and Figure 8 (b)).

Let v1 and v2 be the two neighbors of v which do not belong to P . Note
that due to Rule 1 (d), neither v1 nor v2 are labeled or adjacent to a labeled
vertex.

If u does not exist, labeling the path P would decrease the measure by
at least (ε+ (length(P)− 1)+ 2− 2ε). Thus the corresponding recurrence is
given by T (µ) ≤ t1 ·T (µ−(ε+(length(P)−1)+2−2ε)) where the maximum
number of branchings t1 is given by Table 2 for length(P) ≤ 8, and t1 = 6
whenever length(P) ≥ 9 (see the analysis of Rule 5 in Section 3). If u exists,
we can assume that u and vi, i ∈ {1, 2}, are different since otherwise if
u = vi, Rule 1 would label u. Thus, labeling the path P and the vertex u
would decrease the measure by at least (ε + (length(P) − 1) + 2 − 2ε + ε),
leading to the recurrence T (µ) ≤ t2 ·T (µ− (ε+(length(P)−1)+2−2ε+ ε)),
where t2 is given by Table 2 if length(P) ≤ 8, and t2 = 12 otherwise (see
Section 3).

Finally, the value of ε used in the measure µ is computed as to minimize
the bound on the largest solution of these recurrences, for any length of the
path P . Setting ε = 0.8190 and solving the recurrences we establish that
running time of our algorithm is O(1.3006n).

It is an interesting question whether a more clever choice of the measure
can lead to a significant improvement of the upper bound on the worst-case
running time of the algorithm.

5 A lower bound

Experience shows that it is rarely the case that the best known upper bound
on the worst case running time of a branching algorithm is tight, even when
using the Measure & Conquer technique. Thus it is natural to ask for a
lower bound on the worst-case running time of a branching algorithm. Such
bounds give an idea about the (yet unknown) worst-case running time of
the algorithm. In this section we prove the following:

Theorem 7. The worst case running time of our branching algorithm to
compute an L(2, 1)-labeling of span 4 is Ω

((
2 +

√
5

)n
7

)
= Ω(1.2290n).

Proof. Consider the graph Gl = (Vl, El) defined as follows (see also Fig-
ure 9).

Let Vl = {a, b} ∪
⋃

1≤i≤l
1≤j≤6

{vi
j} ∪

⋃
1≤i≤l{xi}. For every i, 1 ≤ i ≤ l,

let Ei = {{vi
1, v

i
2}, {vi

2, v
i
3}, {vi

3, v
i
4}, {vi

4, v
i
5}, {vi

5, v
i
6}, {vi

6, x
i}}. The set of

edges El is defined as {a, b} ∪ {b, v1
1} ∪

⋃
1≤i≤l E

i ∪
⋃

1≤i<l{vi
6, v

i+1
1 }. Given

17

values of (f(a), f(b)) (2, 0) (3, 0) (4, 0) (0, 4) (1, 4) (2, 4)
possible values for
(f(v1

5), f(v1
6))

(2, 4)
(0, 4)
(1, 4)
(2, 0)

(4, 0)
(1, 4)
(0, 4)
(2, 4)
(2, 0)

(4, 0)
(1, 4)
(0, 4)
(2, 4)

(4, 0)
(2, 0)
(3, 0)
(0, 4)

(2, 4)
(3, 0)
(2, 0)
(4, 0)
(0, 4)

(2, 4)
(3, 0)
(2, 0)
(4, 0)

number of branch-
ings

4 5 4 4 5 4

Table 3: Number of branchings for an extension path of length 6 using Rule
5, depending on the labels of a and b. These numbers are established using
the search trees of Figure 7.

an integer i, the subgraph induced by
⋃

1≤j≤6{vi
j} ∪ {xi} is called the i-

th component of Gl. For i > 1, we denote by P i the path induced by the
vertices {vi−1

6 }∪
⋃

1≤j≤6{vi
j}. Note that the graph Gl contains 7l+2 vertices.

ba v1 v2 v3 v4 v5 v6
x

1st component 2nd component 3rd component

Figure 9: The graph Gl used to prove the lower bound.

Consider an execution of the algorithm on the graph Gl. Recall that, as
a preliminary step, the algorithm has to label two adjacent vertices in all
possible ways. Suppose that a and b have been labeled such that b receives
label 0 or 4. It is not hard to check that none of the rules 1 to 3 can be applied
on the resulting (partially labeled) graph. Moreover, there is no extension
path with both endpoints labeled. Thus Rule 4 cannot be applied. Hence
the algorithm applies Rule 5 to the extension path P 1 = {b, v1

1 , v1
2 , . . . , v

1
6}.

The idea is to try out all possible labelings on P 1. More precisely, the
algorithm branches along all possible labelings of v1

5 and v1
6 and extends

these labelings to the other unlabeled vertices of P 1. Then, by application
of Rule 2, the vertex x is removed from the graph (according to Lemma 4,
its label is easily obtained from a labeling of the remaining graph). The
maximum number of branchings along the extension path P 1 having length
6 is given by Table 2, i.e. 5. However, depending on the label of a and b, this
number can be even smaller. Table 3 gives the exact number of branchings,
depending on the label of a and b.

Note that once P 1 is labeled, then x is removed, v1
5 and v1

6 are labeled,
and v1

6 has label 0 or 4. Thus, we can reuse the same arguments as before by
renaming v1

5 by a and v1
6 by b, and considering the extension path P 2 from

the second component. Finally, the whole graph Gl is labeled by labeling
component by component using Rule 5.

18

According to Table 3, the number of branchings is either 4 or 5, depend-
ing on the labels of a and b. To analyze the running time of the algorithm
on Gl, we denote by T4(n) the maximum number of leaves in the search tree
obtained from an execution of the algorithm on a graph Gl with n unlabeled
vertices, providing that the first two vertices (e.g. a and b during the first
step, vi

5 and vi
6, 1 ≤ i < l, at the (i + 1)-th step) are labeled by (2, 0), (4, 0),

(0, 4) or (2, 4). Similarly, we define T5(n) as the maximum number of leaves
in the search tree obtained by applying the algorithm on a graph Gl with n
unlabeled vertices, providing that the first two vertices are labeled by (3, 0)
or (1, 4). Consequently, for all n ≥ 1, T5(n) ≥ T4(n).

Recall that each time an extension path P i of Gl is labeled, the whole
path becomes labeled and the corresponding vertex xi is removed. Thus,
the seven vertices are either labeled or removed from Gl. Moreover, note
that among the 4 or 5 branchings done for finding a labeling of the extension
path P i, exactly one ((3, 0) or (1, 4)) produces a branching in 5 labelings
in the next step aiming to find a labeling of P i+1 (see Table 3). Thus, we
obtain the following two recurrences:

T4(n) = 3T4(n − 7) + T5(n − 7) (1)
T5(n) = 4T4(n − 7) + T5(n − 7) (2)

Subtracting (1) from (2) yields T5(n) = T4(n) + T4(n − 7). Together
with (1) one obtains T4(n) = 4T4(n − 7) + T4(n − 14). Solving this latest
recurrence, by substituting T4(n) = αn

4 , we obtain T4(n) =
(
2 +

√
5

)n
7 (and

thus T5(n) = αn
4 (α−7

4 + 1) ≥ T4(n)).

6 Larger span

In this section we show that even in the case of larger span k we can beat
k − 2 as the base of the exponential function bounding the running time of
our branching algorithm. Unlike the case of k = 4, we do not aim at the
very best running time achieved by complicated branching rules and a fine
tuned analysis. Here we will be satisfied with an improvement of k − 2 by
an additive constant, and we rather aim at simple rules and simple running
time analysis. We are aware that a more careful analysis would lead to a
slightly better constant.

It is also worth comparing our algorithm with the algorithm whose run-
ning time analysis is related to the treewidth of H ([11]). Since the treewidth
of H = Pk+1 is k − 2 (every chordal completion of H contains Kk−1), their
bound is O∗((k + 1)n) which is even worse than O∗((k − 2)n). But we can
still do a little better.

Theorem 8. Deciding if an input graph allows an L(2, 1)-labeling of span
k, for a fixed k ≥ 5, can be achieved in time O∗((k − 2.5)n) and polynomial
space.

19

Proof. Note first that in the case of span k, the label space [0..k] contains
two labels, namely 0 and k, that allow k − 1 labels on adjacent vertices,
while the other k−1 labels from [1..k−1] allow only k−2 labels on adjacent
vertices.

Our algorithm is similar to the algorithm from Section 3. Again, we start
by labeling a chosen vertex in all possible ways, then label a chosen neighbor
in all possible ways, and since then on, we keep the labeled part of the input
graph connected. In particular, every labeled vertex has at least one labeled
neighbor. We use the following rules, and assume they are applied in the
preference ordering as they are listed. (See also Figures 10, 11 and 12.)

Rule 1 - Simple branchings

(a) If a vertex v is labeled f(v) ∈ [1..k−1] and has (at least one) unlabeled
neighbor u, branch along all possible labelings of u.

(b) If a labeled vertex v has two labeled neighbors and an unlabeled neigh-
bor u, branch along all possible labelings of u.

(c) If a labeled vertex v has two unlabeled neighbors u and w, branch
along all possible labelings of u and w.

(d) If an unlabeled vertex u has two labeled neighbors, branch along all
possible labelings of u.

(e) If an unlabeled vertex u has a labeled neighbor and two unlabeled
neighbors v,w, branch along all possible labelings of u, v, w.

The configurations corresponding to these simple branchings are depicted
in Figure 10.

Figure 10: Simple branchings.

If Rule 1 cannot be applied, every labeled vertex that has an unlabeled
neighbor has degree two, is labeled 0 or k, and has exactly one unlabeled
neighbor. This unlabeled neighbor has only one labeled neighbor and has

20

degree at most two, and so it belongs to an extension path consisting of
unlabeled vertices of degree 2, ending either in an unlabeled vertex of degree
1 or at least 3, or in a labeled vertex of degree 2. These extension paths are
treated similarly as in the algorithm of Section 3.

Rule 2 - Cheap extensions

(a) If an extension path ends with an unlabeled vertex of degree 1, disre-
gard the path and continue with the reduced graph.

(b) If an extension path ends with a labeled vertex, check by dynamic
programming if there exists a labeling of the path compatible with the
labeling of its initial and ending segments.

Figure 11: Cheap extensions. (a) An extension path with one unlabeled
endpoint of degree 1. (b) An extension path with both endpoints labeled
and of degree 2.

Rule 3 - Extension path branching

• If an extension path ends with an unlabeled vertex u of degree at least
3, then all neighbors of u are unlabeled (otherwise Rule 1 (e) would be
applied). Let x be the degree 2 neighbor of u on the extension path
and let y, z be two of the other neighbors. Branch along all possible
labelings of u, x, y, z and for each such labeling check by dynamic pro-
gramming if it is compatible with the labeling of the initial segment
of the extension path.

Figure 12: Extension path branching. An extension path with one unlabeled
endpoint u of degree at least 3 and no labeled neighbor.

We use the simple weight function – labeled vertices get weight zero,
unlabeled vertices get label 1. The total weight in the beginning is n. This

21

branching algorithm has only one reduction rule, which is Rule 2. It does
not involve branching, does not increase the total weight, and consumes only
polynomial amount of time. Furthermore Rule 2 can be applied at most n
times on one fixed subproblem since each application removes or labels at
least one vertex. Hence the time for applying reduction rules on any fixed
subproblem is bounded by a polynomial.

Now we invistigate the branching rules.

Rule 1 (a). As v is labeled in [1..k − 1] it forbids 3 labels for u and each
of its already labeled neighbors (there is at least one) forbids another
label. Hence there are at most k − 3 possible labels for vertex u. This
leads to recurrence T (n) ≤ (k − 3)T (n − 1).

Rule 1 (b). Now v forbids at least 2 labels (with equality if it is labeled 0
or k) and each of its already labeled neighbors (there are at least two)
forbids another label. Hence again there are at most k − 3 possible
labels for u.

Rule 1 (c). There are at most k − 2 possible labels for u and after u is
labeled, at most k − 3 possible labels are left for w. Hence we gain 2
labeled vertices and have (k−2)(k−3) < (k−2.5)2 possibilities. This
leads to T (n) ≤ (k − 2.5)2T (n − 2).

Rule 1 (d). As the two labeled neighbors of u have different labels, to-
gether they forbid at least 4 labels for u. Hence T (n) ≤ (k−3)T (n−1).

Rule 1 (e). This case needs a slightly more careful analysis. Suppose,
without loss of generality, that the labeled neighbor of u is labeled by 0.
Then u cannot be labeled 0 nor 1. If it is labeled by any i ∈ [2..k − 1],
we have k − 3 possible labels for v (label 0 is blocked) and conse-
quently k − 4 possible labels for w. This gives (k − 2)(k − 3)(k − 4)
possible labelings. If u is labeled by k, we get k − 2 possible la-
bels for v and k − 3 for w. So the overall number of possibilities is
(k − 2)(k − 3)(k − 4) + (k − 2)(k − 3) which is smaller than (k − 2.5)3

for k ≥ 5, while we are gaining 3 newly labeled vertices.

Rule 3. Suppose the extension path is bu1u2 . . . ut−1u, where b is labeled,
without loss of generality, with label 0, a is a labeled neighbor of b,
u1, . . . , ut−1 are unlabeled vertices of degree 2, u is an unlabeled vertex
of degree at least 3, and y, z are other two unlabeled neighbors of u.
We may assume t ≥ 2, since the case t = 1 is actually Rule 1 (e).
If t = 2, we lead the case analysis according to the label which is
assigned to u. If u is labeled in [2..k − 1], we have at most k − 3
possible labels for x = u1, then k − 3 labels for y and k − 4 labels for
z. If u is labeled by 1, we have k − 2 possible labels for x = u1, then
k − 3 labels for y and k − 4 labels for z. If u is labeled by k, we get

22

k − 3 possible labels for x = u1, k − 2 labels for y and k − 3 labels for
z. Altogether there are at most (k − 2)(k − 3)(k − 3)(k − 4) + (k −
2)(k − 3)(k − 4) + (k − 3)(k − 2)(k − 3) possibilities for labeling the
four vertices u1, u2, y, z. This number is less than (k− 2.5)4 for k ≥ 5.
If t > 2, we either label u with 0 or k, and get (k − 1)(k − 2)(k − 3)
possibilities for labeling x, y, z for each of the two. Or u get label i ∈
[1..k−1], and for each of these k−1 cases, we have (k−2)(k−3)(k−4)
possibilities for x, y, z. Altogether we have 2(k − 1)(k − 2)(k − 3) +
(k − 1)(k − 2)(k − 3)(k − 4) possible labelings for u, x, y, z, and this
number is less than (k − 2.5)5 for k ≥ 5. For each of the labelings of
u, x, y, z, we check by dynamic programming along the extension path
if the labeling is compatible with the labeling of a and b. So we are
gaining at least 5 newly labeled vertices.

We have seen that the application of every rule leads to recurrence
T (n) ≤ (k − 2.5)"T (n − !) for some !. Hence the number of leaves of the
recursion tree is at most O((k − 2.5)n).

7 An exact dynamic programming algorithm for
L(2, 1)-labeling

Král’ [19] shows that the channel assignment problem can be solved in time
O∗(4n) if the maximum edge weight is 2. Hence the minimum L2,1-span of a
graph can be computed in this time. The purpose of this section is to show
that in the case of L(2, 1)-labelings, we can beat the constant 4 in the base
of the exponential function expressing the running time.

Theorem 9. The L(2, 1)-labeling problem can be solved in time O∗(15
n
2) =

O(3.8730n) using exponential space.

Proof. Let G = (V,E) be a graph. For every integer i ∈ {0, 1, . . . , 2n} and
for all subsets X,Y ⊆ V such that X ∩ Y = ∅, we introduce a Boolean
variable Lab[X,Y, i]. By Dynamic Programming we determine the values of
these variables so that

Lab[X,Y, i] is true if and only if there exists a partial L(2, 1)-labeling
L of span i for X (i.e., L : X → {0, 1, . . . , i}), such that each vertex of
N(Y) ∩ X has label at most i − 1.

Clearly, L2,1(G) = min{i | Lab[V (G), ∅, i] is true}. (Note here that L2,1(G)
is smaller than 2n, since labeling the vertices by distinct even integers is
always a valid L(2, 1)-labeling.)

The correctness of the algorithm Find-L(2,1)-Span follows from the
following observations:

23

Algorithm Find-L(2,1)-Span
forall X,Y ⊆ V (G), X ∩ Y = ∅, i = 0, . . . , 2n do

Lab[X,Y, i] ← false
forall X,Y ⊆ V (G), X ∩ Y = ∅ do

if X is a 2-packing in G and X ∩ N(Y) = ∅ then
Lab[X,Y, 0] ← true

for i = 1, . . . , 2n do
forall U,A, Y ⊆ V (G), U ∩ A = U ∩ Y = A ∩ Y = ∅ do

if U is a 2-packing in G, U ∩ N(Y) = ∅ and Lab[A,U, i − 1]
then Lab[U ∪ A,Y, i] ← true

for i = 0, . . . , 2n do
if Lab[V (G), ∅, i] then return “L2,1(G) = i” and Halt

• By the definition of L(2, 1)-labeling, each set of vertices having the
same label induces a 2-packing in G (a set of vertices pairwise at
distance greater than 2).

• For every pair of disjoint sets X and Y , X allows a partial labeling of
span 0 such that all vertices of X in N(Y) have labels at most −1 if
and only if N(Y)∩X = ∅ and X induces a 2-packing in G. Hence the
initialization of Lab[X,Y, 0].

• Let X and Y be disjoint sets of vertices and let i > 0. Suppose f is
an L(2, 1)-labeling on X of span i such that f(u) ≤ i − 1 for every
u ∈ N(Y) ∩ X. Let U ⊆ X be the set of vertices of label exactly i,
and A = X \U . Then U must be a 2-packing in G and N(Y)∩U = ∅.
Moreover, every labeled neighbor of a vertex from U must have a
label at most i − 2. Thus the labeling f restricted to A satisfies the
requirements for A,U, and i − 1 and Lab[A,U, i − 1] should be true.
On the other hand, extending a partial labeling of A of span i − 1
to a labeling of X by setting f(u) = i for all u ∈ U gives a labeling
satisfying our requirements, provided N(Y)∩U = ∅. This justifies the
computation of Lab[X,Y, i] by dynamic programming.

To analyze the running time of our algorithm, the crucial point is the
estimation of the number of 2-packings in a connected graph. Let uk be the
number of 2-packings of size k in our graph G. For every 2-packing U of
size k, we process all pairs of disjoint subsets A,Y of V (G) \U . Since every
vertex of V (G) \U has 3 possibilities where to end up (either in A, or in Y ,
or in neither of them), there are 3n−k such pairs. Thus the running time of

24

our algorithm is

O∗

(
n∑

k=0

uk3n−k

)
.

We now establish the upper bound uk ≤
(n/2

k

)
2k. We emphasize that

the proof of our estimate is constructive and itself leads to an algorithm
enumerating all 2-packings of size k of a connected graph with running time
O∗

((n/2
k

)
2k

)
.

Lemma 10. If n is even, we have uk ≤
(n/2

k

)
2k (and, in particular, uk = 0

for k > n
2).

Proof. We partition the vertex set of G into r stars with a1, a2, . . . , ar ver-
tices, so that a1 + a2 + · · · + ar = n and ai ≥ 2 for every i. Hence r ≤ n

2 .
To obtain such partition, we consider a spanning tree T of G. Let u and v
be, respectively, the endvertex and its neighbor on a longest path in T . All
neighbors of v, with possibly one exception, are leaves in T . These leaves
include u and with v they form a star with at least 2 vertices. Deleting it,
we get a smaller tree T ′ which we treat in the same way. This procedure ter-
minates with an empty tree and produces the required partition of vertices
into stars of size at least 2 each.

Each 2-packing can have at most one vertex in each star, and so

uk ≤
∑

1≤i1<i2<···<ik≤r

ai1ai2 . . . aik .

We obtain an upper bound on uk by maximizing this sum under the condi-
tion that the numbers a1, a2, . . . , ar are integers summing up to n and each
of them is at least 2. I.e., for the purpose of the estimate, we forget about
the underlying graph and regard ai as free integer variables; their number r
varies as well.

It is easy to show that for ai ≥ 4, the above sum does not decrease when
ai is replaced with two new numbers a′i = 2 and a′′i = ai − 2. To see this, let
us denote gk(A) =

∑
1≤i1<i2<···<ik≤r ai1ai2 . . . aik for A = {a1, a2, . . . , ar}.

Let Ã = A \ {ai} and A′ = {2, ai − 2} ∪ Ã. Then

gk(A′) = 2(ai − 2)gk−2(Ã) + 2gk−1(Ã) + (ai − 2)gk−1(Ã) + gk(Ã)

≥ aigk−1(Ã) + gk(Ã) = gk(A).

Similarly, it does not decrease when two numbers ai, both equal to 3,
are replaced with three new numbers, all equal to 2. As n is even, it follows
that the maximum of the above sum under the stated condition is attained
for a1 = a2 = · · · = ar = 2, r = n/2. (If k ≥ 2, the sum strictly increases
after the replacements and therefore this is the only choice with maximum
sum.) The claim of the lemma follows.

25

A simple calculation now concludes the proof of Theorem 9 for even n:

n∑

k=0

uk3n−k ≤
n/2∑

k=0

(
n/2
k

)
2k3n−k

= 3n/2
n/2∑

k=0

(
n/2
k

)
2k3n/2−k = 3n/2(2 + 3)n/2 = 15n/2 = (

√
15)n.

For odd n we note that the number of 2-packings in G is obviously smaller
than the number of 2-packings in a graph G′ obtained by adding a vertex to
G. Then the running time is bounded by O∗ (

(
√

15)n+1
)

= O∗((
√

15)n) =
O(3.8730n).

One may expect that a better running time bound can be obtained if
the stars used in the proof of Lemma 10 are guaranteed to be of bigger
size. This is indeed so, and in the rest of this section we show how such an
improvement can be done and we investigate its limits. Towards this end
we define a graph to be d-well partitioned if its vertex set can be partitioned
into sets of size at least d so that each of the sets contains a vertex adjacent
to all its vertices. Obviously, any 2-packing can contain at most one vertex
from each set of such a partition. Nothing changes in the algorithm but the
running time analysis.

Lemma 11. If G is a d-well partitioned graph, d ≥ 3, and uk denotes the
number of 2-packings of size k in G, then uk ≤

(r
k

)
(n

r)k where r ≤ n
d is the

number of the sets of the partition.

Proof. Let V (G) be partitioned into disjoint sets Vi of size ai = |Vi| ≥ d for
i = 1, 2, . . . , r. Since each 2-packing can have at most one vertex in each Vi,
we again have

uk ≤
∑

1≤i1<i2<···<ik≤r

ai1ai2 . . . aik . (∗)

We obtain an upper bound on uk by maximizing this sum under the condi-
tion that the numbers a1, a2, . . . , ar are nonnegative real numbers summing
up to n.

Denote the sum under consideration by Sk(a1, a2, . . . , ar). The sum is
maximized for a1 = a2 = · · · = ar = n

r . This is obviously true for k = 1,
and we further assume that k ≥ 2. The maximum exists and is attained at
some r-tuple z1, . . . , zr because {(a1, . . . , ar) | ai ≥ 0, a1 + · · ·+ ar = n} is a
compact set in the r-dimensional Euclidean space) and Sk(a1, a2, . . . , ar) is a
continuous function. All zi’s must be equal because if, say, z1 += z2, the sum
would strictly increase after replacing z1, z2 with u, u where u = (z1 + z2)/2.
Indeed, denoting A = Sk−1(z3, . . . , zr) and B = Sk−2(z3, . . . , zr) (we set

26

B = 1 if k = 2), we see that after the replacement Sk(z1, z2, . . . , zr) would
increase by the positive amount

(u − z1)A + (u − z2)A + (u2 − z1z2)B = (u2 − z1z2)B > 0

as B > 0 and u2 − z1z2 = (z1 − z2)2/4 > 0.

Theorem 12. If G is d-well partitioned, then L(2,1)(G) can computed by Al-

gorithm Find-L(2,1)-Span in time O∗
((

3(3+d
3)1/d

)n
)

(the constants and
the polynomial in the O∗ notation depend on d) using exponential space.

Proof. The proof goes along the lines of the proof of Theorem 9, the only
thing we have to be careful about is that we may not have the partition of
G at hand. Our algorithm is robust in the sense that we do not need the
partition itself, just the promise of its existence is enough. A 2-packing is an
independent set in G2, the second distance power of G. It is a well-known
result that the maximal independent sets of a graph can be listed within
polynomial delay [17]. So let M be the set of all maximal 2-packings in G,
which can be listed in time O∗(|M |). We are interested in listing the set
of all subsets of the elements of M . Let m2 =

∑
k uk denote the number

of 2-packings in G. By branching along the vertices of G (whether they
belong to a constructed set or not) we can list the 2-packings (as subsets
of the sets of M , each set on the output is generated at most |M |-times)
in time O∗(|M | · m2) ≤ O∗(m2

2) = O∗ (
(
∑

k uk)2
)
≤ O∗

((∑
k

(r
k

)
(n

r)k
)2

)
=

O∗
((

1 + n
r

)2r
)

= O∗
((

(d + 1)
2
d

)n)
, since the function (1 + x)1/x is mono-

tone decreasing for x ≥ 1. Since for every d ≥ 3, (d + 1)2 ≤ 3d(1 + d
3), the

preprocessing time does not exceed the claimed O∗
((

3
(

3+d
3

)1/d
)n)

upper
bound.

The rest of the proof is a simple calculation.

n∑

k=0

uk3n−k ≤
r∑

k=0

(
r

k

)(n

r

)k
3n−k = 3n−r

r∑

k=0

(
r

k

)(n

r

)k
3r−k

= 3n−r
(
3 +

n

r

)r
=

(
3
(

3 + n
r

3

)r/n
)n

≤
(

3
(

3 + d

3

)1/d
)n

using again the fact that (1 + x)1/x is a monotone decreasing function for
x = n

3r ≥ 1.

Since limd→∞ 3(3+d
3)

1
d = 3, the base of the exponential function that

expresses our upper bound on the running time can never be better than 3,
but could be arbitrarily close to it. It is, of course, a natural question to ask
which standard graph properties imply the existence of a d-well partition

27

for arbitrarily high d. We have asked as an open problem at the “Building
Bridges” conference in Budapest 2008, whether the requirement of large
minimum degree would guarantee well partitionability. This question was
answered in the affirmative by Alon and Wormald [1] who showed that a
graph of minimum degree δ is d-well partitioned for d = Ω

(
(δ
log δ)1/3

)
.

Hence the upper bound on the running time gets arbitrarily close to O∗(3n)
as the lower bound on the minimum degree tends to infinity.

Acknowledgement

We are grateful to the referees for their many comments and suggestions
that helped improving our paper.

References

[1] Alon, N., Wormald, N., High degree graphs contain large-star fac-
tors, submitted.

[2] Bodlaender, H.L., Kloks, T., Tan, R.B., and van Leeuwen, J.,
Approximations for lambda-Colorings of Graphs. Computer Journal 47
(2004), pp. 193–204.

[3] Björklund, A., and Husfeldt, T., Inclusion-exclusion algorithms
for counting set partitions. Proceedings of FOCS 2006, (2006), pp. 575–
582.

[4] Chang, G. J., and Kuo, D., The L(2, 1)-labeling problem on graphs.
SIAM Journal on Discrete Mathematics 9 (1996), pp. 309–316.

[5] Fiala, J., Golovach, P., and Kratochv́ıl, J., Distance Con-
strained Labelings of Graphs of Bounded Treewidth. Proceedings of
ICALP 2005, LNCS 3580, 2005, pp. 360–372.

[6] Fiala, J., Kloks, T., and Kratochv́ıl, J., Fixed-parameter com-
plexity of λ-labelings. Discrete Applied Mathematics 113 (2001), pp. 59–
72.

[7] Fiala, J., and Kratochv́ıl, J., Complexity of partial covers of
graphs. Proceedings of ISAAC 2001 , LNCS 2223, 2001, pp. 537–549.

[8] Fiala, J., and Kratochv́ıl, J., Partial covers of graphs. Discus-
siones Mathematicae Graph Theory 22 (2002), pp. 89–99.

[9] Fiala, J., Kratochv́ıl, J., and Pór, A., On the computational
complexity of partial covers of theta graphs. Electronic Notes in Dis-
crete Mathematics 19 (2005), pp. 79–85.

28

[10] Fomin, F., Grandoni, F., and Kratsch, D., Measure and conquer:
Domination - A case study. Proceedings of ICALP 2005 , LNCS 3380,
2005, pp. 192–203.

[11] Fomin, F., Heggernes, P., and Kratsch, D., Exact algorithms
for graph homomorphisms. Theory of Computing Systems 41 (2007),
pp. 381–393.

[12] Gonçalves, D., On the L(p, 1)-labelling of graphs, DMTCS Proceed-
ings Volume AE, pp. 81–86.

[13] Griggs, J. R., and Yeh, R. K., Labelling graphs with a condition at
distance 2. SIAM Journal on Discrete Mathematics 5 (1992), pp. 586–
595.

[14] Hasunuma, T., T. Ishii, H. Ono, and Y. Uno, A linear time algo-
rithm for L(2, 1)-labeling of trees. arXiv:0810.0906v1, 2008.

[15] Havet, F., B. Reed, and J.-S. Sereni, L(2, 1)-labellings of graphs.
Proceedings of SODA 2008 , (2008), pp. 621–630.

[16] Hell, P., and Nešetřil, J., On the complexity of H-colouring. Jour-
nal of Combinatorial Theory Series B 48 (1990), pp. 92–110.

[17] Johnson, D. S., Yannakakis, M., and Papadimitriou, C. H.,
On generating all maximal independent sets. Information Processing
Letters 27 (1988), pp. 119–123.

[18] Koivisto, M., An O(2n) algorithm for graph coloring and other par-
titioning problems via inclusion-exclusion. Proceedings of FOCS 2006,
(2006), pp. 583–590.

[19] D. Král’, Channel assignment problem with variable weights. SIAM
Journal on Discrete Mathematics 20 (2006), pp. 690–704.

[20] J. Kratochv́ıl, D. Kratsch and M. Liedloff, Exact algorithms
for L(2, 1)-labeling of graphs. Proceedings of MFCS 2007 , LNCS 4708,
2007, pp. 513–524.

[21] Leese, R. A., and Noble, S. D., Cyclic labellings with constraints at
two distances. Electronic Journal of Combinatorics 11 (2004), Research
paper 16.

[22] Liu, D., and Zhu, X., Multilevel distance labelings for paths and
cycles. SIAM Journal on Discrete Mathematics 19 (2005), pp. 610–
621.

[23] Liu, D., and Zhu, X., Circular Distance Two Labelings and Circular
Chromatic Numbers. Ars Combinatoria 69 (2003), pp. 177–183.

29

[24] Roberts, F.S. private communication to J. Griggs.

30

