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Exact Algorithms for Multilayer Topological Via Minimization

by

Chong S. Rim, Toshinobu Kashiwabara and Kazuo Nakajima

Abstract

We consider the topological via minimization problem in which each of n nets has two
terminals to be connected and the routing area consists of k layers. We first show that this
problem is solvable in O(kn?) time, using a minimum cost network flow algorithm, for the
usual channel routing case in which no local net exists. We then consider the problem for
the case of “circular” channel routing in which no local net exists, and present an O(n?*+1)

time algorithm using dynamic programming.



1. Introduction

The design process of integrated circuits and printed circuit boards consists of three
phases: partitioning, placement and routing. In the partitioning phase, a given circuit is
decomposed into subcircuits of proper size called modules. Each module is realized sepa-
rately and the terminals are placed on its periphery for connection to other modules. The
realization of each subcircuit thus obtained is also called a module. In the placement phase,
an appropriate position of each module is determined. In the routing phase, electrical con-
nection among terminals of modules is realized in the routing region.

In this routing phase, we are given an area in a plane, a set of modules whose positions
in the area are predetermined and whose terminals on the peripheries are fixed in position,
and a set of nets each of which is a set of terminals to be connected electrically. The
area not occupied by the modules are available for routing and consists of k layers. Each
layer of the routing area can accommodate conductor strips called wire segments and the
routing area can have through-holes called vias to connect conductor strips on different
layers. Various constraints are to be considered in determining a routing pattern for a given
circuit. Among them, the minimization of the number of vias used is important due to
reliability, performance, area compactness and yield. Thus, considerable amount of research
has been done on this via minimization problem [2,3,4,5,9,11,14,15,16,20].

Recently, Hsu [10] introduced a rather theoretical routing problem. In this problem a
routing pattern is determined purely on the basis of via minimization. The width of wires
and size of vias are assumed to be infinitely small and no restriction is imposed on the shapes
or positions of wires and vias. Hence it is called the topological vie minimization problem,
and is formally defined as follows. We are given a k-layer (k > 2) routing area bounded
by a continuous curve B, a set C of connected regions without holes called modules inside
the curve B, a set T' of terminals placed on the curve B and boundaries of modules in C,
and a set N of nets. We assume that all terminals are available on every layer and that

no wire can be placed inside any module in C. Furthermore, in this paper, we assume that
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every net consists of two terminals. Fig. 1 shows an example which contains two modules.
The problem is to determine a routing pattern which realizes the connection requirements
specified by N using the fewest vias. We call such a problem the k-layer topological via
minimization problem (abbreviated as TVM(k)). In Fig. 2, we show a possible solution to
the TVM(k) problem for the instance shown in Fig 1 with & = 3.

Imposing restrictions on €', T' and N, we have several interesting subproblems. For
example, if C' = ¢, B is a rectangle and the terminals are located on the top and bottom
sides only, the problem arises in the channel routing case [9]. We call such a case the
rectangular TVM(k) problem, or in short the RTVM(k) problem. In this problem, a net
with both terminals located on one side only is called a local net. We call the RTVM(k)
problem without local nets the split RTVM(k) problem. On the other hand, if |C| = 1, we
can regard the curve B and the boundary of the only module as two concentric circles C,,,;
and Ciy, respectively. Thus, the routing area may be called a circular channel and we call
the problem in this case the circular TVM(k) problem, or in short the CTVM(k) problem.
In addition, if each net in N has one terminal on C;, and the other on C,,, that is, if no
local net exists, we call such a problem the split CTVM(k) problem.

Having suspected that the RTVM(2) problem was NP-hard, Hsu [10] developed a heuris-
tic algorithm. Later, Marek-Sadowska [13] proposed a new approach to the problem and
Chang and Du [2] gave another heuristic algorithm. It was very recently reported by Sar-
rafzadeh and Lee [19] that the RTVM(2) problem is NP-hard. Although their proof contains
a minor flaw, it is not difficult to fix it [17]. Sarrafzadeh and Lee [19] also showed that the
split RTVM(2) problem is solvable in O(n?logn) time.

In this paper, we first show that the split RTVM(k) problem is solvable in O(kn?) time
even for k > 2. We reduce the problem to that of finding a maximum k-path covering of a
directed acyclic graph, and then solve it by a minimum cost network flow algorithm. The
same approach is taken by Gavril [7] to the problem of finding a maximum k-clique covering

of a transitive graph [8]. His algorithm can be applied to our problem as it actually solves the



maximum k-path covering problem. Although he claims that his algorithm is implementable
to run in O(kn?) time by referring to Lawler [12], there is no description in [12] of the case
which Gavril’s network falls in. Therefore, we describe our solution method for completeness.
We then consider the split CTVM(k) problem and present an O(n?+1) time algorithm using
dynamic programming.

In the next section we describe some basic definitions and a preliminary result. In
Section 3, we show how to solve the split RTVM(k) problem in O(kn?) time by using a
minimum cost network flow algorithm. In Section 4, we develop an O(n?*1) algorithm for
the split CTVM(%) problem using dynamic programming. Section 5 concludes the paper

with some open problems.

2. Preliminaries

Let S = [¢1,12,...,%,] be a sequence of r distinct integers. We denote by |S| the number
of elements contained in S as in the case that S is a set. We call S an increasing sequence
if 4, < ip41 for p=1,2,...,7 — 1. A sequence S’ = [j1,J2,...,]q| is called a subsequence of
S if the elements ji, j2, ..., J; appear in S in this order. Given sequences Sy,S5,...,5n, we
denote by S; U S U« U Sy, the union of the sets of elements contained in S1,.5,,...,5,
and by |S; U S U ---U S| its cardinality. For a permutation of integers 1,2,...,n, let «(z)
denote the i-th element of 7. Thus 7 is denoted by the sequence [« (1),7(2),...,n(n)]. For
example, if 7 = [1,3,4,2], 7(2) = 3.

Let G = (V, E) be a directed graph where V is a nonempty set of vertices and E is a set
of ordered pairs (u,v) of vertices, called edges. A sequence of vertices P = [vi,viy, ..., 0] is
called a path from v;, to v;, in G if all the vertices but possibly two, v;, and v, , are distinct
and (v;,,vi,,,) € E for p=1,2,...,r — 1, and in the case in which v;;, = v;,, it is called a
cycle. Paths in G are said to be vertez disjoint if no two of them share a common vertex. If
G has no cycle, it is called a directed acyclic graph. In a directed acyclic graph G = (V, E),

a vertex v is called a child of u if (u,v) € E.



We now give a more detailed description of the split RTVM(k) problem. Let ty,1,,...,1,
and by, by, ..., b, be the terminals located in this order from left to right on the top and
bottom sides, respectively, of the rectangle k-layer routing area. Without loss of generality,
we assume that every terminal belongs to some net. In our problem a net specifies the
connection between two terminals, say ¢; and b;, on different sides. Thus, we represent
such a net by an ordered pair (¢;,b;) and the given set of all nets by N = {(¢;,b;,) |7 =
L,2,...,m, jp # Jg, 1 < p # q < n}. Clearly, the sequence [j1, j2, - . - , jn] forms a permutation
and we denote this by 7. In other words, N = {(ti,b,(;)) | = 1,2,...,n}. The goal of the
split RTVM(k) problem is to realize the connection requirements specified by N using the
minimum number of vias. Similarly, the split CTVM(k) problem is defined except that the
terminals ¢1,¢2,...,t, and by, b,...,b, are now located in the clockwise direction on two
concentric circles Coyt and Ciy,, respectively, rather than on two parallel lines. For example,
Figs. 3 (a) and (b) show instances of the split RTVM(k) and split CTVM(k) problems,
respectively. In both problems, we will denote net (t;, br(;)) by n; for i = 1,2,...,n.

We now give a fundamental lemma which applies to the TVM(k) problem in general.
Let N be the set of nets in a given instance of the TVM(k) problem, and M be any subset
of N. If all the nets in M can be routed on a single layer in such a way that no two wires
corresponding to different nets intersect each other, we say that M is single layer routable.

We have the following lemma.

Lemma 1. Let a be an integer such that 0 < o < |N|. All nets in NV can be routed on &
layers using o vias if and only if there exist k£ single layer routable subsets M;, Ma, ..., M;
of N such that |U%, M;| = |N| — a.

Proof. (if part) Let M{,Mj},..., M; be subsets of My, M,,..., Mg, respectively, such that
UL M! = UL, M; and M{ N M} = ¢ (i # j). We first route the nets in M on the i-th layer
for each 7 = 1,2,...,k. We can then route the remaining nets on any two adjacent layers
with one via per net by using the approach developed by Marek-Sadowska [13]. The number
of vias used is |[N| — |UL, M!| = |N| - |UL, Mi| = .



(only if part) For a realization of N using « vias, let M/ be the set of nets routed using only
the i-th layer for each 1 = 1,2,...,k. Clearly, | UL, M!| > |[N| — a. If the equality does not
hold in this equation, we can always find such subsets My, M,,..., M} of M|, M}, ..., M},
respectively, that | UX, M;| = |N| — a. Since M! is single layer routable, so is M; for
1=1,2,...,k. O

Due to Lemma 1, to solve the TVM(k) problem, all we need to do is to find k single
layer routable subsets My, My, ..., My of N such that | U5, M;| is a maximum. As a sub-
set of a single layer routable set is also single layer routable, we may restrict the subsets
My, M,, ..., M to be mutually disjoint. In the following two sections, we show how to find
such subsets of IV in polynomial time for the split RTVM(k) and split CTVM(k) problems.

3. Channel Routing Case

In this section, we show that the split RTVM(k) problem is solvable in O(kn?) time
using a minimum cost network flow algorithm. We begin with the following lemma without
a proof.

Lemma 2. Let M = {(ti,,bx,)) | p =1,2,...,m} C N be a set of nets, where i; < i, <
-+ < ty. M is single layer routable if and only if [7(31),7(é2),...,#(¢,)] is an increasing
sequence. [J

As mentioned in Section 2, to solve the split RTVM(k) problem, we need to find %
mutually disjoint single layer routable subsets My, My, - -+, My of N such that | U, M| =
% |M;| is a maximum. To solve this problem, we create a directed graph G = (V, E)
such that V = N and (n;,n;,) € E if and only if 4; < ¢; and 7(¢1) < 7(32) for nets
ni, = (tiy,br(iy)) and ng, = (ti;,br(i;)) in N. Note that G is acyclic. Fig. 4 depicts the
directed acyclic graph G constructed for the instance shown in Fig. 3 (a). Due to Lemma 2,
a set of nets M is single layer routable if and only if M is the set of vertices on a directed
path in GG. Therefore, finding k disjoint single layer routable subsets with the largest sum of

cardinalities is equivalent to finding k vertex disjoint paths in G such that the total number
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of vertices on those paths is a maximum. To find such paths, we use an algorithm for a
minimum cost network flow problem.

A network N = (U, A, s,t,b,¢) consists of (i) a finite set of vertices U, (ii) two distin-
guished vertices in U, the source s and the sink t, (iii) a set of directed edges A that includes
the return edge (t,s), (iv) a positive capacity b(a) for each edge a € A, and (v) a cost ¢(a)
for each edge a € A with ¢((¢,s)) = 0. Let R denote the set of real numbers. A flow in
N is a function f : A — R such that (1) 0 < f(a) < b(a) for each edge a € A, and (2)
Yo f((u,v)) = Ty f((v,w)) = 0 for each vertex v € U where each sum is over every vertex
u (respectively, w) for which the summand is defined. For convenience, we simply denote
f((u,v)),b((u,v)) and ¢((u,v)) by f(u,v),b(u,v) and c(u,v), respectively. f(a) is called the
edge flow of edge a. The value of flow f, denoted by |f|, is given by the edge flow of the
return edge, that is, | f| = f(t,s). If f(a) is an integer for all a € A, the flow is called integral.
The cost of flow f is the quantity: COST(f) = Y ,ea c(a)f(a). The minimum cost network
flow problem asks for a flow of minimum cost among those with a given fixed flow value k.
It is shown [6,12] that if the cost of each edge in A is nonnegative and its capacity is an
integer, the minimum cost network flow problem is solvable in O(kn?) time using Dijkstra’s
shortest path algorithm {1,12].

We construct from G the corresponding network N (G) = (U, A, s, t, b, c¢) in the following
two stages. First, we transform the graph G to a new graph G' = (V!,E') such that
V! =VU{s,t} and E' = EU{(s,v),(v,t)|v € V}. Note that G' is a directed acyclic graph.
In G', let the level I(v) of a vertex v € V' be defined as (i) I(s) = 0 and (ii) for v € V! — {s},
I(v) = max{l(u)|I(u)is defined and (u,v) € E'} + 1. Note that the level of every vertex can
be computed in O(n?) time using a conventional topological sorting algorithm [1}.

The graph G' with levels of vertices thus computed is then transformed to a network

N(G) = (U, A, s,t,b,c¢) as follows:

1. U = {v,v"|v € V}U {s,t}, where for each v € V a new vertex v’ is created with

I(v') = I(v) +1,



2. A={(t,s)} U A"U Ay U Ay, where (¢, s) is the return edge,

A = {(«,v)]|(u,v) € E}, Ay = {(v,v')|v €V}, and
Ay = {(s,v),(v,t)|ve V],

3. b(t,s) = k and b(a) = 1 for every edge a € A — {(t,s)}, and

4. ¢(a) =0 for a € Ay U{(¢,s)} and
c(a) =l(v) — l(u) for a = (u,v) € A'U Ag.

For example, Fig 5 illustrates a network constructed from the graph shown in Fig. 4. It is
easy to see that the above transformation can be completed in O(n?) time.

Note that the capacities of all edges in the network are integers. In such a network, given
an integral flow f, there always exists an integral flow of the minimum cost among all flows
with flow value |f| [12]. The following two lemmas show the validity of the transformation
given above.

Lemma 3. If there exists an integral flow f with |f| = k in NM(G) for some positive
integer k, then there exist k vertex disjoint paths Py, P,..., Py in G such that 5 | |P| =
kli(t) — COST(f).

Proof. Since f is an integral flow and |f| = k, there exist k (possibly overlapping) paths
P/, Pj,..., Pl in N(G) such that the flow f is decomposed into k unit flows each of which
is carried along P! for ¢ = 1,2,...,k. By the definition of N(G), each path P/ in N(G)
corresponds to a path P; in G such that the set of vertices that appear on P; is {v €
V | (v,v') appears on P!}. Since the capacities of all edges except (t,s) are one and every

vertex has either one incoming edge or one outgoing edge in N (G), the paths P, P;, ..., P

are vertex disjoint. The cost associated with the flow f is expressed as follows:

COST(f) = >.0-f(v,o)+ > ((v) = (w',v) + Y (I(v) — 1(s)) f(s,v) +

veV (uw)€E veV
Z;(l(t) = (W) f(,1) =0 f(t,s).
ve



Since ¢(v,v') = 0 = {(v") — l{(v) — 1 for every v € V, we have
COST(f) = 3 ((v) = Uw)f(u,v) + 2 (=1)f(v,0) = (I(s) — i) f(2, ).
(u,v)EA veV

It is known that the first term is always 0 for any function I(-) [12]. Since for each v € V,

f(v,v") = 1 if (v,v') appears on some path in M(G); or 0 otherwise, the second term is

- Y |{(v,v') | (v,v") appears on some P/}| = —| UL, P;|. Thus, we obtain
COST(f) = 0—|Uk, PI+I0)f
k
- M-I O
1=1

Lemma 4 If there exist k vertex disjoint paths P, P;,..., P in G for some positive integer

k, then there exists an integral flow f in AM(G) such that |f| = k and COST(f) = kl(t) —
=1 | Bl

Proof. Let P; = [v),vi,...,0i,,) for i = 1,2,... k. Clearly for each i, there is a path P/ in

N(G) defined as P! = [s, v;,, v,

e t]. Since Py, P,, ..., P are vertex disjoint, no

.,’U,r(), ;(),

two paths P/ and P; (¢ # j) share a common vertex other than s and ¢. Thus, P, P, ..., B
each can carry a unit flow simultaneously. The resultant flow f is integral and |f| = k. Since
all edge flows on P/’s are 1, the cost of flow f is derived as follows:

k

> 2 da)f(a)

1=1 a€{edges on P/}
kot r(i)—-1
= Z [E e\vi;, v t, + _ c :J v11+1 + C(S vtl) + C( bo(i )’t)]

COST(f)

= B ) = )+ 3 (U(ver) = 10})) + Hs) 1) +
1®) 10, )

= g( —r(i) — (s )+l(t))=k1(t)—i2:;r(i)

= kl(t)—zk;IP,-l. O



Due to the above two lemmas, their proofs, and the fact that kl(¢) is a constant, & vertex
disjoint paths in G with the largest sum of cardinalities can be obtained by finding a minimum
cost flow of N(G) with flow value k. Since the edge costs of N'(G) are all nonnegative, we
can directly use the minimum cost network flow algorithm described in [6,12], and hence the

following theorem is established.
Theorem 1. The split RTVM(k) problem is solvable in O(kn?) time. O

In Fig. 6, we show a solution to the split RTVM(k) problem for the instance shown in Fig 3
with k = 2.

Remark. An algorithm for the minimum cost network flow problem is described in [12]. It
is implementable to run in O(r3!) time for the general case in which each edge capacity is
an integer and there is no negative directed cycle with respect to edge cost, where [ is the
flow value. The algorithm finds shortest paths of graphs / times (in our case k times). Since
negative edges may appear in graphs, it employs an O(n®) time shortest path algorithm [1,12].
On the other hand, for the case that all edge costs are nonnegative, a technique developed
by Edmonds and Karp [6] is explained in {12]. Using this technique, we can always eliminate
negative edges in the graphs to be generated during the execution of the algorithm. Thus,
it can always employ an O(n?) time shortest path algorithm [1,12], resulting in an O(n?{)
time implementation. There is no description in [12] of an extension of the Edmonds-Karp
technique to the case where there exists negative edges but no negative cycles.

Very recently, Gavril [7] considered the problem of finding & cliques of a transitive
graph [8] with the largest sum of cardinalities. Since our graph G is transitive, our k
vertex disjoint path cover problem is a special case of this k-clique cover problem. Gavril
transformed his problem into a minimum cost network flow problem and claims that it is
solvable in O(n?k) time using a method described in [12]. Unfortunately, his network con-
tains negative edges and as mentioned above, no description is given for such a case in [12].
Although his claim seems to be correct, we presented our approach for the sake of complete-

ness. Note that there are other network transformations which would result in O(kn?) time



complexity [18]. O

4. Circular Channel Routing Case

In this section, we present an O(n?*!) time algorithm for the split CTVM(k) problem
using dynamic programming. Due to Lemma 1, the CTVM(k) problem can be solved by
finding k single layer routable sets of nets such that the cardinality of their union is a
maximum.

Consider the instance of the CTVM(k) problem shown in Fig. 3 (b) again. For this
instance, the permutation = = [11,4,5,9,10,6,2,3,7,8,1]. Given such a permutation ,
let S,(i), for each i = 1, 2, ..., n, denote the sequence obtained from the sequence
[7(1),7(2),...,m(n)] by circularly shifting the elements ¢« — 1 positions to the left, that
is, Sx(2) = [7(4), 7(i+1),...,7(n),7(1),...,7(i—=1)]. Let M = {(ti,, bri,y)) P = 1,2,...,m}
be any subset of N. We have the following lemma for the single layer routability of M.
Lemma 5. M is single layer routable if and only if {m(:1),7(¢2),...,7(¢m)} is the set of

elements of an increasing subsequence of Sy(!) for some integer {, 1 <! < n.

Proof. Without loss of generality, we assume that 7y < i1, < -+ < ¢,. Then, the terminals
tiystiyy .-y ti, form a clockwise sequence on the circle C,,;. Therefore, M is single layer
routable if and only if the terminals br(i,), br(iz), - - - » br(in) form a clockwise sequence on the

circle Cyy, that is, [7(4,), ®#(is41)s- -, ®(¢m), T(%1), ..., 7(¢s—1)] is an increasing sequence for

some s € {1,2,...,n} or equivalently, it is an increasing subsequence of Sr(:) for some

i € {1,2,...,n}. This completes the proof. O

By Lemma, 5, we can find desired k& single layer routable subsets My, My, ..., My of N in the

following way:

1. For each k-tuple (i1,12,...,1) of integers 1,2,...,n such that i; <iy < -+ <4y, find

k increasing subsequences Si,S,...,Sk from Sx(i1),Sx(?2),...,5x(ix), respectively,
such that |Sy U S3 U --- U Sk| is a maximum. Let Sijipiy = {S1,52,...,5k} and
|Siyigeix| = |S1US2U -+ U Skl

10



2. Select §* = {57, 53,..., 55} from {8 iy..4, | 1 <4y <ip < -+ <4 < n} such that |S*|

is the largest. Find the subsets My, M5, ..., M of N that correspond to S;, S3,..., Sy,

respectively.
In the remainder of this section, we show how to find, from a given k-tuple (74,12, ..., %),
k increasing subsequences Sy, Sa,...,Sk from Sr(41), Sx(2),...,Sx(ik), respectively, such

that [S; U Sy U--- U Sk| is a maximum. For each S:(i,),1 < r <k, we construct a directed
graph G, = (V, E;,) in such a way that V = {v1,vs,...,v,} and (vx(p), Un(q)) € Ei, if 7(p)
appears before m(q) in S,(i,) and 7(p) < 7(g) for integers p and ¢. Note that G;, is acyclic.
For the instance shown in Fig. 3 (b), for example, we illustrate in Fig. 7 two directed acyclic

graph G; and G;, constructed from the sequences S,(i1) and S(i), respectively, where

i1 = 2 and i, = 7. It is easy to see that for r = 1,2,...,k, a sequence [py, ps,...,p,| forms
an increasing subsequence of Sy (¢,) if and only if (v, vp,,...,vp,] is a path in G;,. Note that
[v1,ve,. .., vs] is a topological order for every G, r = 1,2,..., k. Thus we can transform our

problem to the following path cover problem: Given directed acyclic graphs Gy, G, ..., Gy,
all of which have a common vertex set V = {v;,vs,...,v,} and a common topological order
[v1,q,...,vn], find k paths Py, Ps, ..., P; on Gy, Gy, .., G, respectively, such that |US_; P
is a maximum. For two vertices u and v, we can define a precedence relation “<” between
them; namely u < v if and only if u appears before (or precedes) v in the topological order.
Thus, v; < v; if and only if ¢ < j. If either u = v or u < v, we denote this relation by u < v.
For a path P = [vj,,v;,,...,v;,] and a vertex v, let v + P denote the path [v,v;,,v;,,...,v;,]
if such a path exists. Furthermore, let P — v;, denote the path [v;,,...,v;].

We call a collection of paths {P, P,..., Pt} of G1,Ga,...,G that start from vertices
$1,82,...,3%, respectively, a (si,82,...,5k) path set. We define f(s1,52,...,5k) to be the
maximum value of |P, U P, U --- U Pi| among all possible collections of (s1,53,...,s:) path
sets { Py, Pa,..., Pr}. Let child,(v) denote the set of vertices that are children of a vertex v in

G, for r =1,2,... k. The following lemma lays a foundation for our dynamic programming

algorithm.
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Lemma 6.

1 + ma'XvEchildp(sp){f(sla 52509 8p—1,V,8pt1y. -, sk)}

if for some p, s, <s;fore=1,2,...,p—1,p+1,... k.
f(81,82,.-.,8k) =
ma'xvechildp(sp){f(sl, 82903 8p-1yUy Spt1ye . ask)}

if for some p and ¢, s, = s, X s; for all e € {1,2,...,k} — {p,q}.

\

Proof. We will show that for the case in which sy X 55 < +++ X s,

1 + maXyechitd (s;) Lf (¥, 82, . - -, 8k)} if 81 < 52
f(s1,82,...,8k) =

MaXyechildy (s1)1f (V5 82, -+ -, k) } if 81 = 52.

It is easy to see that this completes the proof. Let {Py(s1), Py(s2), ..., Pi(sk)} be a (s,
S2, - .., Sk) Path set such that f(s1,ss,...,8¢) = |UL, P?(si)|. Let u be the child of s; such
that Py(s1) = [s1,u, w1,...,w,]. Let Pf(u) = P(s1) — 81. Suppose that

| Py (u) U (Ui P (s0))| < f(uy 82, .-, 5k)-
Then, there is a (u, sz, . .., sx) path set {P{(u), Pj(s2),...,P{(sk)} such that
|P(w) U (Uia P (s0))| > | P () U (Ui, P (s0)))-

If s; < sy, 51 is not contained in any paths in any (u,sz,...,sk) path set. If sy = so,

51 € PJ(s2) U Pi(s3)--- U P[(sx) and s; € Pjy(s2) U P3(s3)--- U P(sx). Therefore,
[{s1} U P{(w) U (U Pi(si))] > [{s1} U P (u) U (U, PP (o))l = | Ui P (si)

in both cases. Since {sy + P{(u), Pj(s2),..., P{(sk)} is a (s1,52,...,3k) path set, this con-

tradicts the optimality of f(s1,s2,...,3k). Hence,
F(u, 89,0 58k) < | Py (uw) U (Ui P (si)-

On the other hand, since {P;(u), Py(s2),..., P(sk)} is a (u,s2,...,3x) path set, we have
that
fu,s2,...,86) 2 |Pr(u)U Py(sg) U+ U PI(sk)l-

12



Thus, we conclude that
fluys2,..588) = [PP(u) U Py(s2) U--- U PY(si)l.
Therefore, if s; < 32,
(51,520 v88) = Uy Pl =1+ |Pr() U (WaPr(si))] = 1+ flt s, s5)
< 1+ maxvechi1d1(31){f(v’ 825... ask)}7
and if 81 = 83,
fs1,82,..,8%) = |ULy Pr(si)| = [P (w) U (Ui PE(si)l = f(u, 82, ..., 8)
< ma'xvechildl(sl){f(v7 82y« .- 73k)}-
Conversely, let u’ be a child of s; in Gy and {P;(v'), P;(s2), ..., Pi(sk)} be a (v, sg,
..., 8k) path set such that
| Py (w') U (UEL, P (si))| = maxyechitd (o) {f (v, 82, - -5 k) }.
Note that sy + Py(u’) forms a path in Gy. If s; < s, (respectively, if s; = s;), s; is not
contained in any (respectively, is contained in some) paths in any (v, s,...,sk) path set.
Thus, if s; < 89,
Fstrmerrsp) 2 (o1 + PL)) U (U Pr(s)| = 1+ [PE() U (U P (s0)]
= 1+ maXyechild; (31){f(v, 82y« .- 7Sk)}7
and if sy = $9,
Fonrsaerse) 2 s+ Pr()) U (U, P (so)| = [P() U (U P (1)
= mavachildl(sl){f(v, S2y -0y sk)}-
By combining the above inequalities together, we obtain the desired equation. 0O

Based on the above lemma, we can develop the following dynamic programming algorithm
for finding desired k paths P, Py,..., Px from Gy, Gy, ..., Gy, respectively, such that [P, U

P,U--- U Pyl is a maximum.

13



1. procedure k-sequences

2. begin

3. f(Vn, Uny oo yvp) — 1

4. fort=n—-1to1do

5. begin

6. forr=1tok—1do

7. for every r-tuple (¢, ¢2,...,¢,) of integers 1,2,. ..,k such that
g <c<---<ec do

8. fort+1< 71,52+, Jk—r < ndo

9. begin

10. if r =1 then

11. FViy Viny e vy Vi 45 Vs Ve o+ 5 Yy )

— 1 + maxyechitde, (vc){f(vjx s Uiy e o9 Ve 19 Vs Vg g e v oy Vjy_1) }i

12. else

13. f(vjn s Vg U Ve s oo 3 Vs, 20 Vs Uy yy o v o9 Ve rs Uty Vg pyn v o ’vjk-r)
— maxvechildq (v'){f(vjl,vh, e ,vjq_l,v, 'qu yooe ’vjcg—Z’ Vty vjcg—l’ ceey

Vjerrs Uty Vjep_pprr e - ’vjk—r)};

14. end
15. f(vg, v, ..., 01) — MaXyechitdy (v) 1V Vs Ve, -+ - V)5
16. end

17. optimal — MaXi< dy da,...,dk gn{f(vdx y Udgs - -« 7Udk)};

18. end

The correctness of the above algorithm directly follows Lemma 6. Note that desired optimum
paths can easily be obtained by adding some appropriate pointer operations to the above

procedure.
We now analyze the time complexity of our algorithm. We assume that the values

f(vd,,Vdy, - - -, va,) are stored in a table, where 1 < dy,dy,...,di < m, and hence those

14



values can be accessed in constant time. Then, the execution of operations on lines 11,13
and 15 each needs O(n) time since each vertex in V has at most n — 1 outgoing edges.
The iterations shown on lines 4,6,7 and 8 are to calculate the value f(vy,,va,,...,vq,) for
every 1 < dy,dy,...,dr < n except f(vn,¥n,...,vs) in such a way that a value of f()
can be computed using the values already computed. Since there are n* — 1 values to be

computed, it takes O(n*t!) time to execute the above procedure. We need to perform the

above procedure for every possible k-tuples (21,%2,...,%;) of integers 1,2,...,n such that
i1 < 43 < --+ < ik Since the number of such tuples is O(n*), we arrive at the following
theorem.

Theorem 2. The split CTVM(k) problem is solvable in O(n?**!) time. O
A solution to the split CTVM(k) problem for the instance shown in Fig. 3 (b) is given in
Fig. 8.

5. Conclusion

In this paper, we have presented polynomial time algorithms for two special cases of
the k-layer topological via minimization problem. One corresponds to the channel routing
case (split RTVM(k)) and the other, the circular channel routing case (split CTVM(k)), in
which every net consists of two terminals and no local net exists. We have first shown that
the problem is solvable in O(kn?) time for the channel routing case, using a minimum cost
network flow algorithm. We have then presented an O(n?**1) time algorithm for the circular
channel routing case using dynamic programming.

There are two interesting problems related to ours. One is to find the minimum number
of layers required to route all the nets without any vias. It is easy to see that this problem
for the channel routing case is equivalent to the minimum vertex coloring problem for per-
mutation graphs for which an O(n log n) algorithm is available [8]. The same problem for the
circular channel routing case is under investigation. Another problem is to find a maximum

cardinality single layer routable subset of nets. For convenience we call this problem the
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TVM(1) problem, although strictly speaking, no via minimization is involved. Clearly, the
first algorithm finds a solution in O(n?) time for the channel routing case, and the second
algorithm with appropriate modifications solves it in O(n®) time for the circular routing case.
On the other hand, the split RTVM(1) problem is equivalent to that of finding a maximum
independent set of a permutation graph and thus solvable in O(nlogn) time [8]. Further-
more, the split CTVM(1) problem can be transformed to a split RTVM(1) by cutting out the
circular channel. By solving such split RTVM(1) problems n times, we can eventually find
a solution to the split CTVM(1) problem, leading to an O(n?logn) time implementation.
The development of a faster algorithm for the split CTVM(1) problem is under way.
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Fig. 1. An instance of the TVM(k) problem (terminals with the same number are
to be connected).

Fig. 2. A possible solution to the TVM(k) problem for the instance of Fig. 1 with
k=3.
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(a') N = {(tl’b5)’(t2$b2)’(t3’ b7)a(t4’bl)’(t51b4)a(t6v ba)a(th bG)}

t7 te

(b) N= {(tl, bll)a (tg, b4)1 (t3’ bS)a (t4, b9)a (th bno)’ (tGa b6)7 (t'h b?)s
(ts, ba), (te, br), (tr0, Bs), (t11, B1)}.

Fig. 3. (a) An instance of the split RTVM(k) problem.
(b) An instance of the split CTVM(k) problem.
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Fig. 5. The network A'(G) constructed from the graph G of Fig. 4.
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Fig. 6. A possible solution to the split RTVM(k) problem for the instance of
Fig. 3 (a) with k = 2.



. (b) Gx.

Fig. 7. Two directed acyclic graphs constructed from the sequences S,(2) and S,(7)
for the instance of Fig. 3 (b).
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Fig. 8. A possible solution to the split CTVM(k) problem for the instance of
Fig. 3 (b) with k= 2.
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