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Abstract

We provide a comprehensive overview of the literature of algorithmic approaches

for multiobjective mixed-integer and integer linear optimization problems. More pre-

cisely, we categorize and display exact methods for multiobjective linear problems

with integer variables for computing the entire set of nondominated images. Our

review lists 108 articles and is intended to serve as a reference for all researchers

who are familiar with basic concepts of multiobjective optimization and who have an

interest in getting a thorough view on the state-of-the-art in multiobjective mixed-

integer programming.
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1 | INTRODUCTION

Many real-world optimization problems possess several, often con-

flicting objectives that have to be optimized simultaneously. Multi-

objective optimization is the discipline which is concerned with

analyzing the mathematical structure of these problems and designing

appropriate solution methods. Also known as multicriteria or vector

optimization, this multidisciplinary field of research connects mathe-

matics, computer science, economics, and operations research. As a

consequence of its multidisciplinarity and universality, multiobjective

optimization is utilized in applications across various domains. We

refer the interested reader to one of several surveys of applications of

multiobjective optimization to get an overview (Achilles et al., 1979;

Andersson, 2000; Marler & Arora, 2004; Nehse, 1982; White, 1990).

Due to the existence of more than one objective, the notion of

optimality is not unique. Typically, the notion of Pareto-optimality

(Edgeworth, 1881; Pareto, 1896) is applied in multiobjective optimiza-

tion. As a consequence, several efficient solutions and nondominated

images exist. Here, a solution is called efficient (and its image is called

nondominated), if there is no other solution whose image is at least asMathematics Subject Classification (2010): 90-02 & 90C29.
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good as this image for each objective function and strictly better for

at least one objective function. Finding all nondominated images is a

challenging task due to the computational complexity and intractabil-

ity (Ehrgott, 2005) of multiobjective optimization problems even if

restricted to linear constraints and continuous variables. The existence

of integer variables is often motivated by practical applications, but it

also exacerbates the solution process (Figueira et al., 2017). Conse-

quently, multiobjective (mixed-)integer and combinatorial optimization

gained considerable attention in research in recent years.

Multiobjective optimization has been around since the late 50s and

early 60s of the last century (see Stadler, 1979, for a historical overview

that also presents the history before the seminal works of

Edgeworth (1881) and Pareto (1896)). The first algorithm for a class of

multiobjective optimization problems with integer variables has been

presented by Pasternak and Passy (1972) in 1972. Ever since, theory

on multiobjective integer optimization has been enhanced and many

solution algorithms have been proposed. With this survey, we display

the state-of-the-art of exact algorithms for multiobjective optimization

problems with integer variables over the last five decades. We point

the reader also to a variety of previous surveys with different focus and

depth (Captivo, 2012; Clímaco et al., 1997; Ehrgott & Wiecek, 2005;

Evans, 1984; Gal, 1986; Rasmussen, 1986; Yap, 2010; Zionts, 1979).

With this survey, we aim at supporting researchers in getting a first

overview of the methods and results in the area of (mixed-)integer mul-

tiobjective optimization. However, it is not meant to be a self-contained

introduction and, instead, we assume the reader to be familiar with

some basic concepts of multiobjective optimization. Several books intro-

duce multiobjective optimization and present the fundamental theory

(Antunes et al., 2016; Ehrgott, 2005; Miettinen, 1998; Steuer, 1989;

Wallenius et al., 2008, among others).

For an overview of the existing libraries on multiobjective

instances, we refer to the vOptSolver1 by Gandibleux and Przybylski,

which includes a library, vOptLib, that also points to other existing

instance libraries.2

As new algorithms are published with increasing frequency, a

current state-of-the-art overview of existing solution concepts seems

necessary. Surveying the complete literature on multiobjective mixed-

integer linear optimization problems is beyond the scope of this

article. Thus, we focus on exact algorithms which yield the entire set

of nondominated images.3 All publications in international journals

available up to Summer 2021 have been considered. This survey has a

clear focus. More precisely, specific combinatorial optimization

problems, even if they are special cases of integer optimization

(Ehrgott & Gandibleux, 2002, 2003; Ehrgott et al., 2016; Ulungu &

Teghem, 1994, and the annotated bibliography by Ehrgott and

Gandibleux (2000)), continuous variables only (Wiecek et al., 2016),

nonlinear problems (Chinchuluun & Pardalos, 2007; Miettinen, 1998),

approximation methods (Herzel et al., 2020; Ruzika & Wiecek, 2005),

interactive methods, where a decision maker is involved during the opti-

mization process (Alves & Clímaco, 2007; Miettinen et al., 2008), goal

programming (Ignizio, 1978), metaheuristics (Jones et al., 2002), evolu-

tionary methods (Coello et al., 2007; Zhou et al., 2011), as well as genetic

algorithms (Coello, 2000) are not considered in this literature overview.

Since the number of publications exceeds 100, we decided to

split the considered articles into various categories to improve the overall

presentation. The division into algorithms for mixed-integer and integer

linear optimization problems suggests itself since mixed-integer optimiza-

tion problems possess a more complex structure with nondominated

segments of different dimension and partially dominated boundaries, see

Figure 1c. We then divide the algorithms for both integer and mixed-

integer multiobjective optimization problems into problem-specific sub-

groups. Algorithms in these sub-groups share the same principle idea or

approach such as branch-and-bound or a distinct scalarization method.

The final categorization is shown in Figure 2. In each category, publica-

tions are discussed in a logical chronological order, that is, we go from

the oldest to the most recent publication, but discuss closely related

papers in one paragraph. This approach leaves some ambiguity but,

nonetheless, it seemed reasonable and unavoidable given the multiplicity

of ideas in several articles. In order to address these overlaps, gray lines

between two categories indicate a closer connection.

The remainder of this article is structured as follows: In Section 2,

we introduce multiobjective optimization problems with integer vari-

ables and provide necessary definitions and notions of multiobjective

optimization. In Section 3, we present the literature on solution

methods for multiobjective integer optimization problems. After-

wards, we display approaches for the mixed-integer case in Section 4.

Finally, Section 5 summarizes the article.

F IGURE 1 Exemplary image space of a multiobjective (a) linear, (b) integer, and (c) mixed-integer linear problem
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2 | PRELIMINARIES

In the following, we introduce basic definitions and concepts of multi-

objective optimization. For a more detailed introduction, we refer to

Ehrgott (2005).

In general, a multiobjective linear problem with p ≥ 2 objectives,

n1 ≥ 0 discrete, and n2 ≥ 0 continuous variables can be concisely

stated as:

min f xð Þ¼Cx

s:t: Ax≤ b,

x�ℤn1 �ℝn2 ,

with n≔ n1þn2,A�ℝm�n ,m�ℕ, C�ℝp�n,b�ℝm. If this problem con-

tains both discrete and continuous variables, we call it a multiobjective

mixed-integer linear problem (MOMILP). If the MOMILP has two or

three objective functions, we refer to it as a biobjective mixed-integer

linear problem (BOMILP) and a triobjective mixed-integer linear

problem (TOMILP), respectively. If n2 = 0, we obtain a multiobjective

integer linear problem (MOILP). Analogously, we use the terms bio-

bjective and triobjective as well as the abbreviations BOILP and

TOILP for two or three objective functions, respectively. On the other

hand, if n1 = 0, MOMILP denotes a multiobjective linear problem

(MOLP). In particular, in case all integer variables of a MOMILP are

fixed, we obtain a MOLP. This is also introduced as a so-called slice

problem by Belotti et al. (2013) and we call this process slicing. In

Figure 1, examples of the image space of various biobjective linear

problems are depicted.

Let X≔ x�ℤn1 �ℝn2 :Ax≤ bf g be the feasible set and

Y≔ Cx : x�Xf g⊆ℝp the image set. The Euclidean vector spaces ℝn

and ℝp comprising the set of feasible solutions and the image set are

called decision space and image space, respectively.

Since there does not exist a canonical order in ℝp for p≥2, the

following variants of the componentwise order are used. For

y1,y2 �ℝp and N = {1,…,p}, we define

y1 ≦ y2 :, y1i ≤ y
2
i for all i�N,

y1 ≤ y2 :, y1 ≦ y2 buty1 �¼ y2,

y1 < y2 :, y1i < y
2
i for all i�N:

For p�ℕ, the non-negative orthant is defined as ℝp
≥ ≔ r�ℝp : r ≥0f g

and, likewise, the sets ℝp
≧ and ℝp

> are defined.

An image y*� Y is called nondominated (weakly nondominated), if

there is no other image y � Y such that y ≤ y* (y < y*). Analogously,

x*� X is called efficient (weakly efficient), if f(x*) is nondominated

(weakly nondominated). The set of all nondominated (weakly

nondominated) images is referred to as Y N (Y wN) and the set of

(weakly) efficient solutions as XE (XwE). In general, for an arbitrary set

S�ℝp the set of nondominated images is denoted by SN.

There are particular points of interest in a multiobjective problem:

Given a permutation π of the set {1,…,p} and the associated order for

the objective functions, we refer to the problem

F IGURE 2 Categorization of articles presented in this survey: After algorithms are divided into problem-specific groups, they are further
categorized into sub-groups regarding the principle solution approach. A thick gray line between two categories indicates an overlap between
categories
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lexmin fπ 1ð Þ,…, fπ pð Þ
� �

xð Þ Lex πð Þð Þ
s:t: x�X

as the lexicographic optimization problem with respect to permutation

π. Varying the permutation π, different solutions along with the

corresponding images can be found, the so-called lexicographically

optimal solutions (images). Clearly, these images are nondominated.

Further, we define the ideal point yI �ℝp as the vector consisting of

the componentwise optimal images yIi ≔min yi : y�Yf g. The nadir

point yN is defined componentwise by yNi ≔max yi : y�YNf g for

i = 1,…,p. While for p = 2 the nadir point is given by the maximum

value of each component of the lexicographically optimal images, no

efficient algorithm for finding the nadir point for p≥3 is currently

known (Ehrgott, 2005). For two nondominated images y1 and y2 with

y11 > y
2
1 and y12 < y

2
2, the local nadir point is defined as yLN ≔ y11,y

2
2

� �
. As

we also deal with nondominated line segments in the case of a bio-

bjective mixed-integer problem, the local nadir set of such a line seg-

ment is the segment itself.

When it comes to solving a multiobjective problem, scalarization

methods that transform such a problem into a single objective optimi-

zation problem play a crucial role in finding all or a subset of the

nondominated images. Here, we list the most common scalarization

methods (see Ehrgott, 2006, and Eichfelder, 2008, for further

methods and more detailed information).

2.1 | Weighted sum method

minx � Xλ
> f xð Þ for a weight λ�ℝp.

Introduced by Zadeh (1963), an optimal solution to the weighted

sum problem is a (weakly) efficient solution of the original problem if

λ�ℝp
> (λ�ℝp

≥ ) (Geoffrion, 1968). The image of such a solution is called

supported nondominated image and extreme supported nondominated

image if y cannot be expressed by a convex combination of points in Y

N\{y}. Examples of such images are the lexicographically optimal images.

The set of extreme supported nondominated images is denoted by

Y ESN and we use these terms analogously for efficient solutions.

2.2 | ε-constraint method

minx � Xfj xð Þ s. t. fi(x)≤ εi,i≠ j, for an ε�ℝp.

An optimal solution to the ε-constraint problem is a weakly efficient

solution of the original problem and, if the solution further denotes the

unique optimal solution, it is even efficient (Haimes et al., 1971). In order

to find efficient solutions, several variations have been developed such as

the augmented ε-constraint method (Mavrotas, 2009), where an augmen-

tation term λ �
P

i≠ jf i xð Þ is added to the objective function or the elas-

tic and the flexible constraint method, where surplus variables (and

slack variables) are added and bound violations are penalized (and

bound observance rewarded) (Ehrgott, 2005; Ehrgott & Ruzika, 2008).

2.3 | Hybrid method

minx � Xλ
> f xð Þ s. t. fi(x)≤ εi,i = 1,…,p, for λ,ε�ℝp.

If λ > 0, this combination of the previous two methods ensures

efficiency while being capable of finding all efficient solutions (Guddat

et al., 1985).

2.4 | Benson's method

maxx � X,h � ℝp
≧ 0

Pp
i¼1hi s. t. f(x

0) - f(x) - h = 0, for a solution x0 � X.

This method determines whether x0 is efficient. If not, it returns a

solution (x*,h*), where x* is efficient (Benson, 1978).

2.5 | Weighted Tchebycheff method

minx � Xmaxi¼1,…,pλi f i xð Þ�yIi
� �

, for a weight λ�ℝp
≥ .

Introduced by Bowman (1976), Yu (1973), and Zeleny (1973),

the optimal solution of this reference point method is weakly efficient to

the original problem. Similarly to the ε-constraint method, an augm-

ented variant (Steuer & Choo, 1983) or a lexicographic or two-stage

weighted Tchebycheff method return efficient solutions. In this context,

a second problem with the values of the weakly efficient solution as

right-hand side bounds is solved (Sayın & Kouvelis, 2005; Steuer &

Choo, 1983). The weighted Tchebycheff is also closely related to refer-

ence point methods and achievement scalarizing function methods

(Wierzbicki, 1980; Wierzbicki, 1986). In these methods, changing the ref-

erence point has the same effect as changing weights in other methods.

2.6 | Pascoletti–Serafini method

minx � X,t � ℝt s. t. f(x) ≦ a+ t � r, for an a�ℝp and a direction r�ℝp
≥ .

Using this method, weakly efficient solutions are returned

(Pascoletti & Serafini, 1984), while additional uniqueness of the opti-

mal solution even ensures efficiency.

In the remainder of this article, we largely omit the term optimiza-

tion to shorten notation.

3 | ALGORITHMS FOR MULTIOBJECTIVE
INTEGER OPTIMIZATION PROBLEMS

About 70 different algorithms and algorithmic variants exist that are

able to obtain the whole nondominated set of a bi- or multiobjective

integer problem, either for a distinct number of objectives, binary vari-

ables only, or for arbitrary MOILPs. In the past 48 years, numerous

approaches have evolved with different origins and techniques. In the

following, we present the algorithms by dividing them into nine cate-

gories, cf. Figure 2. In Figure 3, we present the publication history,

while the number of papers and citations for each category are

344 HALFFMANN ET AL.



depicted in Figures 4 and 5, respectively. Remark that our assignment

of individual papers to one of several possible categories has a strong

impact. The assignment can be found in Table 1.

3.1 | Algebraic methods

Methods originating from algebraic theory and programming are

scarce and rather new in integer optimization, as this requires a

detailed knowledge in both fields, optimization and algebra. The first

notable algorithm for single objective integer problems has been

developed by Conti and Traverso (1991). They compute the Gröbner

bases corresponding to the convex hull of the set of feasible solutions

with an adaption of Buchberger's algorithm (Buchberger, 2006). A

Gröbner basis is a finite generating set for an ideal in a polynomial ring

over a field. In particular, such a basis can be computed for a polytope

and, hence, for the convex hull of the set of feasible solutions. Using

this basis, an optimal solution of the optimization problem can be

computed. Improvements and more algebraic methods in integer opti-

mization have followed (see, for example, Hoşten & Sturmfels, 1995;

Sturmfels, 2003; Thomas, 1998).

Blanco and Puerto (2009) are the first to use algebraic methods in

algorithms for MOILPs. They adapt methods for single objective prob-

lems that are based on the computation of Gröbner bases. As there is

only a partial order for the image space of a multiobjective problem,

Blanco and Puerto introduce the notion of a partial Gröbner basis. They

propose a variation of Buchberger's algorithm (Buchberger, 2006) that

computes such a basis using an initial set of generators of the toric ideal

of the constraint matrix. Using a reduction method for the basis and

adapting the algorithm of Hoşten and Sturmfels (1995), they obtain the

set of nondominated images.

Independently, De Loera et al. (2009) and Blanco and

Puerto (2007), Blanco and Puerto (2012) use short rational functions

and Barvinok's theory (Barvinok, 1994, 1999; Barvinok &

Woods, 2003) in order to obtain complexity results and algorithms for

multiobjective integer problems. While De Loera, Hemmecke, and

Köppe require a fixed number of decision variables and a fixed num-

ber of objectives for their results, Blanco and Puerto drop the latter

requirement. The idea behind Barvinok's theory is to encode integer

points in a rational polytope P in a “long” sum of monomials. This can

be reformulated as a short rational function. It is shown that only

polynomial time and space is needed to encode all nondominated

F IGURE 3 The publication history of
algorithms for multiobjective integer linear
problems sorted by categories

F IGURE 4 The number of
papers for each category for
multiobjective integer linear
problems
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images in a short sum of rational functions. Additionally, several algo-

rithms are proposed. Blanco and Puerto (2007) present a digging algo-

rithm that enumerates the set of nondominated images. This is

realized by processing the lead terms and distinct coefficients applied

to the Laurent expansion of the short rational functions of the pol-

ytope of feasible solutions. This algorithm has a polynomial delay, that

is, the maximum computation time between two consecutive outputs

and before the first and after the last output of the algorithm is

bounded by a polynomial in the encoding length of the input. Blanco

and Puerto (2007) and De Loera et al. (2009) propose methods where

a hypercube, that embeds the short rational functions of the image

set, is tested for nondominated images by an application of the dig-

ging algorithm above. Then, this hypercube is iteratively shrunk

regarding its dimension, that is, addends of the short rational function

that cannot return unknown nondominated images are excluded.

Hartillo-Hermoso et al. (2020) use test sets to iteratively solve

ε-constraint problems for BOILPs with updated ε. For an IP in stan-

dard form, a test set is a set T ⊆ t�ℤn :At¼0f g such that for any

non-optimal, feasible solution there is a t� T such that x - t is feasible

and improves the objective function value. If x* is an optimal solution,

x*- t is infeasible for any t� T . Hence, starting with a feasible solution

and substracting elements of the test set gives an optimal solution

without using an IP solver. Test sets can be computed using Gröbner

bases (Thomas, 1995) with respect to the lexicographic ordering,

which induces a total ordering in the objective space. While showing

promising running time results for unconstrained knapsack problems,

F IGURE 5 The number of
citations for each category for
multiobjective integer linear
problems

TABLE 1 Assignment of references to the sub-groups for pure integer problems

Assignment of references to the sub-groups for pure integer problems

Algebraic methods Blanco and Puerto (2009, 2007), Blanco and Puerto (2012), De Loera. Hemmecke, and Köppe (2009) Hartillo-

Hermoso et al. (2020)

Branch-and-Bound and

Branch-and-Cut

Abbas and Chaabane (2002), Abbas et al. (2012), Bitran and Rivera (1982), Boland et al. (2016a, 2019), Chergui

et al. (2009), Chergui et al. (2008), Deckro and Winkofsky (1983), Ehrgott and Gandibleux (2007), Gadegaard

et al. (2019), Jozefowiez et al. (2012), Kiziltan and Yucao�glu (1983), Parragh and Tricoire (2019), Przybylski and

Gandibleux (2017), Sergienko and Perepelitsa (1987), Simopoulos (1977), Sourd and Spanjaard (2008), Sourd

et al. (2006), Turgut et al. (2019), White (1984), Zionts (1977)

Disjunctive Programming Bektaş (2018), Klein and Hannan (1982), Lokman and Köksalan (2013), Sylva and Crema (2008, 2004)

Dynamic Programming Bergman and Cire (2016), Bergman, Bodur, et al. (2018), Klötzler (1978), Trzaskalik (1997), Villarreal and

Karwan (1981), Villarreal and Karwan (1982)

Epsilon Constraint Methods Al-Rabeeah et al. (2020), Bérubé et al. (2009), Chalmet et al. (1986), De Santis et al. (2020), Kirlik and Sayın (2014),

Lokman et al. (2017), Mavrotas (2008), Mavrotas (2009), Mavrotas and Florios (2013b, 2012, 2013a), Özlen and

Azizo�glu (2009), Özlen et al. (2014), Pettersson and Özlen (2017, 2019b), Sáez-Aguado and Trandafir (2018),

Zhang and Reimann (2014)

Image Space Decomposition

Methods

Boland, Charkhgard, and Savelsbergh (2015a, 2017, 2016b, 2014a, 2015b), Dächert and Klamroth (2015), Dächert

et al. (2017), Dhaenens et al. (2010), Klamroth et al. (2015), Leitner et al. (2016), Lemesre et al. (2007), Tamby and

Vanderpooten (2020)

Norm-Based Methods Clímaco and Pascoal (2016), Dächert et al. (2012), Dumaldar (2015), Filho et al. (2019), Holzmann and Smith (2018),

Jahanshahloo et al. (2004), Ralphs et al. (2006), Sayın and Kouvelis (2005), Tohidi and Razavyan (2012)

Two Phases Methods Dai and Charkhgard (2018), Pal and Charkhgard (2018), Pasternak and Passy (1972), Przybylski et al. (2010b)

Miscellaneous Bitran (1977, 1979), Keshavarz and Toloo (2014), Kouvelis and Carlson (1992), Neumayer and Schweigert (1994),

Schweigert and Neumayer (1997)
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the computation time of the Gröbner bases is time consuming as it

highly depends on the number of variables.

3.2 | Branch-and-bound and branch-and-cut

In single objective integer programming, branch-and-bound and

branch-and-cut algorithms belong to the most prominent and most

basic algorithmic solution strategies. The idea of implicitly searching

an enumeration tree is also applied to the multiobjective case by sev-

eral authors. The basic steps of these algorithms follow the single

objective approach (active node selection, branching, fathoming, etc.).

Yet, they are adapted to the fact that a set of “optimal” solutions is

sought. For example, instead of primal and dual bounds, so-called

bound sets are utilized and maintained which comes with an extra

effort. Due to their universality, branch-and-bound algorithms have

been among the first algorithms for multiobjective integer problems.

The application of cuts has significantly improved their performance.

Anyhow, the enumeration is a time consuming task, in particular when

compared to algorithms operating in the image space and considering

the fact that usually we have p < < n.

Zionts (1977) introduces a branch-and-bound and a cutting plane

algorithm. The author presents extended methods for multiobjective

linear programming by using multipliers, while the decision maker is

included in the algorithmic process.

Simopoulos (1977) develops a search-tree based implicit enumer-

ation algorithm to find all efficient solutions of a multiobjective binary

problem. At each node, certain variables are set to one and arcs indi-

cate if the terminal node has set one additional variable to one. This

search tree is built by an algorithm and traversed using certain rules

that guarantee that successors do not have to be considered if the

current solution is feasible or dominated.

For multiobjective binary problems, a classical branch-and-bound

method including computation of bounds, fathoming rules, feasibility

testing, branching, and dominance is suggested by Bitran and

Rivera (1982). Lower bounds are generated by solving a weighted-

sum problem. The authors suggest to use utility theory to equip the

solution procedure with a method to find a finally preferred solution

(after the nondominated set has been found). The proposed algorithm

is especially designed for a class of facility location problems and com-

putational results are provided. Kiziltan and Yucao�glu (1983) refine

this approach. Their algorithm is also based on a branch-and-bound

procedure: a search tree is kept and nodes, which represent partial

solutions, are explored one by one with the goal of finding/deciding

feasible and efficient solutions. Lower and upper bounds are used to

fathom nodes of the search tree in addition to fathoming by infeasibil-

ity and dominance. As soon as the enumeration is complete, the lower

bound set constitutes the nondominated images.

Deckro and Winkofsky (1983) present an algorithm for binary

MOILPs that is based on implicitly enumerating all efficient solutions.

It systematically keeps track of partial solutions obtained so far which

are then to be completed such that new nondominated images are

found. Bounds from solutions which have been found in preceding

iterations are used to limit the search space. Additionally, a dominance

check is utilized to filter dominated solutions. If new solutions are

found in a current iteration, that is, if an iteration was successful, then

a backtracking procedure is used to return to another, yet unexplored

partial solution and the procedure starts again.

Multiobjective binary maximization problems with polynomial

objective functions and one integer valued polynomial equality con-

straint are researched by White (1984). The author first shows that a

multiobjective variant of Lagrangian relaxation, where the same pen-

alty term is added to each of the objective functions, yields the same

set of efficient solutions as the original problem. Then, a basic branch-

and-bound algorithm is described that is based on a particular decom-

position of the objective functions. This is used to derive estimates of

local ideal and nadir points, respectively, in order to exclude domi-

nated sub-problems and, hence, iteratively fix variables.

Sergienko and Perepelitsa (1987) consider the complexity of a

sequence of biobjective combinatorial problems on graphs with the

goal of computing a minimal complete set of efficient solutions.

A polynomially solvable, yet non-trivial biobjective integer problem on

graphs is presented. This problem is a combination of weighted-sum

and bottleneck objectives. First, lexicographic solutions are found and

then a threshold-type algorithm is presented.

Ehrgott and Gandibleux (2007) discuss general concepts of lower

and upper bound sets on the nondominated set for general MOILPs

(see also Ehrgott & Gandibleux, 2001, for a prior work on the bio-

bjective case). Moreover, the article suggests a method to compute

lower and upper bound sets for biobjective problems based on the

iterative solution of weighted-sum scalarizations. In the case of lower

bound sets, problem relaxations can be additionally used to further

reduce the computational burden. Special attention is given to partic-

ular combinatorial problems. Here, the quality of the resulting bound

sets is numerically analyzed and compared using different quality indi-

cators at a large number of test instances.

A general multiobjective branch-and-bound framework based on

lower and upper bound sets is presented by Sourd and Spanjaard (2008)

(see also Sourd et al., 2006, for a prior version). In this work, the upper

bound set is based on supported nondominated images and/or efficient

solutions that are computed using a heuristic algorithm. Nodes of the

enumeration tree are fathomed if the lower bound set of the

corresponding sub-problem and the (global) upper bound set can be

separated by an appropriate hypersurface. The method is exemplified

on a biobjective spanning tree problem. Moreover, a problem specific

pre-processing strategy is applied. Numerical tests on different types of

instances with up to 500 nodes show the importance of high quality

bound sets for the efficiency of the branch-and-bound algorithm.

Abbas et al. (2012), Chergui et al. (2008), and Chergui et al. (2009)

first observe some polyhedral properties and then introduce a cutting

plane algorithm. It first finds a minimizer of one of the individual

objective functions and then iteratively introduces Dantzig cuts and

Gomory cuts to enumerate systematically all efficient solutions. The

dual simplex method is then applied to restore feasibility. A cutting

plane method is proposed by Abbas et al. (2012). Two types of nodes

are distinguished in the search tree: In the first kind of nodes, non-
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integer solutions are found and some branching is needed. In the sec-

ond, integer solutions are found and cuts are introduced to remove

dominated solutions or fathom the nodes themselves. A (dual)

simplex-type algorithm is used to generate these cuts. If a solution is

non-integer, a branching step is performed yielding two child nodes in

the search tree. A comparison with Sylva and Crema (2004) and Özlen

and Azizo�glu (2009) and a computational study are provided.

The single-objective branch-and-cut concept is extended by

Jozefowiez et al. (2012) using lower and upper bound sets according

to Ehrgott and Gandibleux (2007) to prune subproblems. The method

is particularly tailored to problems, where all but one objective have

only a limited number of feasible outcome values (as, for example,

min�max objective functions). Upper bound sets are derived from

already known feasible solutions (initialized, for example, by heuris-

tics). Lower bound sets are defined by sets of outcome vectors that

are obtained. Parallel branching is used and cutting planes are gener-

ated based on fractional variables in the LP relaxations. Cutting planes

are in some cases also obtained from partial dominance between

lower and upper bound sets. This is exemplified at biobjective prob-

lems. The method is compared to a biobjective image space method

that successively solves ε-constraint scalarizations.

Przybylski and Gandibleux (2017) review the general single and

multiobjective branch-and-bound concept, and the main ingredients

of multiobjective branch-and-bound algorithms. This includes a dis-

cussion of lower and upper bound sets, dominance tests and pruning

techniques, global and local branch and bound strategies as well

as pre-processing techniques. The article thus contributes to the

multiobjective branch-and-bound literature. First and foremost,

however, it contains an extensive and thorough review of the litera-

ture on multiobjective branch-and-bound up to the year 2017. The

respective contributions are described in detail and categorized

according to the identified characteristics of multiobjective branch-

and-bound methods.

A generic branch-and-bound algorithm, which does not use prob-

lem specific structures or information, is presented by Parragh and

Tricoire (2019). It efficiently utilizes the fact that for biobjective prob-

lems, there exists a total ordering among the nondominated outcome

vectors. As opposed to generic image space methods, the suggested

approach can take advantage of problem specific speed-up tech-

niques. This includes, for example, column generation for efficient

bound computations, and integrality of objective functions for bound

improvements. Infeasible areas of the search region are pruned using

a sophisticated analysis of lower bound sets (obtained from linear pro-

gramming relaxations) and upper bound sets (given by incumbent

solutions). The bound set filtering procedure generates independent

subproblems using a variant of Pareto branching/image space

branching (see Gadegaard et al., 2019; Stidsen et al., 2014, below and

in Section 4.1, respectively).

Gadegaard et al. (2019) suggest a biobjective LP-based branch-

and-cut algorithm. Lower and upper bound sets are defined according

to Ehrgott and Gandibleux (2007). Various strategies for lower bound

computation, dominance testing and pruning, cut generation, and

branching strategies are proposed and compared in extensive

numerical tests. This also includes a strengthened version of Pareto

branching/image space branching (Parragh & Tricoire, 2019; Stidsen

et al., 2014). This branching strategy is also discussed by Forget

et al. (2020), where a general branch-and-bound framework and a

generalization of Pareto branching/image space branching to more

than two objectives is presented for multiobjective combinatorial

problems.

Boland et al. (2019) (see also Boland et al., 2016a, for an earlier

version) study conditions on sets of objective functions that guaran-

tee that the ideal point is feasible for all possible feasible constraint

sets. Sets of objective functions satisfying this condition are called

universally co-ideal. To determine whether a set of objective func-

tions is universally co-ideal is NP-hard, but can be detected in

pseudo-polynomial time. Moreover, all universally co-ideal objective

functions can be replaced by a single unified objective function with-

out changing the efficient set. The concept can be used for problem

simplification, for the computation of bounds on the size of the

nondominated set, and for cut generation using, for example, restric-

tions to variable subsets and to subsets of the efficient set.

Turgut et al. (2019) have combined a branch-and-bound algorithm

with domination and infeasibility fathoming and a pre-processing step

with parallelization strategies. They report an extensive computational

study and show the potential of parallelization for MOILP algorithms

in general and branch-and-bound algorithms.

3.3 | Disjunctive programming

Disjunctive programming, also called disjunctive constraints or dis-

junctive inequalities, is a general concept in optimization meant for

feasible sets consisting of different parts that are logically linked by

“or”-statements. In the context of integer programming, these con-

straints can be reformulated with the help of a big-M-approach and

artificial binary variables: they are used to activate or deactivate parts

of the feasible set. Thus, the binary variables indicate in which part of

the feasible set the optimal solution lies. For multiobjective optimiza-

tion problems, this concept is useful to describe the search region as

the union of rectangular sets. It is then possible to consider all these

parts of the search region simultaneously, that is, to search for a new

nondominated image by solving one single IP. However, with every

new nondominated image, the number of constraints and artificial

binary variables increases. Thus, this approach is computationally

demanding, in general.

Klein and Hannan (1982) use disjunctive constraints to solve mul-

tiobjective integer minimization problems. They choose any of the

given p objective functions as objective of the disjunctive constraint

problem. All others appear in the constraints. With each new

nondominated image found, they add a set of p – 1 constraints to the

problem. In their numerical study, problems with two to five objec-

tives are presented, however, having only a rather limited set of

nondominated images.

Sylva and Crema (2004) use a reformulation of the disjunctive

constraints by a big-M-approach together with artificial binary
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variables. Moreover, they change the objective function to a weighted

sum, which results in obtaining nondominated instead of only weakly

nondominated images. In every iteration, p binary variables as well as

p + 1 constraints are added, which increases the computational effort.

Indeed, Sylva and Crema (2004) only generate complete representa-

tions for the biobjective case. For three objectives, they restrict the

numerical study to the generation of incomplete representations.

Sylva and Crema (2008) extend Sylva and Crema (2004). They still

use binary variables to indicate active constraints. However, in con-

trast to the previous work, the binary variables are extracted from the

disjunctive optimization problem and “optimized” separately. The

computational time of the resulting method has been decreased com-

pared to Sylva and Crema (2004).

Lokman and Köksalan (2013) present two algorithms for integer

multiobjective optimization problems in maximization format. The

first one directly builds upon the method by Sylva and Crema (2004)

by augmenting the objective by all other objectives scaled by a small

constant. Thereby, one constraint and one binary variable can be

omitted in each iteration. However, the algorithm still suffers from

the quickly growing number of constraints and binary variables. For

the second algorithm, the authors observe that for each feasible

image, at most one constraint from the disjunctive formulation is suffi-

cient for each of the p – 1 objectives. In each iteration, a set of n + 1

ε-constraint problems with augmentation terms are solved. Here, the

right-hand side values depend on components of previously deter-

mined nondominated images. Hence, this approach also fits into the

ε-constraint category, Section 3.5.

The L-shape approach of Boland et al. (2016b) can be seen as a

hybrid between disjunctive programming and image space decomposi-

tion. It restricts the use of disjunctive constraints to only one

nondominated image, which results in an L-shape in the triobjective

case. It is discussed in more detail in Section 3.6.

Bektaş (2018) studies the disjunctions formulated by Klein and

Hannan (1982) more closely and observes that only certain conjunc-

tions of disjunctions need to be considered. Others that lead to domi-

nated sets of inequalities can be excluded via a filtering step in the

proposed algorithm. Note that the idea resembles the redundancy

elimination approach of Klamroth et al. (2015) in Section 3.6.

3.4 | Dynamic programming

Dynamic programming has been formalized first by Bellman (1966)

and, since then, it has been enhanced and specialized for different

types of problems. However, its roots can be traced back to ancient

Greece Carraway & Morin, 1988). It is widely applicable (Bellman &

Dreyfus, 2015), the application to knapsack problems and Dijkstra's

algorithm for shortest path are prime examples. In general, a system

of stages and states is applied. At each stage, the state variables are

set and the current value is determined by the value of previous

stages via recursive equations until the final stage is computed. By

Bellman's principle of optimality (Bellman & Dreyfus, 2015), the final

stage returns an optimal solution. We refer to Lew and Mauch (2006)

and Wolsey (1998) for a more detailed introduction and to Li and

Haimes (1989) for an overview in multiobjective optimization. The

universality of dynamic programming and its significant performance

for particular problem structures comes with the cost of keeping track

of numerous solutions at once that exponentially increases with the

number of objective functions.

Klötzler (1978) is the first to introduce the principle of dynamic

programming to the multiobjective case. The classical single objective

dynamic programming approach is adapted and suitable changes are

made regarding efficiency. Instead of separability and monotonicity, a

more sophisticated property has to be satisfied. Trzaskalik (1997)

extends the notions and properties of multiobjective dynamic pro-

gramming and provides a brief survey of algorithms.

Villarreal and Karwan (1981) introduce dynamic programming recur-

sive equations for multiple objectives. They consider a multi-dimensional

knapsack-like formulation to solve multiobjective integer problems. Neg-

ative objective function coefficients can be considered and not all solu-

tions have to be computed in each stage. Further, they propose a hybrid

approach with lower bounds based on heuristic solutions to weighted

sum scalarizations and a variant of local nadir points as upper bounds.

Villarreal and Karwan (1982) consider a similar approach. Their algorithm

is based on lifting the separability and monotonicity properties to multi-

ple objective functions and making changes regarding efficiency. Fur-

ther, they consider the incorporation of bounds.

Bergman, Bodur, et al. (2018), Bergman and Cire (2016) use a

method similar to dynamic programming that involves two approaches

of transforming a multiobjective binary or integer problem into a net-

work model. First, they propose the usage of (binary) decision dia-

grams (Akers, 1978) that have also been used for other optimization

problems (Bergman et al., 2016; Bergman, Cire, et al., 2018). A binary

decision diagram is a layered-acyclic digraph, where each feasible

solution resembles a path in the graph and arcs indicate whether a

variable is set to one or zero. The second approach uses a multi-

objective recursive formulation that is closely related to the state-

transition graph of dynamic programming (Villarreal & Karwan, 1982).

Based on this formulation, they construct a network model and rein-

terpret the elements of the formulation as nodes and arcs. Variants of

multiobjective shortest path algorithms tailored to this network are

applied to solve this model. Hence, nondominated images are inter-

preted as efficient paths for a multiobjective shortest path algorithm.

3.5 | Epsilon constraint methods

The ε-constraint scalarization, see Section 2, is one of the most promi-

nent scalarization techniques in multiobjective optimization. Although

introduced by Haimes et al. (1971) to find a single weakly efficient

solution, this technique can iteratively be used to find the entire

nondominated set of multiobjective integer optimization problems.

Typically, ε-constraint methods can easily be implemented in a rudi-

mentary fashion while providing various and significant possibilities

for improvement of the performance via constraint selection and

bound shifting. In general, the application of ε-constraints produces
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single objective problems that, from a complexity theoretical point of

view, are often hard to solve compared to the single objective pen-

dant to the multiobjective problem. Thus, the running time is deceler-

ated. The latter point can be overcome by the usage of fast single

objective IP solvers.

Chalmet et al. (1986) formulate a procedure to compute the

entire set of nondominated images of a biobjective integer program-

ming problem, which is later extended to the general multiobjective

case. During the execution of their algorithm, a set Q of candidate

adjacent pairs of nondominated images is maintained. This set is ini-

tialized with the two lexicographically optimal images. In each itera-

tion, two adjacent nondominated images are removed from Q and are

used to solve a weighted sum problem with constraints on both objec-

tives that are based on the removed images. In a similar fashion, De

Santis et al. (2020) introduce the frontier partitioning algorithm to

solve biobjective integer optimization problems. Their procedure relies

on the solution of jYN j þ2 single objective integer programs. Addi-

tionally, the authors show that their algorithm can also be applied to

biobjective nonlinear integer programs.

Bérubé et al. (2009) deal with the classical ε-constraint method for

biobjective combinatorial optimization problems with integer objec-

tive values, where one objective is transformed into a constraint. They

show how to generate the entire nondominated set by iteratively

solving ε-constraint problems. Improvements to reduce the bound on

the constrained objective by more than a value of one as well as a

speed up heuristic are presented. Computational results for the travel-

ing salesman problem with profits show the effectiveness of their

approach.

“AUGMECON” (Mavrotas, 2008; Mavrotas, 2009) denotes an

augmented ε-constraint method. In contrast to the classical

ε-constraint method, the objective function constraints are trans-

formed to equality constraints by introducing slack or surplus vari-

ables. These variables are added as a weighted penalty term to the

objective function. Using this formulation, the computation of weakly

nondominated images can be avoided. “AUGMECON2” (Mavrotas &

Florios, 2012, 2013b, 2013a) is an improvement of AUGMECON.

Here the information obtained from the slack or surplus variables in

each iteration is exploited by introducing a so-called bypass coeffi-

cient. This bypass avoids redundant iterations yielding the same

nondominated images as obtained in previous iterations. Further, the

weights are modified such that the objectives are considered in a kind

of lexicographica manner. In “SAUGMECON” (Zhang and

Reimann (2014)), which is a variant of AUGMECON, uses the

ε-constraint and adds a weighted sum of the constrained objectives to

the objective function. To improve the efficiency for solving multi-

objective integer programming problems, two acceleration mecha-

nisms are proposed: an acceleration algorithm with early exit and an

acceleration algorithm with bouncing steps.

Özlen and Azizo�glu (2009) define for the biobjective case a con-

strained weighted single objective integer programming problem

(CWSOIP) that minimizes the first objective f1 plus a weighted version

of the second objective f2 with f2 being constrained by an upper

bound. It is shown how to choose the weight and bound to compute

the set of all nondominated images by iteratively solving CWSOIP and

reducing the upper bound on f2. Again, for the triobjective case, they

define the constrained weighted biobjective integer programming

problem (CWBOIP) with the first objective minimizing the original first

objective function f1 plus a weighted version of the third objective f3,

whereas the second objective minimizes f2 plus a weighted version of

f3. Similar to CWSOIP, f3 is constrained by an upper bound. By itera-

tively solving CWSOIP, this upper bound can be computed with the

same objectives as in CWBOIP minimizing over all feasible solutions

with an appropriate chosen weight for f3. Their method iteratively sol-

ves CWBOIP and their recursive algorithm is then generalized to the

multiobjective case. Özlen et al. (2014) improve the recursive algo-

rithm presented by Özlen and Azizo�glu (2009) using information of

images to relaxations of previously solved subproblems. Al-Rabeeah

et al. (2020) develop an improvement of the method presented by

Özlen et al. (2014), which reduces CPU times and the number of inte-

ger programs that have to be solved.

Pettersson and Özlen (2017) examine how parallelization can be

applied to biobjective integer algorithms in order to improve running

times. In particular, they consider the algorithm by Özlen et al. (2014).

They propose two methods to parallelize the algorithm: splitting the

range of the second objective function into intervals either statically or

dynamically. The former just splits the range into equal intervals and

applies the algorithm. The latter one starts with the lexicographic opti-

mal images and solves lexicographic problems with an additional con-

straint. Information about the current constraints are exchanged until

the two threads meet in the middle. This doubles the speed of the algo-

rithm and also outperforms a CPLEX parallelization. Pettersson and

Özlen (2019b) generalize the methods to an arbitrary number of objec-

tives and the exchange of information is discussed in more detail. The

static splitting is just performed on the last objective function. The

dynamic splitting uses an auxiliary problem selecting k of p objective

functions. The remaining objective functions are considered in a lexico-

graphic manner in the optimization process and bounds on these objec-

tives are applied. These problems are solved by parallel threads and

both bounds and solutions are shared. Two policies for the selection of

objective functions are developed and tested against existing algo-

rithms of Dächert and Klamroth (2015), Dhaenens, Lemerse, and Talbi

(2010), Özlen et al. (2014), and a CPLEX parallelization of Özlen

et al. (2014). For three and four objectives they show that their para-

llelization performs better than the other algorithms.

Sáez-Aguado and Trandafir (2018) review the ε-constraint

method and its variants and discuss their corresponding complexity

with respect to the number of integer programs to be solved. These

methods require solving at least jYN j þ3 integer programs. Therefore,

they propose generalizations of the methods designed by Neumayer

and Schweigert (1994) and Özlen and Azizo�glu (2009), where only j
YN j þ1 integer programs have to be solved.

Kirlik and Sayın (2014) formulate a two-stage ε-constraint formu-

lation for general multiobjective discrete optimization problems with p

objectives that avoids the computation of weakly nondominated

images. Rectangles in the p�1ð Þ-dimensional constraint space are

searched for nondominated images. These rectangles are partitioned
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into smaller disjoint rectangles during the execution of their algorithm

depending on their associated volume measure.

A web-based solution platform to generate all nondominated

images, a local subset or a representative nondominated set with

desired quality level is developed by Lokman et al. (2017).

3.6 | Image space decomposition methods

In this section, we deal with criterion search methods that aim at

decomposing the search space to facilitate the search for

nondominated images. Therefore, geometrical properties are exten-

sively exploited to discard several regions of the image space which

do not need to be considered. If combined with ε-constraint scala-

rizations, these methods can also be interpreted as a special variant of

ε-constraint methods, cf. Section 3.5. Due to the increased efficiency

of single objective IP solvers, researchers have lately focused on

image space decomposition methods obtaining algorithms with a

remarkable performance in computational studies. However, since

they solely operate in the image space, the problem structure con-

taining valuable information is largely discarded in the design of

algorithms.

Lemesre et al. (2007) propose a method to compute the entire

set of nondominated images of a biobjective problem in three stages.

In the first stage, the two extreme nondominated images are calcu-

lated, while in the second stage the search space (defined by the

extreme nondominated images) is equally split with respect to one

objective. In each of these splits, a nondominated image is com-

puted. Supported as well as unsupported nondominated images can

be found using this procedure. In the third stage, rectangles defined

by two adjacent nondominated images are explored. Dhaenens

et al. (2010) propose a generalization of this method for any number

of objectives.

Boland et al. (2015a, 2015b) present the so-called “Balanced
Box Method” for BOILPs, which is an extension of the box algorithm

by Hamacher et al. (2007). Initially, the method divides the rectangle

defined by the images of the two lexicographically optimal solutions

horizontally into a lower and an upper rectangle. Then, the lower

rectangle is searched for a nondominated image by solving a lexico-

graphic optimization problem. In case a nondominated image is

found, the portion of the upper triangle that is dominated gets dis-

carded. Afterwards, the upper rectangle is searched for a

nondominated image by solving again a lexicographic optimization

problem with respect to the other objective. The same procedure is

repeated for all newly created rectangles. Another search method

for biobjective binary programs to find all nondominated images

(later called “Adaptive Search in Objective Space” (ASOS) by Leitner

et al., 2016) is discussed. Again, rectangles are used to search for

nondominated images. Based on the current image pool of (not yet

dominated) images, their method either uses the ε-constraint method

(similar to Bazgan et al., 2017) or binary search in image space to

explore a rectangle. Leitner et al. (2016) introduce an exact method

for biobjective binary programs based on ASOS. It explores rectangles

in the image space by combining the ε-constraint method and the

binary search in image space (BSOS).

The “L-Shape Method” for finding all nondominated images of a

triobjective integer program is presented by Boland et al. (2016b).

The L-Shape Search Method uses rectangles and L-shapes in the

projected space defined by the first two objectives to search the

image space for nondominated images. Rectangles are explored

depending on their area by searching for a nondominated image with

its projection lying in the rectangle. Either a nondominated image

with its projection in the rectangle is found or it is determined that

no nondominated image is contained in the rectangle. In the former

case, the nondominated image induces an L-shape contained in the

rectangle, which is then further explored. In the latter case, the rect-

angle gets discarded from consideration. The exploration of a rectan-

gle is basically done by repeatedly solving two consecutive integer

programs.

Dächert and Klamroth (2015) observe that for more than two

objectives redundancies occur when decomposing the search region

based on a nondominated image in a standard way. They develop a

split criterion based on a neighbourhood relation between local upper

bound sets to avoid the generation of redundant boxes and to keep

the number of subproblems to be solved low. They present a method

for finding the entire set of nondominated images of a triobjective

optimization problem for which the number of subproblems that have

to be solved is linear with respect to the number of nondominated

images. Their algorithm is independent of the chosen scalarization

technique. However, they show how to reduce the linear bound fur-

ther by using the ε-constraint method. Concise representations of the

search region of general multiobjective optimization problems based

on so-called local upper bounds (also referred to as local nadir points)

are suggested and thoroughly analyzed by Klamroth et al. (2015).

Assuming that the number of objectives is fixed, it is shown that the

number of search zones grows only polynomially with the number of

nondominated images. The complexity of the update operation is

numerically tested on randomly generated instances with up to six

objectives. Dächert et al. (2017) combine the results of Klamroth

et al. (2015) and Dächert and Klamroth (2015). A neighbourhood con-

cept is established to update the local upper bound sets more effi-

ciently. Although the established concept does not improve the

asymptotic (worst-case) running time, computational results are pro-

vided showing a significant improvement in running time, especially

for instances with a high number of nondominated images. Lacour

et al. (2017) utilize the results to compute the so-called hyper-volume

indicator of a set S. Tamby and Vanderpooten (2020) expand the work

of Klamroth et al. (2015) by exploiting particular properties of the

ε-constraint scalarization in combination with the structure of the sea-

rch region to further reduce the number and the intricacy of the sub-

problems that need to be solved when iteratively exploring search

regions. Extensive numerical tests validate the efficiency of their

approach.

The “Quadrant Shrinking Method” (QSM) (Boland et al., 2014a,

2017) is another method that computes the entire set of

nondominated images of a triobjective integer optimization problem.

HALFFMANN ET AL. 351



QSM is a criterion search algorithm working in a projected

2-dimensional image space defined by the first two objectives.

Thereby, the authors use a two-stage scalarization technique similar

to the one by Kirlik and Sayın (2014). This technique is used to

explore quadrants defined by upper bounds in the projected space for

so far unknown nondominated images.

Do�gan et al. (2021) propose a box method based on Pascoletti-

Serafini scalarizations to generate previously unknown efficient solu-

tions for biobjective problems. Several variants of the box method are

proposed mainly differing in the way the boxes and the direction vec-

tors of the scalarization method are defined.

3.7 | Norm-based methods

One of the classic scalarization approaches is to determine some ref-

erence point and then to minimize the distance to this point. These

distances can be measured by ℓ-norms. Of special interest are the

cases of ℓ = 1,2 and ℓ = ∞. The latter case means that we minimize

the maximum distance componentwise. The resulting optimization

problem is also called Tchebycheff problem, or weighted Tchebycheff

problem when equipped with weights, see Section 2. Norm-based

methods also mainly perform in the image space. The properties of

the weighted Tchebycheff scalarization are closely related to the

ε-constraint method. Thus, advantages and disadvantages are similar

to those discussed in Sections 3.5 and 3.6.

Sayın and Kouvelis (2005) use a two-stage weighted

Tchebycheff method similar to the one by Eswaran et al. (1989) to

solve a biobjective discrete optimization problem. They present

two variants, one using the ideal point and the other using the ori-

gin as a fixed reference point. The weights are computed based on

the fixed reference point and the local nadir point of two adjacent

nondominated images.

Ralphs et al. (2006) use both a weighted and an augmented

weighted Tchebycheff method to solve biobjective integer problems.

They compute the weights based on the local ideal and local nadir

point between two adjacent nondominated images. In each iteration,

either a new nondominated image is computed or the considered

region can be discarded. The augmented method requires the selec-

tion of an auxiliary parameter in the objective function that must be

chosen with care, since, if the parameter is too large, some

nondominated images can not be generated. However, if too small,

numerical issues might appear.

Dächert et al. (2012) consider the problem of how to choose the

augmentation parameter in the augmented weighted Tchebycheff

problem in the biobjective case. The idea is to avoid the problems pre-

viously discussed by appropriately choosing this parameter. On the

one hand, it is chosen small enough so that no nondominated image is

missed, but on the other hand, as large as possible to avoid numerical

issues.

Clímaco and Pascoal (2016) present a two phases approach with

a weighted sum method in the first phase and a Tchebycheff method

with varying reference points in the second phase. The numerical

comparison between their approach and a “one-phase”-method only

solving Tchebycheff problems reveals that the two phases method is

slightly better. They also present a variant for computing approxima-

tions as well as an interactive variant.

Holzmann and Smith (2018) use a modified augmented weighted

Tchebycheff norm which has already been proposed in a general form

by Kaliszewski (2000). They consider discrete multiobjective optimiza-

tion problems with any number of objectives. A numerical study

includes multiobjective cardinality constrained knapsack and assign-

ment problem instances for three to six objectives.

Filho et al. (2019) base their method on the non-inferior set esti-

mation (Cohon, 2003) and on the works by Ralphs et al. (2006) and

Solanki (1991). They find the whole nondominated set for biobjective

problems by iteratively solving Tchebycheff problems with equal

weights while changing both the reference point and the bounding

box with respect to previously found images.

Jahanshahloo et al. (2004) propose a method that iteratively uses

the 1-norm to obtain the set of all efficient solutions for problems

with binary decision variables. Initialized with the set of unique mini-

mizers of the individual objective functions, they solve the single

objective problem minx � X
Pp

i¼1Cix to obtain additional efficient solu-

tions. Then, they add constraints that are motivated by the observa-

tion that for any new solution x and any already found solution x

there exists an index i such that Cix<Cix. All efficient solutions are

returned, provided that the algorithm that solves the single objective

problems is capable of returning all optimal solutions. This algorithm is

extended to integer problems by Tohidi and Razavyan (2012).

Dumaldar (2015) identified an error in the proofs of Jahanshahloo

et al. (2004) and corrected this issue. An error in the algorithm is also

mentioned, however, we can only confirm an error in the execution of

the algorithm in the illustrative example but not in the algorithm itself.

Nevertheless, Dumaldar adapted the method and implemented addi-

tional constraints to the original algorithm.

3.8 | Two phases methods

Generally speaking, a two phases method utilizes two algorithmic

approaches to obtain the whole set of nondominated images. The first

algorithm finds the rather “easily obtainable” images and the search

region is narrowed. In phase two, a more sophisticated algorithm is

applied to also find the remaining (usually unsupported)

nondominated images. Initially, this has been applied for biobjective

problems with a dichotomic search based on the weighted sum

method in the first phase and the ε-constraint method in the second

(for example, see Ulungu & Teghem, 1995, for combinatorial prob-

lems). Pasternak and Passy (1972) improve this procedure by replacing

the ε-constraint method by a hybrid scalarization. The first algorithm

provides a tighter search region that is a union of smaller regions for

the second one, which may lead to improved running times and opens

up the second phase to parallelization. However, the number of

supported nondominated images usually tends to be small (Visée

et al., 1998), so the advantage may be limited.
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Przybylski et al. (2010b) generalize the two phases method to

solve MOIPs with p>2 objectives. First, all supported nondominated

images are computed using the algorithm by Przybylski et al. (2010a)

along with the supporting hyperplanes of the facets of the

nondominated set and the nadir point. Next, the authors propose a

procedure of computing a set of images D that play the same role as

local nadir points in the biobjective context. These points together

with the hyperplanes are used to specifically explore the search

regions. Afterwards, the set D is updated. The algorithm terminates if

no search region is left.

The algorithm by Clímaco and Pascoal (2016) is also a two phases

method and is discussed in Section 3.7.

Dai and Charkhgard (2018) propose a two phases method that

utilizes the balanced box method (Boland et al., 2015a) for BOILPs,

see Section 3.6, in the first phase and the ε-constraint method in the

second. The balanced box method finds several nondominated images

and from there splits the search region into small rectangles. Then,

they switch to the ε-constraint method to check whether a rectangle

is empty, or to search the remaining rectangles otherwise. A switching

technique based on user-defined parameters is proposed and their

method only needs 2:5 �YNd e calls to a single objective solver.

The work of Pal and Charkhgard (2018) does not fit completely in

this category as they include not two but three phases in their bio-

bjective algorithm. Nevertheless, the “Multi-Stage Exact Algorithm”
(MSEA) consists of a combination of several exact and approximate

algorithms known from the literature and, hence, the main contribu-

tion is an integrated framework of all these algorithms and their

respective variations in MSEA. The first phase approximates the

nondominated set to provide a warm start to the solution process in

phase three. The second phase is initialized by computing the lexico-

graphically optimal images and K�1 additional nondominated images.

Then, K boxes defined by two consecutive nondominated images are

generated. In the third phase, these boxes are explored in parallel on

K different processors. In each iteration, a box is searched for at most

two nondominated images and new boxes are created and ordered.

The approximation and the box exploration methods can be chosen

by the user or it can be even switched during the algorithm.

3.9 | Miscellaneous

This section presents algorithms and methods that either do not fall

into any of the previous categories or are so specific that they have to

be discussed individually.

For multiobjective binary problems, Bitran (1977) considers an

auxiliary problem with binary variables only and without constraints.

Hence, every efficient solution of this problem that is feasible to the

original problem is efficient for the latter. A set V that characterizes

the reverse polar cone to the cone defined by the rows of the objec-

tive function matrix C is introduced. Further, a point to set map

M defined on V has as image of v � V the set of solutions that is domi-

nated in the direction of v. By enumerating the efficient solutions of

the auxiliary problem and computing both V and M(v) for v � V, the

proposed algorithm is able to compute the efficient solutions of the

original problem. However, the algorithm's applicability is limited to

small problems. Bitran (1979) improves this algorithm by a backward

scheme and an additional map N that maps V onto the solutions that

dominate solutions in direction of a v � V. Hence, in contrast to the

original method, it works in the opposite direction. However, it is still

time consuming. The work is extended to interval linear MOPs, where

elements of the matrix C are not given as single values but as an

interval.

Neumayer and Schweigert (1994) present three algorithms for

finding all efficient solutions of a biobjective integer linear problem

with positive values only. The first algorithm, which is generalized to

arbitrary objectives by Schweigert and Neumayer (1997), uses a

hybrid scalarization between the weighted sum and the ε-constraint

method, where the parameter for one of the additional constraints is

adjusted in each step while the second algorithm is basically a dichot-

omic search approach using the Tchebycheff norm. The third algo-

rithm replaces the two objectives by a quadratic function of the form

g(x) = a � C1x � C2x + b � C2x + c � C1x with parameters a, b and

c based on two initially known nondominated images that correspond

to the lexicographically optimal solutions. Then, the quadratic problem

is maximized and either a new solution is obtained or one of the previ-

ous solutions is optimal. In the former case, new parameters are com-

puted similar to the weight vector for the dichotomic search and the

procedure is repeated until no new solution is found.

While single objective integer linear programming problems with

totally unimodular constraint matrices can be solved by solving the

corresponding LP-relaxation, this is, in general, not true for multi-

objective IPs, even in the case of two objectives, due to the existence

of unsupported nondominated images. Kouvelis and Carlson (1992)

identify a class of biobjective integer linear programming problems

with totally unimodular constraint matrices and objective functions

operating on disjoint variable sets, referred to as variable partitioned

unimodular programs, where no unsupported nondominated images

exist. Hence, in this case, biobjective linear programming relaxations

yield the complete nondominated set. This result is extended to so-

called variable partitioned concave separable unimodular biobjective

integer programs with concave objective functions.

Data envelopment analysis (DEA) (Cooper et al., 1999) is a tool to

measure the relative efficiency of solutions in operations research and

decision theory. In particular, so-called decision making units are

implemented to compute, based on linear programming, a solution

with the best performance which is measured by the ratio between

outputs and inputs. Hence, this method is often used to maximize the

output while minimizing the input. Kesharvarz and Toloo (2014) con-

sider a special biobjective problem, where one objective function is

minimized while the other one is maximized using non-negative inte-

ger valued objective functions. Translated to the DEA methodology, a

connection between DEA models and the biobjective problem is

established: an optimal solution to the model by Deprins et al. (2006)

is efficient to this biobjective problem and vice versa. The same holds

true for optimal solutions of the model by Banker et al. (1984) and

supported efficient solutions. An algorithm is proposed that uses
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these models with iteratively changing parameters to obtain all effi-

cient solutions of a biobjective problem.

4 | ALGORITHMS FOR MULTIOBJECTIVE
MIXED-INTEGER OPTIMIZATION PROBLEMS

In contrast to MOILPs, multiobjective mixed-integer optimization

problems additionally have continuous variables that have to be con-

sidered when solving these problems. This higher degree of difficulty

is the reason why the first algorithm for these problems has been pro-

posed as late as 1998 by Mavrotas and Diakoulaki (1998). Since then,

about 15 algorithms and algorithmic variants have been developed

that can roughly be divided into three categories: branch-and-bound

algorithms, algorithms that work in the image space, and hybrid

methods that combine the previous two approaches. In Figure 6, we

present the publication history, while the number of papers and cita-

tions for each category are depicted in Figures 7 and 8, respectively.

Remark that our assignment of individual papers to one of several

possible categories has a strong impact here. The assignment can be

found in Table 2.

4.1 | Branch-and-bound algorithms

Branch-and-bound algorithms for MOMILPs are very similar to the

ones designed for MOILPs, see Section 3.2. Note that the branch-

and-bound tree only considers the integer valued variables. However,

the existence of continuous variables obviously complicates the solu-

tion process. This involves not only adjustments to the bound sets

and fathoming rules but also the computation of nondominated

images for problems at the leaf nodes of the branch-and-bound tree:

When these images are added to the nondominated images of previ-

ous leaf nodes, the comparison of faces with different dimensions

becomes necessary which is a challenging task. Further, the resulting

nondominated parts are not necessarily faces but can take all kinds of

shapes with open or closed boundaries or both, see Figure 1c. For a

detailed and more mathematical description of branch-and-bound

algorithms for BOMILPs and especially of the bound sets and fat-

homing rules, we refer to Belotti et al. (2016). Advantages and disad-

vantages of branch-and-bound methods carry over from the pure

integer case.

Mavrotas and Diakoulaki (1998) have been the first to develop an

algorithm that solves a multiobjective mixed-integer problem. Their

branch-and-bound algorithm follows the standard procedure of

branch-and-bound. More precisely, the algorithm starts with a prob-

lem with relaxed binary variables, where it sets a variable at 0 or 1 at

each node, and ends as each node is explored or fathomed. If the ideal

point of the problem corresponding to a node is dominated by existing

(possible) nondominated images, the node is fathomed. At a leaf node,

extreme images of the slice problem are computed and compared

with previously found images. Later, Mavrotas and Diakoulaki (2005)

have noticed that the algorithm outputs dominated images and

corrected this issue by implementing an additional dominance check

at the end of the algorithm via an auxiliary linear problem. Some minor

improvements to the storage of nondominated images and their com-

putation are added. As Vincent et al. (2010, 2013) have presented in

their article, the improved algorithm still discards nondominated

images while some returned images are dominated. They rectify these

issues for the biobjective case via a procedure that compares line seg-

ments of different slices and outputs the nondominated parts. Fur-

ther, they introduce a branching strategy, an initial upper bound set

Y ESN and new lower bound sets, that is, the ideal point of both the

mixed-binary and the relaxed version and the nondominated set of

these two problems.

Belotti et al. (2013) are the first to propose an algorithm for bio-

bjective mixed-integer problems. This branch-and-bound algorithm

uses breadth first search, standard branching, and starts with an

ε-constraint routine to compute some weakly nondominated images

as an initial upper bound set. They implement new fathoming rules

based on local nadir points and local nadir sets. Due to the size of the

set of nadir points they restrict these to the subset that is weakly

F IGURE 6 The publication history of
algorithms for multiobjective mixed-integer
linear problems sorted by categories
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dominated by the ideal point of the relaxed version of the current

sub-problem. If this set is empty, the node can be fathomed. Other-

wise, the node can be fathomed if each of these local nadir points and

sets can be separated by a hyperplane of the nondominated set of the

relaxed version of the current sub-problem, which is verified by auxil-

iary linear problems. In a follow-up article, Adelgren, Berlotti, and

Gupte (2018) present a new method to store nondominated images

and line segments. Contrary to the previously used dynamic lists, this

is based on quad trees which is a balanced tree structure that recur-

sively divides a two dimensional space into four quadrants. Every time

a node is added to the tree, all ancestor nodes are checked for domi-

nance and the tree is rebalanced if necessary.

Stidsen et al. (2014) provide an algorithm for biobjective mixed-

binary problems, where only one objective function contains continu-

ous variables. They use a special linear problem to obtain

nondominated images: the image space is rescaled such that all

nondominated images are contained in the unit cube (0,0),(1,0),

(0,1),(1,1) and the objective functions are summed up. In their

branch-and-bound algorithm, they utilize breadth first search and

nodes are fathomed if the objective function value of the auxiliary

linear problem is worse than the local nadir points of the images

found so far. Besides the standard branching also integer and

Pareto branching are performed (cf. Section 3.2): Given that the

binary solution part indeed takes binary values, the former one

excludes the binary part from further consideration in this branch

F IGURE 7 The number of
articles for each category for
multiobjective mixed-integer
linear problems

F IGURE 8 The number of
citations for each category for
multiobjective mixed-integer
linear problems

TABLE 2 Assignment of references to the sub-groups for mixed-
integer problems

Assignment of references to the sub-groups for mixed-integer
problems

Branch-and-bound

algorithms

Adelgren and Gupte (2017), Adelgren

et al. (2014, 2018), Belotti et al. (2013,

2016), Mavrotas and Diakoulaki (2005,

1998), Stidsen et al. (2014), Vincent, Seipp,

Ruzika, Przybylski, and Gandibleux (2013,

2010)

Image Space

Approaches

Boland et al. (2014b, 2015c), Fattahi and

Turkay (2018), Perini et al. (2017), Pettersson

and Özlen (2019a), Rasmi and Türkay (2019),

Rasmi et al. (2017), Rasmi et al. (2019), Soylu

and Yıldız (2016)

Hybrid Methods Soylu (2018), Stidsen and Andersen (2018)
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by no-good constraints, see Soylu and Yıldız (2016) in the following

section. The latter branching strategy comes into play, when the

current image is dominated but cannot be fathomed. Then, in the

branching step new bounds on the objective function value are

installed (see also Forget et al., 2020). Additionally, further

improvements like image space slicing are presented (see Stidsen &

Andersen, 2018 in Section 4.3).

Another algorithm for BOMILPs is presented by Adelgren and

Gupte (2017), where they introduce new techniques from single

objective branch-and-bound and provide an overview on fathoming

rules from a different perspective. Their breadth first search algorithm

is equipped with a pre-processing step, in which an upper bound set is

computed in the beginning either by a weighted sum or an

ε-constraint routine. Further, they introduce pre-solving to simplify

the set of feasible solutions. They implement variations of well-known

fathoming rules, for example, integer, ideal points, and bound set fat-

homing. However, they use a different methodology to execute these

rules. Their branching strategy consists of a scoring method, where

variables that have changing fractional values are branched first. Fur-

ther improvements include probing to strengthen the bounds, image

space fathoming (see Pareto branching [Stidsen et al., 2014]) and

locally valid cutting planes.

4.2 | Image space approaches

Contrary to the previous category of algorithms, these approaches

solve a given MOMILP in the image space and heavily rely on

scalarization problems or use auxiliary single objective problems. Both

of these problems can be solved by custom or commercial single

objective MIP solvers. As the image space usually has a smaller dimen-

sion than the decision space, designers of such algorithms try to

exploit this advantage and focus on the analysis of the structure in

this space. This category is more general than the category of

Section 3.6. Nevertheless, it shares its advantages and disadvantages,

that is, these algorithms are illustrative and easy to understand while

discarding structural properties that can be obtained in the decision

space.

Boland et al. (2014b, 2015c) present the “Triangle Splitting

Method” for BOMILPs. Starting with the lexicographically optimal

images, a rectangle is built and every local extreme supported

nondominated image is found. Then, the rectangle is split into upper

rectangular triangles such that the hypotenuse is between two neigh-

bouring images. Via an auxiliary MIP, the hypotenuse is investigated,

that is, either the whole hypotenuse is nondominated, otherwise, a

nondominated part and an unsupported image is found. Using this

new image, the triangle is split into two rectangles and the process is

repeated. The splitting direction (horizontal, vertical) is changed

between iterations. Further, the authors provide enhancements and a

post-processing procedure that obtains a representation of the

nondominated set with a minimal number of line segments.

The “ε-Tabu Constraint Algorithm” for BOMILPs by Soylu and

Yıldız (2016) starts with a lexicographically optimal image, computes

the corresponding slice, and computes the nondominated set of

the slice problem via dichotomic search. Then, the line segments of

the slice are checked for dominance using an auxiliary problem based

on ε-constraints and no-good constraints (Hooker, 2011). The latter

constraints exclude all feasible solutions with particular values for

the integer or binary variables using the Hamming distance

(Hamming, 1950) between the integer or binary parts of two solu-

tions. The constraint can be linearized for both binary Fischetti

et al., 2005) and integer variables (Soylu & Yıldız, 2016). If a line seg-

ment is dominated (in parts) or the current line segment is the artificial

line segment at each end of the slice of the nondominated set, their

algorithm switches to the slice that dominates the line segment and

starts exploring the new slice. The algorithm terminates, if no line seg-

ment is left unexplored.

Perini et al. (2017) generalize the “Balanced Box Method” (see

Boland et al. (2015a), in Section 3.6) to mixed-integer problems,

where rectangles (initialized by the lexicographically optimal images)

are split into two rectangles by solving two MIPs. In case that a

nondominated image y* is found that lies on the splitting line, the

nondominated line segment corresponding to y* is computed. First,

the line segment with the same integer part as y* is found by solving a

MOLP. Then, parts of this segment that are dominated are succes-

sively excluded using auxiliary MIPs with ε-constraints and a weighted

sum objective. The authors prove that only polynomially many, with

respect to the number of line segments, single objective problems

have to be solved. Further, they provide improvements like solution

harvesting and information about common integer parts.

The “One Direction Search Method” for BOMILPs4 by Fattahi

and Turkay (2018) starts with one lexicographically optimal image and

explores the slice problem for the fixed binary part of this image. This

is done by a variant of the dichotomic search method such that the

extreme points of this MOLP are computed in a decreasing manner

with respect to the objective function value of the first objective. For

each line segment between two extreme points, dominated parts of

the segment are identified via an auxiliary constraint problem. If a line

segment is (partially) dominated by an image with different binary

part, the new binary part is explored next. Otherwise, the line seg-

ment is nondominated. If all line segments of a slice are explored, the

binary part is excluded via no-good constraints and a new slice is

found by a lexicographic search until the other lexicographically opti-

mal image is reached.

The algorithm by Rasmi and Türkay (2019) returns all non-

dominated images for biobjective problems and for problems with

more than two objectives a superset containing all facets that have at

least one nondominated image (plus some unnecessary facets). They

use variants of Benson's method together with cone and no-good

constraints (see Soylu & Yıldız, 2016, above) to find all integer solu-

tion parts that contain at least one nondominated image. Then, they

fix the integer solution part and solve the corresponding continuous

problem to obtain all possible nondominated images for this integer

part. Via a line search and Benson's method, they detect the

nondominated parts of edges and check if a facet has at least one

nondominated image. In particular, this idea is applied to TOMILPs by
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Rasmi et al. (2017), Rasmi et al. (2019) which is the first algorithm

designed for triobjective mixed-integer linear problems. They use an

iterative process starting with one lexicographically optimal solution.

They fix the value of one objective function to the one of the lexico-

graphically optimal solution and consider the resulting two dimen-

sional plane. Here, they find all integer variables that have at least one

nondominated image in the corresponding slice by iteratively solving

lexicographic problems, where integer variable values and areas are

excluded, in particular by no-good constraints. Non-dominance is

checked via Benson's method. If there are no unexplored slices on this

plane with at least one nondominated image left, a nondominated

image of another slice with larger value of the previously fixed objec-

tive function is found by a lexicographic problem and all (partially)

nondominated faces of the previously excluded integer variable values

are computed. This is repeated until infeasibility is reached. At last,

partially nondominated faces of the slices are examined by pairwise

comparison of two faces of different slices.

Pettersson and Özlen (2019a) provide the first algorithm for

MOMILPs with an arbitrary number of objectives. Using a multi-

objective pure integer algorithm (improved version of the algorithm

provided by Özlen et al. (2014), see Section 3.5, with no-good con-

straints (Soylu & Yıldız, 2016, above) and slices), they find integer

solutions and subsequently polytopes of feasible integer parts via

Benson's method that contain the integer solutions and cover the

nondominated set. Then, this set of polytopes is modified such that

no two polytopes have a non-empty intersection. Finally, the poly-

topes are compared and nondominated parts and dominated parts of

the polytopes are identified. Unfortunately, this is only a short pro-

ceedings article. We are awaiting the full paper to follow and check

the algorithm in detail.

4.3 | Hybrid methods

Hybrid methods are a mixture between image space and decision

space algorithms and are developed to overcome drawbacks from

pure decision or pure image space approaches on the one hand and

exploit advantages on the other hand. The proposed algorithms of the

category are image space approaches that use methods from decision

space algorithms (branch-and-bound algorithms) or vice versa.

The “Search and Remove Algorithm” by Soylu (2018) is a graphi-

cal approach for BOMILPs that is equipped with bound sets. In every

step, the extreme supported images of a sub-problem (the first sub-

problem is the original one) are computed and it is checked via bound

sets whether the nondominated set of the sub-problem has potential

nondominated images for the original problem. More precisely, the

lower bound sets are computed by the ideal point and the extreme

points of the sub-problem and its LP-relaxations. In contrast, the

upper bound set is computed by local nadir points. Then, the slices

corresponding to the ESN images are excluded using no-good con-

straints (see Soylu & Yıldız, 2016, in Section 4.2). This is repeated until

the sub-problem does not have any potential nondominated images

or it is infeasible. Next, the nondominated sets of all found slices are

computed and the nondominated parts of their line segments are

computed by dividing the image space into consecutive, disjoint sub-

regions and finding the lower line segment in each region.

Stidsen and Andersen (2018) pursue the idea of slicing in the

image space introduced by Stidsen et al. (2014). Image space slices

divide the image space into distinct areas by rays shooting from the

origin. They may give a possibility to apply parallelization and are a

(possibly faster) alternative to lower bounds in the image space. Here,

Stidsen and Andersen focus on a procedure to compute these slices

and test it on the algorithm presented by Stidsen et al. (2014). In par-

ticular, they provide two procedures: If a set of images of the problem

is given, for example, by a heuristic, they install the slices such that

the area with possible nondominated images in these slices is reason-

ably small. This is done by a heuristic that solves a shortest path prob-

lem on a network with images as nodes and arcs representing the size

of the rectangle spanned by the images. If no set of images is pro-

vided, they split the image space evenly and use a lexicographic prob-

lem to find the upper left most and bottom right most image in each

slice.

5 | SUMMARY

This article has surveyed over 100 articles in the field of multi-

objective linear optimization with integer and mixed-integer variables

providing a thorough overview on exact algorithms for this problem

category. It is intended to serve as both a reference for established

researchers in the field of multiobjective (mixed-)integer optimization

and an entry point for young researchers. In addition to the logical

division into integer and mixed-integer multiobjective problems, fur-

ther groups were formed in order to present solution procedures

more clearly. These categories are as mutually exclusive as possible

and only as similar in content as necessary.

For multiobjective integer linear problems, branch-and-bound and

branch-and-cut algorithms have been one of the first solution

approaches available. In the last decades, algorithms have been

enhanced by more sophisticated bound sets among others, thus, this

category denotes still an active area of research. Although less articles

on epsilon constraint methods have been published, it is the most

cited category. In particular, these methods are used for application

purposes due to its simplicity and speed. Hence, they can be seen as

the “working horses” for solving multiobjective linear problems.

Recently, image space decomposition methods have been on the rise.

These methods not only return all nondominated images but provide

a better understanding of the structure of the nondominated set as

well. Also, algorithms with different scalarization methods or more

exotic algorithms like the ones based on algebraic programming have

been published.

For multiobjective mixed-integer linear problems, literature is

more scarce than for the pure integer case due to the shorter publica-

tion history. Similar to the integer case, branch-and-bound algorithms

are the dominant solution methods, while algorithms that work in the

image space have been published later. More recently, researchers
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have developed hybrid methods that exploit the advantages of both

solution and image space approaches.

In the last 15 years, the interest in solving multiobjective prob-

lems has increased. This is certainly also to be explained by the simul-

taneous increase in computing power making the more

computationally demanding multiobjective problems available for

modelling and solving real-world problems. Overall, a wide variety of

algorithmic approaches exists. For the future, we expect that further

examining the structure of the image space and its connection to the

decision space may lead to new algorithmically exploitable insights.

Likewise, results in single objective integer programming can be

adapted for the multiobjective case as this has been done via branch-

and-bound and, lately, via the adaption of algebraic programming.

Also, it may be interesting to investigate, whether and to what extent

state-of-the-art techniques like machine learning and quantum comput-

ing can be adapted to obtain the whole nondominated set. We are pos-

itive that pursuing these new and also existing directions of research

while providing multiobjective solvers in easy-to-use software packages

will make multiobjective optimization the standard approach for mathe-

matical modelling of real-world optimization problems.
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4 This algorithm may work also for integer variables, but the authors do

not recommend it due to the complexity of the no-good constraints.
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