
Exact Analysis of Dodgson Elections: Lewis Carroll’s
1876 Voting System Is Complete for Parallel Access
to NP

EDITH HEMASPAANDRA

Le Moyne College, Syracuse, New York

LANE A. HEMASPAANDRA

University of Rochester, Rochester, New York

AND
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Abstract. In 1876, Lewis Carroll proposed a voting system in which the winner is the candidate who
with the fewest changes in voters’ preferences becomes a Condorcet winner—a candidate who beats
all other candidates in pairwise majority-rule elections. Bartholdi, Tovey, and Trick provided a lower
bound—NP-hardness— on the computational complexity of determining the election winner in
Carroll’s system. We provide a stronger lower bound and an upper bound that matches our lower
bound. In particular, determining the winner in Carroll’s system is complete for parallel access to NP,
that is, it is complete for Q2

p, for which it becomes the most natural complete problem known. It
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follows that determining the winner in Carroll’s elections is not NP-complete unless the polynomial
hierarchy collapses.

Categories and Subject Descriptors: F.1.3 [Computation by Abstract Devices]: Complexity Classes;
F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems;
J.4. [Social and Behavioral Sciences]

General Terms: Theory

Additional Key Words and Phrases: Completeness, election systems, Lewis Carroll, majority rule

1. Introduction

The Condorcet criterion is that an election is won by any candidate who defeats
all others in pairwise majority-rule elections [Condorcet 1785], see Black [1958].
The Condorcet Paradox, dating from 1785 [Condorcet 1785], notes that not only
is it not always the case that Condorcet winners exist but, far worse, when there
are more than two candidates, pairwise majority-rule elections may yield strict
cycles in the aggregate preference even if each voter has non-cyclic preferences.1

This is a widely discussed and troubling feature of majority rule (see, e.g., the
discussion in Mueller [1989]).

In 1876, Charles Lutwidge Dodgson—more commonly referred to today by his
pen name, Lewis Carroll—proposed an election system that is inspired by the
Condorcet criterion,2 yet that sidesteps the above-mentioned problem [Dodgson
1876]. In particular, a Condorcet winner is a candidate who defeats each other
candidate in pairwise majority-rule elections. In Carroll’s system, an election is
won by the candidate who is “closest” to being a Condorcet winner. In particular,
each candidate is given a score that is the smallest number of exchanges of
adjacent preferences in the voters’ preference orders needed to make the
candidate a Condorcet winner with respect to the resulting preference orders.
Whatever candidate (or candidates, in the case of a tie) has the lowest score is
the winner. This system admits ties but, as each candidate is assigned an integer
score, no strict-preference cycles are possible.

Bartholdi et al. [1989] in their paper “Voting Schemes for which It Can Be
Difficult to Tell Who Won the Election” raise a difficulty regarding Carroll’s
election system. Though the notion of winner(s) in Carroll’s election system is
mathematically well defined, Bartholdi et al. raise the issue of what the compu-
tational complexity is of determining who is the winner. Though most natural
election schemes admit obvious polynomial-time algorithms for determining who
won, in sharp contrast Bartholdi et al. prove that Carroll’s election scheme has
the disturbing property that it is NP-hard to determine whether a given candidate
has won a given election (a problem they dub DodgsonWinner ), and that it is
NP-hard even to determine whether a given candidate has tied-or-defeated
another given candidate (a problem they dub DodgsonRanking ).

1 The standard example is an election over candidates a, b, and c in which 1/3 of the voters have
preference ^a , b , c&, 1/3 of the voters have preference ^b , c , a&, and 1/3 of the voters have
preference ^c , a , b&. In this case, though each voter individually has well-ordered preferences,
the aggregate preference of the electorate is that b trounces a, c trounces b, and a trounces c. In
short, individually well-ordered preferences do not necessarily aggregate to a well-ordered societal
preference.
2 Carroll did not use this term. Indeed, Black has shown that Carroll “almost beyond a doubt” was
unfamiliar with Condorcet’s work [Black 1958, pp. 193–194].
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Bartholdi et al.’s NP-hardness results establish lower bounds for the complex-
ity of DodgsonRanking and DodgsonWinner . We optimally improve their two
complexity lower bounds by proving that both problems are hard for Q2

p, the class of
problems that can be solved via parallel access to NP, and we provide matching
upper bounds. Thus, we establish that both problems are Q2

p-complete. Bartholdi et
al. explicitly leave open the issue of whether DodgsonRanking is NP-complete:
“. . . Thus DodgsonRanking is as hard as an NP-complete problem, but since we
do not know whether DodgsonRanking is in NP, we can say only that it is
NP-hard” [Bartholdi et al. 1989, p. 161]. From our optimal lower bounds, it
follows that neither DodgsonWinner nor DodgsonRanking is NP-complete
unless the polynomial hierarchy collapses.

As to our proof method, in order to raise the known lower bound on the
complexity of Dodgson elections, we first study the ways in which feasible
algorithms can control Dodgson elections. In particular, we prove a series of
lemmas showing how polynomial-time algorithms can control oddness and
evenness of election scores, “sum” over election scores, and merge elections.
These lemmas then lead to our hardness results.

We remark that it is somewhat curious finding “parallel access to NP”-
complete (i.e., Q2

p-complete) problems that were introduced almost one hundred
years before complexity theory itself existed. In addition, DodgsonWinner ,
which we prove complete for this class, is extremely natural when compared with
previously known complete problems for this class, essentially all of which have
somewhat convoluted forms, for example, asking whether a given list of Boolean
formulas has the property that the number of formulas in the list that are
satisfiable is itself an odd number. In contrast, the class NP, which is contained in
Q2

p, has countless natural complete problems. Also, we mention that Papadimi-
triou [1984] has shown that UniqueOptimalTravelingSalesperson is com-
plete for PNP, which contains Q2

p.

2. Preliminaries

In this section, we introduce some standard concepts and notations from
computational complexity theory [Papadimitriou 1994; Bovet and Crescenzi
1993; Garey and Johnson 1979]. NP is the class of languages solvable in
nondeterministic polynomial time. The polynomial hierarchy [Meyer and Stock-
meyer 1972; Stockmeyer 1977], PH, is defined as PH 5 P ø NP ø NPNP ø
NPNPNP

ø . . . where, for any class #, NP# 5 øC[# NPC, and NPC is the class of
all languages that can be accepted by some NP machine that is given a black box
that in unit time answers membership queries to C. The polynomial hierarchy is
said to collapse if for some k the kth term in the preceding infinite union equals
the entire infinite union. Computer scientists strongly suspect that the polyno-
mial hierarchy does not collapse, though proving (or disproving) this remains a
major open research issue.

The polynomial hierarchy has a number of intermediate levels. The Q2
p level of

the polynomial hierarchy will be of particular interest to us. Q2
p, which was first

studied by Papadimitriou and Zachos [1983] (see also Wagner [1990]), is the
class of all languages that can be solved via 2(log n) queries to some NP set.
Equivalently, and more to the point for the purposes of this paper, Q2

p equals the
class of problems that can be solved via parallel access to NP [Hemachandra
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1989; Köbler et al. 1987], as explained formally later in this section. Q2
p falls

between the first two levels of the polynomial hierarchy: NP # Q2
p # PNP #

NPNP. During the past decade, Q2
p has played a quite active role in complexity

theory. Kadin [1989] has proven that if NP has a sparse Turing-complete set then
the polynomial hierarchy collapses to Q2

p, Hemachandra and Wechsung have
shown that the question of whether Q2

p and sequential access to NP yield the
same class can be characterized in terms of Kolmogorov complexity [Hemachan-
dra and Wechsung 1991], Wagner [1990] has shown that the definition of Q2

p is
extremely robust, and Jenner and Torán [1995] have shown that the robustness of
the class Q2

p seems to fail for its function analogs.
Problems are encoded as languages of strings over some fixed alphabet S

having at least two letters. S* denotes the set of all strings over S. For any string
x [ S*, let ux u denote the length of x. For any set A # S*, let #A denote S*\ A.
For any set A # S*, let iAi denote the cardinality of A. For any multiset A, iAi
will denote the cardinality of A. For example, if A is the multiset containing one
occurrence of the preference order ^w , x , y& and seventeen occurrences of
the preference order ^w , y , x&, then iAi 5 18. As is standard, for each
language A # S* we use xA to denote the characteristic function of A, that is,
xA( x) 5 1 if x [ A and xA( x) 5 0 if x [y A. Let ^. . .& be any standard,
multi-arity, easily computable, easily invertible pairing function. We will also use
the notation ^. . .& to denote preference orders, for example, ^w , x , y&. Which
use is intended will be clear from context. Whenever we speak of a function that
takes a variable number of arguments, we will assume that the arguments, say
a1, . . . , az, are encoded as a1# . . . #az#, where # is a symbol not in the
alphabet in which the arguments are encoded. When speaking of a variable-arity
function being polynomial-time computable, we mean that the function’s running
time is polynomial in ua1# . . . #az# u 5 z 1 ua1u 1 . . . 1 uazu.

In computational complexity theory, reductions are used to relate the complex-
ity of problems. Very informally, if A reduces to B that means that, given B, one
can solve A. For any a and b such that #a

b is a defined reduction type, and any
complexity class #, let Ra

b(#) denote {L u(?C [ #)[L #a
b C]}. We refer readers

to the standard source, Ladner, Lynch, and Selman [1975], for definitions and
discussion of the standard reductions. However, we briefly and informally
present to the reader the definitions of the reductions to be used in this paper.
A #m

p B (“A polynomial-time many-one reduces to B”) if there is a polynomial-
time computable function f such that (@x [ S*) [ x [ A N f( x) [ B].
A # tt

p B (“A polynomial-time truth-table reduces to B”) if there is a polynomial-
time Turing machine that, on input x, computes a query that itself consists of a
list of strings and, given that the machine after writing the query is then given as
its answer a list telling which of the listed strings are in B, the machine then
correctly determines whether x is in A (this is not the original Ladner-Lynch-
Selman definition, as we have merged their querying machine and their evalua-
tion machine; however, this formulation is common and equivalent). Since a
# tt

p -reducing machine, on a given input, asks all its questions in a parallel (also
called nonadaptive) manner, the informal statement above that Q2

p captures the
complexity of “parallel access to NP” can now be expressed formally as the claim
Q2

p 5 Rtt
p (NP), which is known to hold [Hemachandra 1989; Köbler et al. 1987].

As has become the norm, we always use hardness to denote hardness with
respect to #m

p reductions. That is, for any class # and any problem A, we say that
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A is #-hard if (@C [ #) [C #m
p A]. For any class # and any problem A, we say

that A is #-complete if A is #-hard and A [ #. Completeness results are the
standard method in computational complexity theory of categorizing the com-
plexity of a problem, as a #-complete problem A is both in #, and is the hardest
problem in # (in the sense that every problem in # can be easily solved using A).

3. The Complexity of Dodgson Elections

Lewis Carroll’s voting system [Dodgson 1876] (see also Niemi and Riker [1976]
and Bartholdi et al. [1989]) works as follows: Each voter has strict preferences
over the candidates. Each candidate is assigned a score, namely, the smallest
number of sequential exchanges of two adjacent candidates in the voters’ preference
orders (henceforth called switches) needed to make the given candidate a
Condorcet winner. We say that a candidate c ties-or-defeats a candidate d if the
score of d is not less than that of c. (Bartholdi et al. [1989] use the term
“defeats” to denote what we, for clarity, denote by ties-or-defeats; though the
notations are different, the sets being defined by Bartholdi et al. and in this
paper are identical.) A candidate c is said to win the Dodgson-type election if c
ties-or-defeats all other candidates. Of course, due to ties it is possible for two
candidates to tie-or-defeat each other, and so it is possible for more than one
candidate to be a winner of the election.

Recall that all preferences are assumed to be strict. A candidate c is a
Condorcet winner (with respect to a given collection of voter preferences) if c
defeats (i.e., is preferred by strictly more than half of the voters) each other
candidate in pairwise majority-rule elections. Of course, Condorcet winners do
not necessarily exist for a given set of preferences, but if a Condorcet winner
does exist, it is unique.

We now return to Carroll’s scoring notion to clarify what is meant by the
sequential nature of the switches, and to clarify by example that one switch
changes only one voter’s preferences. The (Dodgson) score of any Condorcet
winner is 0. If a candidate is not a Condorcet winner, but one switch (recall that
a switch is an exchange of two adjacent candidates in the preference order of one
voter) would make the candidate a Condorcet winner, then the candidate has a
score of 1. If a candidate does not have a score of 0 or 1, but two switches would
make the candidate a Condorcet winner, then the candidate has a score of 2.
Note that the two switches could both be in the same voter’s preferences, or
could be one in one voter’s preferences and one in another voter’s preferences.
Note also that switches are sequential. For example, with two switches, one could
change a single voter’s preferences from ^a , b , c , d& to ^c , a , b , d&,
where e , f will denote the preference: “f is strictly preferred to e.” With two
switches, one could also change a single voter’s preferences from ^a , b , c ,
d& to ^b , a , d , c&. With two switches (not one), one could also change two
voters with initial preferences of ^a , b , c , d& and ^a , b , c , d& to the
new preferences ^b , a , c , d& and ^b , a , c , d&. As noted earlier in this
section, Dodgson scores of 3, 4, etc., are defined analogously, that is, the
Dodgson score of a candidate is the smallest number of sequential switches
needed to make the given candidate a Condorcet winner. (We note in passing
that Dodgson was before his time in more ways than one. His definition is closely
related to an important concept that is now known in computer science as
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“edit-distance”—the minimum number of operations (from some specified set of
operations) required to transform one string into another. Though Carroll’s
single “switch” operation is not the richer set of operations most commonly used
today when doing string-to-string editing (see, e.g., Sankoff and Kruskal [1983]),
it does form a valid basis operation for transforming between permutations,
which after all are what preferences are.)

Bartholdi et al. [1989] define a number of decision problems related to
Carroll’s system. They prove that given preference lists, and a candidate, and a
number k, it is NP-complete to determine whether the candidate’s score is at
most k in the election specified by the preference lists (they call this problem
DodgsonScore ). They define the problem DodgsonRanking to be the problem
of determining, given preference lists and the names of two voters, c and d,
whether c ties-or-defeats d. They prove that this problem is NP-hard. They also
prove that, given a candidate and preference lists, it is NP-hard to determine
whether the candidate is a winner of the election.

For the formal definitions of these three decision problems, a preference order
is strict (i.e., irreflexive and antisymmetric), transitive, and complete. Since we
will freely identify voters with their preference orders, and two different voters
can have the same preference order, we define a set of voters as a multiset of
preference orders.

We will say that ^C, c, V& is a Dodgson triple if C is a set of candidates, c is a
member of C, and V is a multiset of preference orders on C. Throughout this
paper, we assume that, as inputs, multisets are coded as lists, that is, if there are
m voters in the voter set then V 5 ^P1, P2, . . . , Pm&, where Pi is the preference
order of the ith voter. Score(^C, c, V&) will denote the Dodgson score of c in the
vote specified by C and V. If X is a decision problem, then when we speak of an
instance of X we mean a string that satisfies the syntactic conditions listed in the
“Instance” field of the problem’s definition (or implicit in that field in order for
the problem to be syntactically well formed—for example, preference lists must
be over the right number and right set of candidates). As is standard, since all
such syntactic conditions in our decision problems are trivially checkable in
deterministic polynomial time, this is equivalent to the language definitions that
are also common; in particular, the language corresponding to decision problem
X is the set { x ux is an instance of X, and the “Question” of decision problem X
has the answer “yes” for x}. Since reductions map between sets, whenever
speaking of or constructing reductions we use this latter formalism.

Decision Problem: DodgsonScore

Instance: A Dodgson triple ^C, c, V&; a positive integer k.
Question: Is Score(^C, c, V&), the Dodgson score of candidate c in the
election specified by ^C, V&, less than or equal to k?

Decision Problem: DodgsonRanking

Instance: A set of candidates C; two distinguished members of C, c and d; a
multiset V of preference orders on C (encoded as a list, as discussed above).
Question: Does c tie-or-defeat d in the election? That is, is Score(^C, c, V&) #
Score(^C, d, V&)?

Decision Problem: DodgsonWinner
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Instance: A Dodgson triple ^C, c, V&.
Question: Is c a winner of the election? That is, does c tie-or-defeat all other
candidates in the election?

We now state the complexity of DodgsonRanking .

THEOREM 3.1. DodgsonRanking is Q2
p-complete.

It follows immediately—since (a) Q2
p 5 NP f PH 5 NP, and (b) Rm

p (NP) 5
NP—that DodgsonRanking , though known to be NP-hard [Bartholdi et al.
1989], cannot be NP-complete unless the polynomial hierarchy collapses quite
dramatically.

COROLLARY 3.2. If DodgsonRanking is NP-complete, then PH 5 NP.

Most of the rest of the paper is devoted to working toward a proof of Theorem
3.1. Wagner has provided a useful tool for proving Q2

p-hardness, and we state his
result below as Lemma 3.3. However, to be able to exploit this tool we must
explore the structure of Dodgson elections. In particular, we have to learn how to
control oddness and evenness of election scores, how to add election scores, and
how to merge elections. We do so as Lemmas 3.4, 3.5, and 3.7, respectively. On
our way toward a proof of Theorem 3.1, using Lemmas 3.3, 3.4, and 3.5 we will
first establish Q2

p-hardness of a special problem that is closely related to
DodgsonRanking . This result is stated as Lemma 3.6 below. It is not hard to
prove Theorem 3.1 using Lemma 3.6 and Lemma 3.7. Note that Lemma 3.7 gives
more than is needed merely to establish Theorem 3.1. In fact, the way this lemma
is stated even suffices to provide—jointly with Lemma 3.6 —a direct proof of the
Q2

p-hardness of DodgsonWinner .

LEMMA 3.3 [WAGNER 1987]. Let A be some NP-complete set, and let B be any
set. If there exists a polynomial-time computable function g such that, for all k $ 1
and all strings x1, . . . , x2k [ S* satisfying xA(x1) $ xA(x2) $ . . . $ xA(x2k), it holds
that

i$i uxi [ A%i is odd N g~ x1, . . . , x2k! [ B,

then B is Q2
p-hard.3

LEMMA 3.4. There exists an NP-complete set A and a polynomial-time comput-
able function f that reduces A to DodgsonScore in such a way that, for every x [
S*, f(x) 5 ^^C, c, V&, k& is an instance of DodgsonScore with an odd number of
voters and

(1) if x [ A, then Score(^C, c, V&) 5 k, and

3 Recall the comments/conventions of Section 2 regarding the handling of the arguments of
variable-arity functions. Wagner did not discuss this issue, but we note that his proof remains valid
under the conventions of Section 2. These conventions have been adopted as they shield Wagner’s
theorem from a pathological type of counterexample (involving large, variable numbers of length zero
inputs (e) followed by one other constant-length string) noted by a referee that, without the
conventions, could render Wagner’s theorem true but never applicable.

Another difference in our statement of the theorem relative to Wagner’s is that though we state the
theorem for the class Q2

p, Wagner used the class “Pbf
NP.” However, this is legal as Pbf

NP is now known to
be equal to Q2

p (see the discussion in Köbler et al. [1987, Footnote 1]).
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(2) if x [y A, then Score(^C, c, V&) 5 k 1 1.

LEMMA 3.5. There exists a polynomial-time computable function DodgsonSum
such that, for all k and for all ^C1, c1, V1&, ^C2, c2, V2&, . . . , ^Ck, ck, Vk& satisfying
(@j)[iVji is odd], it holds that

DodgsonSum~^^C1, c1, V1& , ^C2, c2, V2& , . . . , ^Ck, ck, Vk&&!

is a Dodgson triple having an odd number of voters and such that

O
j

Score~^Cj, cj, Vj&! 5

Score~DodgsonSum~^^C1, c1, V1& , ^C2, c2, V2& , . . . , ^Ck, ck, Vk&&!! .

Lemmas 3.3, 3.4, and 3.5 together establish the Q2
p-hardness of a special

problem that is closely related to the problems that we are interested in,
DodgsonRanking and DodgsonWinner . Let us define the decision problem
TwoElectionRanking (2ER).

Decision Problem: TwoElectionRanking (2ER)
Instance: A pair of Dodgson triples ^^C, c, V&, ^D, d, W&& both having an odd
number of voters and such that c Þ d .
Question: Is Score(^C, c, V&) # Score(^D, d, W&)?

LEMMA 3.6. TwoElectionRanking is Q2
p-hard.

We note in passing that 2ER is in Rtt
p (NP). This fact follows by essentially the

same argument that will be used in the proof of Theorem 3.1 to establish that
theorem’s upper bound. Thus, since Q2

p 5 Rtt
p (NP), we have—in light of Lemma

3.6 —that 2ER is Q2
p-complete. We also note in passing that, since one can

trivially rename candidates, 2ER remains Q2
p-complete in the variant in which

“and such that c Þ d” is removed from the problem’s definition.
In order to make the results obtained so far applicable to DodgsonRanking

and DodgsonWinner , we need the following lemma that tells us how to merge
two elections into a single election in a controlled manner.

LEMMA 3.7. There exist polynomial-time computable functions Merge and
Merge9 such that, for all Dodgson triples ^C, c, V& and ^D, d, W& for which c Þ d and
both V and W represent odd numbers of voters, there exist Ĉ and V̂ such that

(i) Merge(^C, c, V&, ^D, d, W&) is an instance of DodgsonRanking and
Merge9(^C, c, V&, ^D, d, W&) is an instance of DodgsonWinner ,

(ii) Merge(^C, c, V&, ^D, d, W&) 5 ^Ĉ , c, d, V̂& and Merge9(^C, c, V&, ^D, d,
W&) 5 ^Ĉ , c, V̂&,

(iii) Score(^Ĉ , c, V̂&) 5 Score(^C, c, V&) 1 1,
(iv) Score(^Ĉ, d, V̂&) 5 Score(^D, d, W&) 1 1, and
(v) for each e [ Ĉ \ {c, d}, Score(^Ĉ , c, V̂&) , Score(^Ĉ, e, V̂&).

We now prove these lemmas.

PROOF OF LEMMA 3.4. Bartholdi et al. [1989] prove the NP-hardness of
DodgsonScore by reducing ExactCoverByThreeSets to it. However, their
reduction does not have the additional properties that we need in this lemma.
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We will construct a reduction from the NP-complete problem ThreeDimen-
sionalMatching (3DM) [Garey and Johnson 1979] to DodgsonScore that does
have the additional properties we need. Let us first give the definition of 3DM:

Decision Problem: ThreeDimensionalMatching (3DM)
Instance: Sets M, W, X, and Y, where M # W 3 X 3 Y and W, X, and Y are
disjoint, nonempty sets having the same number of elements.
Question: Does M contain a matching, that is, a subset M9 # M such that iM9i
5 iWi and no two elements of M9 agree in any coordinate?

We now describe a polynomial-time reduction f (from 3DMto DodgsonScore )
having the desired properties. Our reduction is defined by f( x) 5 f9( f0( x)),
where f9 and f0 are as described below. Informally, f0 turns all inputs into a
standard format (instances of 3DMhaving iMi . 1), and f9 assumes its input has
this format and implements the actual reduction.

Let f0 be a polynomial-time function that has the following properties.

(1) If x is not an instance of 3DMor is an instance of 3DMhaving iMi # 1, then
f0( x) will output an instance y of 3DMfor which iMi . 1 and, furthermore,
it will hold that y [ 3DMN x [ 3DM.

(2) If x is an instance of 3DMhaving iMi . 1, then f0( x) 5 x.

It is clear that such functions exist. In particular, for concreteness, let f0( x)
be ^{(d, e, p), (d, e, p9)}, {d, d9}, {e, e9}, { p, p9}& if x is not an instance of
3DMor both x [y 3DMand x is an instance of 3DMhaving iMi # 1; let f0( x) be
^{(d, e, p), (d9, e9, p9)}, {d, d9}, {e, e9}, { p, p9}& if x is an instance of 3DM
having iMi # 1 and such that x [ 3DM; let f0( x) be x, otherwise.

We now describe f9. Let x be our input. If x is not an instance of 3DM for
which iMi . 1, then f9( x) 5 0; this is just for definiteness, as due to f0, the
only actions of f9 that matter are when the input is an instance of 3DM for
which iMi . 1. So, suppose x 5 ^M, W, X, Y& is an instance of 3DMfor which
iMi . 1. Let q 5 iWi. Define f9(^M, W, X, Y&) 5 ^^C, c, V&, 3q& as follows:
Let c, s, and t be elements not in W ø X ø Y. Let C 5 W ø X ø Y ø {c, s,
t} and let V consist of the following two subparts:

(1) Voters simulating elements of M. Suppose the elements of M are enumer-
ated as {(wi, xi, yi) u1 # i # iMi}. (The wi are not intended to be an
enumeration of W. Rather, they take on values from W as specified by M. In
particular, wj may equal wk even if j Þ k. The analogous comments apply to
the xi and yi variables.) For every triple (wi, xi, yi) in M, we will create a
voter. If i is odd, we create the voter ^s , c , wi , xi , yi , t , . . .&,
where the elements after t are the elements of C \ {s, c, wi, xi, yi, t} in
arbitrary order. If i is even, we do the same, except that we exchange s and t.
That is, we create the voter ^t , c , wi , xi , yi , s , . . .&, where the
elements after s are the elements of C\{s, c, wi, xi, yi, t} in arbitrary
order.

(2) iMi 2 1 voters who prefer c to all other candidates.

We will now show that f has the desired properties. It is immediately clear that
f0 and f9, and thus f, are polynomial-time computable. It is also clear from our
construction that, for each x, f( x) is an instance of DodgsonScore having an
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odd number of voters since, for every instance ^M, W, X, Y& of 3DMwith iMi .
1, f9(^M, W, X, Y&) is an instance of DodgsonScore with iMi 1 (iMi 2 1)
voters, and since f0 always outputs instances of this form. It remains to show that,
for every instance ^M, W, X, Y& of 3DMwith iMi . 1:

(a) if M contains a matching, then Score(^C, c, V&) 5 3q, and
(b) if M does not contain a matching, then Score(^C, c, V&) 5 3q 1 1.

Note that if we prove this, it is clear that f has the properties (1) and (2) of
Lemma 3.4, in light of the properties of f0. Note that, recalling that we may now
assume that iMi . 1, by construction c is preferred to s and t by more than half
of the voters, and is preferred to all other candidates by iMi 2 1 of the 2iMi 2
1 voters.

Now suppose that M contains a matching M9. Then iM9i 5 q, and every
element in W ø X ø Y occurs in M9. 3q switches turn c into a Condorcet
winner as follows. For every element (wi, xi, yi) [ M9, switch c upwards 3 times
in the voter corresponding to (wi, xi, yi). For example, if i is odd, this voter
changes from ^s , c , wi , xi , yi , t , . . .& to ^s , wi , xi , yi , c ,
t , . . .&. Let z be an arbitrary element of W ø X ø Y. Since z occurs in M9, c
has gained one vote over z. Thus, c is preferred to z by iMi of the 2iMi 2 1
voters. Since z was arbitrary, c is a Condorcet winner.

On the other hand, c’s Dodgson score can never be less than 3q, because to
turn c into a Condorcet winner, c needs to gain one vote over z for every z [ W
ø X ø Y. Since c can gain only one vote over one candidate for each switch, we
need at least 3q switches to turn c into a Condorcet winner. This proves
condition (a).

To prove condition (b), first note that there is a “trivial” way to turn c into a
Condorcet winner with 3q 1 1 switches: Just switch c to the top of the
preference order of the first voter. The first voter was of the form ^s , c , w1
, x1 , y1 , t , . . .&, where the elements after t are exactly all elements in (W
ø X ø Y) \ {w1, x1, y1}, in arbitrary order. Switching c upwards 3q 1 1 times
moves c to the top of the preference order for this voter, and gains one vote for
c over all candidates in W ø X ø Y, which turns c into a Condorcet winner.
This shows that Score(^C, c, V&) # 3q 1 1, regardless of whether M has a
matching or not.

Finally, note that a Dodgson score of 3q implies that M has a matching. As
before, every switch has to involve c and an element of W ø X ø Y. (This is
because c must gain a vote over 3q other candidates—W ø X ø Y—and so any
switch involving s or t would ensure that at most 3q 2 1 switches were available
for gaining against the 3q members of W ø X ø Y, thus ensuring failure.) Thus,
for every voter, c switches at most three times to become a Condorcet winner.
Since c has to gain one vote in particular over each element in Y, and to “reach”
an element in Y it must hold that c first switches over the elements of W and X
that due to our construction fall between it and the nearest y element (among the
iMi voters simulating elements of M—it is clear that if any switch involves at
least one of the iMi 2 1 dummy voters this could never lead to a Dodgson score
of 3q for c), it must be the case that c switches upwards exactly three times for
exactly q voters corresponding to elements of M. This implies that the q
elements of M that correspond to these q voters form a matching, thus proving
condition (b). e
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PROOF OF LEMMA 3.5. This is trivial if k 5 1 so we henceforth assume that
k . 1. We define

DodgsonSum~^^C1, c1, V1& , ^C2, c2, V2& , . . . , ^Ck, ck, Vk&&! 5 ^Ĉ , c, V̂& ,

where Ĉ, c, and V̂ will be as constructed in this proof.
Let c 5 c1. Without loss of generality (by renaming if needed), we assume

that c1 5 c2 5 . . . 5 ck, and that (@i, j) [i Þ j f Ci ù Cj 5 {c}].
Also, for each i, enumerate Ci\{c} as {ci,1, ci,2, . . . , ci,iCii21}. To make our

preference orders easier to read, whenever in a preference order we write in the
text “

3
Ci,” this should be viewed as being replaced by the text string “ci,1 ,

ci,2 , . . . , ci,iCii21.”
As our candidate set, we will take all the old candidates from the given

elections, that is,

$c, c1,1, c1,2, . . . , c1,iC1i21, c2,1, c2,2, . . . , c2,iC2i21, · · · , ck,1, ck,2, . . . , ck,iCki21%,

plus a set S of new “separator” candidates, whose only purpose is to avoid
interference. We will ensure that c is preferred to all elements of S by a majority
of the voters.

Formally, let S 5 {siu1 # i # ¥ jiCji z iVji}, and let Ĉ 5 S ø ø j Cj. As a
notational convenience, whenever in a preference order we write in the text “

3
S,”

this should be viewed as being replaced by the string “s1 , s2 , . . . , siSi.” The
voter set V̂ consists of two subparts—voters simulating voters from the underly-
ing elections, and voters who are “normalizing” voters. The total number of
voters will be (2 ¥ jiVji) 2 1, which is odd as required by the statement of the
lemma being proven. We now describe the simulating voters (the cases of 1 and k
are exactly analogous to the other cases, but are stated separately just for
notational reasons):

—There will be voters simulating the voters of V1. In particular, for each voter
^e1 , e2 , . . . , eiC1i& in V1, we create a voter

^ S
3

, C2
3

, · · · , Ck
3

, e1 , e2 , · · · , e iC1i& .

Note that c is one of the ej’s.

—For each i, 1 , i , k, there will be voters simulating the voters of Vi. In
particular, for each i, 1 , i , k, and for each voter ^e1 , e2 , . . . , e iCii&
in Vi, we create a voter

^ S
3

, C1
3

, · · · , Ci21
3

, Ci11
3

, · · · , Ck
3

, e1 , e2 , · · · , e iCii& .

Note that c is one of the ej’s.

—There will be voters simulating the voters of Vk. In particular, for each voter
^e1 , e2 , . . . , eiCki& in Vk, we create a voter

^ S
3

, C1
3

, · · · , Ck21
3

, e1 , e2 , · · · , e iCki& .

Note that c is one of the ej’s.

816 E. HEMASPAANDRA ET AL.



For each i, we want c’s behavior with respect to candidates in Ci to depend only
on voters that simulate Vi. That is, every candidate in Ci\{c} should be preferred
to c by exactly half of the voters in V̂ that do not simulate Vi. To accomplish this,
we add (¥ jiVji) 2 1 normalizing voters.

—There will be (¥ jiVji) 2 1 normalizing voters. Each normalizing voter will
have preferences of the form

“some of the Cj
3

’s” , c , S
3

, “the rest of the Cj
3

’s.”

Within the “some of” and “rest of” blocks, the order of the candidates can be
arbitrary. So all that remains to do is to specify, for each particular one of the
normalizing voters, how to decide which

3
Cj’s go to the left of c (the “some

of” block), and which go to the right of
3
S (the “rest of” block). Let us do so. Let

the normalizing voters be named s1, . . . , s(¥jiVji)21. Consider normalizing voter
sq. Then, for each i, in the preference of sq let it be the case that

3
Ci goes to the

right of
3
S if

q # iVii/ 2 1 O
jÞi

iVji,

and otherwise
3
Ci goes to the left of c. Note that, for each i, exactly iVii/ 2 1

¥ jÞi iVji normalizing voters will have
3
Ci to the right of S and exactly iVii/ 2

normalizing voters will have
3
Ci to the left of c.

Recall that c 5 c1 5 . . . 5 ck. We have to prove that ¥ j Score(^Cj, c, Vj&) 5
Score(^Ĉ, c, V̂&).

First note that c is preferred to each candidate in S by ¥ jiVji of the
(2 ¥ j iVji) 2 1 voters in V̂. Also, for each i, it holds that c is preferred to all
candidates in Ci\{c} by exactly half of the voters that do not simulate Vi. To see
this, note that c is preferred to each candidate in Ci\{c} by all voters that
simulate a Vj with j Þ i, and is also preferred by iVii/ 2 of the normalizing
voters. Thus, c is preferred to each candidate in Ci\{c} by (¥ jÞiiVji) 1 iVii/ 2
of the (¥ jÞiiVji) 1 (¥ jiVji) 2 1 voters not simulating Vi, which indeed is
exactly half of the voters not simulating Vi (recall that iVii is odd).

For each i, let Ki 5 Score(^Ci, c, Vi&). Then after Ki switches in Vi, c is
preferred to e by more than iVii/ 2 voters in Vi, for each e [ Ci\{c}. This
implies that after the analogous Ki switches in V̂ (i.e., in the voters in V̂ that
simulate Vi), c is preferred to e by more than iVii/ 2 voters in that part of V̂ that
simulates Vi, for each e [ Ci\{c}, and thus by more than half of the voters in V̂.
It follows that ¥ j Kj switches in voters of V̂ turn c into a Condorcet winner. This
proves that Score(^Ĉ , c, V̂&) # ¥ j Score(^Cj, c, Vj&).

It remains to show that Score(^Ĉ , c, V̂&) $ ¥ j Score(^Cj, c, Vj&). Let K̂ 5
Score(^Ĉ, c, V̂&). Then K̂ switches in V̂ turn c into a Condorcet winner. If K̂ $
iSi, then K̂ . ¥ j Score(^Cj, c, Vj&), since Score(^Cj, c, Vj&) # iVji z (iCji 2
1) and so ¥ j Score(^Cj, c, Vj&) # ¥ j iVji z (iCji 2 1) , ¥ j iVji z iCji 5 iSi.
So K̂ $ iSi is impossible, and we thus know that K̂ , iSi. With less than iSi
switches, c cannot gain extra votes over candidates in (ø j Cj)\{c} in normaliz-
ing voters, as can be immediately seen in light of the preferences of the
normalizing voters. Also, for each i: Since c is already preferred to all candidates
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in Ci\{c} by all voters that simulate Vj with j Þ i, c cannot gain extra votes over
candidates in Ci\{c} in voters simulating Vj with j Þ i. It follows that c can gain
extra votes over candidates in Ci\{c} only in voters that simulate Vi. After K̂
switches, c is still preferred to all candidates in Ci\{c} by at most half of the
voters that do not simulate Vi, and at the same time, c has become a Condorcet
winner. It follows that after these K̂ switches, c is preferred to e by more than
iVii/ 2 of the voters that simulate Vi, for each e in Ci\{c}. Let Mi be the number
of switches that take place in the voters of V̂ that simulate Vi. Then Mi $
Score(^Ci, c, Vi&).

Since this argument applies for all i, it follows that

Score~^Ĉ , c, V̂&! 5 K̂ $ O
j

Mj $ O
j

Score~^Cj, c, Vj&! ,

proving the lemma. e

PROOF OF LEMMA 3.6. Let A and f be the NP-complete set and the reduction
from Lemma 3.4, and let DodgsonSum be the function from Lemma 3.5. We seek
to apply Lemma 3.3, using the A (i.e., 3DM) of Lemma 3.4 as the A of Lemma
3.3, using 2ER as the B of Lemma 3.3, and using a function g that we will define
in this proof as the g of Lemma 3.3.

Let x1, . . . , x2k [ S* be such that xA( x1) $ . . . $ xA( x2k). For i 5 1, . . . ,
2k, let f( xi) 5 ^^Ci, ci, Vi&, Ki&. We will write Si for the Dodgson triple ^Ci, ci,
Vi&. We will compare the Dodgson score of the sum of the even Dodgson triples
with the Dodgson score of the sum of the odd Dodgson triples, that is, we will
look at the value of

Score~DodgsonSum~^S2, S4, . . . , S2k&!!

2 Score~DodgsonSum~^S1, S3, . . . , S2k21&!! .

By Lemma 3.5, this is the same as

O
1#i#k

~Score~S2i! 2 Score~S2i21!! .

Recall that xA( x1) $ . . . $ xA( x2k). If i{i uxi [ A}i is even then, for all i,
1 # i # k, it holds that x2i21 [ A N x2i [ A. So, by Lemma 3.4, for each i,
either Score(S2i21) 5 K2i21 and Score(S2i) 5 K2i, or Score(S2i21) 5 K2i21 1
1 and Score(S2i) 5 K2i 1 1. It follows that, for each i, 1 # i # k,

Score~S2i! 2 Score~S2i21! 5 K2i 2 K2i21.

On the other hand, if i{i uxi [ A}i is odd then, for some j, 1 # j # k, x2j21
[ A and x2j [y A and, for all i Þ j, 1 # i # k, it holds that x2i21 [ A N x2i

[ A. It follows that Score(S2j) 2 Score(S2j21) 5 1 1 K2j 2 K2j21 and, for all
i Þ j, 1 # i # k, Score(S2i) 2 Score(S2i21) 5 K2i 2 K2i21.

To summarize,

Score~DodgsonSum~^S2, S4, . . . , S2k&!!

2 Score~DodgsonSum~^S1, S3, . . . , S2k21&!!
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5 5 O
1#i#k

K2i 2 O
1#i#k

K2i21

1 1 O
1#i#k

K2i 2 O
1#i#k

K2i21

if i$i uxi [ A%i is even, and

if i$i uxi [ A%i is odd.

This implies that i{i uxi [ A}i is odd if and only if

Score~DodgsonSum~^S2, S4, . . . , S2k&!! 1 O
1#i#k

K2i21 $

Score~DodgsonSum~^S1, S3, . . . , S2k21&!! 1 1 1 O
1#i#k

K2i.

For any integer m $ 1, define a Dodgson triple

Tm 5 ^$i u1 # i # m 1 1% , 1, $^1 , 2 , 3 , · · · , m 1 1&%& .

Then, Tm has an odd number of voters (namely one), and Score(Tm) 5 m. Thus,
again by Lemma 3.5, i{i uxi [ A}i is odd if and only if

Score~DodgsonSum~^S2, S4, . . . , S2k, T(1#i#k K2i21
&!! $

Score~DodgsonSum~^S1, S3, . . . , S2k21, T11(1#i#k K2i
&!! .

Given x1, . . . , x2k, define the function g( x1, . . . , x2k) 5 ^^C, c, V&, ^D, d,
W&&, where

^C, c, V& 5 DodgsonSum~^S1, S3, . . . , S2k21, T11(1#i#k K2i
&!

and

^D, d, W& 5 DodgsonSum~^S2, S4, . . . , S2k, T(1#i#k K2i21
&! ,

and (without loss of generality, via trivial renaming if necessary) c Þ d.
Note that g( x1, . . . , x2k) is computable in time polynomial in ux1u 1 ux2u

1 . . . 1 ux2ku 1 2k (recall the conventions regarding variable-arity functions
discussed in Section 2 and Footnote 3). Since

Score~^C, c, V&! # Score~^D, d, W&! N i$i uxi [ A%i is odd,

it follows by Lemma 3.3 that the problem 2ER is Q2
p-hard. e

PROOF OF LEMMA 3.7. Without loss of generality, we assume that iVi $ iWi
and that C ù D 5 À. Also, enumerate C \ {c} as {c1, c2, . . . , c iCi21}, and
D\{d} as {d1, d2, . . . , d iDi21}.

The construction and proof are similar in flavor to the construction and proof
of Lemma 3.5. However, in this proof, the number of voters has to be even, as we
seek to ensure that c is preferred to d by exactly half of the voters.

We define a set of “separating” candidates: S 5 {siu1 # i # 2(iCi z iVi 1
iDi z iWi)}. We will also use another set of separating candidates, T 5 {t iu1 #
i # iSi}, of the same cardinality as S. Let m 5 iSi/ 2. Let Ĉ 5 C ø D ø S ø
T. The set of new voters V̂ consists of the following subparts:
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(a) Voters simulating V: for each voter ^e1 , e2 , . . . , e iCi& in V, we create
a voter

^d , s1 , · · · , siSi , d1 , · · · , diDi21 , t1 , · · · , tiTi , e1 , e2 , · · · , eiCi&.

(b) Voters simulating W: for each voter ^e1 , e2 , . . . , e iDi& in W, we
create a voter

^t1 , · · · , tiTi , c , s1 , · · · , siSi , c1 , · · · , ciCi21 , e1 , e2 , · · · , eiDi&.

In addition, we create iVi 1 1 normalizing voters (recall that iVi and iWi are
both odd), consisting of three subparts:

(c) iVi/ 2 2 iWi/ 2 voters:

^t1 , · · · , tiTi , c , s1 , · · · , siSi , c1 , · · · , ciCi21 , d1 , · · · , diDi21 , d&.

(d) iVi/ 2 voters:

^t1 , · · · , tiTi , c1 , · · · , ciCi21 , d1 , · · · , diDi21 , siSi , · · · , s1 , c , d&.

(e) iWi/ 2 voters:

^t1 , · · · , tiTi , c1 , · · · , ciCi21 , d1 , · · · , diDi21 , s1 , · · · , siSi , d , c&.

The above construction of Ĉ and V̂ defines our functions Merge(^C, c, V&, ^D,
d, W&) 5 ^Ĉ, c, d, V̂& and Merge9(^C, c, V&, ^D, d, W&) 5 ^Ĉ, c, V̂&. These
functions clearly satisfy properties (i) and (ii) of Lemma 3.7.

To satisfy properties (iii) and (iv), we have to prove that Score(^Ĉ, c, V̂&) 5
Score(^C, c, V&) 1 1 and that Score(^Ĉ, d, V̂&) 5 Score(^D, d, W&) 1 1.

First note that c is preferred to every candidate in (S ø D)\{d} by iVi 1
iVi/ 2 1 iWi/ 2 of the 2iVi 1 iWi 1 1 voters in V̂. Similarly, d is preferred
to every candidate in (S ø C)\{c} by iWi 1 iVi 1 1 of the 2iVi 1 iWi 1 1
voters in V̂. Similarly, c is preferred to each t [ T by all voters in V̂, and d is
preferred to each t [ T by iVi 1 iWi 1 1 of the 2iVi 1 iWi 1 1 voters in V̂.

In addition, c is preferred to all candidates in C\{c} by iVi/ 2 1 iWi/ 2 5
(iVi 1 iWi)/ 2 1 1 of the iVi 1 iWi 1 1 voters that do not simulate V.
Likewise, d is preferred to all candidates in D\{d} by iVi 1 1 of the 2iVi 1 1
voters not simulating W. Finally, c is preferred to d by iVi 1 iWi/ 2 5 (2iVi
1 iWi 1 1)/ 2 of the 2iVi 1 iWi 1 1 voters in V̂— exactly half.

Let K 5 Score(^C, c, V&). Then after K switches in V̂, c is preferred to e by
more than iVi/ 2 voters in that part of V̂ that simulates V, for every e [ C\{c},
and thus by more than half of the voters in V̂. It follows that after K switches, c
is preferred to e by a majority of voters, for all e [ Ĉ\{c, d}. If, in addition to
these K switches, we switch c and d in a normalizing voter of the form ^t1
, . . . , t iTi , c1 , . . . , c iCi21 , d1 , . . . , d iDi21 , s iSi , . . . , s1 ,
c , d&, then c has become a Condorcet winner. Thus, Score(^Ĉ, c, V̂&) # K 1
1 5 Score(^C, c, V&) 1 1. In exactly the same way, we can show that Score(^Ĉ,
d, V̂&) # Score(^D, d, W&) 1 1.

It remains to show that Score(^Ĉ , c, V̂&) $ Score(^C, c, V&) 1 1 and that
Score(^Ĉ, d, V̂&) $ Score(^D, d, W&) 1 1. Let K̂ 5 Score(^Ĉ, c, V̂&). Then K̂
switches in V̂ turn c into a Condorcet winner. Recall that m 5 iSi/ 2. If K̂ $ m,
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then K̂ . Score(^C, c, V&) 1 1, since Score(^C, c, V&) , iCi z iVi , m (recall
iWi is odd and thus nonzero, and without loss of generality we assume iDi . 0).
So K̂ $ m is impossible, which implies that K̂ , m. In order to become a
Condorcet winner, c in particular needs to gain one vote over d. With less than
m switches, the only way in which c can gain this vote is by switching c and d in
a normalizing voter of the form ^t1 , . . . , t iTi , c1 , . . . , c iCi21 , d1
, . . . , diDi21 , s iSi , . . . , s1 , c , d&. This uses one of the K̂ switches.

With less than m switches, c cannot gain extra votes over candidates in C \ {c}
in normalizing voters, or in voters that simulate W. It follows that c can gain
extra votes over candidates in C \ {c} only in voters that simulate V. After K̂
switches, c is still preferred to all candidates in C \ {c} by at most the smallest
possible majority of the (odd) number of voters that do not simulate V, and at
the same time, c has become a Condorcet winner. Since iVi is odd, it follows
that, after these K̂ switches, c is preferred to e by more than iVi/ 2 voters that
simulate V, for every e in C \ {c}. Let K̂V be the number of switches that take
place in the voters of V̂ that simulate V. Then K̂V $ Score(^C, c, V&). Since we
had to use one switch to switch c and d in a normalizing voter,

Score~^Ĉ , c, V̂&! 5 K̂ $ K̂V 1 1 $ Score~^C, c, V&! 1 1.

The same argument can be used to show that

Score~^Ĉ , d, V̂&! $ Score~^D , d, W&! 1 1,

which proves properties (iii) and (iv).
Finally, we prove property (v) of the lemma: For each e [ Ĉ \ {c, d}, Score(^Ĉ, c,

V̂&) , Score(^Ĉ , e, V̂&). First note that we have chosen S sufficiently large to
ensure that Score(^Ĉ , c, V̂&) , m, since Score(^C, c, V&) , iCi z iVi , m and
Score(^Ĉ, c, V̂&) 5 Score(^C, c, V&) 1 1 by property (iii).

Consider tiTi. In order to become a Condorcet winner, tiTi must in particular
outpoll d in pairwise elections. In the specified preferences, tiTi is preferred to d by
iVi of the 2iVi 1 iWi 1 1 voters in V̂. Thus, more than iWi/2 of the voters not
simulating V must be convinced to prefer tiTi to d. However, to gain even one
additional vote over d amongst the voter groups (b), (c), (d), and (e), tiTi would
require more than m switches upwards. Since Score(^Ĉ, c, V̂&) , m, the score of c is
less than that of tiTi. The same argument applies to any ti, 1 # i # iTi.

Consider s iSi. In order to become a Condorcet winner, siSi must in particular
outpoll c in pairwise elections. Initially, siSi is preferred to c by iWi 1 iVi/ 2
2 iWi/ 2 5 iVi/ 2 1 iWi/ 2 2 1 voters, namely those belonging to (b) and
(c). Thus, more than iVi/ 2 of the voters amongst (a), (d), and (e) must be
convinced to prefer siSi to c. However, to gain one more vote over c in (a), s iSi
would need more than m switches upwards. Likewise, for s iSi to gain one more
vote over c in (d), it would also have to switch more than m times upwards.
Finally, to gain one more vote over c in (e), siSi needs only two switches per vote.
However, since there are no more than iWi/ 2 # iVi/ 2 voters in (e) and siSi
needs to be preferred over c by more than iVi/ 2 additional voters, s iSi cannot
become a Condorcet winner by changing only the minds of the voters in (e). It
follows that Score(^Ĉ , c, V̂&) , Score(^Ĉ, siSi, V̂&).

Consider s1. As above, for s1 to become a Condorcet winner, more than
iVi/ 2 of the voters amongst (a), (d), and (e) must be convinced to prefer s1 to
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c in particular. Now, to gain one vote in either (a) or (e) requires more than m
switches. However, similarly to the previous paragraph, the remaining iVi/ 2
voters in (d) alone are too few to make s1 a Condorcet winner. It follows that
Score(^Ĉ, c, V̂&) , Score(^Ĉ , s1, V̂&). Note that for each s [ S \ {s1, s iSi}, at
least one of the two given arguments (the one for s iSi and the one for s1) apply,
yielding Score(^Ĉ , c, V̂&) , Score(^Ĉ , s, V̂&), since each such s needs more than
m switches (because m 5 iSi/ 2) to gain one vote in either (d) or (e).

Finally, consider diDi21. As was the case for the elements of S, more than
iVi/ 2 of the voters amongst (a), (d), and (e) must be convinced to prefer
diDi21 to c in order for diDi21 to become a Condorcet winner. However, more
than m switches would be required to gain even one vote from one of (a), (d), or
(e). Thus, Score(^Ĉ , c, V̂&) , Score(^Ĉ, diDi21, V̂&). The same argument
applies to each element in (C ø D)\{c, d}. To summarize, we have shown that
property (v) holds. e

Having proven these lemmas, we may now turn to the proof of the Theorem
3.1.

PROOF OF THEOREM 3.1. To prove the Q2
p-completeness of DodgsonRank-

ing , we must according to the definition prove both an upper bound (Dodgson-
Ranking [ Q2

p) and a lower bound (DodgsonRanking is Q2
p-hard).

To prove the lower bound, it suffices to provide a #m
p -reduction, f, from 2ER

to DodgsonRanking . f is defined as follows. Let to be some fixed string that is
not in DodgsonRanking . f( x) is defined as being to if x is not an instance of
2ER, and as being Merge( x1, x2) otherwise, where x 5 ^x1, x2& and Merge is as
defined in Lemma 3.7. Note that Merge and thus f are polynomial-time comput-
able. Note also that for any instance ^^C, c, V&, ^D, d, W&& of 2ER, it holds that
if ^Ĉ, c, d, V̂& 5 Merge(^C, c, V&, ^D, d, W&), then

^^C, c, V& , ^D, d, W&& [ 2ERN ^Ĉ , c, d, V̂& [ DodgsonRanking

by properties (iii) and (iv) of Lemma 3.7. Note also that for any input x that is
not an instance of 2ER, f( x) maps to to, a string that is not in DodgsonRanking .
Thus, f is a #m

p -reduction from 2ER to DodgsonRanking . From Lemma 3.6,
Q2

p-hardness of DodgsonRanking follows immediately.
Finally, we claim that DodgsonRanking is in Q2

p. This can be seen as follows:
We can in parallel ask all plausible DodgsonScore queries for each of the two
designated candidates, say c and d, and from this compute the exact score of
each of c and d and thus we can tell whether c ties-or-defeats d. Note that there
is a polynomial upper bound on the highest possible score (this is what was
meant above by “plausible”), and thus this procedure indeed can be implemented
via a polynomial-time truth-table reduction to the NP-complete set Dodgson-
Score . However, the class of languages accepted via polynomial-time truth-table
reductions to NP sets coincides with Q2

p [Hemachandra 1989; Köbler et al. 1987].
This establishes the upper bound, that is, that DodgsonRanking [ Q2

p. e

DodgsonWinner is similarly Q2
p-complete.

THEOREM 3.8. DodgsonWinner is Q2
p-complete.

COROLLARY 3.9. If DodgsonWinner is NP-complete, then PH 5 NP.
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Bartholdi et al. [1989] have stated without proof that DodgsonRanking #m
p

DodgsonWinner . Theorem 3.1 plus this assertion would prove Theorem 3.8.
However, as we wish our proof to be complete, we now prove Theorem 3.8. (We
note in passing that our paper implicitly provides an indirect proof of their
assertion. In particular, given that one has proven Theorem 3.1 and Theorem 3.8,
the assertion follows, since it follows from the definition of Q2

p-completeness that
all Q2

p-complete problems are #m
p -interreducible.)

PROOF OF THEOREM 3.8. As in the case of DodgsonRanking , Dodgson-
Winner [ Q2

p is easily seen to hold, since we can in parallel ask all plausible
DodgsonScore queries for each of the given candidates (note that the number
of candidates and the highest possible score for each candidate are both
polynomially bounded in the input length) and thus can compute the exact
Dodgson score for each candidate. After having done so, it is easy to decide
whether or not the designated candidate c ties-or-defeats all other candidates in
the election. This proves the upper bound.

To prove the lower bound, we will provide a polynomial-time many-one
reduction from 2ER to DodgsonWinner . By Lemma 3.6, the claim of this
theorem then follows. In fact, the following function f provides a polynomial-
time many-one reduction from 2ER to DodgsonWinner . Let to be some fixed
string that is not in DodgsonWinner . f( x) is defined as being to if x is not an
instance of 2ER, and as being Merge9( x1, x2) otherwise, where x 5 ^x1, x2& and
Merge9 is as defined in Lemma 3.7. To see that this is correct, note that f is
polynomial-time computable, and that when x is not an instance of 2ER, then
f( x) is not in DodgsonWinner .

We now turn to the behavior of f( x) when x is an instance of 2ER. Given any
pair of Dodgson triples, ^C, c, V& and ^D, d, W&, for which both iVi and iWi
are odd and c Þ d, let ^Ĉ , c, V̂& 5 Merge9(^C, c, V&, ^D, d, W&). Assume
Score(^C, c, V&) # Score(^D, d, W&). By properties (iii) and (iv) of Lemma
3.7, it follows that Score(^Ĉ , c, V̂&) # Score(^Ĉ, d, V̂&) as well. However,
since by property (v) of Lemma 3.7 Score(^Ĉ, c, V̂&) , Score(^Ĉ, e, V̂&) for
every e [ Ĉ \ {c, d}, it follows that c is a winner of the election specified by
Ĉ and V̂. Conversely, assume Score(^C, c, V&) . Score(^D, d, W&). Again,
properties (iii) and (iv) of Lemma 3.7 imply that Score(^Ĉ, c, V̂&) . Score(^Ĉ,
d, V̂&). Thus, c is not a winner of the election specified by Ĉ and V̂. e

Finally, recall that our multisets are specified as a list containing, for each voter,
the preference order of that voter. Our main theorem, Theorem 3.8, proves that
checking if a candidate is a Dodgson winner is Q2

p-complete. Is this complexity
coming from the number of candidates, or is the problem already complex with, for
example, fixed numbers of candidates? In fact, for each fixed constant k, there
clearly is a polynomial-time algorithm to compute all Dodgson scores, and thus all
Dodgson winners, in elections having at most k candidates.

PROPOSITION 3.10 [BARTHOLDI ET AL. 1989]. Let k be any fixed positive
integer. There is a polynomial-time algorithm Ak that computes all Dodgson scores
(and thus all Dodgson winners) in Dodgson elections having at most k candidates.

Proposition 3.10 in no way conflicts with Theorem 3.8. In fact, though each Ak

is a polynomial-time algorithm, the degree of the polynomial runtimes of the Ak

is itself exponential in k. It is also known that, for each fixed constant k, there is
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a polynomial-time algorithm to compute all Dodgson winners in elections having
at most k voters [Bartholdi et al. 1989].

4. Conclusions

This paper establishes that testing whether a given candidate wins a Dodgson
election is Q2

p-complete, thus providing the first truly natural complete problem
for the class Q2

p.
In this paper, we assumed that no voter views any two candidates as being of equal

desirability. However, note that if one allows such ties, our Q2
p-hardness result

remains valid, as our case is simply a special case of this broader problem. On the
other hand, it is not hard to see that the broader problem remains in Q2

p (in both of
the natural models of switches involving ties, that is, the model in which moving from
^a 5 b , c& to ^c , a 5 b& requires just one switch, and the model in which this
requires two separate switches). Thus, this broader problem is also Q2

p-complete.
Since this paper first appeared, some related work has been done that may be

of interest to readers of this paper. Hemaspaandra and Wechsung [1997] have
shown that the minimization problem for Boolean formulas is Q2

p-hard; it
remains open whether that problem is Q2

p-complete. Hemaspaandra and Rothe
[1997] have shown that recognizing the instances on which the greedy algorithm
can obtain independent sets that are within a certain fixed factor of optimality is
itself a Q2

p-complete task. Hemaspaandra et al. [1997] have discussed the
relationship between raising a problem’s lower bound from NP-hardness to
Q2

p-hardness and its potential solvability via such modes of computation as
randomized and approximate computing.
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