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1. Introduction

Fiber-optic sensors have found numerous industrial
and military applications in the past three decades.
These sensors possess small size and high sensitivity,
are immune to electromagnetic interference, and can
be modified for distributed or multiparameter mea-
surement. Among them, extrinsic Fabry—Perot (FP)
interferometric (EFPI) fiber-optic sensors have at-
tracted a great deal of attention because of their simple
sensor structure and capability to measure various
parameters such as strain,! temperature,? pressure,34
and acoustic waves.> However, the generally rela-
tively higher cost of fiber-optic sensors compared with
their electronic counterparts has limited the wide-
spread use of these sensors. One of the limiting fac-
tors is use of high-power broadband light sources for
white-light interferometry that permits accurate and
absolute measurement. Multimode fiber (MMF)
EFPI sensors would significantly lower the cost of the
sensor systems because MMF's impose less-stringent
constraints on the light source. Furthermore, for ex-
treme harsh environments with temperatures above
1000 °C, sapphire fiber EFPI sensors® are considered;
these sapphire fibers are highly multimode because
they are not clad and have a core size that is usually
more than tens of micrometers.
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The FP cavity in an EFPI sensor is usually formed
between the endface of a lead-in fiber and a reflector
placed at a distance (usually less than a few hundred
micrometers) to the lead-in fiber endface. The re-
flections at the lead-in fiber endface and at the reflec-
tor are coupled back to the lead-in fiber and interfere
to form certain interferometric fringe patterns.
Changes in the FP cavity length, known as the gap
length, cause the interferometric fringe variations.
For an intensity-based low-finesse EFPI sensor, the
sensitivity to a measurand-induced change in gap
length is highly dependent on the visibility of the
fringes. The fringe visibility in single-mode fiber
(SMF) EFPI sensors has been extensively analyzed
by the modeling of the output of the fiber as a point
source’ or, more accurately, as a Gaussian beam.8
However, the research on MMF EFPI sensors has
been limited. Pérennes et al.° have analyzed the
MMF EFPI sensors based on geometrical-optics
theory, in which the output of the propagation modes
in a MMF is modeled as incoherent rays outputting
the fiber endface with different angles. The
geometrical-optics theory is an approximate method
and is adequate only when the fiber characteristic
dimension is much larger than the optical wave-
length. This condition may not be satisfied for
strongly guiding fibers, in which the refractive-index
difference between the core and the cladding is large,
such as a sapphire fiber; however, the electromag-
netic theory that is based on Maxwell’s equations can,
in principle, be used in any situation and provides a
complete treatment on mode mixing and inference.
Nevertheless, to the best of our knowledge, no theo-
retical research on the exact analysis of MMF EFPI
sensors based on electromagnetic wave propagation
has been reported in detail so far.
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This paper is constructed as follows. In Section 2
we present an exact analysis on the fringe visibility of
MMF EFPI sensors based on the electromagnetic the-
ory. Even though a weakly guiding fiber is used in
our analysis, the method we present is applicable for
fibers of any kind. Then the numerical results based
on the theory are discussed in Section 3. First, the
effect on fringe visibility of the sensor parameters
including the fiber core size, numerical aperture (NA)
of the fiber, the modal power distribution in the
lead-in fiber, and the gap length of the FP cavity is
studied. Next, the effect of one of the typical inter-
ferometer imperfections, in which the two reflection
surfaces of the FP cavity are not perfectly parallel to
each other, is studied both theoretically and experi-
mentally and the results are compared to validate the
theory. Finally, several conclusions are given in
Section 4.

2. Theory

A schematic of a low-finesse MMF EFPI sensor is
shown in Fig. 1. The FP cavity is formed by the
endface R, of the lead-in MMF and another reflection
surface R,. For an ideal EFPI sensor, R; and R, are
perfectly parallel to each other and are perpendicular
to the fiber axis z. nj is the refractive index inside
the FP cavity. For simplicity, it is assumed that the
cavity is filled with air and thusn; = 1. Suppose the
MMTF has a core radius a and is step indexed with a
refractive index n, in the core and n, in the cladding.
The gap length d is defined as the distance between
R, and R,. The reflection coefficient r; of surface R,
and reflection coefficient r, of surface R, are defined
by the weak Fresnel reflection arising from the
refractive-index mismatches at the two surfaces. In
practice, the reflections at the interfaces are usually
small. The light propagating along the lead-in
MMTF is partially reflected by R, and R, and the two
reflections are coupled back into the lead-in MMF
and interfere to form interferometric fringes.

We assume that the MMF supports N orthogonal
guided eigenmodes with the normalized field profile
of the kth modes ¢, (£ =1,2,...,N). The total field
of the light propagating along the +z direction can be
expressed as a superposition of all the guided modes,
which can be written as?°

N
Eipta = E prdr exp(—jB.2)&,

k=1
N

= |pilexp(jep) i exp(—jBr2)é, (1)
k=1

where &, is a unit vector representing the polariza-
tion of the mode and the coefficient p,, is the complex
magnitude of the £th mode representing the modal
distribution in the fiber. For example, if we assume
all modes in the MMF are equally excited, then all
modes will have the same intensity, so |p,| = p for k =
1,2,...,N, where p is a constant. The intensity of
the reflected light can be expressed as the superpo-
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Schematic of a low-finesse MMF EFPI sensor.

Fig. 1.

sition of the intensities of all modes because they are
orthogonal:

N
I = (Egpta * Egora™) = E (prdr) (prdr) (8 - €,7%)
k=1

N N
= E prpy* = E I,. (2)
k=1 k=1

Similarly, for the reflected light propagating along
the —z direction, the field can also be decomposed to
a set of guided modes:

N
E = > q,b, exp(—jBr2)&, (3)
k=1

and the intensity of the reflected light is expressed as

N N
Ip=(E-E*) = > q,q,* = X, I 4)
k=1 k=1

Now we consider the field of a particular mode q;,d;,
of the reflected light. Because the Fresnel reflec-
tions at the reflection surfaces are low, the effect of
the multiple reflections in the cavity is neglected.
Thus the reflected light comes from the two reflec-
tions at surface R, and surface R,. Because surface
R, is perpendicular to the fiber axis, the £th mode
propagating along the +z direction will be coupled
back to the £th mode propagating along the —z di-
rection at the reflection by surface R, and there is no
coupling between modes with different mode num-
bers. However, because of the lateral displacement
d (gap length) of surface R, to the fiber endface R,
only part of the mode % propagating along the +z
direction that is reflected by surface R, can be cou-
pled back to mode k. Furthermore, modes with
mode numbers different from % that are reflected by
surface R, can also be coupled into mode k.. Thus
the reflected field profile of mode % can be expressed
as the summation of three terms:

Qrbr = rPrbr + MeTD by exp(iVeg) + by exp(iVe,,).
(5)

Note that we have already assumed r; = r, = r and
neglected the light power loss due to the Fresnel
reflection of surface R,. In Eq. (5) the first term
rppd;, is the reflection at surface R;; the second term
M.7Prd, exp(iVe,) is the reflection at surface R, of the
same mode £ with a phase shift Vo, = 4mnsd/\ with
respect to m,rp.d.; M. is the coupling coefficient be-



tween the mode %k propagating along the —z direction
and the same mode propagating along the +z direc-
tion but reflected back by surface R,. The coupling
occurs at the surface plane R,. We assume n, =
[n.lexp(ie,). The third term c,d, exp(iVe,,) is the
reflection at surface R, of other modes with phase
shift Vo,,, where ¢, is an overall coupling coefficient
and is a real number. Thus the reflected light in-
tensity of mode % is expressed as

I, = qrq:*
= [rpr + Mrpr exp(iVeo) + ¢, exp(iVe,y)]
X [rpy* + m*rp* exp(—iVe,)
+ ¢, exp(—iVe,,)]
=il + Pallpal* + ¢ + 207yl pal?
X cos(Vey + ¢3)
+ 2r|piles cos(Ve,, — @)
+ 27|l piler cos(Veo + @p + @ — Vo). (6)

Substituting Eq. (6) into Eq. (4) we obtain the total
reflected light intensity I5:

N
IR:EI]@

k=1
N

> [Plpal® + il pal® + ¢
k=1

+ 2r

il pil? cos(Veo + @p) + 2r|pylcy,
X cos(Ve,, — @) + 27|yl pilcs
X cos(Veo + @1 + ¢ — Ve, (5)

Noting that all modes propagating along the MMF
have a random initial phase relationship when they
are excited by the light source and individual modes
with different propagation constants experience a dif-
ferent phase shift during propagation along the fiber,
it is reasonable to assume that V¢,, is a random
variable uniformly distributed in the phase range
[—m, w]. Furthermore, we assume that the number
of the modes excited in the fiber is sufficiently large so
that the summation of the terms related to Vo, is
averaged to zero in Eq. (7). This assumption is rea-
sonable for a typical MMF that usually supports sev-
eral hundred modes at wavelengths around 1550 nm.
Thus Eq. (7) is simplified to be of the form

N

Ip=r" E |paT1 + [maf® + ¢i® + 2|myfcos(Vgo + ¢@4)].
k=1

(8)

Equation (8) is a function of the phase shift Ve,
and it describes the fringe visibility of the reflected
light in the fiber. To find the maximum I, ., and the
minimum I_; , the values of Vo, where I,,,,, and [,;,
occur are found when we solve

(9IR/8ch0 = 0. (9)

Ax R R RS

' [ \ i \

L W > | i= = F 3

‘?y\T ;m ’% ;qfk -

| ' - i
24

Fig. 2. Schematic of the calculation of ng, and ,. Fiber F" is the
mirror image of the lead-in fiber F' with respect to the reflection
surface plane R,.

The solutions of Eq. (9) are given by

N N
Voo = —tan‘l(E |Pk|2|”flk|5in cpk/E |’T]k|COS (Pk) >
k=1 k=1

(10)

N N
Vg =7 — tan‘l(E p*mzlsin ‘Pk/E Inlcos ‘-Pk) ,
k=1 k=1
1D

one of which corresponds to [, and the otherto 7, .
Substituting Eqgs. (10) and (11) into Eq. (8), we obtain
I and][

max min*

N
Imax = 7'2 2 |pk|2[1 + |T|k|2 + ck2 + 2|T]k||
k=1

X cos(Veo + @p)l1, (12)

N
Ljn=T1" E |pal[1 + [nal® + ¢ = 2|y
k=1

X cos(Veoo + @u)|]. (13)

Thus the fringe visibility defined by V, = (I« —
I.in)/(Lyax + Iin) is simply expressed as

N
2 E |pk|2|'r]k||COS(ch01 + <Pk)|
Vy= x5+ N . (14)

Dl + 2 Il + e
] p

-1

For simplicity, the input power of the lead-in fiber is
normalized to be unity, namely,

N
I=> |p>=1. (15)
k=1
Thus Eq. (14) is further simplified to be of the form
N
Vy =2 > | palInillcos(Veor + @0)|/(1 + mg,), (16)
k=1
where

N
MNr, = E |pal(al® + ¢). a7
=1

Mg, is actually the light power coupling coefficient
between the fiber F' and its mirror image F' with
respect to surface plane R, as shown in Fig. 2. For
two step-index (SI) MMF's that have a longitudinal
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Cladding

Fig. 3. Diagram of a cross section of the fiber geometry considered
here.

offset 2d, the light power coupling has been shown to
bell

Mg, = a’/(a + 2d tan 6,)?, (18)

where 0, = sin [(n,2 — ny,9)Y?/n,] is the critical
acceptance angle of the fiber.

Now we consider the calculation of the mode cou-
pling coefficient m,. Assuming that ¢, is the eigen-
mode ¢, of fiber F, transmitted a distance of 2/ to
plane R,’, the coupling coefficient is obtained when
we perform the overlap integral of ¢, and ¢,," over the
surface R;’, which leads to?

N, = JJ ¢/ by dady. (19)
‘R’

The field distribution of ¢, is given by the formulal2

d)k,(xa y) = ny_l{ny[d)k(xa y)]H(kxa kya Z)|z:2d}>
(20)

where F,, and F,, " denote the two-dimensional spa-
tial Fourier transform and its inverse Fourier trans-
form with transform variables %, and %, known as
spatial frequencies. H(k,, k; z) is calledy the spatial
transfer function of propagation of light through a
distance z in free space and is defined by!2

H(kx’ ky7 Z) = eXp{_JkOZ[l - (kx2 + ky2)/k02]1/2}‘
(21)

The calculation of fringe visibility by Eq. (16) is
general and applies to any MMF, provided that a
sufficient number of modes is excited in the fiber.
However, to keep the analysis as clear as possible and
focused on the modes’ interactions rather than calcu-
lations of the modes themselves, we assume here a
weakly guided SI fiber, the structure of which is
shown in Fig. 3. Because A is small, where A =
(ny — ny)/nq is the normalized core—cladding index
difference of the fiber, the linearly polarized mode
approximation should be sufficient to describe the
modes guided by the fiber.13 With these assump-
tions, the characteristic equation in the fiber that we
solve to obtain the effective index n.4 of all possible
modes with azimuthal number [ is given by!3

Jy(w)/[ud, ()] + Kj(w)/[wK, 1(w)] =0, (22)

4662 APPLIED OPTICS / Vol. 43, No. 24 / 20 August 2004

where o is a Bessel function of the first kind, K is a
modified Bessel function of the second kind, z and w
are defined by u = (2ma/N) (1% — nH)Y? and w =
(2ma/N) (Mo — n22)1/ 2 at wavelength \, and the rest
of the parameters are defined in Fig. 3. Once Eq.
(22) is solved, the field profile of an eigenmode in the
fiber is readily obtained in terms of radial and azi-
muthal components?3:

b, = {A[Jl(ur/a)/Jl(u)]sin(lcp + o), r<a
Y=

A[K (ur/a) /K (w)]sin(e + o). r >a” 25

The number of guided modes that a fiber can support
is determined by the normalized frequency V of the
fiber, which is defined by V = (2ma/\)(n,2 — ny?)Y/2.
Provided that [ > 0, the maximum value of [ can be
found when we solve the inequities

{JZI(V) <0
J(V)y=0 -

So far we have elaborated the calculations of the
mode profiles ¢,; thus the mode coupling coefficient
7, can be obtained by a combination of Egs. (20) and
(19). From Eq. (16), modal distribution parameters
|p,> are needed before the fringe visibilities can be
calculated. A uniformly modal power distribution is
assumed in many reports.>19 However, if we as-
sume that the mode coupling through the propaga-
tion along the MMF is negligible, which may be a
reasonable assumption for a fiber length no longer
than several hundred meters,'* |p,|*> can be calcu-
lated by the initial conditions and is given by

[[ e
R.

i

where ¢, is the field profile transmitted to the MMF
input plane R; of the light from the source that excites
the MMF, and B is a normalization coefficient deter-
mined by Eq. (15). In our simulation, in addition to
the assumption of uniform modal power distribution,
we also study the case in which the MMF is illumi-
nated by a SMF output, thus the light power of the
MMF has a heavier distribution on the lower-order
modes.

(24)

2

|pi/*=B , (25)

3. Results

In this section the effect on the fringe visibility of the
gap length of a sensor is first studied in Subsection
3.A. Then the effect of a typical imperfection in a
MMF EFPI sensor, namely, the wedge of the sensor
head, is studied theoretically in Subsection 3.B and
experimentally in Subsection 3.C. In the analysis,
the light wavelength is set to A = 1.55 um. Three
different types of weakly guided SI MMF are chosen
as the lead-in fiber in the MMF EFPI sensor, the
parameters of which are shown in Table 1. Fiber 1
has a much larger core diameter (2a) than fiber 2;
however, their core and cladding refractive indices n4
and n, are chosen to support the same total linearly
polarized mode number N in both fibers. Fiber 3 is



Table 1. Fiber Parameters Used in the Simulation

Fiber

Parameter 1 2 3
2a (pm) 100 50 50
nqy 1.448 1.448 1.448
ngy 1.440 1416 1.440
NA 0.15 0.30 0.15
V number 30.80 30.68 15.40
N 127 127 33

chosen to have the same core diameter as fiber 2 and
the same n; and n, as fiber 1. Thus fiber 3 has the
same NA as fiber 1, but a smaller V number and
supports less modes than fibers 1 and 2.

A. Gap Length

Here we assume an ideal MMF EFPI sensor, with
reflection surfaces R, and R, perfectly parallel to
each other and both perpendicular to the fiber axis z.
First we consider the case in which all the propaga-
tion modes in the MMF's are equally excited, which
leads to |p,|*> = 1/N according to Eq. (15). The fringe
visibility as a function of the gap length for fibers 1,
2, and 3is shown in Fig. 4. The fringe visibility of all
three fibers starts from the same maximum (100%) at
d = 0 and decreases as the gap length increases, with
sidelobes appearing at the tail of the curves. How-
ever, the visibility of fiber 2, which has a larger NA
than fibers 1 and 3, drops much more quickly down to
the first minimum as the air gap increases to 16 pm.
The visibility of fibers 1 and 3, which have the same
NA, drops to its first minimum almost at the same
gap length. This is in agreement with the conclu-
sion obtained by the geometrical-optics theory® that
the gap length d,,;,,, where minimum fringe visibility
occurs, is determined by the NA of the fiber; a smaller
NA leads to a larger d,,;,,.

Next the effect on the fringe visibility of the mode
field distribution is considered. Instead of a uniform
modal power distribution, we consider the case in
which the MMF is illuminated by a SMF output, as

100
\
\ — Fiber 1
S 80p II === Fiber 2
S .
S [ U Fiber 3
% 1
< 60} ¢
- \
2 00
% 40 “
1
"
20t \‘
\’ - - o i e ——
0O 20 40 60 80 100 120

Gap Length (um)

Fig. 4. Fringe visibility versus gap length for fibers 1, 2, and 3.
All modes in the MMF's are equally excited.

SMF__ ; MMF I\
— ¢k(k=_1,'z,...,N),

R;
Fig. 5. Schematic of a MMF illuminated by a SMF output.

shown in Fig. 5. In our simulation, the SMF has a
core refractive index of 1.445, a cladding refractive
index of 1.440, and a core diameter of 9 pum. There
is only one mode, ¢, propagating along the SMF, and
the calculated mode field diameter is 10.04 pm.
From Eq. (25), only those modes with the same azi-
muthal number as ¢, can be excited in the MMF.
Thus only a portion of guided modes are excited.
The mode power coefficient of each mode, |p,|% is
given by Eq. (25), and the calculated fringe visibility
as a function of gap length is shown in Fig. 6.

A comparison of Figs. 6 and 5 shows that, for a
given gap length, the MMF EFPI sensor excited by a
SMF has a larger fringe visibility compared with a
uniform mode excitation. For example, fiber 2 illu-
minated by a SMF still has a fringe visibility of 71.8%
at the gap length of 16 wm, whereas it would drop to
only 6.0% if all modes were uniformly excited. Also
note that the fringe visibility of fiber 1 drops slower
than that of fiber 3 in Fig. 6, whereas they have
almost the same response to the gap length when all
modes are uniformly excited. This indicates that a
reduction in mode numbers is more efficient for
larger core fibers to increase the fringe visibility.

B. Wedges

In practice, the two reflection surfaces in a MMF
EFPI sensor are usually not perfectly parallel to each
other because of the limited fabrication accuracy.
The cavity geometry therefore becomes that of a
wedge, introducing variations in the cavity thickness
of the interferometer. The effect on fringe visibility
of the wedge is studied in this subsection. Here we

100
— Fiber 1
\ == Fiber2
I I N A N Fiber 3
(= \ .
= N\
< 60 \\
nd (N
> ~ e
= ~ N
= 40 ‘x\ Yo,
b=t Se L e,
Eﬂ -~ o e,
~ 2 Db S
0

Gap Length (um)

Fig. 6. Fringe visibility versus gap length for fibers 1, 2, and 3.
The MMF are illuminated by a SMF output.
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Fig. 7. Illustration of a MMF EFPI sensor with a wedge between
the two reflection surfaces R, and R,. Fiber F' is the mirror
image of fiber F' with respect to surface plane R,.

assume that reflection surface plane R, is still per-
pendicular to the fiber axis z whereas reflection sur-
face R, is tilted from its original position, forming a
wedge angle of 30 with respect to R, as shown in Fig.
7. The effect of the angular and lateral misalign-
ment between the lead-in fiber F' and its mirror image
fiber F' caused by a wedge must be considered when
we use Eq. (19) to calculate the mode coupling coef-
ficient m,. The effect of the wedge is to produce a
linear phase change across the beam?!> and a spatial
displacement between mode ¢," and &, at the cou-
pling plane R,’. For mode ¢, that is misaligned by
a wedge angle 80, the field can be described by

drao’ (x, y) = by’ (x — 2d tan 6, y)
X exp[ jkox tan(230)]. (26)

Thus mode coupling coefficient v, is obtained when
Eq. (26) is substituted into Eq. (19).

Again we assume that all the modes are equally
excited in the fiber. The fringe visibility of fiber 1 as
a function of the wedge angle is plotted in Fig. 8 at
different gap lengths d = 20, 30, and 40 pm. The
fringe visibility curve decreases as the wedge angle is
increased and it also shows sidelobe structures at the
tail of the curve. It is also shown that, even with

100

[o:
[=]

o2}
[=]

"uy
.
«
.

Visibility (x 100)
S

N
[=]

o] OI.2 0i4 0j6 O:8 1
Wedge Angle (deg)

Fig. 8. Fringe visibility versus wedge angle for fiber 1 at a gap
length d = 20, 30, and 40 pm. All modes in the MMF's are equally
excited.
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Fig. 9. Fringe visibility versus wedge angle for fibers 1, 2, and 3.
All modes in the MMFs are equally excited.

different starting visibilities, the three curves corre-
sponding to various gap lengths drop to the first min-
imum, which is around 4%, at the same wedge angle
of 0.54°. Thus the effect on the fringe visibility of
the wedge angle does not depend on the gap length.
The fringe visibility for the three fibers at selected
gap lengths is plotted in Fig. 9. The gap length used
for fibers 1 and 3 are 30 pm, whereas a 10-pm gap
length is used for fiber 2 to clearly show the trend of
fringe visibility changes. Apparently the fringe vis-
ibility curve of fiber 1 drops more quickly than fibers
2 and 3, whereas the fringe visibility of fibers 2 and 3
shows a similar response to the wedge angles. Thus
it is concluded that the sensitivity of fringe visibility
to wedge angle depends on the fiber core diameter.
A MMF EFPI sensor with bigger core diameter fibers
is more vulnerable to imperfections on the parallel-
ism of the two reflection surfaces of the cavity.

Now we consider the case in which the MMF is
illuminated by a SMF output, as discussed in Sub-
section 3.A. The SMF parameters are all the same
as those in Subsection 3.A. The results for fibers 1,
2, and 3 are shown in Fig. 10 and compared with the
result shown in Fig. 9. The comparison shows that
the sensitivity of fringe visibility to the wedge angles

100¢

— Fiber 1
==+ Fiber2 1
----- Fiber 3

®
=)
[}
[}
[
[}

2]
[=]

Visibility (x 100)
8

N
o

0 0.2 04 06 08 1
Wedge Angle (deg)

Fig. 10. Fringe visibility versus wedge angle for fibers 1, 2, and 3.
The MMF's are illuminated by a SMF output.
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I
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.
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100/140pm Interferometer
MMTF Coupler
0OSA
Index-Matching Gel

Fig. 11. Experimental setup to measure the fringe visibility as a
function of wedge angle. OSA, optical spectrum analyzer.

is not significantly effected when the modes are re-
duced in number, even though fringe visibility is in-
creased by SMF output excitation.

C. Experimental Verification

To validate the theory and the analysis, the fringe
visibility as a function of the wedge angle was mea-
sured to compare with the theoretical results. The
experimental setup is shown in Fig. 11. To maxi-
mally excite the modes of the MMF, the light from a
fiber-optic light system (Model MKII, Nikon, Inc.)
was directly coupled into 1-m-long SI MMF with a
core diameter of 105 pm and a cladding diameter of
125 pm. The refractive indices of the core and clad-
ding in the fiber are 1.448 and 1.440, respectively. A
3-dB SI MMF coupler was used to separate the input
and output light from the EFPI instrument. The
core and cladding diameters of the fiber used for the
coupler were 100 and 140 pm, respectively. An-
other 1-m-long 105-125-um SI MMF was used to
transmit the input and output light to and from the
interferometer. The detail of the interferometer is
shown in the inset of Fig. 11. To ensure that the two
reflection surfaces are flat, instead of using a cleaved
fiber end as the reflection surface, we attached a 50-
pm-thick fused-silica substrate to the fiber end.
Thus the side S; of the substrate formed one reflec-
tion surface of the EFPI instrument. The other re-
flection surface was formed by the side S, of a 170-
pm-thick fused-silica substrate, which is mounted
onto a five-dimensional positioner to allow the adjust-
ment of the wedge angle 36. Index-matching gel was
applied to the fiber end and to the sides of the dia-
phragms where reflections are undesirable. An op-
tical spectrum analyzer (Model AQ-6315A, Ando
Electric Co., Ltd.) was used to measure the interfer-
ence fringes from the EPFI instrument and monitor
the gap length d. In the experiment, the wedge an-
gle was changed from —0.3° to +0.5°, and the gap
length was maintained at 40 pm during the measure-
ment. The experimental data for the visibility as a
function of the wedge angle are plotted and compared
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Fig.12. Comparison between the theoreticals and the experimen-
tal results on the fringe visibility versus wedge angle.

with the theoretical result in Fig. 12. The theory
and the analysis were validated by the good agree-
ment between the experimental and the theoretical
results.

4. Conclusions

A straightforward theory has been presented that
accurately models the light inference in a low-finesse
MMF EFPI sensor. Inthe model, the electric field is
described by a set of guided modes with a certain
power distribution and random phase relationship.
The light inference occurs only on the same mode,
whereas different modes could mix when the re-
flected light is coupled back to the fiber. Theoreti-
cally, this model is general and is sufficient to
describe EFPI instruments with fibers of any kind.

On the basis of this model, our analysis shows that
the fringe visibility decreases as the gap length in-
creases. The analysis also indicates that the fringe
visibility of an EFPI instrument with a smaller NA
fiber is less sensitive to the gap length of the EFPI
instrument. The wedge angle effect on fringe visi-
bility is studied and is found to depend on the fiber
core size. Fringe visibility is more sensitive to the
wedge angle for a larger core MMF EFPI sensor.
For example, for the 100-um core diameter fiber
EFPI sensor with a gap length of 30 pm, a 0.58°
wedge angle will drop the fringe visibility to 4% if the
all modes are equally excited. This corresponds to a
1.88-um variation of the cavity thickness over the
overall fiber core cross section.

Our analysis also indicates that the effect of the
modal power distribution in the lead-in fiber could be
significant. For a given gap length, the fringe visi-
bility can be increased by a reduction of the number
of modes excited in the fiber. This could be of great
importance for cases in which it is difficult to reduce
the NA of the fiber, for example, when sapphire fiber,
which is not clad, is used.

References
1. C. Belleville and G. Duplain, “White-light interferometric mul-
timode fiber-optic strain sensor,” Opt. Lett. 18, 78—-80 (1993).
2. C. E. Lee and H. F. Taylor, “Fiber-optic Fabry-Perot temper-

20 August 2004 / Vol. 43, No. 24 / APPLIED OPTICS 4665



4666

ature sensor using a low-coherence light source,” J. Lightwave
Technol. 9, 129-134 (1991).

. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May,
“Self-calibrated interferometric-intensity-based optical fiber
sensors,” J. Lightwave Technol. 19, 1495-1501 (2001).

. Y. Kim and D. P. Neikirk, “Micromachined Fabry-Perot cavity
pressure transducer,” IEEE Photon. Technol. Lett. 7, 1471—
1473 (1995).

. N. Furstenau, M. Schmidt, H. Horack, W. Goetze, and W.
Schmidt, “Extrinsic Fabry-Perot interferometer vibration and
acoustic sensor systems for airport ground traffic monitoring,”
IEE Proc. Optoelectron. 144, 134144 (1997).

. H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-
crystal sapphire fiber-based strain sensor for high-temperature
applications,” J. Lightwave Technol. 21, 2276—2283 (2003).

. A. K. Murphy, M. F. Gunter, A. M. Vengsarker, and R. O.
Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot opti-
cal fiber sensors,” Opt. Lett. 16, 273-275 (1991).

. V. Arya, M. J. de Vries, K. A. Murphy, A. Wang, and R. O.
Claus, “Exact analysis of the EFPI optical fiber sensor using

APPLIED OPTICS / Vol. 43, No. 24 / 20 August 2004

10.

11.

12.

13.

14.

15.

Kirchhoff’s diffraction formalism,” Opt. Fiber Technol. 1, 380—
384 (1995).

. F. Pérennes, P. C. Beard, and T. N. Mills, “Analysis of a low-

finesse Fabry—Perot sensing interferometer illuminated by a
multimode optical fiber,” Appl. Opt. 38, 7026-7034 (1999).

C. M. Miller, S. C. Mettler, and I. A. White, Optical Fiber
Splices and Connectors: Theory and Methods (Marcel Dek-
ker, New York, 1986).

G. Keiser, Optical Fiber Communications (McGraw-Hill, Bos-
ton, Mass., 2000).

T.-C. Poon and P. R. Banerjee, Contemporary Optical Image
Processing with MATLAB (Elsevier Science, New York, 2001).
A. Safaaii-Jazi, “Optical waveguides,” Lecture notes (Depart-
ment of Electrical and Computer Engineering, Virginia Poly-
technic Institute and State University, Blacksburg, Va., 2002).
J. N. Kutz, J. A. Cox, and D. Smith, “Mode mixing and power
diffusion in multimode optical fibers,” J. Lightwave Technol.
16, 1195-1202 (1998).

D. T. Neilson, “Tolerance of optical interconnections to mis-
alignment,” Appl. Opt. 38, 2282—2290 (1999).



