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xact analysis of low-finesse multimode fiber
xtrinsic Fabry–Perot interferometers

ing Han and Anbo Wang

A straightforward theory is presented to accurately model the light inferences in a low-finesse multimode
fiber extrinsic Fabry–Perot �FP� interferometer. The effect on the fringe visibility of the gap length,
sensor structure imperfections, and modal power distributions is explored. The analysis is particularly
useful in the design and optimization of sensors that use an extrinsic FP cavity as the sensing element.
© 2004 Optical Society of America

OCIS codes: 060.2370, 120.2230, 120.3180, 060.2310, 030.4070.
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. Introduction

iber-optic sensors have found numerous industrial
nd military applications in the past three decades.
hese sensors possess small size and high sensitivity,
re immune to electromagnetic interference, and can
e modified for distributed or multiparameter mea-
urement. Among them, extrinsic Fabry–Perot �FP�
nterferometric �EFPI� fiber-optic sensors have at-
racted a great deal of attention because of their simple
ensor structure and capability to measure various
arameters such as strain,1 temperature,2 pressure,3,4

nd acoustic waves.5 However, the generally rela-
ively higher cost of fiber-optic sensors compared with
heir electronic counterparts has limited the wide-
pread use of these sensors. One of the limiting fac-
ors is use of high-power broadband light sources for
hite-light interferometry that permits accurate and
bsolute measurement. Multimode fiber �MMF�
FPI sensors would significantly lower the cost of the
ensor systems because MMFs impose less-stringent
onstraints on the light source. Furthermore, for ex-
reme harsh environments with temperatures above
000 °C, sapphire fiber EFPI sensors6 are considered;
hese sapphire fibers are highly multimode because
hey are not clad and have a core size that is usually
ore than tens of micrometers.

The authors are with the Center for Photonics Technology, Brad-
ey Department of Electrical and Computer Engineering, Virginia
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0003-6935�04�244659-08$15.00�0
© 2004 Optical Society of America
The FP cavity in an EFPI sensor is usually formed
etween the endface of a lead-in fiber and a reflector
laced at a distance �usually less than a few hundred
icrometers� to the lead-in fiber endface. The re-
ections at the lead-in fiber endface and at the reflec-
or are coupled back to the lead-in fiber and interfere
o form certain interferometric fringe patterns.
hanges in the FP cavity length, known as the gap

ength, cause the interferometric fringe variations.
or an intensity-based low-finesse EFPI sensor, the
ensitivity to a measurand-induced change in gap
ength is highly dependent on the visibility of the
ringes. The fringe visibility in single-mode fiber
SMF� EFPI sensors has been extensively analyzed
y the modeling of the output of the fiber as a point
ource7 or, more accurately, as a Gaussian beam.8
owever, the research on MMF EFPI sensors has
een limited. Pérennès et al.9 have analyzed the
MF EFPI sensors based on geometrical-optics

heory, in which the output of the propagation modes
n a MMF is modeled as incoherent rays outputting
he fiber endface with different angles. The
eometrical-optics theory is an approximate method
nd is adequate only when the fiber characteristic
imension is much larger than the optical wave-
ength. This condition may not be satisfied for
trongly guiding fibers, in which the refractive-index
ifference between the core and the cladding is large,
uch as a sapphire fiber; however, the electromag-
etic theory that is based on Maxwell’s equations can,

n principle, be used in any situation and provides a
omplete treatment on mode mixing and inference.
evertheless, to the best of our knowledge, no theo-

etical research on the exact analysis of MMF EFPI
ensors based on electromagnetic wave propagation
as been reported in detail so far.
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This paper is constructed as follows. In Section 2
e present an exact analysis on the fringe visibility of
MF EFPI sensors based on the electromagnetic the-

ry. Even though a weakly guiding fiber is used in
ur analysis, the method we present is applicable for
bers of any kind. Then the numerical results based
n the theory are discussed in Section 3. First, the
ffect on fringe visibility of the sensor parameters
ncluding the fiber core size, numerical aperture �NA�
f the fiber, the modal power distribution in the
ead-in fiber, and the gap length of the FP cavity is
tudied. Next, the effect of one of the typical inter-
erometer imperfections, in which the two reflection
urfaces of the FP cavity are not perfectly parallel to
ach other, is studied both theoretically and experi-
entally and the results are compared to validate the

heory. Finally, several conclusions are given in
ection 4.

. Theory

schematic of a low-finesse MMF EFPI sensor is
hown in Fig. 1. The FP cavity is formed by the
ndface R1 of the lead-in MMF and another reflection
urface R2. For an ideal EFPI sensor, R1 and R2 are
erfectly parallel to each other and are perpendicular
o the fiber axis z. n3 is the refractive index inside
he FP cavity. For simplicity, it is assumed that the
avity is filled with air and thus n3 � 1. Suppose the
MF has a core radius a and is step indexed with a

efractive index n1 in the core and n2 in the cladding.
he gap length d is defined as the distance between
1 and R2. The reflection coefficient r1 of surface R1
nd reflection coefficient r2 of surface R2 are defined
y the weak Fresnel reflection arising from the
efractive-index mismatches at the two surfaces. In
ractice, the reflections at the interfaces are usually
mall. The light propagating along the lead-in
MF is partially reflected by R1 and R2, and the two

eflections are coupled back into the lead-in MMF
nd interfere to form interferometric fringes.
We assume that the MMF supports N orthogonal

uided eigenmodes with the normalized field profile
f the kth modes �k �k � 1, 2, . . . , N�. The total field
f the light propagating along the �z direction can be
xpressed as a superposition of all the guided modes,
hich can be written as10

Etotal � �
k�1

N

pk�k exp��j�k z�êk

� �
k�1

N

� pk�exp� j	pk��k exp��j�k z�êk, (1)

here êk is a unit vector representing the polariza-
ion of the mode and the coefficient pk is the complex
agnitude of the kth mode representing the modal

istribution in the fiber. For example, if we assume
ll modes in the MMF are equally excited, then all
odes will have the same intensity, so �pk� � p for k �

, 2, . . . , N, where p is a constant. The intensity of
he reflected light can be expressed as the superpo-
660 APPLIED OPTICS � Vol. 43, No. 24 � 20 August 2004
ition of the intensities of all modes because they are
rthogonal:

I � 
Etotal � Etotal*� � �
k�1

N

� pk�k�� pk�k�*
êk � êk*�

� �
k�1

N

pk pk* � �
k�1

N

Ik. (2)

imilarly, for the reflected light propagating along
he �z direction, the field can also be decomposed to
set of guided modes:

E � �
k�1

N

qk�k exp��j�k z�êk, (3)

nd the intensity of the reflected light is expressed as

IR � 
E � E*� � �
k�1

N

qk qk* � �
k�1

N

Ik. (4)

Now we consider the field of a particular mode qk�k
f the reflected light. Because the Fresnel reflec-
ions at the reflection surfaces are low, the effect of
he multiple reflections in the cavity is neglected.
hus the reflected light comes from the two reflec-
ions at surface R1 and surface R2. Because surface
1 is perpendicular to the fiber axis, the kth mode
ropagating along the �z direction will be coupled
ack to the kth mode propagating along the �z di-
ection at the reflection by surface R1 and there is no
oupling between modes with different mode num-
ers. However, because of the lateral displacement
�gap length� of surface R2 to the fiber endface R1,

nly part of the mode k propagating along the �z
irection that is reflected by surface R2 can be cou-
led back to mode k. Furthermore, modes with
ode numbers different from k that are reflected by

urface R2 can also be coupled into mode k. Thus
he reflected field profile of mode k can be expressed
s the summation of three terms:

k�k � rpk�k � �k rpk�k exp�i
	0� � ck�k exp�i
	rk�.
(5)

ote that we have already assumed r1 � r2 � r and
eglected the light power loss due to the Fresnel
eflection of surface R1. In Eq. �5� the first term
pk�k is the reflection at surface R1; the second term
krpk�k exp�i
	0� is the reflection at surface R2 of the
ame mode k with a phase shift 
	0 � 4�n3d�� with
espect to � rp � ; � is the coupling coefficient be-

Fig. 1. Schematic of a low-finesse MMF EFPI sensor.
k k k k
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ween the mode k propagating along the �z direction
nd the same mode propagating along the �z direc-
ion but reflected back by surface R2. The coupling
ccurs at the surface plane R1. We assume �k �
�k�exp�i	k�. The third term ck�k exp�i
	rk� is the
eflection at surface R2 of other modes with phase
hift 
	rk, where ck is an overall coupling coefficient
nd is a real number. Thus the reflected light in-
ensity of mode k is expressed as

Ik � qk qk*

� �rpk � �k rpk exp�i
	0� � ck exp�i
	rk��

� �rpk* � �k*rpk* exp��i
	0�

� ck exp��i
	rk��

� r2� pk�2 � r2��k�2� pk�2 � ck
2 � 2r2��k� pk�2

� cos�
	0 � 	k�

� 2r� pk�ck cos�
	rk � 	pk�

� 2r��k� pk�ck cos�
	0 � 	k � 	pk � 
	rk�. (6)

ubstituting Eq. �6� into Eq. �4� we obtain the total
eflected light intensity IR:

IR � �
k�1

N

Ik

� �
k�1

N

�r2� pk�2 � r2��k�2� pk�2 � ck
2

� 2r2��k� pk�2 cos�
	0 � 	k� � 2r� pk�ck

� cos�
	rk � 	pk� � 2r��k� pk�ck

� cos�
	0 � 	k � 	pk � 
	rk��. (5)

oting that all modes propagating along the MMF
ave a random initial phase relationship when they
re excited by the light source and individual modes
ith different propagation constants experience a dif-

erent phase shift during propagation along the fiber,
t is reasonable to assume that 
	rk is a random
ariable uniformly distributed in the phase range
��, ��. Furthermore, we assume that the number
f the modes excited in the fiber is sufficiently large so
hat the summation of the terms related to 
	rk is
veraged to zero in Eq. �7�. This assumption is rea-
onable for a typical MMF that usually supports sev-
ral hundred modes at wavelengths around 1550 nm.
hus Eq. �7� is simplified to be of the form

IR � r2 �
k�1

N

� pk�2�1 � ��k�2 � ck
2 � 2��k�cos�
	0 � 	k��.

(8)

Equation �8� is a function of the phase shift 
	0,
nd it describes the fringe visibility of the reflected
ight in the fiber. To find the maximum Imax and the

inimum Imin, the values of 
	0 where Imax and Imin
ccur are found when we solve

�I ��
	 � 0. (9)
R 0
he solutions of Eq. �9� are given by


	01 � �tan�1��
k�1

N

�pk�2��k�sin 	k��
k�1

N

��k�cos 	k� ,

(10)


	02 � � � tan�1��
k�1

N

�pk�2��k�sin 	k��
k�1

N

��k�cos 	k� ,

(11)

ne of which corresponds to Imax and the other to Imin.
ubstituting Eqs. �10� and �11� into Eq. �8�, we obtain

max and Imin:

Imax � r2 �
k�1

N

� pk�2�1 � ��k�2 � ck
2 � 2��k�

� cos�
	01 � 	k���, (12)

Imin � r2 �
k�1

N

� pk�2�1 � ��k�2 � ck
2 � 2��k�

� cos�
	01 � 	k���. (13)

hus the fringe visibility defined by Vb � �Imax �

min���Imax � Imin� is simply expressed as

Vb �

2 �
k�1

N

� pk�2��k�cos�
	01 � 	k��

�
k�1

N

� pk�2 � �
k�1

N

� pk�2���k�2 � ck
2�

. (14)

or simplicity, the input power of the lead-in fiber is
ormalized to be unity, namely,

I � �
k�1

N

� pk�2 � 1. (15)

hus Eq. �14� is further simplified to be of the form

Vb � 2 �
k�1

N

� pk�2��k�cos�
	01 � 	k����1 � �R2
�, (16)

here

�R2
� �

k�1

N

� pk�2���k�2 � ck
2�. (17)

R2
is actually the light power coupling coefficient

etween the fiber F and its mirror image F� with
espect to surface plane R2, as shown in Fig. 2. For
wo step-index �SI� MMFs that have a longitudinal

ig. 2. Schematic of the calculation of �R2
and �k. Fiber F� is the

irror image of the lead-in fiber F with respect to the reflection
urface plane R2.
20 August 2004 � Vol. 43, No. 24 � APPLIED OPTICS 4661
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ffset 2d, the light power coupling has been shown to
e11

�R2
� a2��a � 2d tan �c�

2, (18)

here �c � sin�1��n1
2 � n2

2�1�2�n1� is the critical
cceptance angle of the fiber.
Now we consider the calculation of the mode cou-

ling coefficient �k. Assuming that �k� is the eigen-
ode �k of fiber F, transmitted a distance of 2l to

lane R1�, the coupling coefficient is obtained when
e perform the overlap integral of �k and �k� over the

urface R1�, which leads to9

�k � ��
R1�

�k��k*dxdy. (19)

he field distribution of �k� is given by the formula12

�k�� x, y� � Fxy
�1�Fxy��k� x, y��H�kx, ky; z��z�2d�,

(20)

here Fxy and Fxy
�1 denote the two-dimensional spa-

ial Fourier transform and its inverse Fourier trans-
orm with transform variables kx and ky known as
patial frequencies. H�kx, ky; z� is called the spatial
ransfer function of propagation of light through a
istance z in free space and is defined by12

H�kx, ky; z� � exp��jk0 z�1 � �kx
2 � ky

2��k0
2�1�2�.

(21)

The calculation of fringe visibility by Eq. �16� is
eneral and applies to any MMF, provided that a
ufficient number of modes is excited in the fiber.
owever, to keep the analysis as clear as possible and

ocused on the modes’ interactions rather than calcu-
ations of the modes themselves, we assume here a
eakly guided SI fiber, the structure of which is

hown in Fig. 3. Because � is small, where � �
n1 � n2��n1 is the normalized core–cladding index
ifference of the fiber, the linearly polarized mode
pproximation should be sufficient to describe the
odes guided by the fiber.13 With these assump-

ions, the characteristic equation in the fiber that we
olve to obtain the effective index neff of all possible
odes with azimuthal number l is given by13

J �u���uJ �u�� � K �w���wK �w�� � 0, (22)

ig. 3. Diagram of a cross section of the fiber geometry considered
ere.
l l�1 l l�1

662 APPLIED OPTICS � Vol. 43, No. 24 � 20 August 2004
here J is a Bessel function of the first kind, K is a
odified Bessel function of the second kind, u and w

re defined by u � �2�a����n1
2 � neff

2�1�2 and w �
2�a����neff

2 � n2
2�1�2 at wavelength �, and the rest

f the parameters are defined in Fig. 3. Once Eq.
22� is solved, the field profile of an eigenmode in the
ber is readily obtained in terms of radial and azi-
uthal components13:

�k � �A� Jl�ur�a��Jl�u��sin�l	 � 	0�, r � a
A�Kl�ur�a��Kl�u��sin�l	 � 	0�, r � a . (23)

he number of guided modes that a fiber can support
s determined by the normalized frequency V of the
ber, which is defined by V � �2�a����n1

2 � n2
2�1�2.

rovided that l � 0, the maximum value of l can be
ound when we solve the inequities

�Jl�1�V� � 0
Jl�V� � 0 . (24)

o far we have elaborated the calculations of the
ode profiles �k; thus the mode coupling coefficient

k can be obtained by a combination of Eqs. �20� and
19�. From Eq. �16�, modal distribution parameters
pk�2 are needed before the fringe visibilities can be
alculated. A uniformly modal power distribution is
ssumed in many reports.9,10 However, if we as-
ume that the mode coupling through the propaga-
ion along the MMF is negligible, which may be a
easonable assumption for a fiber length no longer
han several hundred meters,14 �pk�2 can be calcu-
ated by the initial conditions and is given by

� pk�2 � B���
Ri

�s�k*dxdy�2

, (25)

here �s is the field profile transmitted to the MMF
nput plane Ri of the light from the source that excites
he MMF, and B is a normalization coefficient deter-
ined by Eq. �15�. In our simulation, in addition to

he assumption of uniform modal power distribution,
e also study the case in which the MMF is illumi-
ated by a SMF output, thus the light power of the
MF has a heavier distribution on the lower-order
odes.

. Results

n this section the effect on the fringe visibility of the
ap length of a sensor is first studied in Subsection
.A. Then the effect of a typical imperfection in a
MF EFPI sensor, namely, the wedge of the sensor

ead, is studied theoretically in Subsection 3.B and
xperimentally in Subsection 3.C. In the analysis,
he light wavelength is set to � � 1.55 �m. Three
ifferent types of weakly guided SI MMF are chosen
s the lead-in fiber in the MMF EFPI sensor, the
arameters of which are shown in Table 1. Fiber 1
as a much larger core diameter �2a� than fiber 2;
owever, their core and cladding refractive indices n1
nd n2 are chosen to support the same total linearly
olarized mode number N in both fibers. Fiber 3 is
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hosen to have the same core diameter as fiber 2 and
he same n1 and n2 as fiber 1. Thus fiber 3 has the
ame NA as fiber 1, but a smaller V number and
upports less modes than fibers 1 and 2.

. Gap Length

ere we assume an ideal MMF EFPI sensor, with
eflection surfaces R1 and R2 perfectly parallel to
ach other and both perpendicular to the fiber axis z.
irst we consider the case in which all the propaga-

ion modes in the MMFs are equally excited, which
eads to �pk�2 � 1�N according to Eq. �15�. The fringe
isibility as a function of the gap length for fibers 1,
, and 3 is shown in Fig. 4. The fringe visibility of all
hree fibers starts from the same maximum �100%� at
� 0 and decreases as the gap length increases, with

idelobes appearing at the tail of the curves. How-
ver, the visibility of fiber 2, which has a larger NA
han fibers 1 and 3, drops much more quickly down to
he first minimum as the air gap increases to 16 �m.
he visibility of fibers 1 and 3, which have the same
A, drops to its first minimum almost at the same
ap length. This is in agreement with the conclu-
ion obtained by the geometrical-optics theory9 that
he gap length dmin, where minimum fringe visibility
ccurs, is determined by the NA of the fiber; a smaller
A leads to a larger dmin.
Next the effect on the fringe visibility of the mode

eld distribution is considered. Instead of a uniform
odal power distribution, we consider the case in
hich the MMF is illuminated by a SMF output, as

Table 1. Fiber Parameters Used in the Simulation

Parameter

Fiber

1 2 3

2a ��m� 100 50 50
n1 1.448 1.448 1.448
n2 1.440 1.416 1.440
NA 0.15 0.30 0.15
V number 30.80 30.68 15.40
N 127 127 33
F
T

hown in Fig. 5. In our simulation, the SMF has a
ore refractive index of 1.445, a cladding refractive
ndex of 1.440, and a core diameter of 9 �m. There
s only one mode, �0, propagating along the SMF, and
he calculated mode field diameter is 10.04 �m.
rom Eq. �25�, only those modes with the same azi-
uthal number as �0 can be excited in the MMF.
hus only a portion of guided modes are excited.
he mode power coefficient of each mode, �pk�2, is
iven by Eq. �25�, and the calculated fringe visibility
s a function of gap length is shown in Fig. 6.
A comparison of Figs. 6 and 5 shows that, for a

iven gap length, the MMF EFPI sensor excited by a
MF has a larger fringe visibility compared with a
niform mode excitation. For example, fiber 2 illu-
inated by a SMF still has a fringe visibility of 71.8%

t the gap length of 16 �m, whereas it would drop to
nly 6.0% if all modes were uniformly excited. Also
ote that the fringe visibility of fiber 1 drops slower
han that of fiber 3 in Fig. 6, whereas they have
lmost the same response to the gap length when all
odes are uniformly excited. This indicates that a

eduction in mode numbers is more efficient for
arger core fibers to increase the fringe visibility.

. Wedges

n practice, the two reflection surfaces in a MMF
FPI sensor are usually not perfectly parallel to each
ther because of the limited fabrication accuracy.
he cavity geometry therefore becomes that of a
edge, introducing variations in the cavity thickness
f the interferometer. The effect on fringe visibility
f the wedge is studied in this subsection. Here we

Fig. 5. Schematic of a MMF illuminated by a SMF output.
ig. 4. Fringe visibility versus gap length for fibers 1, 2, and 3.
ll modes in the MMFs are equally excited.
ig. 6. Fringe visibility versus gap length for fibers 1, 2, and 3.
he MMF are illuminated by a SMF output.
20 August 2004 � Vol. 43, No. 24 � APPLIED OPTICS 4663
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4

ssume that reflection surface plane R1 is still per-
endicular to the fiber axis z whereas reflection sur-
ace R2 is tilted from its original position, forming a
edge angle of �� with respect to R1, as shown in Fig.
. The effect of the angular and lateral misalign-
ent between the lead-in fiber F and its mirror image

ber F� caused by a wedge must be considered when
e use Eq. �19� to calculate the mode coupling coef-
cient �k. The effect of the wedge is to produce a

inear phase change across the beam15 and a spatial
isplacement between mode �k� and �k at the cou-
ling plane R1�. For mode �k� that is misaligned by
wedge angle ��, the field can be described by

�k,���� x, y� � �k�� x � 2d tan �, y�

� exp� jk0 x tan�2����. (26)

hus mode coupling coefficient �k is obtained when
q. �26� is substituted into Eq. �19�.
Again we assume that all the modes are equally

xcited in the fiber. The fringe visibility of fiber 1 as
function of the wedge angle is plotted in Fig. 8 at

ifferent gap lengths d � 20, 30, and 40 �m. The
ringe visibility curve decreases as the wedge angle is
ncreased and it also shows sidelobe structures at the
ail of the curve. It is also shown that, even with

ig. 7. Illustration of a MMF EFPI sensor with a wedge between
he two reflection surfaces R1 and R2. Fiber F� is the mirror
mage of fiber F with respect to surface plane R2.

ig. 8. Fringe visibility versus wedge angle for fiber 1 at a gap
ength d � 20, 30, and 40 �m. All modes in the MMFs are equally
xcited.
664 APPLIED OPTICS � Vol. 43, No. 24 � 20 August 2004
ifferent starting visibilities, the three curves corre-
ponding to various gap lengths drop to the first min-
mum, which is around 4%, at the same wedge angle
f 0.54°. Thus the effect on the fringe visibility of
he wedge angle does not depend on the gap length.
he fringe visibility for the three fibers at selected
ap lengths is plotted in Fig. 9. The gap length used
or fibers 1 and 3 are 30 �m, whereas a 10-�m gap
ength is used for fiber 2 to clearly show the trend of
ringe visibility changes. Apparently the fringe vis-
bility curve of fiber 1 drops more quickly than fibers
and 3, whereas the fringe visibility of fibers 2 and 3

hows a similar response to the wedge angles. Thus
t is concluded that the sensitivity of fringe visibility
o wedge angle depends on the fiber core diameter.

MMF EFPI sensor with bigger core diameter fibers
s more vulnerable to imperfections on the parallel-
sm of the two reflection surfaces of the cavity.

Now we consider the case in which the MMF is
lluminated by a SMF output, as discussed in Sub-
ection 3.A. The SMF parameters are all the same
s those in Subsection 3.A. The results for fibers 1,
, and 3 are shown in Fig. 10 and compared with the
esult shown in Fig. 9. The comparison shows that
he sensitivity of fringe visibility to the wedge angles

ig. 9. Fringe visibility versus wedge angle for fibers 1, 2, and 3.
ll modes in the MMFs are equally excited.

ig. 10. Fringe visibility versus wedge angle for fibers 1, 2, and 3.
he MMFs are illuminated by a SMF output.
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s not significantly effected when the modes are re-
uced in number, even though fringe visibility is in-
reased by SMF output excitation.

. Experimental Verification

o validate the theory and the analysis, the fringe
isibility as a function of the wedge angle was mea-
ured to compare with the theoretical results. The
xperimental setup is shown in Fig. 11. To maxi-
ally excite the modes of the MMF, the light from a

ber-optic light system �Model MKII, Nikon, Inc.�
as directly coupled into 1-m-long SI MMF with a

ore diameter of 105 �m and a cladding diameter of
25 �m. The refractive indices of the core and clad-
ing in the fiber are 1.448 and 1.440, respectively. A
-dB SI MMF coupler was used to separate the input
nd output light from the EFPI instrument. The
ore and cladding diameters of the fiber used for the
oupler were 100 and 140 �m, respectively. An-
ther 1-m-long 105–125-�m SI MMF was used to
ransmit the input and output light to and from the
nterferometer. The detail of the interferometer is
hown in the inset of Fig. 11. To ensure that the two
eflection surfaces are flat, instead of using a cleaved
ber end as the reflection surface, we attached a 50-
m-thick fused-silica substrate to the fiber end.
hus the side S1 of the substrate formed one reflec-
ion surface of the EFPI instrument. The other re-
ection surface was formed by the side S2 of a 170-
m-thick fused-silica substrate, which is mounted
nto a five-dimensional positioner to allow the adjust-
ent of the wedge angle ��. Index-matching gel was

pplied to the fiber end and to the sides of the dia-
hragms where reflections are undesirable. An op-
ical spectrum analyzer �Model AQ-6315A, Ando
lectric Co., Ltd.� was used to measure the interfer-
nce fringes from the EPFI instrument and monitor
he gap length d. In the experiment, the wedge an-
le was changed from �0.3° to �0.5°, and the gap
ength was maintained at 40 �m during the measure-

ent. The experimental data for the visibility as a
unction of the wedge angle are plotted and compared

ig. 11. Experimental setup to measure the fringe visibility as a
unction of wedge angle. OSA, optical spectrum analyzer.
ith the theoretical result in Fig. 12. The theory
nd the analysis were validated by the good agree-
ent between the experimental and the theoretical

esults.

. Conclusions

straightforward theory has been presented that
ccurately models the light inference in a low-finesse
MF EFPI sensor. In the model, the electric field is

escribed by a set of guided modes with a certain
ower distribution and random phase relationship.
he light inference occurs only on the same mode,
hereas different modes could mix when the re-
ected light is coupled back to the fiber. Theoreti-
ally, this model is general and is sufficient to
escribe EFPI instruments with fibers of any kind.
On the basis of this model, our analysis shows that

he fringe visibility decreases as the gap length in-
reases. The analysis also indicates that the fringe
isibility of an EFPI instrument with a smaller NA
ber is less sensitive to the gap length of the EFPI

nstrument. The wedge angle effect on fringe visi-
ility is studied and is found to depend on the fiber
ore size. Fringe visibility is more sensitive to the
edge angle for a larger core MMF EFPI sensor.
or example, for the 100-�m core diameter fiber
FPI sensor with a gap length of 30 �m, a 0.58°
edge angle will drop the fringe visibility to 4% if the
ll modes are equally excited. This corresponds to a
.88-�m variation of the cavity thickness over the
verall fiber core cross section.
Our analysis also indicates that the effect of the
odal power distribution in the lead-in fiber could be

ignificant. For a given gap length, the fringe visi-
ility can be increased by a reduction of the number
f modes excited in the fiber. This could be of great
mportance for cases in which it is difficult to reduce
he NA of the fiber, for example, when sapphire fiber,
hich is not clad, is used.
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