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Abstract 
 
In order to study the free vibration of simply supported circular cylindrical shells, an exact analytical procedure is developed and dis-

cussed in detail. Part I presents a general approach for exact analysis of natural frequencies and mode shapes of circular cylindrical shells. 
The validity of the exact technique is verified using four different shell theories 1) Soedel, 2) Flugge, 3) Morley-Koiter and 4) Donnell. 
The exact procedure is compared favorably with experimental results and those obtained using a numerical finite element method. A 
literature review reveals that beam functions are used extensively as an approximation for simply supported boundary conditions. The 
accuracy of the resonance frequencies obtained using the approximate method are also investigated by comparing results with those of 
the exact analysis. Part II presents effects of different parameters on mode shapes and natural frequencies of circular cylindrical shells.  
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1. Introduction 

Similar to beams and plates, cylindrical shells are the prac-
tical elements of various engineering structures such as pipes 
and ducts, car bodies, space shuttles, aircraft fuselages, ship 
hulls, submarines, and buildings. However, analyzing the 
dynamic characteristics of cylindrical shells is more compli-
cated than analyzing those of beams and plates. This situation 
occurs mainly because the equations of motion in a cylindrical 
shell are more complicated. Moreover, in many cases bound-
ary condition effects are hard to apply. 

A comprehensive summary and discussion of shell theories, 
including natural frequencies and mode shape identification, 
has been done by Liessa [1] in 1973. More recently, adopting 
a non-linear point of view, Amabili and Paidoussis [2], 
Amabili [3] and Kurylov and Amabili [4] have presented 
noteworthy reviews on cylindrical shell vibration. Many re-
searchers such as Flugge [5] have followed the pioneering 
work of Love [6], using his first approximation theory. The 
Flugge theory is based on the Kirchhoff-Love hypothesis for 
thin elastic shells. Using this theory, the strain-displacement 
relations and changes of curvature in the middle surface of a 
cylindrical shell can be obtained. The simplified Donnell’s 
theory is achieved by neglecting a few terms in the Flugge 

equations. 
Livanov [7] applied love’s assumption and used displace-

ment functions to solve the problem of axisymmetrical vibra-
tions of simply supported cylindrical shells. Rinehart and 
Wang [8] investigated the vibration of simply supported cy-
lindrical shells stiffened by discrete longitudinal stiffeners 
using Donnell’s approximate theory, Flugge’s exact theory, 
and Love’s assumption for longitudinal wave numbers. These 
theories are not only suitable for simply supported end condi-
tions, but they can also be applied to other cylindrical shell 
boundary conditions such as fixed free [9, 10], clamped-
clamped [11] and infinite length ones [12]. In most reports 
available in the literature, beam functions are used as ap-
proximations for the boundary condition effects. Thus, reso-
nance frequencies are obtained through an approximate pro-
cedure rather than an exact analysis. The main reason for these 
approximations is the difficulties posed when actual boundary 
conditions are applied. 

The first part of the present study proposes an exact analyti-
cal approach to investigate the free vibration of simply sup-
ported cylindrical shells. As mentioned, in conventional anal-
ysis, beam functions with similar boundary conditions are 
used to approximate wave numbers in the axial direction. This 
approach is considered to be approximate; however, the de-
gree of uncertainty in these approximations is unknown. An 
exact method is developed, which will consider the actual 
effects of shell boundaries in order to obtain exact resonance 
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frequencies of a cylindrical shell. The exact method is used to 
obtain the natural frequencies based on four different shell 
theories (Soedel, Flugge, Morley-Koiter and Donnell). This 
method is compared with the approximate method, to study 
the validity of beam function approximations. The results are 
also compared with experimental and numerical ones and 
show good agreement. 

 
2. Theoretical analysis 

As mentioned in the literature, circular cylindrical shells 
with both ends closed have wide applications in the aviation 
industry. Moreover, hemispherical shells closed at both ends 
are broadly used for pressure vessels and storage tanks [13]. 

A schematic diagram of a circular cylindrical shell closed at 
both ends is given in Fig. 1. The cylindrical shell under con-
sideration has a constant thickness h, mean radius R, axial 
length L, Poisson’s ratiou , density r  and Young’s modulus 
of elasticity E . Here, the respective displacements in the axial, 
circumferential and radial directions are denoted by ( ), ,u x tq , 
( ), ,v x tq  and ( ), ,w x tq . 
In order to study free vibration of a cylindrical shell, the 

equations of motion can be written in matrix form as follows: 
 

( )
( )
( )

11 12 13

12 22 23

13 23 33

, , 0
, , 0
, , 0

L L L u x t
L L L v x t
L L L w x t

q
q
q

ì üé ù ì ü
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 (1) 

 
where ( , 1,  2,  3)ijL i j = are differential operators with respect 
to x , q  and t. 

Different systems of equations are used to model the vibra-
tion behavior of circular cylindrical shells. In this paper four 
of the most common theories, namely: 1) Soedel [14], 2) 
Flugge [5], 3) Morley-Koiter [15] and 4) Donnell’s theory [3], 
are used to find natural frequencies. It is convenient to define 
the following differential operators for these theories, respec-
tively: 
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Fig. 1. Circular cylindrical shell: coordinate system and dimensions. 
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The operators in Eqs. (2)-(5) can be treated as the sum of 
two operators as done by Leissa [1]: 

 
k= +D MODL L L  (6) 

 
where DL  is  the differential operator according to the 
Donnell theory. MODL  is a modifying operator that differs 
for each theory and is presented in Appendix A. Moreover, k 
is the nondimentional thickness parameter defined by 

 
2

212
hk
R

= . (7) 

 
The first attempt at solving Eq. (1) involves the assumption 

of a synchronous motion: 
 

( ) ( ) ( )
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, , ,
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where ( )f t  is the scalar model coordinate corresponding to 
the mode shapes ( ),U x q , ( ),V x q  and ( ),W x q . 

The next step is to use the separation of variables method in 
order to separate the spatial dependence of the modal shape 
between longitudinal and circumferential directions. Hence, 
the axial, tangential and radial displacements of the wall vary 
according to: 
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ì =
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in which ml  and n  are the axial wavenumber and the 
circumferential wave parameter, respectively. ,A B  and C  
are the undetermined constants, and w  is the circular fre-
quency of the natural vibration. 

Substituting Eq. (9) into Eq. (1), using any of the shell theo-
ries given by Eqs. (2)-(5), leads to a set of homogenous equa-
tions having the following matrix form: 

 
11 12 13

12 22 23

13 23 33

0
0
0

C C C A
C C C B
C C C C

é ù ì ü ì ü
ï ï ï ïê ú- =í ý í ýê ú
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 (10) 

 
in which ( , 1,  2,  3)ijC i jé ù =ë û are functions of ,  mn l  and a 
frequency parameter W  that is defined as follows: 

 
2

2 2 2(1 ) R
E
u r w-

W = . (11) 

 
As an example, for Donnell’s theory, ijCé ùë û  can be written 

in matrix form as in Eq. (12). The coefficient matrix for other 
shell theories is defined in Appendix B. 
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For a nontrivial solution, the determinant of the coefficient 

matrix in Eq. (10) must be zero: 
 

( )det 0ijCé ù =ë û ; , 1 ,  2,  3i j = . (13) 

 
The expansion of Eq. (13) will give the following two ei-

genvalue problems: 
• For a given value of ml , there exists one or more proper 

values for w  so that Eq. (13) vanishes. 
• For a given value of w , there exists one or more proper 

values for ml  so that Eq. (13) vanishes. 
Solving Eq. (13) leads to a cubic equation in terms of the 

non-dimensional frequency parameter 2W . Thus, for a fixed 
value of n  and ml , three positive roots and three negative 
roots are yielded for the non-dimensional frequency. The three 
positive roots are the natural frequencies of the cylindrical 
shell that can be classified as primarily axial, circumferential 
or radial. The lowest frequency is usually associated with a 
motion that is primarily radial (or flexural). 

 
2.1 The approximate beam function method 

In general, solving the roots of the characteristic equation of 
Eq. (13) for ml  is not possible in closed form. Hence, re-
searchers have often favored towards using approximate tech-
niques. According to previous studies, beam functions are 
widely used to obtain natural frequencies and approximate 
displacements for closed circular cylindrical shells. According 
to the approximate method, for a shell simply supported at 
both ends, the nature of the axial mode can be defined as: 

 

1.m
Rm
L

l p= -  (14) 

 
Substituting Eq. (14) into Eq. (13), the only unknown of the 

characteristic equation will be the frequency parameter 2W  
for a fixed combination of m  and n . For cylindrical shells 
with simply supported boundary conditions, typical flexural, 
longitudinal and circumferential nodal patterns according to 
different m  and n  combinations are shown in Fig. 2. 

Although this approach is straightforward, it is an approxi-
mation for boundary conditions of a simply supported circular 
cylindrical shell. However, since cylindrical shell vibration is 
totally different compared to that of beams, it is important to 
check the accuracy of this approximation. 

Thus, an exact analytical technique that uses the boundary 
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condition equations to obtain resonance frequencies is pro-
posed. Results of both the approximate and exact methods are 
compared with experimental and numerical data. 

 
2.2 The exact method 

This section presents an exact analysis of the vibration of 
cylindrical shells. The method can be applied to any of the 
theories discussed. 

At each end of the cylindrical shell, four boundary condi-
tions must be specified. For the simply supported shell the 
following boundary conditions are imposed: 

 
0, 0, 0, 0x xw v M N= = = =    at   0,x L= . (15) 

 
These conditions restrain the v  and w  components of 

shell displacements at their mutual boundaries and will cause 
negligible internal bending moment Mx and membrane normal 
force Ny in the shell as the shell deforms. Using the approach 
mentioned in Ref. [3] and eliminating the nonlinear terms, the 
boundary condition equations for a simply supported shell are 
obtained as follows for Soedel [14], Flugge [5], Morley-Koiter 
[15] and Donnell’s theory [3], respectively: 
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Substituting the modal displacements into these constraints, 

leads to a set of eight homogenous equations, expressed as 
follows: 

 
{ } { }8 18 8

0
´´
=é ùë ûH b  (20) 

 
in which ω, λm and ( )1,...,8ib i =  are the ten unknowns. For a 
nontrivial solution of Eq. (20) one requires 

 
det 0.=é ùë ûH  (21) 

 
The driving frequencies are obtained by simultaneously 

solving both the characteristic equations for the 3×3 displace-
ment coefficient matrix, Eq. (13), and the 8×8 boundary con-
dition determinant, Eq. (21). 

 
3. Results and discussion 

3.1 Validation of the exact analysis 

A Matlab program was written to obtain the resonance fre-
quencies of a shell, using the exact method described in the 
previous section. First, exact resonance frequencies were ob-
tained based on the Soedel theory. Consider a cylindrical shell 
with dimensions of L/R = 3, h/R = 1/20 and ν = 1/3. In order to 
yield the exact frequencies, one has to solve Eq. (21) in terms 
of the non-dimensional frequency parameter, W . In Figs. 3-7, 
the determinant of the boundary coefficient matrix (Eq. (21)) 
is calculated for constant values of circumferential wave pa-
rameter (n = 1, 3, 5, 7, 9). As pointed out in section 2.2, to 
obtain a nontrivial solution, the boundary coefficient determi-
nant should be equal to zero at the resonance frequency, W . 
However, as it can be seen by Figs. 3-7, none of the determi-
nants reach zero. This fact is completely explainable consider-
ing the sensitivity of Eq. (21) to W . To obtain the determi-
nant of the boundary coefficient matrix in Figs. 3-7, a fre-
quency sweep was carried out using steps of 0.001DW = . On 
the other hand, Eq. (21) is very sensitive to frequency varia-
tions. Thus, although the determinants represented in Figs. 3-7 
should actually equal to zero at resonance frequencies, since 
the frequency steps are not small enough, they may not make 
the determinant exactly zero. In Figs. 3-7, the determinants are 
not exactly zero at any frequencies, but several minimum 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 2. Mode shapes of a cylindrical shell: (a) circumferential mode 
shapes; (b) longitudinal and radial mode shapes; (c) nodal arrangement 
of a cylindrical shell for n = 2, m = 4. 
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points are observed. These minimum points are actual repre-
sentations of the resonance frequencies of the shell, at which 
the determinants are zero. However, as discussed in section 
2.2, the minimum points should also satisfy Eq. (13) in order 
to be the resonance frequency of the system. Thus, in Figs. 3-7, 
the unmarked minimum points before m = 7 did not satisfy Eq. 
(13) and are not a resonance frequency. 

Accordingly, at higher frequencies, higher axial wave pa-
rameters (m) occur. Figs. 3-7 are graphical representations of 
how the exact resonance frequencies are obtained using the 
method described in this paper. According to the exact method, 
each minimum point in the diagrams represents a resonance 
frequency with a specific mode shape. 

Next, let us investigate the accuracy of using beam func-
tions as an alternative to the exact method. To study such an 
approximation, natural frequencies were calculated using two 
methods: 1) the approximate method (in which λm = 
mπ(R/L) 1- ) and 2) the exact method (Eq. (21)). In Tables 
1-8, the values of the non-dimensional frequency parameter 
W  are compared for a simply supported cylindrical shell. 
Four diverse theories have been applied to evaluate their accu-
racy. All non-dimensional frequencies are calculated up to the 
fourth digit. As it can be seen, the approximate beam function 
analysis yields close results with the least errors. In Tables 1-8, 
mode shapes at which the approximate method obtains errors 
are marked by a (*) sign. 

As one can see from the comparisons of Tables 1-8, there 
are some minute discrepancies, which can be classified into 
two groups for all theories: first, those related to the m = 1 
modes, and second, the differences related to the 2m ³  
modes. In m = 1 modes, the values of the errors are between 
0.2-0.7 percent. However, for the 2m ³  modes, the errors 
are between 0.001-0.01 percent, which are mainly the result of 
a rounding error to the fourth digit. Moreover, according to 
Tables 1-8, as the axial wave parameter m increases, the num-
ber of resonance frequencies containing an error decrease. 
Hence, the approximate method is similar to the exact analysis 
for 2m ³  modes and for low mode numbers of 

1 with 5m n= ³ . On the other hand, for low mode numbers of 
1 with 1 4m n= £ £ , the approximate method yields high 

 
 
Fig. 3. Determinant of the boundary coefficient matrix versus fre-
quency parameter for n = 1. 

 

 
 
Fig. 4. Determinant of the boundary coefficient matrix versus fre-
quency parameter for n = 3. 

 

 
 
Fig. 5. Determinant of the boundary coefficient matrix versus fre-
quency parameter for n = 5. 

 

 
 
Fig. 6. Determinant of the boundary coefficient matrix versus fre-
quency parameter for n = 7. 

 

 
 
Fig. 7. Determinant of the boundary coefficient matrix versus fre-
quency parameter for n = 9. 
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errors and so is not accurate for low mode numbers. Thus, it 
should only be used for high mode numbers with high reso-
nance frequencies. 

Comparing the different approximate theories listed in Ta-
bles 1-8, the approximate Soedel theory is the most accurate. 
In contrast, the approximate Morley-Koiter theory yields the 

Table 1. Frequency parameter for the Soedel’s shell theory by the 
approximation method with L/R = 3, h/R = 1/20 and ν = 1/3. 
 

m = 7 m = 6 m = 5 m = 4 m = 3 m = 2 m = 1 n 
1.2142 
1.2040 
1.2029 
1.2268 
1.2879 
1.3920 
1.5396 
1.7284 
1.9551 
2.2169 

1.0859 
1.0533 
1.0258 
1.0275 
1.0748 
1.1732 
1.3203 
1.5109 
1.7402 
2.0044 

0.9924 
0.9276 
0.8664 
0.8443 
0.8806 
0.9779 
1.1286 
1.3238 
1.5570 
1.8243 

0.9213 
0.8097 
0.7098 
0.6682 
0.7029 
0.8075 
0.9670 
1.1691 
1.4070 
1.6772 

0.8473 
0.6695 
0.5370 
0.4942 
0.5453 
0.6679 
0.8397 
1.0492 
1.2913 
1.5639 

0.7045 
0.4647 
0.3384 
0.3339 
0.4233 
0.5683 
0.7510 
0.9656 
1.2102 
1.4840 

0.3672 
0.1867 
0.1568 
0.2320 
0.3566 
0.5140 
0.7012 
0.9175 
1.1627 
1.4368 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

 
Table 2. Frequency parameter for the Soedel’s shell theory by the exact 
method with L/R = 3, h/R = 1/20 and ν = 1/3. 
 

m = 7 m = 6 m = 5 m = 4 m = 3 m = 2 m = 1 n 
1.2142 
1.2040 
1.2029 
1.2268 
1.2879 
1.3920 
1.5396 
1.7284 
1.9550* 
2.2169 

1.0859 
1.0533 
1.0258 
1.0275 
1.0748 
1.1732 
1.3203 
1.5109 
1.7402 
2.0044 

0.9924 
0.9276 
0.8664 
0.8443 
0.8806 
0.9779 
1.1286 
1.3238 
1.5570 
1.8242* 

0.9213 
0.8097 
0.7098 
0.6682 
0.7029 
0.8075 
0.9670 
1.1690* 
1.4069* 
1.6772 

0.8473 
0.6695 
0.5370 
0.4942 
0.5453 
0.6679 
0.8397 
1.0491* 
1.2913 
1.5638* 

0.7044* 
0.4647 
0.3382* 
0.3338* 
0.4233 
0.5683 
0.7510 
0.9655* 
1.2101* 
1.4840 

0.3660* 

0.1863* 
0.1520* 
0.2320 
0.3565* 
0.5140 
0.7012 
0.9174* 
1.1627 
1.4368 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

 
Table 3. Frequency parameter for the Flugge’s shell theory by the 
approximation method with L/R = 3, h/R = 1/20 and ν = 1/3. 
 

m = 7 m = 6 m = 5 m = 4 m = 3 m = 2 m = 1 n 
1.2147 
1.2057 
1.2064 
1.2325 
1.2959 
1.4020 
1.5514 
1.7414 
1.9691 
2.2316 

1.0863 
1.0551 
1.0297 
1.0340 
1.0838 
1.1842 
1.3329 
1.5247 
1.7547 
2.0195 

0.9929 
0.9297 
0.8708 
0.8515 
0.8906 
0.9900 
1.1421 
1.3382 
1.5719 
1.8395 

0.9219 
0.8119 
0.7146 
0.6764 
0.7140 
0.8207 
0.9811 
1.1838 
1.4221 
1.6926 

0.8479 
0.6718 
0.5425 
0.5037 
0.5578 
0.6818 
0.8543 
1.0641 
1.3064 
1.5791 

0.7051 
0.4672 
0.3453 
0.3455 
0.4371 
0.5828 
0.7658 
0.9805 
1.2251 
1.4991 

0.3676 
0.1907 
0.1680 
0.2458 
0.3709 
0.5285 
0.7158 
0.9322 
1.1775 
1.4517 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

 
Table 4. Frequency parameter for the Flugge’s shell theory by the 
exact method with L/R = 3, h/R = 1/20 and ν = 1/3. 
 

m = 7 m = 6 m = 5 m = 4 m = 3 m = 2 m = 1 N 
1.2147 
1.2057 
1.2064 
1.2325 
1.2959 
1.4020 
1.5513* 
1.7414 
1.9690* 
2.2316 

1.0863 
1.0551 
1.0297 
1.0340 
1.0838 
1.1842 
1.3329 
1.5246* 
1.7545* 
2.0194* 

0.9929 
0.9297 
0.8708 
0.8515 
0.8906 
0.9900 
1.1420* 
1.3381* 
1.5719 
1.8395 

0.9219 
0.8119 
0.7146 
0.6764 
0.7140 
0.8206* 
0.9811 
1.1838 
1.4220* 
1.6925* 

0.8479 
0.6718 
0.5425 
0.5037 
0.5578 
0.6818 
0.8543 
1.0641 
1.3063* 
1.5791 

0.7050* 
0.4672 
0.3453 
0.3455 
0.4371 
0.5828 
0.7658 
0.9805 
1.2251 
1.4990* 

0.3649* 

0.1900* 
0.1681* 
0.2457* 
0.3710* 
0.5285 
0.7158 
0.9321* 
1.1775 
1.4517 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

 
 

Table 5. Frequency parameter for the Morley-Koiter’s shell theory by 
the approximation method with L/R = 3, h/R = 1/20 and ν = 1/3. 
 

m = 7 m = 6 m = 5 m = 4 m = 3 m = 2 m = 1 n 
1.2112 
1.2010 
1.2000 
1.2240 
1.2853 
1.3897 
1.5377 
1.7268 
1.9539 
2.2160 

1.0834 
1.0508 
1.0233 
1.0252 
1.0727 
1.1713 
1.3187 
1.5097 
1.7393 
2.0038 

0.9905 
0.9258 
0.8645 
0.8424 
0.8788 
0.9764 
1.1274 
1.3229 
1.5564 
1.8239 

0.9201 
0.8085 
0.7084 
0.6668 
0.7015 
0.8064 
0.9661 
1.1685 
1.4066 
1.6771 

0.8467 
0.6688 
0.5361 
0.4932 
0.5443 
0.6671 
0.8392 
1.0489 
1.2912 
1.5640 

0.7044 
0.4644 
0.3378 
0.3332 
0.4228 
0.5680 
0.7509 
0.9656 
1.2103 
1.4843 

0.3673 
0.1865 
0.1565 
0.2318 
0.3565 
0.5140 
0.7013 
0.9177 
1.1630 
1.4372 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

 
Table 6. Frequency parameter for the Morley-Koiter’s shell theory by 
the exact method with L/R = 3, h/R = 1/20 and ν = 1/3. 
 

m = 7 m = 6 m = 5 m = 4 m = 3 m = 2 m = 1 n 
1.2112 
1.2010 
1.2000 
1.2240 
1.2853 
1.3897 
1.5377 
1.7268 
1.9538* 
2.2160 

1.0834 
1.0508 
1.0233 
1.0251* 
1.0726* 
1.1712* 
1.3187 
1.5096* 
1.7392* 
2.0038 

0.9905 
0.9258 
0.8645 
0.8423* 
0.8788 
0.9763* 
1.1273* 
1.3228* 
1.5564 
1.8239 

0.9201 
0.8085 
0.7084 
0.6667* 
0.7014* 
0.8064 
0.9661 
1.1684* 
1.4066 
1.6771 

0.8467 
0.6688 
0.5361 
0.4932 
0.5443 
0.6671 
0.8392 
1.0489 
1.2912 
1.5639* 

0.7043* 
0.4644 
0.3377* 
0.3330* 
0.4227* 
0.5680 
0.7509 
0.9656 
1.2103 
1.4843 

0.3653* 

0.1870* 
0.1563* 
0.2314* 
0.3564* 
0.5140 
0.7013 
0.9176* 
1.1630 
1.4372 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

 
Table 7. Frequency parameter for the Donnell’s shell theory by the 
approximation method with L/R = 3, h/R = 1/20 and ν = 1/3. 
 

m = 7 m = 6 m = 5 m = 4 m = 3 m = 2 m = 1 n 
1.2054 
1.1958 
1.1958 
1.2210 
1.2834 
1.3889 
1.5378 
1.7275 
1.9550 
2.2174 

1.0787 
1.0467 
1.0201 
1.0231 
1.0717 
1.1712 
1.3193 
1.5108 
1.7406 
2.0053 

0.9871 
0.9229 
0.8624 
0.8413 
0.8787 
0.9770 
1.1284 
1.3242 
1.5578 
1.8253 

0.9179 
0.8067 
0.7074 
0.6666 
0.7021 
0.8075 
0.9673 
1.1697 
1.4079 
1.6783 

0.8455 
0.6680 
0.5359 
0.4937 
0.5454 
0.6683 
0.8403 
1.0499 
1.2921 
1.5648 

0.7039 
0.4643 
0.3382 
0.3341 
0.4237 
0.5688 
0.7516 
0.9662 
1.2108 
1.4847 

0.3671 
0.1867 
0.1570 
0.2323 
0.3569 
0.5143 
0.7015 
0.9178 
1.1632 
1.4373 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

 
Table 8. Frequency parameter for the Donnell’s shell theory by the 
exact method with L/R = 3, h/R = 1/20 and ν = 1/3. 
 

m = 7 m = 6 m = 5 m = 4 m = 3 m = 2 m = 1 n 
1.2054 
1.1958 
1.1957* 
1.2209* 
1.2834 
1.3889 
1.5377* 
1.7275 
1.9549* 
2.2174 

1.0787 
1.0467 
1.0201 
1.0230* 
1.0716* 
1.1712 
1.3193 
1.5107* 
1.7406 
2.0052* 

0.9871 
0.9229 
0.8624 
0.8412* 
0.8787 
0.9770 
1.1284 
1.3241* 
1.5577* 
1.8252* 

0.9179 
0.8067 
0.7074 
0.6666 
0.7021 
0.8074* 
0.9673 
1.1697 
1.4078* 
1.6782* 

0.8455 
0.6680 
0.5359 
0.4937 
0.5453* 
0.6683 
0.8403 
1.0499 
1.2920* 
1.5647* 

0.7039 
0.4642* 
0.3381* 
0.3340* 
0.4236* 
0.5688 
0.7515* 
0.9662 
1.2108 
1.4847 

0.3674* 

0.1858* 
0.1563* 
0.2321* 
0.3568* 
0.5143 
0.7015 
0.9178 
1.1631* 
1.4373 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
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highest errors. However, for all theories as the frequency and 
mode numbers increase, the errors of the approximation de-
crease. 

The exact and approximate methods were applied to the 
four theories discussed: 1) Soedel, 2) Flugge, 3) Morley-
Koiter and 4) Donnell. In Table 9, the exact and approximate 
results according to these theories are compared to an experi-
ment held by Farshidianfar et al. [16]. The simply supported 
circular cylindrical shell investigated in Table 9 is made of 
aluminum with material properties of E = 68.2 GPa, 

32700 Kg mr =  and 0.33u = . The dimensions of the shell 
are L = 1.7272 m, R = 0.0762 m and h = 0.00147 m. Simula-
tions were carried out using a finite element model (FEM). 
The finite element analysis was modeled in the commercial 
finite element analysis (FEA) software “ANSYS”. The FEA 
was developed in the following order: 

Pre-processing: includes defining the constructing mesh, 
elastic and strength properties, element type (Solid 45 for lin-
ear isotropic shell and Shell 99 for linear orthotropic shell), 
layer orientation, thickness for orthotropic shell, and geomet-
rical modeling. 

Processing: in this section, the finite element model of the 
modal analysis is proposed and constructed. Also, boundary 
condition effects (such as v = w = 0) are applied to the bound-
ary nodes. 

Post-processing: this is the final step that presents the results 
according to the type of FEM analysis. 

First, let us study the accuracy of the Soedel exact theory, 
since it is the main focus of this research. As shown in Table 9, 
the exact method applied to the Soedel theory is found be 
much more accurate than the approximate method. Interest-
ingly, the exact method calculates the fundamental frequency 

{ }( , ) (1,1)m n =  with nearly no errors. Moreover, it is remark-
able that the exact analysis predicts five resonance modes, 

{ }( , ) (1,1),(2,1),(2,3),(3,2),(5,3)m n = , with errors of equal or 
less than one percent. Although the errors of the exact method 
are higher than those of the approximate at some resonance 
frequencies, the difference in the errors are small and negligi-
ble. However, the exact analysis has reduced the errors of 
most resonance frequencies dramatically. For example, at 
mode shapes of { }( , ) (2,1),(3,2)m n = , the 13 percent error of 
the approximate theory is reduced to less than 1 percent using 
the exact analysis. On the other hand, some errors exist at low 
mode numbers for both the exact and approximate methods, 
especially for { }( , ) (2,2)m n = . However, as the frequency 
increases, the errors decrease. Thus, at high mode numbers, 
the exact method of the Soedel theory is in complete agree-
ment with experimental and numerical results. Such a trend is 
also observed for the approximate method; however, with 
higher errors at low mode numbers. According to Tables 9 
and 10, the Flugge theory is also very similar to the Soedel 
theory, both in terms of accuracy and errors. Although at low 
mode numbers the errors of the Flugge theory are higher than 
those of the Soedel’s, the exact results of this theory at high 
mode numbers have less errors. For example, in modes 

{ }( , ) (3,3),(4,2)m n = , the exact Flugge theory obtains less 
errors compared to the Soedel theory. Moreover, comparing 
results of the exact and approximate methods in the Flugge 
theory with experimental results, it is observed that the exact 
method is more accurate in nearly all frequency ranges. Thus, 
the exact method is a good choice when applied to the Flugge 
theory. On the other hand, a rather different behavior is ob-
served for the Morley-Koiter and Donell theories. The exact 
method of the Morley-Koiter theory has high errors in most 
mode shapes, especially at low mode numbers. Hence, an 
exact analysis of this theory may not be suitable. The exact 
results of the Donell theory are more accurate than the ap-
proximate method; however, there are a few modes at which 
the errors increase slightly. The only high error is yielded at 
mode { }( , ) (1,1)m n = , in which the error is increased dramati-
cally to 21.7 percent. In conclusion, the exact method im-

Table 9. Comparison between exact and approximation analysis with 
experimental and numerical data (FEM). 
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n m 

135 
184 
512 
998 
505 
312 
521 
511 
551 
677 
618 
730 

149 
232 
542 
984 
532 
292 
551 
459 
582 
719 
650 
764 

101 
219 
545 
981 
543 
321 
545 
516 
545 
685 
650 
763 

142 
177 
482 
922 
528 
250 
492 
433 
526 
703 
599 
721 

134 
164 
406 
928 
543 
273 
406 
441 
596 
675 
645 
741 

142 
177 
489 
922 
528 
250 
492 
432 
525 
701 
598 
720 

140 
169 
552 
920 
506 
253 
481 
440 
586 
688 
669 
738 

141 
177 
482 
922 
527 
250 
492 
432 
525 
701 
599 
720 

139 
172 
482 
920 
467 
243 
482 
494 
491 
647 
575 
789 

138 
190 
502 
884 
465 
310 
477 
497 
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680 
638 
782 
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1 
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Table 10. Errors of the exact and approximate methods with respect to 
experimental data. 
 

FEM 
(%) 

Donnell 
(App.) 

(%) 

Donnell 
(Exact) 

(%) 

Morley 
-Koiter 
(App.) 

(%) 

Morley 
-Koiter 
(Exact) 

(%) 

Flugge 
(App.) 

(%) 

Flugge 
(Exact) 

(%) 

Soedel 
(App.) 

(%) 

Soedel 
(Exact)

(%) 
n m 

-2.5 
-3.1 
1.9 
12.8 
8.7 
0.5 
9.3 
3.0 
-1.4 
-0.4 
-3.2 
-6.6 

7.4 
21.8 
7.9 

-11.2 
14.5 
-6.0 
14.2 
-7.6 
4.2 
5.7 
1.8 
-2.2 

-27.1 
15.0 
8.5 
10.9 
16.9 
3.5 
15.6 
3.9 
-2.5 
0.7 
1.7 
-2.4 

2.3 
-7.1 
-4.0 
4.3 
13.6 
-19.5 
3.2 

-12.8 
-5.9 
3.2 
6.1 
-7.7 

-3.3 
-6.1 
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16.7 
-12.2 
-14.9 
-11.1 
6.6 
-0.8 
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-5.2 

2.3 
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-4.1 
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13.6 
-19.6 
3.1 

-13.0 
-6.0 
3.2 
6.2 
-7.9 
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9.8 
4.0 
8.9 

-18.3 
0.9 

-11.3 
4.9 
1.2 
4.8 
-5.7 

2.2 
-7.1 
-4.1 
4.3 
13.5 
-19.6 
3.1 

-13.0 
-6.0 
3.1 
-6.2 
-7.9 

0.8 
-9.4 
-4.1 
4.0 
0.5 

-21.9 
1.0 
-0.4 
-12.1 
-4.8 
-9.9 
0.9 

1 
2 
3 
4 
1 
2 
3 
2 
3 
2 
3 
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1 
1 
1 
1 
2 
2 
2 
3 
3 
4 
4 
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proved results of the approximate technique compared to ex-
perimental and numerical data. This statement is correct for all 
theories, except for the Morley-Koiter. The accuracy of the 
exact method increased at high mode numbers. Generally, the 
Soedel and Flugge theories yielded the most accurate results 
compared to experimental data, predicting accurate resonance 
frequencies in low and high mode numbers. 

The FEM results are found to be in strong agreement with 
the experimental ones as well. Of note, at some mode shapes 
the FEM is even more accurate than the other theories dis-
cussed. In Fig. 8, mode shapes are reported from the finite 
element analysis for { }( , ) (1,1),(2,4),(3,3)m n =  modes. 

Overall, the validity of the exact method was approved with 
comparison to experimental, numerical and theoretical results. 
The approximate method was shown to be imprecise at low 
mode numbers. However, at high mode numbers the approxi-
mate technique was in good agreement with experimental and 
exact results. 

 
4. Conclusions 

The free vibration of circular cylindrical shells with simply 
supported boundary conditions has been studied using four 
different thin shell theories: Soedel, Flugge, Morley-Koiter 
and Donnell. The scope of the investigation was focused upon 
the exact analysis of natural frequencies. The approximate 
beam function method was also evaluated. First, a graphical 
representation of the exact analysis was presented in order to 
find the natural frequencies of a shell. Next, exact results of 
the four theories were compared to approximate calculations. 

It was observed that, for low mode numbers, the approximate 
method yields different results than the exact method does, 
whereas, for high mode numbers, no significant discrepancies 
were noticed. Moreover, the approximate method based on the 
Soedel theory obtained better results than the other theories. 
To check the accuracy of the exact method, experimental and 
numerical results were compared. According to this compari-
son, the exact analysis predicted most of the resonance fre-
quencies with errors of less than one percent. In contrast, the 
approximate method yielded high errors for some mode 
shapes. 
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Fig. 8. Mode shapes of the circular cylindrical shell: (a) for m = 1, n = 
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Appendix A 

A.1 Differential operators according to the Donnell theory 
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A.2 Modifying differential operators according to the Soedel 

theory 
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A.3 Modifying differential operators according to the Flugge 

theory 
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A.4 Modifying differential operators according to the Mor-

ley-Koiter theory 
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Appendix B 

B.1 Coefficient matrix according to the Soedel theory 
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B.2 Coefficient matrix according to the Flugge theory 
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B.3 Coefficient matrix according to the Morley-Koiter theory 
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