Constant Voltage Loads

Predrag Pejović¹, Johann W. Kolar²

¹University of Belgrade, Faculty of Electrical Engineering peja@etf.rs

 $^2 \mathrm{Swiss}$ Federal Insitute of Technology, Zürich kolar@lem.ee.ethz.ch

★ D3 \mathcal{E}_L

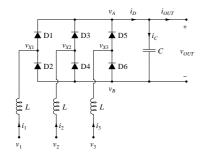
The rectifier, properties

- ▶ simple
- inexpensive
- ► robust
- ► AC side parameters?
- ▶ AC side compliance with regulations?
- ▶ DC side parameters, dependence of V_{OUT} on I_{OUT} ?

The rectifier, available information

- ▶ old rectifier, well known?
- V. Caliskan, D. J. Perreault, T. M. Jahns, and J. G. Kassakian, "Analysis of three-phase rectifiers with constant-voltage loads," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, no. 9, pp. 1220–1226, Sep. 2003.
- P. Pejović, J. W. Kolar, "Exact analysis of three-phase rectifiers with constant voltage loads," IEEE Trans. Circuits Syst. II, Express Briefs, vol. 55, no. 8, pp. 743-747, Aug. 2008.
- ▶ continuous conduction mode (CCM) covered, three diodes
- ▶ what about the discontinuous conduction mode(s) (DCM)?

The rectifier to be analyzed

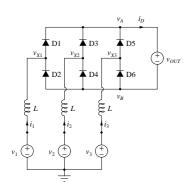


Assumptions

The rectifier

- output ripple neglected, $v_{OUT} = V_{OUT}$
- \blacktriangleright symmetrical undistorted three-phase system
- $v_k = V_m \cos \left(\omega t (k-1) \frac{2\pi}{3} \right), \text{ for } k \in \{1, 2, 3\}$
- ▶ resistance neglected
- ▶ line inductance can be included in the model
- \blacktriangleright ideal diodes assumed, V_D could be included

The rectifier model



Normalization

$$\qquad \qquad \mathbf{v}_k = V_m \cos \left(\omega t - (k-1) \, \frac{2\pi}{3} \right), \text{ for } k \in \{1,2,3\}$$

$$m = \frac{v}{V_m}$$

$$j = \frac{\omega L}{V_m} i$$

$$\mathbf{r} \varphi = \omega t$$

$$L\frac{di_k}{dt} = v_k - v_{Xk}$$

$$m = \frac{v}{V_m}$$

$$j = \frac{\omega L}{V_m} i$$

$$\varphi = \omega t$$

$$L \frac{di_k}{dt} = v_k - v_{Xk}$$

$$\frac{dj_k}{d\varphi} = m_k - m_{Xk}$$

- ▶ ideal diodes assumed
- \blacktriangleright one bit sufficient to code diode state, either on or off
- 6 diodes, $2^6 = 64$ combinations
- ightharpoonup some combinations forbidden
- $V_{OUT} > 0$, diodes in pairs (D1, D2), (D3, D4), and (D5, D6) cannot conduct simultaneously
- ▶ pair coded as +1, 0, or -1, reduction to $3^3 = 27$ states
- $i_1 + i_2 + i_3 = 0$, combinations like (+1, +1, +1), (-1, 0, -1), or (0,0,+1) cannot occur, 14 of them
- ▶ final reduction to 13 combinations (out of 64)

	phase leg state		
combination	1	2	3
0	0	0	0
1	+1	-1	0
2	+1	0	-1
3	-1	+1	0
4	0	+1	-1
5	-1	0	+1
6	0	-1	+1
7	+1	+1	-1
8	+1	-1	+1
9	-1	+1	+1
10	+1	-1	-1
11	-1	+1	-1
12	-1	-1	+1

Circuit description

- equations over inductor currents
- equations for the output terminal voltages
- ▶ boundary conditions, theoretically 6 of them
- ▶ combination transition rules

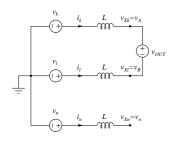
Equations for state 0, without conducting diodes

$$j_k = j_l = j_n = 0$$

$$ightharpoonup m_A - m_B = M_{OUT}$$

- $ightharpoonup m_{kl} < M_{OUT}$
- ▶ the system order is zero

Equivalent circuit for two conducting diodes



Equations for two conducting diodes

$$ightharpoonup$$
 state $(k) = +1$, state $(l) = -1$, state $(n) = 0$

$$m_A = \frac{1}{2} (M_{OUT} - m_n), m_B = \frac{1}{2} (M_{OUT} + m_n)$$

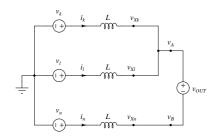
$$j_k > 0, \text{ to combination } 0 \text{ if violated}$$

▶
$$m_n < \frac{1}{3}M_{OUT} \text{ leg } n \text{ to state } +1 \text{ if violated}$$

$$ightharpoonup m_n > -\frac{1}{3}M_{OUT} \text{ leg } n \text{ to state } -1 \text{if violated}$$

▶ the circuit is of the first order

Equivalent circuit for three conducting diodes, two to the positive output terminal



Equations for three conducting diodes, two to the positive output terminal

$$\frac{dj_l}{d\phi} = m_l - \frac{1}{3} M_{OUT}$$

$$i_n = -i_k - i_l$$

$$\frac{d\varphi}{d\varphi} = m_l - \frac{1}{3}M_{OUT}$$

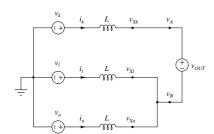
$$\Rightarrow j_n = -j_k - j_l$$

$$\Rightarrow m_A = \frac{1}{3}M_{OUT}, m_B = -\frac{2}{3}M_{OUT}$$

$$j_k > 0, j_l > 0, j_n < 0$$

- ▶ possible instantaneous combination transitions, additional inequalities
- ightharpoonup the system is of the second order

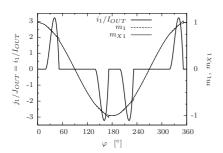
Equivalent circuit for three conducting diodes, one to the positive output terminal



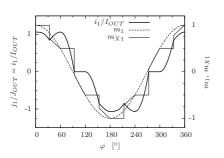
Modes

- ▶ mode 0, only combination 0
- ightharpoonup mode 1, combinations with 0 and 2 conducting diodes
- ▶ mode 2, combinations with 0, 2, and 3 conducting diodes
- ▶ mode 3, combinations with 2, and 3 conducting diodes
- ▶ mode 4, only combinations with 3 conducting diodes, CCM

Mode 1, waveforms of i_1 , v_1 , and v_{X1} , $M_{OUT} = 1.7$



Mode 3, waveforms of i_1 , v_1 , and v_{X1} , $M_{OUT} = 1.5$

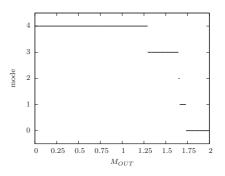


Equations for three conducting diodes, one to the positive output terminal

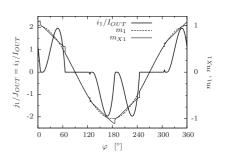
possible instantaneous combination transitions, additional inequalities

 \blacktriangleright the system is of the second order

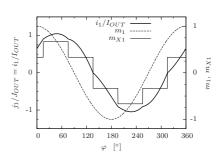
Dependence of the operating mode on M_{OUT}



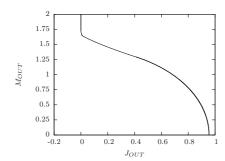
Mode 2, waveforms of i_1 , v_1 , and v_{X1} , $M_{OUT} = 1.6475$



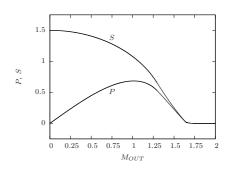
Mode 4, waveforms of i_1 , v_1 , and v_{X1} , $M_{OUT} = 1$



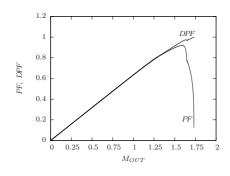
Dependence of M_{OUT} on J_{OUT}



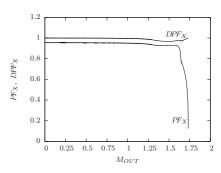
Dependence of the rectifier power and apparent power on ${\cal M}_{OUT}$



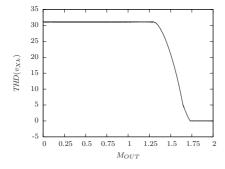
Dependence of the rectifier power factor and the displacement power factor on M_{OUT} .



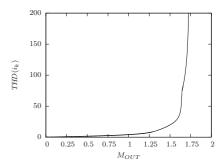
Dependence of PF_X and DPF_X on M_{OUT}



Dependence of $THD(v_{Xk})$ on M_{OUT}



Dependence of $THD(i_k)$ on M_{OUT}



Conclusions 1

- ▶ numerical analysis of a three-phase voltage loaded rectifier
- analysis performed on the equation system level, normalization
- insight in the rectifier operation, identification of the operating modes
- ▶ combinations of diode states, combinatorial approach
- out of 2⁶ = 64 combinations of diode states only 13 might occur
- ▶ for all 13 circuit equations are derived
- circuit order might be zero, one, or two, depending on the diode state combination

Conclusions 2

- \blacktriangleright boundary inequalities are derived, combination transition rules
- ▶ instantaneous combination transitions
- ▶ modes of the circuit operation are defined
- ▶ simulation, M_{OUT} from 2 to 0 in steps of 0.0005
- ▶ dependence of M_{OUT} on J_{OUT} is presented
- ▶ dependence on M_{OUT} of P, S, PF, PF_X , DPF, DPF_X , $THD(i_k)$, $THD(v_{Xk})$
- obtained diagrams quick reference guide for the rectifier design
- ▶ some interest in education