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An expression for the moment of the partition function valid for any finite system size
N and complex power n [Re(n) > 0] is obtained for a simple spin glass model termed the
discrete random energy model (DREM). We investigate the behavior of this moment in the
thermodynamic limit, N → ∞, using this expression, and we find that a phase transition
occurs at a certain real value of the replica number when the temperature is sufficiently
low. This represents a direct clarification of the scenario of replica symmetry breaking of
the DREM in the replica number space without use of the replica trick. The validity of the
expression is confirmed numerically.

§1. Introduction

The replica method (RM) is one of the few analytic schemes available to the
study of disordered systems.1) In physics, this method has been well known since
the 1970s and has been successfully applied to the analysis of spin-glass models,2)–4)

although the essential idea behind the method can be dated back to the end of 1920s,
when it appeared as a theorem for computing the average of logarithms.5)–7) More
recently, considerable attention has been paid to the similarity between the statis-
tical mechanics of disordered systems and the Bayesian method in problems related
to information processing (IP).8) Accordingly, the number and variety of applica-
tions of the RM to problems in IP research are increasing rapidly. They include
error-correcting codes,9),10) image restoration,11),12) neural networks,13) combinato-
rial problems,14),15) and so on.

Although only the limiting value (1/N) 〈lnZ〉 = limn→0

(
〈Zn〉1/N − 1

)
/n is

usually considered relevant, the RM can be considered a systematic procedure for
calculating generalized moments 〈Zn〉 of the partition function Z in the case N → ∞
when Z depends on a certain external randomness. Here, N characterizes the system
size, n ∈ R(or C) is a real (or complex16)) number, and 〈· · · 〉 represents the average
over the external randomness. For most problems, a direct assessment of 〈Zn〉 is
difficult for general n ∈ R(or C), although such an assessment for natural numbers,
n = 1, 2, · · · , is possible in the thermodynamic limit N → ∞. Therefore, 〈Zn〉 is
first computed for natural numbers, and then their analytic continuation is used to
extend 〈Zn〉 to n ∈ R(or C). This is usually termed the replica trick.

∗) E-mail: ogure@icrr.u-tokyo.ac.jp
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662 K. Ogure and Y. Kabashima

However, the validity of the replica trick is doubtful. The most obvious analytic
continuation, obtained under the replica symmetric (RS) ansatz, sometimes leads
to incorrect results. The causes of these errors were actively debated in the 1970s,
until Parisi developed the replica-symmetry-breaking (RSB) scheme for constructing
reasonable solutions within the framework of the RM.4) Since this development, no
examples have been found for which physically incorrect results have been derived
using the RM, in conjunction with the Parisi scheme if necessary. Therefore, the
RM is now empirically recognized as a reliable procedure in physics, although the
mathematical justification of the replica trick remains an open question. However,
this problem is now generating interest again, in particular, in the application of the
RM to IP problems. This is because most theories in IP research have conventionally
been developed with a high regard for mathematical soundness.17),18)

The purpose of this paper is to provide a method to approach the problems
of the RM. Specifically, we give a useful formula to compute 〈Zn〉 directly for n ∈
C at finite N for a simple spin glass model, termed the discrete random energy
model (DREM).19)–21) This formula is numerically tractable, and therefore one can
directly observe how the system approaches the thermodynamic limit with the aid of
a numerical calculation. Furthermore, this formula analytically clarifies the correct
behavior for N → ∞, making a direct examination of the validity of the RM.

We have two main reasons for picking the DREM from among the various disor-
dered systems. First, this model is simple enough to handle analytically. It is already
known that the RM, in conjunction with the Parisi scheme, allows for the correct
evaluation of the free energy for a family of random energy models (REMs), including
the DREM, in the limit of n→ 0.19) However, the existing procedure seems at odds
with a theorem concerning analytic continuation proven by Carlson,22),23) which
holds for the DREM of finite N , asserting the uniqueness of analytic continuation
from natural numbers n ∈ N to complex numbers n ∈ C, when the temperature is
sufficiently low. For this, our approach shows that a phase transition occurs at a cer-
tain critical value if the replica number, nc ∈ [0, 1], in such cases. This demonstrates
that the RM can be consistent with Carlson’s theorem. This may provide a useful
guideline to carry out analytic continuation from n ∈ N to n ∈ R (or C) in the RM.
The second reason for piking the DREM is that there exits a relationship between
the REM and certain problems of IP. Recent research on error-correcting codes has
revealed that the REM is closely related to a randomly constructed code.9),10) Such
codes are known to provide the best error correction performance in information
theory,25) and the performance evaluation of such codes is similar to the computa-
tion of 〈Zn〉 for n ∈ R26) (see Appendix A). Therefore, the current investigation
should indirectly verify the RM-based analysis of error-correcting codes performed
previously.10),27),28)

This paper is organized as follows. In §2 we introduce the DREM and briefly
review how the RM has been employed in the conventional analysis of this system.
Comparing with Carlson’s theorem, we address why the conventional scenario for
taking a limit n→ 0 seems suspect. In order to resolve this difficulty, we propose in
§3 a new scheme to directly evaluate 〈Zn〉 for the REM with finite N and complex
n without using the replica trick. Taking the limit N → ∞, we analytically clarify

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/111/5/661/1875021 by guest on 20 August 2022



Analytic Properties of the Discrete Random Energy Model 663

how 〈Zn〉 behaves in the thermodynamic limit and numerically verify this behavior.
In §4, we show how the RM can be consistent with the results obtained using the
proposed scheme. Section 5 consists of a summary.

§2. The replica method in the discrete random energy model (DREM)

In order to clearly state the problem addressed in this paper, we first review
how the RM has been conventionally employed in analyzing the REM.19),29) For
convenience in the later analysis, we mainly concentrate on the DREM, but the
problem addressed here is shared widely with other versions of the REM as well.

A DREM is composed of 2N states, whose energies, εA (A = 1, 2, · · · , 2N ), are
independently drawn from an identical distribution,

P (Ei) = 2−M

(
M

1
2M + Ei

)
, with

(
Ei = i− M

2

)
, (2.1)

over M + 1 energy levels, Ei = −M/2,−M/2 + 1, · · · ,M/2 − 1,M/2. For each
realization {εA}, the partition function

Z =
2N∑

A=1

exp(−βεA) (2.2)

and the free energy (density)

F = −kT
N

logZ (2.3)

can be used for computing various thermal averages. However, when the config-
urational average is required, one has to compute the average free energy, 〈F 〉 =
−kT

N 〈logZ〉, whose direct evaluation is generally difficult. Here, 〈· · · 〉 represents the
configurational average with respect to {εA}. On the other hand, the moments of
the partition function 〈Zn〉 can be easily calculated in various models for the natural
numbers, n = 1, 2, · · · . Therefore, the replica method evaluates the average free
energy using the replica trick,

1
N

〈logZ〉 = lim
n→0

〈Zn〉 1
N − 1
n

, (2.4)

analytically continuing the expression of 〈Zn〉 for n = 1, 2, · · · to that for real (or
complex) numbers n.

For a given natural number n, the moment of the DREM is calculated as

〈Zn〉 =
2N∑

A1=1

2N∑
A2=1

· · ·
2N∑

An=1

M∑
i1=0

P
(
E

(1)
i1

) M∑
i2=0

P
(
E

(2)
i2

)
· · ·

M∑
i
2N =0

P
(
E

(2N )
i
2N

)

exp


−β

2N∑
B=1

E
(B)
iB

n∑
µ=1

δBAµ
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= e
nMβ

2

2N∑
A1=1

2N∑
A2=1

· · ·
2N∑

An=1

2N∏
B=1

(
1 + e−β

Pn
µ=1 δBAµ

2

)M

=
2N∑

A1=1

2N∑
A2=1

· · ·
2N∑

An=1

2N∏
B=1

exp


NαI


β n∑

µ=1

δBAµ




 (2.5)

where α = M/N , and the function I(x) is defined as

I(x) = log
(
cosh

x

2

)
. (2.6)

The identity
∏2N

B=1 exp
(
−β

2

∑n
µ=1 δBAµ

)
= exp

(
−nβ

2

)
was employed to obtain the

final expression of Eq. (2.5). From this point, we focus on the case α > 1, in which
the replica symmetry can be broken when the temperature is sufficiently low.

Unfortunately, performing the summation in Eq. (2.5) exactly is difficult. In-
stead, in the conventional RM, Eq. (2.5) is represented by the most dominant con-
tribution in the summation. This can be justified for natural numbers n in the limit
N → ∞. Notice that the summation is invariant with respect to the permutation
of the replica indices µ = 1, 2, · · · , n. This replica symmetry narrows the set of
candidates for the most dominant contribution to three possibilities, which are here
referred to as solutions of replica symmetric 1 (RS1), replica symmetric 2 (RS2), and
1-step replica symmetry breaking (1RSB).

• RS1
In RS1, all n replicas are assumed to occupy n different statesB (= 1, 2, · · · , 2N ).
Therefore, for a given B, we have

n∑
µ=1

δBAµ =
{

1 when B is one of the n occupied states,
0 otherwise. (2.7)

The number of ways to assign n replicas to n out of 2N different states is

2N × (2N − 1) × · · · × (2N − n+ 1) ∼ 2nN . (2.8)

For each case, the configuration of this type contributes an amount

exp (nNαI(β)) (2.9)

in Eq. (2.5). This means that the contribution to the moment from RS1 becomes

〈Zn〉 = 2nN exp (nNαI(β))

= expnN
(

log 2 + α log
(

cosh
β

2

))
. (2.10)

• RS2
In RS2, all n replicas are assumed to occupy a particular state B. Therefore,
for a given B, we have

n∑
µ=1

δBAµ =
{
n when B is the occupied state,
0 otherwise. (2.11)
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Analytic Properties of the Discrete Random Energy Model 665

The number of ways to choose one out of 2N states is 2N . For each case, the
configuration of this type contributes an amount

exp (NαI(nβ)) (2.12)

in Eq. (2.5), which indicates that the contribution from RS2 is

〈Zn〉 = 2N exp (nNαI(nβ))

= expN
(

log 2 + α log
(

cosh
nβ

2

))
. (2.13)

• 1RSB
In 1RSB, n replicas are assumed to be equally assigned to n/m states B, where
m is an aliquot of n. Therefore, for a given B, we have

n∑
µ=1

δBAµ =
{
m when B is one of the n/m occupied states,
0 otherwise. (2.14)

The number of ways to select n/m out of 2N states equally assigning n replicas
to these n/m states is

(2N )!
(2N − n/m)!

× n!
mn/m

∼ 2
n
m

N . (2.15)

For each case, the configuration of this type contributes an amount

exp
( n
m
NαI(mβ)

)
(2.16)

in Eq. (2.5). Taking all the possible values of m into account, the contribution
from 1RSB can be summarized as

〈Zn〉 =
∑
m

2
n
m

N exp
( n
m
NαI(mβ)

)
=
∑
m

exp
( n
m
N [log 2 + αI (mβ)]

)
∼ exp

(
extr

m

{ n
m
N [log 2 + αI (mβ)]

})
. (2.17)

In the last expression, we have replaced the summation over m with the ex-
tremization with respect to m (extrm{· · · }), which is hopefully valid for large
N , analytically continuing the expression with respect to m from the natural
numbers to the real numbers. The extremization with respect to m yields the
condition

log 2 + αI (mβ) = αmβI ′ (mβ) , (2.18)

which implies that the moment is expressed as

〈Zn〉 = exp
[
nNαβI ′ (mcβ)

]
, (2.19)
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666 K. Ogure and Y. Kabashima

Fig. 1. The configuration of replicas for each solution. In RS1, n replicas are distributed in different

states. In RS2, n replicas are concentrated in one state. In 1RSB, n replicas are equally assigned

to n/m states. For 1RSB, however, this figure does not directly correspond to the solution

because the critical value of m is not necessarily an integer and can be larger than n for β > βc.

where mc is the solution of Eq. (2.18). Equation (2.6) indicates that mc can
be represented as mc = βc/β, where the critical inverse temperature βc > 0 is
determined by

log 2 + α

(
log

(
cosh

βc

2

)
− βc

2
tanh

βc

2

)
= 0. (2.20)

This provides a simple expression of the 1RSB solution as

〈Zn〉 = exp
(
nNαβI ′(βc)

)
= exp

(
nNαβ

2
tanh

βc

2

)
. (2.21)

The configurations of the replicas assumed for RS1, RS2 and 1RSB are pictorially
presented in Fig. 1. It should be emphasized here that the above three solutions are
derived for n = 1, 2, · · · , assuming N to be sufficiently large. However, it is likely
that the obtained expressions hold for real n as well. Therefore, in the conventional
analysis, the replica trick given by Eq. (2.4) is carried out, selecting one possibly
relevant solution of the three, which is hopefully valid for large N .

The existing prescription for selecting the relevant solution is as follows.19) For
small n > 0, RS1, RS2 and 1RSB are ordered as RS2 > RS1 ≥ 1RSB (RS1 = 1RSB
holds for β = βc) with respect to their amplitudes (Fig. 2). The contribution from
RS2, however, converges to 2N rather than unity for n → 0, and therefore, the
replica trick leads to divergence. Hence, this solution is discarded. After excluding
this solution, the leading contribution always comes from RS1. This guarantees a
finite limit in Eq. (2.4).

Actually, the result obtained from this solution is correct in the case of high
temperatures satisfying 0 < β < βc. However, this solution becomes invalid for low
temperatures, i.e. β > βc, for which the correct result is provided by 1RSB. It may
be worth noting that the value of mc in this low temperature case is in the interval
“[0, 1]” when n→ 0, which is out of the ordinary range, 1 ≤ mc ≤ n for n = 1, 2, · · · .
This prescription for taking the n → 0 limit has been empirically justified for a
family of REMs because it reproduces the correct results that can be obtained using
other schemes in the limit n→ 0.19) However, the two issues discussed below require
further investigation.
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Analytic Properties of the Discrete Random Energy Model 667

The first issue concerns the reason for expurgating RS2. Carlson’s theorem,
which guarantees the uniqueness of the analytic continuation from the natural num-
bers n ∈ N to the complex numbers n ∈ C, might be useful for solving this prob-
lem.22),23) Unlike other systems, such as the Sherrington-Kirkpatrick model3) and
the original REM,19) the modified moments of the current DREM

〈
(e−Mβ/2Z)n

〉1/N
,

which are extended from n ∈ N to n ∈ C, satisfy the inequality∣∣∣∣〈(e−Mβ/2Z
)n〉1/N

∣∣∣∣ ≤
〈(

e−Mβ/2Z
)Re(n)

〉1/N

=

〈 2N∑
A=1

exp [−β(εA +M/2)]




Re(n)〉1/N

≤
〈 2N∑

A=1

1




Re(n)〉1/N

= 2Re(n) < O (exp [π|n|]) , (2.22)

for Re(n) ≥ 0 and any finite natural numbers N , because εA + M/2 is bounded
from below by 0. Suppose that we could construct another extension ψ(n;N)
(n ∈ C) that satisfies the growth condition, ψ(n;N) < O (exp [π|n|]),∗) and is
identical to

〈
(e−Mβ/2Z)n

〉1/N
for all the natural numbers, n = 1, 2, · · · . This

would imply that the similar inequality
∣∣∣ψ(n;N) − 〈

(e−Mβ/2Z)n
〉1/N

∣∣∣ ≤ |ψ(n;N)|+∣∣∣〈(e−Mβ/2Z)n
〉1/N

∣∣∣ < O (exp[π|n|]) holds for Re(n) ≥ 0, and that the difference∣∣∣ψ(n;N) − 〈
(e−Mβ/2Z)n

〉1/N
∣∣∣ vanishes ∀n ∈ N , as ψ(n;N) and

〈
(e−Mβ/2Z)n

〉1/N

coincide ∀n ∈ N . Then, Carlson’s theorem (Theorem 5.81 on page 186 of Ref. 22))
ensures that

∣∣∣ψ(n;N) − 〈
(e−Mβ/2Z)n

〉1/N
∣∣∣ is identical to 0, implying that ψ(n;N)

and
〈
(e−Mβ/2Z)n

〉1/N
are identical. Therefore, analytic continuation of〈

(e−Mβ/2Z)n
〉1/N

from natural n ∈ N to complex n ∈ C can be uniquely deter-
mined. Because e−Mβ/2 is a non-vanishing constant, this means that the analytic
continuation of the moment 〈Zn〉1/N is also unique. However, this does not guaran-
tee that the obtained continuation remains analytic with respect to n in the limit
N → ∞, because certain phase transitions may occur. Actually, for high tempera-
tures, β < βc, a phase transition between RS1 and RS2 occurs in the region n ≥ 1
in the limit N → ∞. In such cases, it seems reasonable to select RS1, which is
dominant for n � 1, as the relevant solution for n→ 0, because n = 1 is the closest
to n = 0 among all the natural numbers, for which correct evaluation of the moment
can be carried out. This recipe successfully reproduces the correct result for the high
temperature region, 0 < β < βc. However, this is still not fully satisfactory because
RS2 becomes dominant ∀n ∈ N in the case β > βc, and, therefore, it should be
selected as the relevant solution for n → 0, unless analyticity is lost in the range

∗) This condition is necessary to exclude a trivial multiplicity caused by the addition of certain

analytic functions that vanish at all the natural numbers, n = 1, 2, · · · , such as sin(πn).
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Fig. 2. Solutions obtained under the RS1, RS2 and 1RSB assumptions. RS1 and RS2 are identical

at n = 1, while RS2 contacts 1RSB at n = βc/β = mc. (a) For β < βc, the contact point is in

the region of n > 1. (b) For β > βc, contrastingly, it is located in 0 < n < 1.

0 < n < 1 for N → ∞, which, unfortunately, would lead to an incorrect result.
Hence, a certain phase transition must occur at a critical replica number 0 < nc < 1
for β > βc. It is worth emphasizing that determining the method for selecting the
dominant solution for 0 < n < nc is nontrivial in this case, because no natural num-
bers for which the moment can be correctly evaluated exist in the region 0 < n < 1.
However, to the knowledge of the authors, such a phase transition with respect to
n has not yet been fully examined for most disordered systems.23),24) This might
be because to this time attention has been paid mainly to the final results in the
limit n → 0. However, detailed analysis of phase transitions of this type may soon
be needed, as the replica calculation for non-vanishing n has recently begun to be
employed in problems related to IP26),30) and analysis of certain dynamics involved
with multiple time scales.31)

The second issue regards the origin of 1RSB. In conventional analysis in the limit
n → 0,19)–21),29) this solution is introduced by modifying RS1 in order to keep the
entropy of the correct solution non-negative for β > βc. It would appear that 1RSB
originates from RS1. However, at least for positive n, this association seems unlikely,
because the two solutions cross only at n = 0 (see Fig. 2). Therefore, it is impossible
to relate the origin of 1RSB to RS1 for large n, from which the solutions for smaller
n are extrapolated. Contrastingly, 1RSB contacts RS2 at n = mc, implying that
1RSB bifurcates from RS2. As the contact point is located in the range 0 < n < 1
for β > βc, this seems to be consistent with the extension of the aforementioned
possible phase transition at n = nc [see Fig. 2 (b)]. Nevertheless, such a scenario
cannot be so easily accepted, as RS2 dominates 1RSB even below the contact point; a
mere contact does not change the dominance relationship between the two solutions.

It may help in resolving these problems to analyze DREM employing a com-
pletely different methodology. In the next section, we present a scheme to calculate
the moments of DREM as a step towards clarifying the mysteries of RM. The pro-
posed method is powerful enough to evaluate the moments in the right half of the
complex plane, Re(n) > 0, for arbitrary finite N , without using the replica trick.
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§3. Direct calculation of the moments for the grand canonical DREM
(GCDREM)

3.1. General formula

In order to introduce a novel scheme for calculating the moments of the partition
function of the DREM, we first rewrite the partition function using the occupation
numbers ni (i = 0, 1, 2, · · · ,M) as

Z =
2N∑

A=1

exp (−βεA) =
M∑
i=0

ni exp (−βEi) = ω−M
2

M∑
i=0

niω
i (ω ≡ e−β). (3.1)

This means that the partition function of the DREM can be completely determined
by the set of occupation numbers {ni}, in which details of the energy configuration
{εA} are ignored. This makes it possible to evaluate the moments 〈Zn〉 directly
from {ni}, without referring to the full energy configuration {εA}. This significantly
reduces the necessary cost for computing the partition function when the calculation
is performed numerically.

Two methods are known for generating {ni}. The straightforward method is to
count ni independently, drawing the 2N energy states from Eq. (2.1). The system
obtained in this manner is referred to as the canonical discrete random energy model
(CDREM). Although this yields a rigorously correct realization of the DREM that
satisfies the constraint

∑M
i=0 ni = 2N , it requires 2N steps to count {ni} and, hence, is

computationally difficult. In order to resolve this difficulty in numerical experiments,
Moukarzel and Parga20),21) proposed the grand canonical version of the discrete
random energy model (GCDREM).∗) In the GCDREM, the occupation numbers are
independently determined using the Poisson distribution

P (ni) = e−γi
γni

i

ni!
, (γi = 2NP (Ei)) (3.2)

where γi is the average occupation number. The greatest advantage of the GCDREM
is that it allows for the drastic reduction of the necessary computational cost for
generating {ni} from 2N to M + 1. One possible drawback of this model is that the
constraint

∑M
i=0 ni = 2N is only satisfied on average,

〈∑M
i=0 ni

〉
= 2N . This implies

that this method does not correspond strictly to the original model. However, the
RM-based calculation indicates that thermodynamic properties of the GCDREM
become identical to those of the CDREM as N → ∞. This calculation is given in
Appendix B. It can be shown that the difference rapidly vanishes as N becomes large
and they are almost indistinguishable even for N = 3, as shown in Appendix C. In
addition, this version of the DREM has another advantage in analytic calculations,
because the summation can be carried out independently, as is shown below.

∗) Employment of the GCDREM is not essential to reduce the numerical cost. We have discov-

ered a scheme for generating the CDREM on a time scale similar to that for the GCDREM. This

scheme is given in Appendix C.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/111/5/661/1875021 by guest on 20 August 2022



670 K. Ogure and Y. Kabashima

In the GCDREM, the moments are expressed as

〈Zn〉 =
∞∑

n0=0

∞∑
n1=0

· · ·
∞∑

nM=0

P (n0)P (n1) · · ·P (nM )Zn

= ω−nM
2 lim

ε→0

∞∑
n0=0

∞∑
n1=0

· · ·
∞∑

nM=0

P (n0)P (n1) · · ·P (nM )

(
M∑
i=0

niω
i + ε

)n

, (3.3)

where an infinitesimal constant ε > 0 is introduced in order to keep Z positive,
even when all the occupation numbers vanish. This makes it possible to employ the
identity for a positive number c

cn =

∫
H(−ρ)−n−1e−cρdρ

Γ̃ (−n)
[with c > 0, Γ̃ (n) ≡ −2i sinnπΓ (n)] (3.4)

(whose integration contour is shown in Fig. 3) for evaluating the moment as

〈Zn〉 =
ω−nM

2

Γ̃ (−n)
lim
ε→0

∫
H

(−ρ)−n−1e−(
PM

i=0 niω
i+ε)ρdρ

=
ω−nM

2

Γ̃ (−n)
lim
ε→0

∫
H

(−ρ)−n−1e−ερ

( ∞∑
n0=0

P (n0)e−n0ρ

)( ∞∑
n1=0

P (n1)e−n1ωρ

)

· · ·
( ∞∑

nM=0

P (nM )e−nMωMρ

)
dρ. (3.5)

It is worth noting that the summation in this expression can be carried out indepen-
dently as

∞∑
ni=0

P (ni)e−niω
iρ = e−γi

∞∑
ni=0

1
ni!

(γie
−ωiρ)ni = exp [−(1 − e−ωiρ)γi]. (3.6)

Therefore, the moment can be summarized as

〈Zn〉 =
ω−nM

2

Γ̃ (−n)
lim
ε→0

∫
H

(−ρ)−n−1 exp
[
− ερ−

M∑
i=0

(1 − e−ωiρ)γi

]
dρ. (3.7)

Because this is convergent for Re(n) > 0, the following expression gives the analytic
continuation of the moment to the right half complex plane of n:

〈Zn〉 =
ω−nM

2

Γ̃ (−n)

∫
H

(−ρ)−n−1 exp
[
−

M∑
i=0

(1 − e−ωiρ)γi

]
dρ. (3.8)

3.2. Thermodynamic limit

Using Eq. (3.8), one can analytically examine the behavior of the moments in
the thermodynamic limit N,M → ∞, keeping α = M/N finite. For this purpose,
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Fig. 3. The integration contours.

we first convert the contour integration in the expression into an integration on the
real axis for p − 1 < Re(n) < p, where p is an arbitrary natural number. Further,
we define the function

f(ρ) ≡ exp
[
−

M∑
i=0

(1 − e−ωiρ)γi

]
≡

∞∑
j=0

fiρ
i (3.9)

and a series of truncated summations as

f (p)(ρ) ≡
p−1∑
j=0

fiρ
i, (3.10)

which satisfy the identity∫
H

(−ρ)−n−1f (p)(ρ)dρ =
∫

H+I
(−ρ)−n−1f (p)(ρ)dρ = 0 (3.11)

for p− 1 < Re(n), because the contribution from the contour I vanishes. Using this
identity, the moment can be rewritten as

〈Zn〉 =
ω−nM

2

Γ̃ (−n)

∫
H

(−ρ)−n−1[f(ρ) − f (p)(ρ)]dρ. (3.12)

Equation (3.11) guarantees that the infrared divergence is removed for Re(n) < p
in this expression. Therefore, the moment can be rewritten for p− 1 < Re(n) < p as

〈Zn〉 =
ω−nM

2

Γ (−n)

∫ ∞

0
ρ−n−1[f(ρ) − f (p)(ρ)]dρ, (3.13)

where the function Γ̃ is replaced by the ordinary gamma function Γ .
As we have particular interest in the case p = 1 (i.e. 0 < Re(n) < 1), let us

focus on the behavior of the expression

〈Zn〉 =
ω−nM

2

Γ (−n)

∫ ∞

0
ρ−n−1[f(ρ) − 1]dρ
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=
ω−nM

2

Γ (−n)

∫ ∞

0
ρ−n−1

[
exp

{
−

M∑
i=0

(1 − e−ωiρ)γi

}
− 1

]
dρ. (3.14)

To examine the behavior of the thermodynamic limit, it is convenient to introduce
the new variables

x ≡ i

Nα
, y ≡ 1

Nαβ
ln ρ (3.15)

in place of i and ρ. This yields the expression

〈Zn〉 =
ω−nM

2

Γ (−n)

∫ ∞

−∞
eNG(y)dy (3.16)

for the moments, where


G(y) = −nαβy +
1
N

log(1 − e−F(y)),

F(y) =
∫ 1

0
eNH(x,y)dx,

H(x, y) = (1 − α) log 2 + αH(x) +
1
N

log(1 − e−eNαβ(y−x)
),

(3.17)

and

H(x) = −x log x− (1 − x) log(1 − x). (3.18)

Here, we have replaced the summation with an integration. This is valid when both
M and N are sufficiently large.

For further analysis, the identity

g(u) ≡ 1
N

log
(
1 − e−eNu

)
→

{
0 (u ≥ 0)
u (u < 0)

= uθ(−u), (3.19)

which holds for large N , may be useful. The shape of this function is displayed in
Fig. 4. Because this becomes singular at u = 0, a phase transition may occur in n
space as N → ∞. We examine this possibility below.

Equation (3.19) imply that the function H can be expressed as

H(x, y) = (1 − α) log 2 + αH(x) + αβ(y − x)θ(y − x) (3.20)

in the thermodynamic limit. As a function of x, this exhibits three types of behavior,
depending on the value of y, as shown in Fig. 5. Employing the saddle point method,
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Fig. 4. The shape of g(u) for N → ∞. This is not analytic at u = 0.

the maximum of H(x, y) given y yields F(y) for large N . This is

lim
N→∞

1
N

logF(y) =




1
2

(
y >

1
2

)
,

(1 − α) log 2 + αH(x)
(
xc < y <

1
2

)
,

(1 − α) log 2 + αH̃(β) + αβy (y < xc) ,

(3.21)

where xc is a solution of
H ′(xc) = β, (3.22)

whose behavior is shown in Fig. 6. Here, the function H̃ is the Legendre transform
of the function H:

H̃(β) = log
(

2 cosh
β

2

)
− β

2
. (3.23)

The function G becomes

G(y) = −nαβy +
1
N

logF(y)θ(−F(y)) (3.24)

for large N , which directly controls the behavior of the moment in Eq. (3.16). This
behavior depends strongly on the relation between xc and x∗ =

(
1 − tanh βc

2

)
/2,

which satisfies the condition

(1 − α) log 2 + αH(x∗) = 0. (3.25)

• (A) x∗ < xc

As xc and x∗ are defined in Eqs. (3.22) and (3.25), respectively, the condition
x∗ < xc can be written

(1 − α) log 2 + αH(xc) > 0. (3.26)

This is satisfied for β < βc, i.e. in the high temperature phase. Notice that for
α ≤ 1, as Eq. (2.20) does not have a positive solution, this is always satisfied
independently of β. Then, Eq. (3.24) can be written

G(y) = −nαβy + [(1 − α) log 2 + αH̃(β) + αβy]θ(yc − y), (3.27)
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674 K. Ogure and Y. Kabashima

Fig. 5. The schematic shape of H(x, y) for N → ∞. It depends on the value of y.

Fig. 6. The schematic shape of F(y) for N → ∞ obtained from the maximal value of H(x, y).

which is shown in Fig. 7. Here, yc is defined by F(yc) = 0 (Fig. 6), which yields

yc = − 1
αβ

[(1 − α) log 2 + αH̃(β)]. (3.28)

The moments are then calculated as

〈Zn〉 = −Nαβ ω
−nM

2

Γ (−n)

[∫ yc

−∞
exp (1 − α) log 2 + αH̃(β) + αβ(1 − n)ydy

+
∫ ∞

yc

exp (−nαβy)dy
]

∼ eαβnN( 1
2
−yc)

[
1

Γ (1 − n)
+

n

Γ (2 − n)

]
. (3.29)

Therefore, the asymptotic behavior of the moments are given by

lim
N→∞

1
N

log 〈Zn〉 = αβnN

(
1
2
− yc

)

= n

(
log 2 + α log cosh

β

2

)
(3.30)

in this phase. This is consistent with RS1, as can be seen from Eq. (2.10).
• (B) x∗ > xc

The condition x∗ > xc is satisfied for β > βc, which may correspond to the low
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Fig. 7. Schematic figure of G(y). The maximal value determines the behavior of 〈Zn〉.

temperature phase. The function G(y) has the form

G(y) = −nαβy + [(1 − α) log 2 + αH(y)]θ(x∗ − y). (3.31)

Its behavior of which is further classified into two cases, depending on the replica
number n.

– (i) H ′(x∗) > nβ
Because x∗ is located in xc < x∗ < 1

2 , there exists a critical replica number
0 < nc < 1, which is characterized by

nc ≡ 1
β
H ′(x∗) =

βc

β
= mc. (3.32)

The condition H ′(x∗) > nβ is satisfied for n < nc. The function G(y),
shown in Fig. 7, is maximized at y = x∗. Therefore, the moments can be
expressed as

lim
N→∞

1
N

log 〈Zn〉 = nαβ

(
1
2
− x∗

)

=
nαβ

2
tanh

βc

2
. (3.33)

This behavior is identical to that of the 1RSB predicted by the RM, as
can be seen in Eq. (2.21).

– (ii) H ′(x∗) < nβ
The condition H ′(x∗) < nβ is satisfied for n > nc. The function G(y) is
maximized not at y = x∗ but at y = yc. Therefore, the moments can be
asymptotically expressed as

lim
N→∞

1
N

log 〈Zn〉 = log 2 + α log cosh
nβ

2
. (3.34)

This coincides with the behavior of RS2 obtained using RM, as can be
seen in Eq. (2.13).

The results are summarized in Fig. 8. In the high temperature phase, β <
βc, the behavior of the moments is simple, being expressed by RS1 of RM. In the
low temperature phase, β > βc, the behavior of the moments has two possibilities,
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Fig. 8. The behavior of the moments in the thermodynamic limit obtained from the exact expression

(solid curves). This line is shown only in the region 0 < n < 1 because the expression Eq. (3.14)

is valid for 0 < Re(n) < 1, while the original expression Eq. (3.8) is valid for 0 < Re(n). In

the high temperature phase, β < βc, the behavior of the moments is simple and corresponds

to the result obtained from RS1. In the low temperature phase, β > βc, the behavior of the

moments has interesting properties. The moments correspond to those obtained from RS2 for

n > nc ≡ β/βc = mc and correspond to those obtained from 1RSB for n < nc. A phase

transition occurs at n = nc.

depending on n. More specifically, in the limit N → ∞, the moments approach RS2
for n > nc, whereas 1RSB represents the correct behavior for n < nc. This means
that there exists a phase transition in the space of the replica number at n = nc.
In conclusion, these are consistent with the known results obtained using RM in the
limit n→ 0.19)–21)

3.3. Numerical validation

Equation (3.8) is formulated as a two-dimensional summation with respect to
ρ ∈ C and i = 0, 1, · · · ,M and is numerically tractable. This means that Eq. (3.8)
or Eq. (3.16) can be utilized to numerically examine the behavior of GCDREM for a
finite system size N , and to study how fast the results obtained for N → ∞ become
relevant as N increases.

Figure 9 plots the logarithm of 〈Zn〉 calculated using Eq. (3.16) and 〈Zn〉 evalu-
ated numerically from 10, 1000 and 100,000 experiments, withN = 10 for GCDREM.
One can see that the data from the numerical experiments converge to the results
obtained from Eq. (3.16). This verifies that our expression provides accurate values
for the moments, even for a finite system size.

We next compare the results from our expression and the RM in Fig. 10. At
high temperatures, our result is consistent with RS1 as expected. The difference is
negligible for all of the range 0 < n < 1 even at N = 10. At low temperatures,
our result fits RS2 for larger n > nc, while 1RSB exhibits excellent consistency for
smaller n < nc. There is a slight difference between our expression and 1RSB for
N = 10. The difference, however, becomes indistinguishable for N = 100. This
strongly indicates that there occurs a phase transition between RS2 and 1RSB at
n = nc in the limit N → ∞.
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Fig. 9. The logarithm of 〈Zn〉 calculated from Eq. (3.16) and data obtained from numerical ex-

periments of Eq. (3.1) using 10, 1000 and 100,000 samples for GCDREM. The system size is

N = 10. The points indicated as “Exact” are the results obtained from Eq. (3.16).

§4. Origin of 1RSB: Extreme value statistics

The results found in the preceding two sections indicate that the DREM exhibits
a phase transition with respect to the replica number n at a certain critical point
nc ∈ [0, 1] when the temperature is sufficiently low. In this section, we discuss
how this transition can be understood in the framework of the RM. A formalism
analogous to that previously introduced for examining the domain size distribution
of multi-layer perceptrons is useful for this purpose.30)

Because the partition function of the DREM typically scales exponentially with
respect to N , we first express this dependence as

Z ∼ exp
[
−Nαβ

(
y − 1

2

)]
, (4.1)

where y− 1
2 represents the free energy normalized by the scale of the energy amplitude

M for a given realization {εA} [A = 1, 2, · · · , 2N ) (or {ni} (i = 0, 1, · · · ,M)]. Clearly,
y is a random variable. Let us assume that the probability distribution of y, P(y),
scales as

P(y) ∼ exp [−Nc(y)] , (4.2)

where c(y) ∼ O(1) for large N . Note that the inequality

c(y) ≥ 0 (4.3)

must hold in order for P(y) to satisfy the normalization condition
∫
dyP(y) = 1 for

N → ∞. Equation (4.2) indicates that the moment of the partition function can be
calculated as

〈Zn〉 ≡
∫
dy exp

[
−Nnαβ

(
y − 1

2

)]
P(y)
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Fig. 10. The logarithm of 〈Zn〉 obtained from our expression and the RM. The points indicated

as “Exact” are the results obtained from Eq. (3.16). The lines indicated “RS1”, “RS2”, and

“1RSB” are the results obtained from the RM, using Eqs. (2.10), (2.13) and (2.21), respectively.

At high temperatures, β = βc/3 < βc, our result is consistent with RS1. The difference is

very small even for N = 10. At low temperatures, β = 3βc > β, our result fits RS2 for larger

n > nc = βc/β = 1/3, while 1RSB provides good consistency for smaller n < nc. There is

a slight difference between the results obtained from our expression and those obtained from

1RSB at N = 10. The difference, however, is imperceptible for N = 100.

∼ exp
[
N extr

y

{
−nαβ

(
y − 1

2

)
− c(y)

}]
. (4.4)

This formula, however, may not be useful for computing 〈Zn〉, as directly assessing
c(y) is rather difficult. Instead, it can be utilized to evaluate c(y) from 〈Zn〉, as
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Eq. (4.4) implies that c(y) can be obtained from

c(y) = extr
n

{
−nαβ

(
y − 1

2

)
− 1
N

ln 〈Zn〉
}
, (4.5)

where (1/N) ln 〈Zn〉 can be computed using the RM for any real number n. This, in
conjunction with the normalization constraint in Eq. (4.3), offers useful information
to identify the origin of the phase transition with the aid of the RM.

For β > βc, RS2 provides the dominant solution for the natural numbers n =
1, 2, · · · in the thermodynamic limit. Therefore, let us first insert this solution, from
Eq. (2.13), into Eq. (4.5). This yields

c(y) = extr
n

{
−nαβ

(
y − 1

2

)
− log 2 − α log

(
cosh

nβ

2

)}
= (α− 1) log 2 − αH(y). (4.6)

Note that this does not satisfy the necessary condition given in Eq. (4.3) for y > x∗,
and the critical value y = x∗ corresponds to n = nc = H ′(x∗)/β = βc/β = mc, which
signals the occurrence of a phase transition at n = nc within the framework of the
RM.

The following considerations concerning the energy configuration provides a
plausible scenario for this transition. As has already been pointed out,29) the par-
tition function Z in the low temperature region, β > βc, can be considered to
be dominated by only the minimum energy, εmin, of a given energy configuration
{εA}, i.e., Z ∼ exp [−βεmin]. This implies that P(y) of the normalized free en-
ergy y − 1

2 = −(logZ)/(Nαβ) is given by the distribution of εmin/M under the
assumption that each energy level εA (A = 1, 2, · · · , 2N ) is independently drawn
from an identical distribution, given in Eq. (2.1), which has already been studied
in the context of extreme value statistics (EVS).32) In the present case, the av-
erage occupation number of an energy level Ei = i − 1

2M = M
(
x− 1

2

)
, that is,

γi = 2N−M

(
M

M/2 + Ei

)
= expN ((1 − α) log 2 + αH(x)) (i = 0, 1, · · · ,M and

x = i/M ∈ [0, 1]), grows exponentially with respect to N for x > x∗. This indicates
that P(y) is very small for y > x∗, because x > x∗ does not provide εmin/M for
a given energy configuration {εA}, except in very rare cases, as energy levels lower
than Ei = M

(
x− 1

2

)
are included in the configuration with a very high probability.

On the other hand, γi decreases exponentially for 0 < x < x∗, which means that the
probability of having an energy level labelled by some x in this interval in the energy
configuration is low. Therefore, P(y) also becomes small for 0 < y < x∗. However,
the functional form of P(y) is not symmetric between y > x∗ and 0 < y < x∗. Actu-
ally, detailed analysis of EVS29),32) shows that P(y) exhibits the asymmetric scaling
forms

P(y) ∼
{

exp [− exp [−N ((α− 1) log 2 − αH(y))]] , (x∗ < y)
exp [−N ((α− 1) log 2 − αH(y))] , (0 < y < x∗) (4.7)

for large N , which yield a singularity at y = x∗ in the limit N → ∞. It may
be worth noting that 1 − exp [−F(y)], which appeared in Eq. (3.16) after inserting
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Eq. (3.17) in the analysis presented in §3, corresponds to the cumulative distribution∫ y
−∞ dỹP(ỹ). Equation (4.7) implies that the extremum point in Eq. (4.4) for large
n (> nc) is in 0 < y < x∗. This leads to RS2 and consistently provides the exponent
of Eq. (4.6). On the other hand, the constant y = x∗ gives the extremum for all
small n (< nc), which corresponds to 1RSB in the framework of RM. The intuitive
implication of this is that 〈Zn〉 is dominated by an atypically low minimum energy
generated with a small probability for n > nc, whereas the typical minimum energy
εmin = M

(
x∗ − 1

2

)
provides the major contribution to 〈Zn〉 for n < nc. Thus, the

origin of the phase transition can be identified as the singularity of the free energy
distribution P(y) exhibited in the case of low temperatures, β > βc.

Our analysis also demonstrates that Carlson’s theorem is not necessarily useful
for validating the RM, because an analytic continuation formulated for finite N can
exhibit a singularity in the limit N → ∞, and therefore, taking the limit N → ∞
prior to n → 0 in determining the continuation on the basis of the expressions for
n = 1, 2, · · · , which is usually done in the RM, sometimes yields an incorrect result
for n < 1. However, in the present system, this drawback can be overcome by taking
a constraint on the free energy distribution [i.e. Eq. (4.3)] into account. This leads
to the conventional 1RSB. Although the importance of the concept of EVS in the
RM has been already addressed with regard to the limit n→ 0,29) to our knowledge,
the present analysis is the first that directly clarifies how the properties of EVS
relate to the corruption of the analytic continuation in the RM, expressed as a phase
transition with respect to the replica number n.

§5. Summary

In summary, we have offered an exact expression, Eq. (3.8), of the moments
of the partition function 〈Zn〉 for the GCDREM, without employing the replica
trick. This expression is valid for an arbitrary system size N and complex number
n [with Re(n) > 0]. Simplifying the expression for the case 0 < n < 1, we have shown
that a phase transition with respect to the number of replicas n occurs at a certain
critical number nc ∈ [0, 1] in the thermodynamic limitN → ∞ when the temperature
β−1 is sufficiently low, if the ratio α = M/N is greater than unity. This implies that
Carlson’s theorem, which guarantees the uniqueness of the analytic continuation
from the expressions for n = 1, 2, · · · to those for n ∈ C, is not necessarily useful
for validating the replica method, because taking the thermodynamic limit N → ∞
prior to the continuation results in an incorrect result when the analyticity is lost for
n < 1 in the case of infinite N . However, it has also been shown that this drawback
can be overcome by taking the statistical properties of the minimum energy level
into account. This clarifies how 1RSB originates from a replica symmetric solution
(which has been conventionally discarded) at the critical replica number nc. We
hope that the results obtained here can provide a useful insight into the remaining
mysteries of the RM.

Because Eq. (3.8) is valid throughout the right half complex plane Re(n) > 0
for any finite N , one can directly observe how the singularities of 〈Zn〉 approach the
real axis of n as N → ∞.23) This is sometimes referred to as Lee-Yang’s scenario of
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the phase transition.33) Analysis of this point is currently under way.34)
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Appendix A
Relation between the DREM and Error-Correcting Codes

As was shown in Ref. 9), certain types of spin glass models can be related to
error-correcting codes. Here, we show that a known evaluation scheme of the error
correcting ability of a random code ensemble can be reduced to a calculation of the
general moment of the partition function with respect to the DREM.35),36) A remark
on this relationship is made in Ref. 37).

In the general scenario of error correcting codes, an N -dimensional binary vector
s = (s1, s2, · · · , sN ) (si = 0, 1, i = 1, 2, · · · , N) is encoded as a codeword t =
(t1, t2, · · · , tM ) (ti = 0, 1, i = 1, 2, · · · ,M) of an M (> N)-dimensional binary vector
and transmitted via a noisy channel. Here, we concentrate on a binary symmetric
channel (BSC) in which each component of the codeword ti is independently flipped
to the opposite letter in the alphabet (0 or 1) with a probability 0 < p < 1/2. This
implies that the vector r = t + n (mod 2) is received at the other terminal of the
channel, where n is the noise vector, whose components become 1 independently with
probability p and are 0 otherwise. However, as the codeword is represented somewhat
redundantly, decoding r provides the correct message s with a high probability for
sufficiently small p.

It is known that the performance for the task of correctly retrieving s from
r becomes good when a code C (i.e., an invertible map C : s ↔ t) is randomly
constructed,25),35) providing a code ensemble. Let us evaluate the average probability
of failing to correctly retrieve s in order to characterize the potential error correcting
ability of the ensemble. We focus on the maximum likelihood (ML) decoding, which
selects the codeword closest to the received vector r and returns a message vector
corresponding to the codeword as an estimate ŝ of s. ML decoding minimizes the
decoding error probability PE(C) when codeword vectors t are equally generated at
the transmission terminal.38)

Note that the message s can be correctly identified if its codeword t is provided,
because the code is constructed as an invertible map. Therefore, to evaluate PE(C),
it is convenient to introduce an indicator function ∆ML(t, r|C), which returns 1 if
r is not correctly decoded as the correct codeword t and 0 otherwise. Thus, the
decoding error probability can be computed as

PE(C) =
∑
t,r

P (t|C)P (r|t)∆ML(t, r|C). (A.1)
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Hence, its average over the code ensemble can be represented as

〈PE(C)〉C =
∑
C
P (C)

∑
t∈C,r

P (t|C)P (r|t)∆ML(t, r|C), (A.2)

where P (t|C) is the probability that the codeword vector t is generated given C, and
P (r|t) is the conditional probability that r is received when t is transmitted. P (C) is
the probability that a code C is generated. The symbol

∑
t∈C represents summation

over the 2N codeword vectors, given C.
We assume that the code C is designed by the source coding technique such that

t is uniformly generated as P (t|C) = 1/2N .35) In addition, for BSC, the conditional
probability can be represented as

P (r|t) =
exp

[
−F ∑M

i=1

(
1
2 − δri,ti

)]
(
2 cosh F

2

)M
, (A.3)

where δx,y is 1 if x = y and 0 otherwise, and F = log [(1 − p)/p].
Unfortunately, expressing ∆ML(t, r|C) in a rigorously treatable form is difficult.

However, Gallager’s inequality,

∆ML(t, r|C) ≤

 ∑

t′∈C\t

(
P (r|t′)
P (r|t)

) 1
1+n




n

, (A.4)

which holds for arbitrary n ≥ 0, offers a good upper bound.35),36) Here,
∑

t′∈C\t

represents a summation over the 2N − 1 codeword vectors t′ of C, excluding the
possibility of the correct codeword t. Inserting this into Eq. (A.2) provides

〈PE(C)〉C ≤
∑
C
P (C)

∑
t,r

P (t|C)P
1

1+n (r|t)

 ∑

t′∈C\t

P
1

1+n (r|t)



n

=
∑
C
P (C)

∑
r

P
1

1+n (r|0)


 ∑

t′∈C\0
P

1
1+n (r|t′)




n

,

=
∑

ri=±1

e
F

1+n

PM
i=1( 1

2
−ri)(

2 cosh F
2

)M

∑
C
P (C)


 ∑

t′∈C\0
e
− F

1+n

PM
i=1

“
1
2
−δri,t′

i

”
n

, (A.5)

where we have carried out the gauge transformation t → 0, t′−t → t′ and r−t → r,
assuming that any code C contains the zero codeword t = 0.35) Minimizing the final
expression with respect to n ≥ 0, we can obtain the tightest bound on the average
decoding error probability.

Here, we discuss the fact that E(t) =
∑M

i=1

(
1
2 − δri,ti

)
in Eq. (A.5) satisfies

Eq. (2.1) independently of r when each codeword t is generated with an equal prob-
ability in the ensemble in such a manner that each component is independently
selected from an identical unbiased distribution P (ti = 1) = P (ti = 0) = 1/2. This
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condition holds for the random code ensemble,25),35) although non-trivial correlations
of the ‘energy’ E(t) between ‘states’ t arise. This causes the energy distribution to
differ from Eq. (2.1) in the case of practical linear codes. Therefore, for the current
random code ensemble, Eq. (A.5) can be simplified as

〈PE(C)〉C ≤
(

cosh F
2(1+n)

cosh F
2

)M 〈2N−1∑
A=1

exp
[
− F

1 + n
εA

]
n〉

, (A.6)

where 〈· · · 〉 denotes the configurational average with respect to the ‘energy states’
εA (A = 1, 2, · · · , 2N − 1), following Eq. (2.1). Regarding F/(1 + n) as the inverse
temperature, this means that the evaluation of the average decoding error probability
can be related to calculating the general moment of the ‘partition function’ Z =∑2N−1

A=1 exp
[
− F

1+nεA

]
of the DREM.

Appendix B
The Replica Analysis of the GCDREM

As found in §3, the generalized moment of the partition function can be evaluated
without using the RM for the GCDREM, even when the system size N is finite.
However, for direct comparison to the conventional analysis, it may be helpful to
demonstrate the conventional RM-based analysis as well. Therefore, here we provide
a brief sketch of the replica calculation of the GCDREM.

From Eq. (3.1), we first obtain the expression

〈Zn〉 = ω−nM
2

M∑
i1=0

M∑
i2=0

· · ·
M∑

in=0

〈
n∏

µ=1

niµ

〉
ω

Pn
µ=1 iµ

= ω−nM
2

M∑
i1=0

M∑
i2=0

· · ·
M∑

in=0

M∏
i=1

(〈
n

Pn
µ=1 δi,iµ

i

〉
ωi

Pn
µ=1 δi,iµ

)
, (B.1)

for n = 1, 2, · · · , where 〈· · · 〉 represents the average over the Poisson distribution,
Eq. (3.2). Let us next evaluate the candidates for the most dominant contribution
in the limit N → ∞ under the RS1, RS2 and 1RSB assumptions, following the
conventional scheme of the RM. We focus on the case α > 1 in accordance with the
calculation of the CDREM.

Before proceeding further, it may be worth mentioning that the dynamical vari-
ables in the GCDREM are not single states, but the energy levels i = 0, 1, 2, · · · ,M ,
each of which is composed of multiple states. This difference makes composition of
the solutions slightly different from that in the CDREM, presented in §2, although
the final result is the same.

• RS1
In RS1, all n replica levels are assumed to be allocated to n different levels
i (= 0, 1, 2, · · · ,M). Therefore, for a given level i, we have

n∑
µ=1

δi,iµ =
{

1 when i is one of the n allocated energy levels,
0 otherwise. (B.2)
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When i is an allocated level, the relation〈
n

Pn
µ=1 δi,iµ

i

〉
= γi → exp [N ((1 − α) log 2 + αH(x))] (B.3)

and

ωi
Pn

µ=1 δi,iµ = exp [−βi] → exp [−Nαβx] (B.4)

hold for large N . This yields the contribution〈
n

Pn
µ=1 δi,iµ

i

〉
ωi

Pn
µ=1 δi,iµ → exp [N ((1 − α) log 2 + α(H(x) − βx))] , (B.5)

where x ≡ i/M = i/(αN). This takes its maximum,

expN
(

log 2 + α log
(

cosh
β

2

)
− αβ

2

)
, (B.6)

at xc = (1 − tanh β
2 ). This maximal value represents the contribution from a

certain replica level iµ (= 1, 2, · · · , n). Contributions from other replicas are
smaller than that in Eq. (B.6), as any two replica levels must be located at
different levels under the current assumption. However, the difference becomes
negligible, because there exist many levels in any vicinity of x = xc in the limit
N → ∞. Taking the prefactor ω−nM

2 of the summation in Eq. (B.1) and the
number of permutations over replica indices into account, this implies that the
dominant contribution under the RS1 ansatz is given by

〈Zn〉 = n! × expnN
(

log 2 + α log
(

cosh
β

2

))

∼ expnN
(

log 2 + α log
(

cosh
β

2

))
, (B.7)

which is identical to the RS1 solution of the CDREM, Eq. (2.10), and is equiv-
alent to Eq. (3.30).

• RS2
In RS2, all n replica levels are assumed to be allocated to a certain single level.
Therefore, for a given level i, we have

n∑
µ=1

δi,iµ =
{
n when i is the allocated energy level,
0 otherwise. (B.8)

When i is the allocated level, the relation〈
n

Pn
µ=1 δi,iµ

i

〉
∼
{
γn

i → exp [nN ((1 − α) log 2 + αH(x))] , (x > x∗)
γi → exp [N ((1 − α) log 2 + αH(x))] , (x < x∗)(B

.9)

where x∗ is determined by Eq. (3.25), and

ωi
Pn

µ=1 δi,iµ = exp [−nβi] → exp [−nNαβx] (B.10)
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hold for large N . Note that
〈
n

Pn
µ=1 δi,iµ

i

〉
behaves differently for x > x∗

and x < x∗. Therefore, the behavior of the dominant contribution obtained

by maximizing
〈
n

Pn
µ=1 δi,iµ

i

〉
ωi

Pn
µ=1 δi,iµ depends the relation between x∗ and

the position of the maximum xc. For β < βc and sufficiently small n > 0,
xc = (1− tanh β

2 )/2 becomes greater than x∗. This results in the RS1 solution,
Eq. (2.10), in spite of the fact that the RS2 ansatz is presently employed. This
is because the RS2 ansatz for energy levels does not necessarily imply that
the n replica states are identical, in particular, when the occupation number
ni increases exponentially for large N , which is the case for xc > x∗. In such
cases, even if n replica states are allocated to the same energy level, they are
typically distributed into n different states at the energy level. This corresponds
to the RS1 ansatz of the CDREM, and, therefore, Eq. (2.10) should be repro-

duced. On the other hand, for β > βc, the quantity
〈
n

Pn
µ=1 δi,iµ

i

〉
ωi

Pn
µ=1 δi,iµ is

maximized at xc = (1 − tanh nβ
2 )/2 < x∗. This yields

〈Zn〉 = expN
(

log 2 + α log
(

cosh
nβ

2

))
, (B.11)

which is identical to the RS2 solution of the CDREM, Eq. (2.13), and equivalent
to Eq. (3.34). As Eq. (2.13) can be dominant at n = 1, 2, · · · only for β > βc,
this is consistent with the result of the replica analysis of the CDREM.

• 1RSB
In 1RSB, n replica levels are assumed to be equally allocated to n/m levels.
Therefore, for a given level i, we have

n∑
µ=1

δi,iµ =
{
m when i is the n/m allocated energy levels,
0 otherwise. (B.12)

When i is the allocated level, the relation〈
n

Pn
µ=1 δi,iµ

i

〉
∼
{
γm

i → exp [mN ((1 − α) log 2 + αH(x))] , (x > x∗)
γi → exp [N ((1 − α) log 2 + αH(x))] , (x < x∗)(B

.13)

and

ωi
Pn

µ=1 δi,iµ = exp [−mβi] → exp [−mNαβx] (B.14)

hold for large N . Similarly to the case of RS2, this reproduces the RS1 solution,
Eq. (2.10), for β < βc and sufficiently small n > 0. Therefore, we focus on

the low temperature phase β > βc. Then,
〈
n

Pn
µ=1 δi,iµ

i

〉
ωi

Pn
µ=1 δi,iµ takes its

maximum value,

expN
(

log 2 + α log
(

cosh
mβ

2

)
− mαβ

2

)
, (B.15)

at xc = (1 − tanh mβ
2 )/2 < x∗. This maximal value represents the contribution

from one of the n/m allocated levels. The number of ways to select n/m fromM
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levels, equally allocating n replicas, is negligible in the subsequent calculation.
Taking contributions from all n/m allocated levels and the extremization with
respect to m into account, we obtain

〈Zn〉 ∼ expN
(

extr
m

{
n

m

(
log 2 + α log

(
cosh

mβ

2

))})

= expNnαβ
(

1
2
− x∗

)

= expN
(
nαβ

2
tanh

βc

2

)
, (B.16)

which is identical to the 1RSB solution of the CDREM, Eq. (2.21), and is
equivalent to Eq. (3.33). As Eq. (2.21) can be dominant at n = 1, 2, · · · only
for β > βc, this is consistent with the result of the replica analysis of the
CDREM.

Appendix C
Efficient Sampling in the CDREM

Here, we show that {ni} can be sampled with an O(M) computational cost in
both the CDREM and the GCDREM. With the probability distribution for each
level,

P (Ei) = 2−M

(
M

1
2M +Ei

)
,

(
Ei = i− M

2

)
, (C.1)

the probability to sample a configuration (n0, n1, · · · , nM ) is

P(n0, n1, · · · , nM ) = {P (E0)}n0{P (E1)}n1 · · · {P (EM )}nM
2N !

n0!n1! · · ·nM !
.(C.2)

To generate a sample (n0, n1, · · · , nM ) in practice, we first determine n0 according
to the probability

P(n0, arbitrary) = (p0)n0(1 − p0)2
N−n0

2N !
n0!(2N − n0)!

(C.3)

(p0 ≡ P (E0)). (C.4)

We then determine n1 according to the probability

P(n0;n1, arbitrary) = (p1)n1(1 − p1)2
N−n0−n1

2N !
n1!(2N − n0 − n1)!

(C.5)(
p1 ≡ P (E1)

1 − P (E0)

)
. (C.6)

Repeating this procedure up to nM−1, we have
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Fig. 11. The free energies obtained from the sets {ni} using the CDREM and the GCDREM. We

find that the two models give the almost same results, even for N = 3.

P(n0, n1, · · · ;nM−1, nM ) = (pM−1)n1(1 − pM−1)2
N−PM−1

i=0 ni
2N !

nM−1!(2N −∑M−1
i=0 ni)!(

pM−1 ≡ P (EM−1)

1 −∑M−2
i=0 P (Ei)

)

(C.7)

and thereby obtain a set of (n0, n1, · · · , nM ). This guarantees that the identity

M∑
i=0

ni = 2N (C.8)

holds. This identity characterizes the CDREM. As in the case of the GCDREM, this
can be performed in an O(M) computation.

A comparison between the numerically evaluated moments of the partition func-
tions for the CDREM and the GCDREM is presented in Fig. 11. It reveals that
results of the two models are almost indistinguishable, even for N = 3. Because the
consistency becomes better as N increases,20),21) using the GCDREM instead of the
CDREM is justified when N is large.
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