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Abstract The steady laminar thermosolutal Marang-

oni convection in the presence of temperature-depen-

dent volumetric heat sources/sinks as well as of a first-

order chemical reaction is considered in this paper.

Assuming that the surface tension varies linearly with

temperature and concentration and that the interface

temperature and concentration are quadratic functions

of the interface arc length x, exact analytical similarity

solutions are obtained for the velocity, temperature

and concentration fields. The features of these exact

solutions as functions of the physical parameters of the

problem are discussed in detail.

List of symbols

b parameter, Eq. 31a

c dimensional concentration, Eq. 4

cp specific heat at constant pressure, Eq. 3

C dimensionaless concentration, Eq. 8

C0 dimensional constant, Eq. 7b

D mass diffusivity, Eq. 4

f0 normal component of the dimensionless

interface velocity, Eq. 13

f¢(0) tangential component of the dimensionless

interface velocity

f(g) similar stream function

K dimensionless chemical reaction coefficient

L reference length, Eq. 14
_m mass flow rate per unit span, Eq. 16

M confluent hypergeometric function, Eqs. 34

Pr Prandtl number, Pr = m/a
Q0 dimensional heat generation/absorption

coefficient, Eq. 3

r ratio of the solutal and thermal Marangoni

numbers, Eq. 13

R positive, dimensionl chemical reaction

parameter, Eq. 4
�R Parameter, Eq. 24

s1,2 parameters, Eq. 24

Sc Schmidt number, Sc = m/D

T temperature

T0 dimensional constant, Eq. 7b

u,v x- and y-component of the dimensional velocity,

respectively

v0 normal component of the dimensional interface

velocity, Eq. 7b

w dependent variable, Eqs. 31

z independent variable, Eqs. 31

x,y Cartesian coordinates

Greek symbols
a thermal diffusivity, Eq. 3

D discriminant, Eq. 25

c coefficients, Eq. 5

g similarity independent variable, Eq. 8

/ dimensionless heat generation/absorption

coefficient, Eq. 13

l dynamic viscosity

t kinematic viscosity, m = l/q
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h temperature similarity variable, Eq. 8

q density

r surface tension, Eq. 5

w stream function, Eq. 8

Subscripts

T thermal quantity

c solutal quantity

0 at g = 0

¥ for g fi ¥

1 Introduction

Marangoni boundary layers are dissipative layers

which may occur along the liquid–liquid or liquid–gas

interfaces. The surface tension gradients that are

responsible for Marangoni convection can be both

temperature and/or concentration gradients. The basic

research work in this field has first been promoted by

Napolitano [1, 2]. Marangoni flow induced by surface

tension variations along the liquid–fluid interface cau-

ses undesirable effects in crystal growth melts in the

same manner as buoyancy-induced natural convection

[3, 4]. These undesirable effects become even domi-

nant in the absence of buoyancy forces in the micro-

gravity environment of space-based crystal growth

experiments [4, 5].

In spite of its significance and relevance in micro-

gravity crystal growth, welding, semiconductor pro-

cessing and several other fields of space science,

thermosolutal Marangoni convection has not been

fully explored especially regarding preliminary ques-

tions of general and basic nature. As being pointed out

by Napolitano [6], for classical (i.e. non-Marangoni

layers) boundary layers, the field equations in the bulk

fluids do not depend explicitly on the geometry of the

interface when using as coordinates the arc length (x),

and that the distance normal to the interface involves

the mean curvature of its hydrostatic and dynamic

shapes. This, together with the other surface balance

equations, introduces kinematic, thermal and pressure

couplings for the flow fields in the two fluids. Napo-

litano and Golia [7] have shown that the fields are

uncoupled when the momentum and energy resistivity

ratios of the two layers and the viscosity ratio of the

two fluids are much less than one. Furthermore, as

shown by Napolitano and Russo [8], similarity solu-

tions for Marangoni boundary layers exist when the

interface temperature gradient varies as a power of the

interface arc length (x). The power laws for all other

variables, including the mean curvature, were deter-

mined. Numerical solutions were found, analyzed and

discussed on Marangoni boundary layers in subsequent

papers by Golia and Viviani [9, 10], Napolitano et al.

[11] and Pop et al. [12].

The numerous investigations of Marangoni flow in

various geometries have been reviewed in the literature

[13, 14]. Some of the papers most relevant to this work

include the order-of-magnitude analysis of Marangoni

flow given by Okano et al. [15] that gave the general

trends for the variation of the Reynolds number with

the Grashof number, Marangoni number, and Prandtl

number. Hirata and his co-workers experimentally and

numerically investigated Marangoni flow for various

substances in geometries with flat surfaces relevant to

this work [13, 15, 16]. Arafune and Hirata [17] pre-

sented a similarity analysis for just the velocity profile

for Marangoni flow that is very similar to this derivation

but the results are effectively limited to surface tension

variations that are linearly related to the surface posi-

tion. Slavtchev and Miladinova [18] presented similar-

ity solutions for surface tension that varied as a

quadratic function of the temperature as would occur

near a minimum. Schwabe and Metzager [19] experi-

mentally investigated Marangoni flow on a flat surface

combined with natural convection in a unique geometry

where the Marangoni effect and the buoyancy effect

could be varied independently. Christopher and Wang

[3] studied Prandtl number effects for Marangoni con-

vection over a flat surface and presented approximate

analytical solutions for the temperature profile for

small and large Prandtl numbers.

Napolitano et al. [20] considered double-diffusive

boundary layer along a vertical free surface. Pop et al.

[12] analyzed thermosolutal Marangoni forced con-

vection boundary layers that can be formed along the

surface, which separates two immiscible fluids in sur-

face driven flows when the Reynolds number is large

enough. They derived similarity equations for the case

in which an external pressure gradient is imposed and

produced numerical results for these equations based

on the Keller-box and superposition methods. Re-

cently, Al-Mudhaf and Chamkha [21] reported

numerical and approximate results for thermosolutal

Marangoni convection along a permeable surface in

the presence of heat generation or absorption and a

first-order chemical reaction effects. As mentioned by

Christopher and Wang [3], for an interface with

evaporation or condensation at the surface, the tem-

perature distribution along the interface is primarily a

function of the vapor temperature and the heat transfer
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coefficient rather than the Marangoni flow. For in-

stance, Christopher and Wang [22] showed that the

calculated temperature distribution in vapor bubble

attached to a surface and in the liquid surrounding the

bubble was primarily due to the heat transfer through

the vapor rather than in the liquid region and the

temperature variation along the surface was not linear

but could be described by a power-law function. For

this reason, it is assumed that both the wall tempera-

ture and solute concentration are power-law functions

of the distance along the plate surface.

In none of the above references, exact analytical

solutions of Marangoni flows were attempted. This is

due to the inherent complexity of such flows. The

present work considers thermosolutal Marangoni con-

vective flow over a liquid–fluid interface due to im-

posed temperature and concentration gradients. The

analysis assumes that the surface tension varies linearly

with temperature and concentration but the wall tem-

perature and concentration variations are quadratic

functions of the location. A temperature-dependent

heat source or sink as well as a first-order chemical

reaction are assumed to exist. The main purpose of this

work is to report exact analytical solutions for the

stream function, velocity, temperature and solute

concentration fields and to study the effect of param-

eters on the existence of solutions.

2 Governing equations and problem formulation

Consider steady laminar themosolutal Marangoni

boundary layer flow of a viscous Newtonian fluid in the

presence of heat and mass generation or consumption.

The mass consumption is modeled by a first-order

chemical reaction that may exist between the two flu-

ids. The interface temperature and concentration are

assumed to be quadratic functions of the distance x

along the intersurface. Unlike the Boussineq effect on

the body force term in buoyancy-induced flows, the

Marangoni surface tension effect acts as a boundary

condition on the governing equations of the flow field.

The governing equations for this investigation are

based on the balance laws of mass, linear momentum,

energy and concentration species. Taking the above

assumptions into consideration, these equations can be

written in dimensional form as

@u

@x
þ @v

@y
¼ 0 ð1Þ

u
@u

@x
þ v

@u

@y
¼ t

@2u

@y2
ð2Þ

u
@T

@x
þ v

@T

@y
¼ a

@2T

@y2
þ Q0

qcp
ðT � T1Þ ð3Þ

u
@c

@x
þ v

@c

@y
¼ D

@2c

@y2
� Rðc� c1Þ ð4Þ

The surface tension is assumed to depend on temper-

ature and concentration linearly,

r ¼ r0½1� cTðT � T1Þ � ccðc� c1Þ� ð5Þ

where

cT ¼ �
1

r0

@r
@T

�
�
�
�
c

; cc ¼ �
1

r0

@r
@c

�
�
�
�
T

ð6Þ

denote the temperature and concentration coefficients

of the surface tension, respectively.

The boundary conditions of this problem are given

by

l
@u

@y

�
�
�
�
y¼0

¼ �@r
@x

�
�
�
�
y¼0

¼ r0 cT

@T

@x

�
�
�
�
y¼0

þcc

@c

@x

�
�
�
�
y¼0

 !

ð7aÞ

vðx; 0Þ ¼ v0; Tðx; 0Þ ¼ T1 þ T0X2;

cðx; 0Þ ¼ c1 þ C0X2; X ¼ x=L ð7bÞ

uðx;1Þ ¼ 0; Tðx;1Þ ¼ T1; cðx;1Þ ¼ c1 ð7cÞ

where L is a reference length (which will be specified

below) and T0 and C0 are (positive or negative)

dimensional constants. The coordinate system, the

velocity components and the interface condition are

shown in Fig. 1.

Introducing the stream function w (x,y) by the usual

definition u = ¶w/¶y, v = –¶w/¶x as well as the simi-

larity transformations

w x; yð Þ ¼ tX f ðgÞ;
g ¼ y=L

T x; yð Þ ¼ T1 þ T0X2hðgÞ
c x; yð Þ ¼ c1 þ C0X2CðgÞ

ð8Þ

the boundary value problem, Eqs. 1–7, reduces to the

solution of the ordinary differential equations

f 000 þ ff 00 � f 0
2 ¼ 0 ð9Þ

h00

Pr
þ fh0 þ /� 2f 0ð Þh ¼ 0 ð10Þ

C00

Sc
þ f C0 � K þ 2f 0ð ÞC ¼ 0 ð11Þ
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along with the boundary conditions

f 0ð Þ ¼ f0; f 00 0ð Þ ¼�2 1þ rð Þ; h 0ð Þ ¼ 1; C 0ð Þ ¼ 1;

f 0 1ð Þ ¼ 0; h 1ð Þ¼ 0; C 1ð Þ¼ 0: ð12Þ

In the above equations Pr = t/a and Sc = t/D denote

the Prandtl and the Schmidt numbers, respectively and

/, K, f0 and r are further dimensionless parameters

defined as follows:

/ ¼ Q0L2

qtcp
; K ¼ RL2

t
; f0 ¼ f 0ð Þ ¼ � v0L

t
;

r ¼ C0cc

T0cT

ð13Þ

The reference length L has been chosen as

L ¼ � lt
r0T0cT

ð14Þ

Having in view that with increasing temperature the

surface tension r in general decreases, its temperature

gradient cT given by Eq. 6 is positive. Thus, the refer-

ence length chosen according to Eq. 14 is positive only

if T0 is negative. We also mention that the parameter

r represents precisely the ratio of the solutal and

thermal Marangoni numbers Mac = r 0 c c C0 L/(a l)

and MaT = r 0 c T T0 L/(a l), respectively.

Equations 9–12 show that the f-boundary value

problem is decoupled from the temperature and con-

centration boundary value problems. Its solution

f = f(g) (see Sect. 3) yields the dimensional velocity

field in the form

u x; yð Þ ¼ t
L

X f 0 gð Þ; v x; yð Þ ¼ � t
L

f gð Þ ð15Þ

The local mass flow in the boundary layer per unit span

is given by :

_m ¼ q
Z1

0

u dy ¼ qt f 1ð Þ � f0½ �X ð16Þ

where f(¥) represents the similar entrainment velocity,

f(¥) = –(L/t )v(x,¥). In this way we obtain

_m ¼ qx v x; 0ð Þ � v x;1ð Þ½ � ð17Þ

The boundary value problem, Eqs. 9–12, has been

investigated numerically for different values of the

parameters involved by Al-Mudhaf and Chamkha [21].

An approximate analytical solution has also been given

in [21]. As already mentioned, the aim of the present

paper is (a) to show that the problem 9–12 admits exact

analytical solutions for all three dimensionless function

f(g), h (g) and C(g), and (b) to discuss the features of

these solutions in terms of the parameters Pr, Sc, /, K,

f0 and r in some detail.

3 Exact solutions of the flow problem

The momentum boundary value problem is specified

by equation

f 000 þ ff 00 � f 0
2 ¼ 0 ð18Þ

and the boundary conditions

f 0ð Þ ¼ f0; f 00 0ð Þ ¼ �2 1þ rð Þ; f 0 1ð Þ ¼ 0 ð19Þ

The function

f gð Þ ¼ f1 þ f0 � f1ð Þe�f1g ð20Þ

is an exact solution of Eq. 18 for any value of the

similar entrainment velocity f¥ = f(¥). The asymptotic

condition f ¢(¥) = 0 requires f¥ > 0. The boundary

condition f(0) = f0 is satisfied automatically, and the

boundary condition f ¢¢(0 ) = –2(1 + r ) implies

f 3
1 � f0f 2

1 � 2 1þ rð Þ ¼ 0 ð21Þ

i.e., for given values of the parameters f0 and r, f¥ must

be a non-negative root of the cubic equation 21. Then,

the similar surface velocity is obtained as

f 0 0ð Þ ¼ f1 f1 � f0ð Þ ð22Þ

The three roots of Eq. 21 can be calculated exactly

from Cardano’s equations

xy

u v

T
T

c
c

Fig. 1 Physical model, coordinate system and interface condi-
tion
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f ð1Þ1 ¼
f0

3
þ s1 þ s2 ð23aÞ

f ð2Þ1 ¼
f0

3
� s1 þ s2

2
þ i

ffiffiffi

3
p

2
s1 � s2ð Þ ð23bÞ

f ð3Þ1 ¼
f0

3
� s1 þ s2

2
� i

ffiffiffi

3
p

2
s1 � s2ð Þ ð23cÞ

where

s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Rþ
ffiffiffiffi

D
p3

q

; ð24aÞ

s2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�R�
ffiffiffiffi

D
p3

q

; ð24bÞ

�R ¼ 1þ r þ f0

3

� �3

ð24cÞ

and

D ¼ 2ð1þ rÞ f0

3

� �3

þ 1þ r

2

" #

ð25Þ

The discriminant D becomes zero for r = –1 indepen-

dent of the value of f0, as well as for r „ –1 when

f0 ¼ �3
1þ r

2

� �1=3

ðD ¼ 0Þ ð26Þ

The general features of the roots f
ð1Þ
1; f

ð2Þ
1; f

ð3Þ
1

n o

as

functions of the parameters f0 and r, as well as their

expressions for D = 0 are summarized in Table 1 and in

Fig. 2. It is worth emphasizing here that for r = –1 and

f0 ‡ 0 the roots of Eq. 21 have a special meaning (see

the middle row of Table 1). Indeed, in this case we have

f¥ = f0 ‡ 0 which implies f(g) = const. = f¥ = f0 ‡ 0.

Hence the case f(g) = f¥ = f0 = 0 corresponds to the

equilibrium state of the fluids. In the case f(g) = f¥
= f0 > 0, on the other hand, only the tangential velocity

component u is vanishing while the normal velocity

component v is a non-vanishing constant, v = t f0/L.

Some of the basic features of the roots f
ð1Þ
1; f

ð2Þ
1; f

ð3Þ
1

n o

summarized in Table 1, can be extracted easily from

the sign of D and from their relationships to the coef-

ficients of the cubic equation 21 given by

f ð1Þ1 þ f ð2Þ1 þ f ð3Þ1 ¼ f0 ð27aÞ

Table 1 Features of the roots of the cubic equation 21 as functions of the parameters f0 and r

f0\� 3 1þr
2

� �1=3
f0 ¼ �3 1þr

2

� �1=3

(the solid curve of Fig. 1)

f0[� 3 1þr
2

� �1=3

r < –1 f¥
(I) < 0,

f ¥
(II), f¥

(III) = complex
conjugate.

D > 0
Domain A

f ðIÞ1 ¼ 1þr
2

� �1=3\0;

f ðIIÞ
1 ¼ f ðIIIÞ

1 ¼ �2 1þr
2

� �1=3[0

D = 0 (upper branch)

f¥
(I) < 0

f¥
(II), f¥

(III) > 0
D < 0
Domain B

r = –1 (the dashed
vertical line of Fig. 1)

f¥
(I) = f0 < 0

f (II)
¥ = f (III)

¥ = 0,
D = 0

f¥
(1) = f¥

(2) = f¥
(3) = 0

D = 0
f¥

(I) = f0 > 0

f¥
(II) = f¥

(III) = 0,
D = 0

r > –1 f¥
(I) > 0

f¥
(II), f¥

(III) < 0
D < 0 Domain C

f ðIÞ1 ¼ 1þr
2

� �1=3[0;

f ðIIÞ
1 ¼ f ðIIIÞ

1 ¼ � 1þr
2

� �1=3\0

D = 0 (lower branch)

f¥
(I) > 0,

f¥
(II), f¥

(III) = complex
conjugate

D > 0 Domain D

Here f Ið Þ
1; f

IIð Þ
1; f IIIð Þ

1

n o

is some sequence of the roots (23a, b, c). Only the non-negative roots are physical. The solid curve, the dashed

vertical line (both associated with D = 0) as well as domains A, B, C and D of the parameter plane (r,f0 ) are shown in Fig. 2

r

0f

Fig. 2 The solid curve is the plot of Eq. 26 for which the
discriminant D vanishes when r „ –1. The dashed vertical line
corresponds to r = –1 (for which the discriminant is identically
zero). The signs + and – are the signs of the D in the domains
A, B, C and D of the parameter plane (r,f0 ). In the domain A no
physical (i.e. real and non-negative) roots of the cubic equa-
tion 21 exist. In the domains C and D, as well as on the lower
branch of the solid D = 0-curve, a single physical root is possible,
while in the domain B two physical solutions exist which on the
upper branch of the solid D = 0-curve become coincident (see
also Table 1)

Heat Mass Transfer (2007) 43:965–974 969

123



f ð1Þ1 f ð2Þ1 þ f ð1Þ1 f ð3Þ1 þ f ð2Þ1 f ð3Þ1 ¼ 0 ð27bÞ

f ð1Þ1 f ð2Þ1 f ð3Þ1 ¼ 2 1þ rð Þ ð27cÞ

Indeed, Eq. 27b shows that it is not possible that all

three roots f
ð1Þ
1; f

ð2Þ
1; f

ð3Þ
1

n o

are simultaneously positive or

simultaneously negative. Therefore, we can obtain at

most dual exact solutions (but never triple solutions)

for given values of the input parameters f0 and r.

Furthermore, Eq. 27c shows that

• for D > 0 the single real root is positive when r >

–1 (Domain D), and negative when r < –1 (Domain

A),

• for D £ 0 we have two positive real roots and one

negative real root when r < –1 (Domain B and the

upper branch of the D = 0 curve) and two negative

real roots and one positive real root when r > –1

(Domain C and the lower branch of the D = 0

curve).

• Eq. 27a can serve as a useful check for the calcu-

lated values of the roots.

In fact, the roots f
ð1Þ
1; f

ð2Þ
1; f

ð3Þ
1

n o

undergo a quite

subtle change with the variation of the parameters f0

and r. This phenomenon is illustrated in Fig. 3 for –4

< r < +4 for f0 = +3 and f0 = – 3, respectively. In the

range r < –3 no physical root exists in these cases. For

r = –3 the discriminant becomes zero, and we get two

coincident physical roots (see Table 1),

f1 ¼ �2
1þ r

2

� �1=3

¼ 2 ð28Þ

From the solution (20) corresponding to the coin-

cident roots (28), there bifurcate for r > –3 two distinct

physical solutions (20) of the f-boundary value problem

for f0 = +3. With increasing r, the root f¥
(1) increases,

while f¥
(3) decreases and becomes zero at r = –1. For

r > –1 and f0 = +3 we obtain a single physical root,

f¥ = f¥
(1), which increases monotonically with increas-

ing r. At r = 7, e.g. it reaches the value f¥
(1) = 4. In the

case f0 = –3, according to Eq. 26, the coincident roots

correspond to r = +1 and are non-physical. The

physical solutions correspond in this case to the branch

f¥
(1) and are unique. Their domain of existence extends

to r > –1. The dashed negative branches are in both

cases non-physical.

Obviously, the trajectories of the roots f
ð1Þ
1; f

ð2Þ
1; f

ð3Þ
1

n o

shown in Fig. 3 also lead to certain trajectories of the

similar surface velocity f¢(0) given by Eq. 22. This

correlation is illustrated in Fig. 4 where the trajectories

of the similar interface velocities f 0ð1Þ 0ð Þ; f 0ð2Þ 0ð Þ;
n

f 0ð3Þ 0ð Þg associated with the roots f
ð1Þ
1; f

ð2Þ
1; f

ð3Þ
1

n o

are

plotted for f0 = +3 and – 4 < r < +2. The surface

velocities are physical in the ranges where the corre-

sponding roots are positive (compare Fig. 4 to Fig. 3).

4 Exact solutions of the temperature problem

The temperature boundary value problem is specified

by equation

f

f

f

f

f

f

f

f

A

B

f

f

f

r

D,C

Fig. 3 Trajectories of the roots f ð1Þ1; f
ð2Þ
1; f

ð3Þ
1

n o

when r varies from

–4 to +4, for f0 = +3 and f0 = –3, respectively. In the range –3
£ r < –1 the f-boundary value problem admits dual solutions for
f0 = +3 which become coincident at r = –3. In the range r > –1
the solution is unique for f0 = +3. In the case f0 = –3 only
unique solutions exist, their domain of existence being r > –1.
The dashed negative branches are in both cases non-physical

f

f

f

f

f

r

Fig. 4 Trajectories of the similar interface velocities f 0ð1Þ 0ð Þ;
n

f 0ð2Þ 0ð Þ; f 0ð3Þ 0ð Þg associated with the roots f ð1Þ1; f
ð2Þ
1; f

ð3Þ
1

n o

shown in

Fig. 2, as being plotted for f0 = 3 and –4 < r < +2. In the range
r < –3 no physical solutions f ¢(i) (0) exist. In the range – 3 < r
< –1 we obtain two physical velocities, f ¢(1) (0) and f ¢(3) (0), both
being negative, and a non-physical solution f ¢(2) (0 ) (dashed).
For r > –1 a single physical solution exists, f ¢(1) (0), which is
positive
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h00

Pr
þ fh0 � 2f 0hþ /h ¼ 0 ð29Þ

and the boundary conditions

h 0ð Þ ¼ 1; ð30aÞ

h 1ð Þ ¼ 0 ð30bÞ

Here f = f(g) is given by Eq. 20 with f¥ „ f0 being a

positive root of the cubic equation 21. By the change of

variables

h gð Þ ¼ zbw zð Þ; ð31aÞ

z ¼ z0e�f1 g; ð31bÞ

z0 ¼
f0

f1
� 1

� �

� Pr ð31cÞ

equation 29 with f = f(g) is given by Eq. 20 goes over in

z
d2w

dz2
þ 1þ 2b� Pr � zð Þ dw

dz
� ðb� 2Þw ¼ 0 ð32Þ

where the constant b satisfies the quadratic equation

b2 � Prbþ /Pr

f 2
1
¼ 0 ð33Þ

For a specified value of b Eq. 32 admits two linearly

independent solutions

w1 zð Þ ¼M b� 2; 1þ 2b� Pr; zð Þ;
w2 zð Þ ¼ zPr�2bM Pr � 2� b; 1� 2bþ Pr; zð Þ

ð34Þ

where M denotes Kummer’s confluent hypergeometric

function M (see [23, Chapt.13]). According to Eq. 31a,

the corresponding linearly independent solutions of

Eq. 29 are

h1 gð Þ ¼ e�bf1gM b� 2;1þ 2b�Pr;zð Þ;
h2 gð Þ ¼ e� bPr�bð Þf1gM Pr� 2� b;1� 2bþPr;zð Þ

ð35Þ

Having in mind that the roots

b1;2 ¼
Pr

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4/
Prf 2

1

s" #

ð36Þ

of the quadratic equation 33 satisfy the relationship b1

+ b2 = Pr, it is easy to show that the fundamental

solutions 35 of Eq. 29 can be transcribed in the form

h1;2 gð Þ ¼C1;2e�b1;2f1gM b1;2� 2;1�Prþ 2b1;2;z
� �

ð37Þ

where C1 and C2 are constants. When both b1 and b2

are real and positive, the asymptotic conditions h¢1,2

(¥) = 0 are satisfied automatically and h 1 and h 2 yield

two independent solutions of the temperature bound-

ary value problem specified by Eqs. 29 and 30. The

condition for b1,2 > 0 requires

0\
4/

Prf 2
1

\1 ðb1;2[0Þ ð38Þ

The constants C1 and C2 can be determined in this case

from the surface condition (30a) easily. In this way we

obtain

h1;2 gð Þ ¼ e�f1 b1;2 g M b1;2 � 2; 1� Pr þ 2b1;2; z
� �

M b1;2 � 2; 1� Pr þ 2b1;2; z0

� � ð39Þ

The corresponding interface temperature gradients are

h01;2 0ð Þ ¼ �f1b1;2 � f1z0

b1;2 � 2

1� Pr þ 2b1;2

M b1;2 � 1; 2� Pr þ 2b1;2; z0

� �

M b1;2 � 2; 1� Pr þ 2b1;2; z0

� �

ð40Þ

When / < 0 (heat consumption), b1 is still real and

positive, but b2 becomes negative. In this case the

temperature problem admits a single solution which

is h1.

We see that for a given solution 20 of the flow

boundary value problem, the temperature solutions 39

depend on the heat generation/consumption parame-

ter / and the Prandtl number Pr. As an illustration, in

Fig. 5 the temperature profiles (39) corresponding to

the parameter values f0 = +3, r = –2, Pr = 3 and

/ = 0.3 are shown. To the corresponding physical

roots f¥
(3) = 1 and f

ð1Þ
1 ¼ 1þ

ffiffiffi

3
p

of the cubic equa-

tion 21 there correspond each two temperature pro-

files h1 and h2, respectively (the third root of Eq. 21,

f
ð2Þ
1 ¼ 1�

ffiffiffi

3
p

; is negative and thus non-physical; see

also Fig. 3). In Table 2 the interface temperature

gradients h¢1,2 (0) and the 1%-thicknesses of the

temperature profiles plotted in Fig. 5 have been in-

cluded. The interface temperature gradient specifies

the slope of the temperature profile at the interface

and the 1% thickness is the value of g for which h
= 0.01. As expected, the temperature boundary layer

of the smallest thickness (this is h1 (g) for

f
ð1Þ
1 ¼ 1þ

ffiffiffi

3
p

; with g1 = 0.569606) leads to the largest

interface heat transfer (h¢1 (0) = –8.290731) and that

of the largest thickness (this is h2 (g) for

f
ð1Þ
1 ¼ 1þ

ffiffiffi

3
p

; with g2 = 38.6795) leads to the smallest

interface heat transfer (h¢2 (0) = –0.921958).
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When some special relationships between the

parameters / and Pr hold, the solutions 39 can be re-

duced to simpler (even elementary) forms. In the fol-

lowing we consider such special cases, namely the cases

for which b1 = 2. One immediately sees that the spe-

cial case b1 = 2 can be realized for the values

/ ¼ 2 Pr � 2ð Þ
Pr

f 2
1 ð41Þ

of the heat generation/consumption parameter /. The

salient aspect of this case is that the corresponding

solution h 1 (g) becomes especially simple,

h1 gð Þ ¼ e�2 f1;g; h01 0ð Þ ¼ �2f1;ðb1 ¼ 2Þ ð42Þ

The second solution, h 2 (g) (associated with the same

values of f0, f¥, / and Pr), is also a physical solution

when b2 = Pr – 2 > 0, i.e. when Pr > 2, which

according to Eq. 41 requires / > 0. For Pr £ 2, i.e. for

/ £ 0 the second solution associated with (42) is non-

physical. As an illustration of the cases b1 = 2, the

dependence of /, as given by Eq. 41, on the parameter

r is plotted in Figs. 6 and 7 for f0 = +3 and Pr = 1 and

Pr = 6, respectively. In the latter case, Pr = 6, the

temperature problem admits in addition to 42 a second

solution, h 2 (g) given by Eq. 39 with b1 = 2 and b2 =

Pr –b1 = 4,

h2 gð Þ ¼ e�4f1; g M 2; 3; zð Þ
M 2; 3; z0ð Þ ð43aÞ

In this case the Kummer functions M in Eq. 43a can

also be expressed by elementary functions yielding

h2 gð Þ ¼ e�2f1; g 1� 1� zð Þez

1� 1� z0ð Þez0
ð43bÞ

where z is given by Eqs. 31b,c.

5 Exact solutions of the concentration problem

The concentration boundary value problem is specified

by equation

C00

Sc
þ fC0 � 2f 0 C �Kh ¼ 0 ð44Þ

and the boundary conditions

C 0ð Þ ¼ 1; ð45aÞ

C 1ð Þ ¼ 0 ð45bÞ

Comparing Eqs. 44 and 45 to Eqs. 29 and 30, we see

that the solutions of the concentration problem can

formally be gained from those of the temperature

problem by simply replacing h by C, Pr by Sc and / by

–K, respectively. Nevertheless, there occurs an essential

difference which is due to the fact that, in contrast to /,

f

f

f

f

Fig. 5 Temperature profiles (39) corresponding to the parame-
ter values f0 = 3, r = –2, Pr = 3 and / = 0.3. Each two profiles
(with the same values of Pr = 3 and / = 0.3) correspond to the
roots f (3)

¥ = 1 and f ð1Þ1 ¼ 1þ
ffiffiffi

3
p

of the cubic equation 21,
respectively (see also Fig. 3)

Table 2 The values of the interface temperature gradients h¢1,2

(0) and of the 1%-thicknesses of the temperature profiles plotted
in Fig. 5 (f0 = +3, r = –2, Pr = 3 and / = 0.3)

– h¢1 (0) – ¢2 (0) 1% thickness

g1 g2

f(3)
¥ = 1 5.90091 5.608182 1.107181 1.44577

f ð1Þ1 ¼ 1þ
ffiffiffi

3
p

8.290731 0.921958 0.562415 38.6795

r

Fig. 6 Trajectories of / (1,2,3) associated according to Eq. 41 with

the roots f ð1Þ1; f
ð2Þ
1; f

ð3Þ
1

n o

shown in Fig. 3, as being plotted for f0 =

+3, –3 < r < +1 and Pr = 1. For the corresponding values of
/(1,2,3) the temperature solution is given by Eq. 42. The branch
/(2) (dashed) is non-physical
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the reaction parameterK given by the second Eq. 13 is

strictly positive and thus the transcribed Eqs. 36,

b1;2 ¼
Sc

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4K

Scf 2
1

s" #

ð46Þ

always yield one negative root, b2, such that the cor-

responding solution C2 (g) obtained by transcription of

h2 (g) violates the asymptotic condition C(¥) = 0. As a

consequence, the concentration problem always admits

a unique solution, namely the counterpart of h1 (g). In

this way the subscript 1 may be omitted, and the con-

centration solution [obtained from Eq. 39] reads

C gð Þ ¼ e�f1;b g M b� 2; 1� Scþ 2b; zð Þ
M b� 2; 1� Scþ 2b; z0ð Þ ð47Þ

Here b ” b1 (as being given by Eq. 46 with sign +)

and, according to Eq. 31c,

z0 ¼
f0

f1
� 1

� �

� Sc ð48Þ

The corresponding interface concentration gradient (as

being obtained from Eq. 40 is

C0 0ð Þ¼�f1b�f1z0
b�2

1�Scþ2b1;2

M b�1;2�Scþ2b;z0ð Þ
M b�2;1�Scþ2b;z0ð Þ

ð49Þ

We note that for small values of the Schmidt number the

interface concentration gradient (49) scales with Sc as

C0 0ð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

K � Sc
p

Sc� 1ð Þ ð50Þ

For b = 2 Eqs. 47 and 49 reduce to

C gð Þ ¼ e�2 f1 g; C 0ð Þ ¼ �2f1 ðb1 ¼ 2Þ ð51Þ

which are counterparts of Eqs. 42. Similarly to Eq. 41,

b = 2 can be realized in this case for the values

K ¼ 2 2� Scð Þ
Sc

f 2
1 ð52Þ

of the reaction parameter K.

6 Summary and conclusions

Exact analytical solutions for the velocity, temperature

and concentration fields of steady thermosolutal Ma-

rangoni in the presence of temperature-dependent

volumetric heat sources/sinks as well as of a first-order

chemical reaction have been reported in this paper.

The dependence of the solutions on the parameters f0

(normal component of the dimensionless interface

velocity), r (ratio of the solutal and thermal Marangoni

numbers), / (dimensionless heat generation/absorp-

tion coefficient), K (dimensionless chemical reaction

coefficient), Prandtl number Pr and Schmidt number

Sc has been examined in some detail. The main results

of the paper can be summarized as follows:

1. The flow solutions depend only on the parameters

r and f0. Their domain of existence in the param-

eter plane (r,f0 ) is shown in Table 1 and Fig. 2.

2. Depending on the values of r and f0 there may exist

either unique or dual flow solutions (see Fig. 3)

associated with one of two different positive values

of the similar entrainment velocity f¥ (see Fig. 3).

3. The similar interface velocities f ¢(0) are quadratic

functions of the entrainment velocities f¥ [see

Eq. 22] and depend on r and f0 via f¥ sensitively

(see Fig. 4).

4. For a given solution of the flow problem and

specified values of / and Pr, the temperature

problem admits in general one or two linearly

independent solutions which can be expressed in

term of Kummer’s confluent hypergeometric

functions. The characteristics of these solutions has

been discussed in Sect. 5 in detail (see also Fig. 5

and Table 2). The interface heat transfer coeffi-

cient could also be calculated exactly [see Eqs. 40].

5. When between the parameters / and Pr a special

relationships holds [see Eq. 41], the general

temperature solutions can be reduced to some

r

Fig. 7 Trajectories of / (1,2,3) associated according to Eq. 41

with the roots f ð1Þ1; f
ð2Þ
1; f

ð3Þ
1

n o

shown in Fig. 2, as being plotted for

f0 = +3, –3 < r < +1 and Pr = 6. For the corresponding values
of /(1,2,3) the temperature problem admits two independent
solutions, h1 (g) given by Eq. 42, and h2 (g) given by Eq. 43. The
branch /(2) (dashed) is non-physical
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elementary forms [see Eqs. 42 and 43, and Figs. 6

and 7]. One of these solutions is always a simple

exponential function [see Eq. 42]. Thus Eq. 41

represents precisely the condition under which the

approximate solutions reported recently by Al-

Mudhaf and Chamkha [21] become exact.

6. With some precaution, the solutions of the con-

centration boundary value problem can be ob-

tained by a simple transcription of the temperature

solutions (see Sect. 5).
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