
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 6, JUNE 2008 1013

Exact and Approximate Algorithms for the
Optimization of Area and Delay in Multiple

Constant Multiplications
Levent Aksoy, Student Member, IEEE, Eduardo da Costa, Paulo Flores, Member, IEEE,

and José Monteiro, Member, IEEE

Abstract—The main contribution of this paper is an exact com-
mon subexpression elimination algorithm for the optimum sharing
of partial terms in multiple constant multiplications (MCMs). We
model this problem as a Boolean network that covers all possible
partial terms that may be used to generate the set of coefficients
in the MCM instance. We cast this problem into a 0–1 integer
linear programming (ILP) problem by requiring that the single
output of this network is asserted while minimizing the number of
gates representing operations in the MCM implementation that
evaluate to one. A satisfiability (SAT)-based 0–1 ILP solver is
used to obtain the exact solution. We argue that for many real
problems, the size of the problem is within the capabilities of
current SAT solvers. Because performance is often a primary
design parameter, we describe how this algorithm can be modified
to target the minimum area solution under a user-specified delay
constraint. Additionally, we propose an approximate algorithm
based on the exact approach with extremely competitive results.
We have applied these algorithms on the design of digital filters
and present a comprehensive set of results that evaluate ours
and existing approximation schemes against exact solutions under
different number representations and using different SAT solvers.

Index Terms—Canonical signed digit (CSD), common subex-
pression elimination (CSE), delay constraints, minimal signed
digit (MSD), multiple constant multiplications (MCMs), pseudo-
Boolean optimization (PBO).

I. INTRODUCTION

IN SEVERAL computationally intensive operations such
as finite impulse response (FIR) filters, as illustrated in

Fig. 1, and fast Fourier transforms, the same input is to be
multiplied by a set of coefficients—an operation known as
multiple constant multiplications (MCMs). These operations
are typical in digital signal processing (DSP) applications,
and hardwired dedicated architectures are the best option for
maximum performance and minimum power consumption.

Manuscript received February 23, 2007; revised July 6, 2007 and
October 16, 2007. This work was conducted while the authors were researchers
at the Instituto de Engenharia de Sistemas e Computadores (INESC-ID). This
paper was recommended by Associate Editor S. Nowick.

L. Aksoy is with the Division of Circuits and Systems, Faculty of Electrical
and Electronics Engineering, Istanbul Technical University, Istanbul 34469,
Turkey (e-mail: levent@ehb.itu.edu.tr).

E. da Costa is with the Departments of Electrical Engineering and Informat-
ics, Catholic University of Pelotas (UCPel), Pelotas 96010-000, Brazil (e-mail:
ecosta@ucpel.tche.br).

P. Flores and J. Monteiro are with the Instituto Superior Técnico (IST),
Technical University of Lisbon, 1000-029 Lisbon, Portugal (e-mail: pff@
inesc-id.pt; jcm@inesc-id.pt).

Digital Object Identifier 10.1109/TCAD.2008.923242

Fig. 1. Transposed form of a hardwired FIR filter implementation.

Constant coefficients allow for a great simplification of the
multipliers, which can be reduced to a set of shift–adds [1].
When the same input is to be multiplied by a set of constant co-
efficients, significant reductions in hardware and, consequently,
power, can be obtained by sharing the partial products of the in-
put among the set of multiplications. We propose an algorithm
that optimally solves the maximal sharing of partial terms.
Although this problem has been proven to be NP-hard [2], we
show that, for many practical instances, the size of the problem
still allows for the computation of the optimum solution.

This maximal sharing problem has been the subject of ex-
tensive research in recent years. Several strategies have been
proposed for the optimization of MCMs. One is to consider
not only adders, but also subtracters to combine partial terms.
A second approach is the use of the canonical signed digit
(CSD) representation for the coefficients. This representation
minimizes the number of nonzero digits, and hence, the max-
imal subexpression sharing search starts from a minimal level
of complexity [3]. In a recent paper, Park and Kang [4] propose
the use of the minimal signed digit (MSD) representation for the
coefficients. Under the MSD representation, a given numerical
value can have multiple representations. However, in all of
them, the number of nonzero digits is minimal and, therefore,
the same as the CSD representation.

To the best of our knowledge, all previous solutions to the
maximal sharing problem have been heuristic, providing no
indication as to how far from the optimum their solutions are.
We propose an exact common subexpression elimination (CSE)
algorithm that is feasible for many real situations [5]. The
proposed algorithm can be applied to coefficients represented
in binary, CSD, or MSD. We model this problem as a Boolean
network that covers all possible partial terms, which may be
used to generate the set of coefficients in the MCM instance.
The inputs to this network are shifted versions of the value that
serves as an input to the MCM operation. Each adder and sub-
tracter used to generate a partial term is represented as an AND

gate. All partial terms that result in the same numerical value
are ORed together. There is a single output, which is an AND

over all the partial terms that represent the coefficients in the

0278-0070/$25.00 © 2008 IEEE

1014 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 6, JUNE 2008

MCM instance. We cast this problem into a 0–1 integer linear
programming (ILP) problem by requiring that the output is
asserted, meaning that all coefficients are covered by the set of
partial terms found, while minimizing the total number of AND

gates that evaluate to one, i.e., the number of adders/subtracters
that are effectively used. A generic satisfiability (SAT)-based
0–1 ILP solver is used to compute the exact solution.

In many designs, particularly in DSP systems, performance is
a critical parameter. Hence, circuit area is generally expendable
in order to achieve a given performance target. The exact
algorithm that we propose is able to be parameterized with a
delay constraint so that only solutions that meet the desired
delay are considered [6]. Thus, the obtained solution is the
minimum area solution under the specified maximum delay.

Although the exact algorithm can handle many real-sized
designs, it naturally breaks down on some large instances. We
have developed approximate algorithms, e.g., ASSUME, for
both unconstrained and delay-constrained area minimization
[7]. These algorithms are based on the same Boolean network
model constructed for the exact algorithm. This network pro-
vides a top-down approach in the implementation of coeffi-
cients, whereas previous approaches use a bottom-up approach,
combining simpler partial terms until the coefficients are imple-
mented, thus more easily falling into local minima. We show
that our approximate algorithms are extremely competitive,
being able to find the exact solution in many cases.

We present results on experiments with randomly generated
instances and with concrete filter instances. We compare solu-
tions obtained with approximate algorithms, i.e., ours and those
previously proposed, to the exact solutions for both uncon-
strained and delay-constrained area minimization. In this com-
parison, we use different coefficient representations, namely,
binary, CSD, and MSD. Several conclusions can be drawn
from the results. One is that our exact algorithm is able to
handle very large problem instances. The other is that the
heuristic algorithm, i.e., ASSUME, produces many times the
optimum solutions, or a solution very close to the optimum, in a
fraction of the CPU time. At a different level, we show that the
CSD, while starting from a simpler coefficient representation,
performs significantly worse than the binary representation.
The redundancy of the MSD representation does provide the
best solutions in most cases, but at the cost of a more complex
model. On the other hand, the binary representation yields
solutions with greater delay than the solutions obtained under
CSD and MSD representations.

This paper is organized as follows. In Section II, we give
the basic background concepts and an overview of relevant
related work. The model developed for the exact algorithm is
described in Section III. Section IV presents how this model
can be extended to limit the search to solutions that meet a
maximum delay constraint. The approximate algorithms, based
on the same model, are described in Section V. Section VI
presents and discusses a set of results on selected benchmarks.
Finally, Section VII concludes the paper, summarizing the main
contributions and giving directions for future work.

II. DEFINITIONS

In this section, we start by defining the problem for which we
propose exact and approximate algorithms, followed by defini-

Fig. 2. Computation of 11x using: (a) multiplier and (b) shift–adds.

Fig. 3. Simultaneous computation of 7x and 11x. (a) No sharing. (b) Sharing
the partial term 3x.

tions of background concepts, and we end with an overview of
related work.

A. Problem Definition

We address the problem of minimizing the hardware required
for a parallel multiplication of an input value over a set of
constant coefficients (MCMs). A paradigmatic example of an
application where MCMs are realized is the implementation of
a digital FIR filter, as illustrated in Fig. 1.

Since each coefficient is constant, we can replace a full-
fledged multiplier by a set of additions of shifted versions of the
input [1]. A bit set to 1 in position m of the coefficient implies
that the input x shifted left by m positions is to be added to
the partial sum. Shifts are free in terms of hardware; hence, the
hardware required for a multiplication with a constant with n
bits set to 1 is simply n − 1 adders. Fig. 2 presents an example
of how 11x can be implemented using a shift–add approach.

Each addition generates a partial term. If the same input is
to be multiplied by a set of constant coefficients, significant
savings can be accomplished by sharing partial terms among
the coefficient multiplications. To illustrate this point, consider
that we need to implement both 7x and 11x. Instead of using
two adders per coefficient as in Fig. 3(a), we can share the adder
that generates the value 3x to obtain an implementation with a
total of three adders [Fig. 3(b)].

We make two immediate notes about the sharing of partial
terms. The first is that all values obtained through a shift of any
partial term can be considered. The second is that the sharing
depends on how the coefficient is decomposed, because the
partial terms depend on the sequence of additions. Returning
to our example, the sharing exploited in Fig. 3(b) was possible,
because we used the decomposition 11x = 23x + (21x + x).
If, instead, we had used 11x = (23x + 21x) + x, the same
level of sharing could be obtained, albeit using the partial term

AKSOY et al.: EXACT AND APPROXIMATE ALGORITHMS FOR OPTIMIZATION OF AREA AND DELAY 1015

Fig. 4. Two implementations of 23x: (a) 23x = 24x + (22x + (21x + x)),
with three adder-steps, and (b) 23x = (24x + 22x) + (21x + x), with two
adder-steps.

(23x + 21x), which is equivalent to (22x + x) shifted to the left
by one. However, if the decomposition is 11x = 21x + (23x +
x), no sharing is possible with partial terms of 7x.

This problem can be regarded as a particular case of a more
general problem known as CSE [3].
Definition 1: We define the unconstrained maximum sharing

problem as follows: Given a set of coefficients, find the mini-
mum number of operations (additions or subtractions) required
to implement the MCMs.

We extend this problem so that we can limit the maximum
number of operations in series, which is generally called the
number of adder-steps. Clearly, the maximum number of adder-
steps over all coefficients defines the maximum delay of one
computation. For example, as shown in Fig. 4, 23x can be
implemented as 23x = 24x + (22x + (21x + x)) with three
adder-steps or as 23x = (24x + 22x) + (21x + x) with two.

Definition 2: We define the maximum sharing problem un-
der a delay constraint as follows: Given a set of coefficients and
a maximum number of adder-steps, find the minimum number
of operations (additions or subtractions) required to implement
the MCMs so that the user-specified maximum number of
adder-steps is not exceeded.

B. Background

1) Number Representation: In the previous section, all ex-
amples use the binary representation for the numerical values,
where a number is decomposed as a sum of powers of two.
Although this is the numerical representation of choice for
computer arithmetic, alternative representations can offer some
advantages when implementing multiplications with known
constants based on shift–adds.

The canonical sign digit (CSD) representation [3] is a
signed-digit system with the digit set {1, 0,−1} (we will be rep-
resenting the digit −1 by 1̄). The CSD representation is unique
and has the following two main properties: 1) the number of
nonzero digits is minimal and 2) two nonzero digits are not
adjacent. This representation is widely used in multiplierless
implementations, because it reduces the hardware requirements
due to the number of nonzero digits being reduced by 33% on
the average when compared with the binary representation [8].
The minimum signed digit (MSD) representation [4] is obtained
by dropping the second property of the CSD representation.

Thus, a constant can have several representations under MSD,
but all with a minimum number of nonzero digits. For example,
suppose that the constant 23 is defined in six bits. The represen-
tation of 23 in binary, i.e., 010111, includes four nonzero digits.
The constant is represented as 101̄001̄ in CSD, and both 101̄001̄
and 011001̄ denote 23 in MSD with three nonzero digits.

The representation of constants in CSD yields a simpler
optimization problem when compared with the binary and
MSD representations, because the representation of a constant
in binary includes more nonzero digits than CSD, and MSD
includes several representations for a given constant.
2) Binate Covering Problem: The unconstrained maximum

sharing problem that we are addressing can be seen as a binate
covering problem (BCP), which is a special case of the 0–1 ILP
problem, and can be represented as a Boolean network.

An instance P of a covering problem is defined as follows:

Mininize cT · x (1)
Subject to A · x ≥ b, x ∈ {0, 1}n (2)

where cj in c is a nonnegative integer cost associated with
each of the n variables xj , 1 ≤ j ≤ n, in the cost function (1),
and A · x ≥ b denotes the set of m linear constraints (2). If
every entry in the m × n matrix A is in the set {0, 1} and
bi = 1, 1 ≤ i ≤ m, then P is an instance of the unate covering
problem. Moreover, if the entries aij of A belong to {−1, 0, 1}
and bi = 1 − |{aij : aij = −1, 1 ≤ j ≤ n}|, then P is an in-
stance of the BCP. Observe that, if P is an instance of the BCP,
then each constraint can be interpreted as a propositional clause.

A propositional formula denotes a Boolean function
f : {0, 1}n → {0, 1}. A conjunctive normal form (CNF) is a
representation of a propositional formula ϕ consisting of a
conjunction of propositional clauses, where each clause ω is a
disjunction of literals, and a literal lj is either a variable xj or its
complement xj . If a literal assumes the value 1, then the clause
is satisfied. If all literals of a clause assume the value 0, then
the clause is unsatisfied. The derivation of CNF formulas of the
basic gates can be found in [9], where the CNF formula of each
gate denotes the valid input–output assignments to the gate. A
clause ω to be satisfied in the formula l1 + · · · + lk, k ≤ n, can
be interpreted as a linear inequality, l1 + · · · + lk ≥ 1, where
the complement of the variable xj is represented by 1 − xj .
3) SAT-Based 0–1 ILP Solvers: Recent advances in algo-

rithms for Boolean SAT have led to a significant increase in
the capacity and applicability of SAT solvers. One of these
applications is the pseudo-Boolean optimization (PBO) that is a
generalization of the BCP. In [10], a linear search is performed
on the possible values of the cost function, starting from the
highest, at each step requiring the next computed solution to
have a cost that is lower than the most recently computed upper
bound. Whenever a new solution is found that satisfies all the
constraints, the value of the cost function is recorded as the
current lowest computed upper bound. If the resulting instance
of the SAT problem is unsatisfiable, then the solution to the
instance of BCP is given by the last recorded solution. This ap-
proach is considered in the algorithm of Een and Sorensson [11]
by converting PBO constraints to Boolean clauses efficiently
and, then, calling a SAT solver [12] iteratively to find a minimal
cost assignment. The algorithm of Manquinho and Marques-
Silva [13] incorporates the most significant features from both
approaches, namely, lower bound estimation methods such

1016 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 6, JUNE 2008

as linear programming and Lagrangian relaxations and the
reduction techniques from branch-and-bound algorithms and
the search pruning techniques from SAT algorithms.

Although there have been additional SAT-based 0–1 ILP
solvers [14], in this paper, we use and evaluate the algorithms
of Een and Sorensson [11] and Manquinho and Marques-Silva
[13], because they propose different approaches and obtain
better solutions than other successful solvers.

C. Related Work

A large amount of work that considers the unconstrained
maximum sharing problem has addressed the use of efficient
implementations of multiplierless MCMs. The techniques in-
clude the use of different architectures, implementation styles,
and coefficient optimization techniques, e.g., [15]–[17]. The
methods restricted to a number representation of the con-
stants basically find common nonzero digit combinations on
the representations of the constants and are generally called
CSE algorithms. In [18], the CSE method based on the CSD
representation is introduced, and in [3], two algorithms—one
considers all subexpressions and the other considers only the
two most common subexpressions—are presented. The algo-
rithm of Hosangadi et al. [19] applies two-term CSE technique
iteratively while generating two-term divisors. In addition, the
use of different selection criteria for the common subexpres-
sions in CSE algorithms are described in [20] and [21]. In [4], it
is shown that by properly exploiting the redundancy of the MSD
representation, the hardware implementation can be signifi-
cantly optimized with respect to the solutions obtained under
the CSD representation. The effect of number representation
on the achievable minimum number of operations is evaluated
in [22], and it is shown that the use of binary representation
achieves superior solutions than CSD and better results than
MSD as the number of constants and bit-width increase. Fur-
thermore, to extend the number of possible implementations
of a constant, the algorithm of Dempster and Macleod [23]
applies the CSE technique to all signed-digit representations of
a constant, taking into account up to k additional signed digits
to the CSD representation, i.e., for a constant including n signed
digits in CSD, the constant is represented with up to n + k
signed digits. This approach is applied to multiple constants
using exhaustive searches in [24].

The algorithms that are not restricted to a particular rep-
resentation of a constant synthesize a constant iteratively by
constructing a graph and are generally called graph-based
algorithms. For a single constant multiplication problem, an
exact algorithm that finds the minimum number of required
operations for a constant up to 12 bit-width is introduced in
[25], and it is extended up to 19 bit-width in [26]. Four al-
gorithms, namely, “add-only,” “add/subtract,” “add/shift,” and
“add/subtract/shift,” are proposed for multiple constants in
[27]. The latter algorithm, i.e., “add/subtract/shift,” is modified
in [28] by extending the possible implementations of a constant,
considering only odd numbers, and processing constants in the
order of increasing single constant multiplication cost, which is
evaluated by the algorithm of Dempster and Macleod [25]. It
is shown that the modified algorithm gives much better results
with these improvements. Furthermore, in this paper, a heuristic
algorithm that uses the results of [25] in the selection of opera-
tions to be synthesized is introduced. In [29], another prominent

algorithm that uses a better heuristic for synthesizing partial
terms and explores a very large search space than existing
graph-based algorithms is proposed.

It is shown in [29] that graph-based algorithms give better
results than CSE algorithms, since they consider more possible
implementations of a constant than CSE algorithms that are
restricted to a number representation.

Despite the large number of techniques proposed for the
optimization of the number of operations, there are not many
methods that also consider the delay of the design, which is
essential for high-speed systems. In [30] and [31], while min-
imizing area, delay is also considered in the selection criteria
of the partial terms. In [32] and [33], initially, the number of
addition/subtraction operations is reduced, and then, a set of
transformations in an iterative loop is used to reduce the delay.

Although the described CSE algorithms obtain good solu-
tions for an MCM problem, they are based on heuristics. In this
paper, we introduce exact CSE algorithms for the unconstrained
maximum sharing problem and the maximum sharing problem
under a delay constraint where multiple constants are consid-
ered under a given number representation.

III. EXACT ALGORITHM

In this section, we describe the proposed exact algorithm
for the maximal sharing of partial terms. It consists of two
steps: First, we construct a Boolean network that represents the
computation of all the partial terms that may be used to generate
the set of coefficients in the MCM instance; and second, we
translate this network into a set of 0–1 ILP constraints and
generate the cost function that serve as an input to a generic
SAT-based 0–1 ILP solver.

A. Modeling the Problem as a Boolean Network

We model the maximal sharing of partial terms by a Boolean
network consisting only of AND and OR gates. Each AND gate
represents an operation (addition or subtraction) that produces
a partial term value. Each OR gate representing a partial term
combines all operations that yield the same value. This model
readily lends itself to different number representations, as par-
tial terms are simply the decompositions of the coefficients in
the given representation. In the presence of a redundant number
representation, such as MSD, all operations that produce the
same value are ORed together.

The Boolean network that models the computation of all
possible partial terms presents the following characteristics.

1) The primary inputs of the network are the input value (the
value to which we are applying the MCM operation) or its
shifted versions.

2) There is a two-input AND gate to represent a simple
operation (addition or subtraction) that generates a given
partial term. Since shifts are free, the output of an AND

gate can be used for any power of two times the partial
term value. An AND gate evaluating to 1 indicates that
this operation is available.

3) There is an OR gate to assemble all the different opera-
tions that yield a given partial term value. An OR gate
evaluating to 1 indicates that this value is available.

4) The primary outputs (POs) of the network are the outputs
of the OR gates associated with the coefficients in the

AKSOY et al.: EXACT AND APPROXIMATE ALGORITHMS FOR OPTIMIZATION OF AREA AND DELAY 1017

Fig. 5. Boolean network representing the coverage of coefficient 15.

MCM problem. By forcing that all POs evaluate to 1, we
ensure that all the coefficients are covered.

Given this model, the SAT-based 0–1 ILP solver has to search
for a combination of variables that sets all POs to 1, while
minimizing the cost function, defined as the number of AND

gates that are selected.
As an illustrative example, consider a single 4-bit coefficient,

15 (in binary, 1111). The value can be obtained as

8 + 7(1 111), 11 + 4(
̂

1 1 11), 13 + 2(
̂

11 1 1)

or

14 + 1(111 1)

by adding the input to a partial sum, or as

9 + 6(
̂

1 11 1), 12 + 3(11 11)

or

10 + 5(
̂

1 1 1 1)

by adding two partial sums. In turn, 8 + 7, for instance, requires
7 to be obtained either as

6 + 1(0 11 1), 5 + 2(0
̂

1 1 1)

or

4 + 3(01 11).

The same analysis applies to all the remaining partial sums.
In general, a coefficient with a value v can be obtained with,

at most, �v/2� partial sums. However, we can create equivalent
classes from cases that can be computed from each other
by a shifting operation, thus significantly reducing the total
number of cases. From the example above, 14 + 1 and 7 + 8
are equivalent because 14 and 7 are partial sums that differ only
on a shift. The same is valid for 1 and 8 and, similarly, for 6 + 1
and 3 + 4. The complete Boolean network for this example is
presented in Fig. 5, where equivalent cases are omitted.

When the coefficients are represented in CSD or MSD, the
model generates a similar network. However, an AND in the
network may represent either an adder or a subtracter. Consider,
for example, a single 3-bit coefficient with the value 3. The
CSD representation of the coefficient is 101̄ (1̄ stands for −1).
Therefore, this value can be obtained with a single subtracter
as 4 − 1. In MSD, the value 3 can be represented both by 011
and 101̄ that can be obtained with an adder as 2 + 1 and with a
subtracter as 4 − 1 respectively.

B. Boolean Network Generation

The implemented algorithm that generates the above opti-
mization model can be used for any type of coefficient rep-
resentation: binary, CSD, or MSD. However, using the MSD
representation results in a more elaborated algorithm, because
several representations may exist for the same value. We de-
scribe the MSD implementation of the algorithm and, then,
summarize the changes for binary and CSD representations.

In a preprocessing phase, all coefficients are converted to
positive, and then, they are made odd by successive divisions
by 2, i.e., we shift all coefficients to the right so that zero bits
on the right are eliminated. Each new resulting coefficient is
added to the set of coefficients to be synthesized—Iset. This set
represents the minimum set of values necessary to synthesize
the MCM implementation.

For each element i in Iset, all MSD representations are deter-
mined using �log2(i)� + 1 bits and inserted in Cset. Therefore,
Cset begins with all the MSD coefficient representations as in
[4]. However, during the execution of our algorithm, Cset will
be augmented with MSD representations of partial terms.

Then, we enter in the main algorithm loop where an element
c, which is removed from Cset and represents a number i, is
processed to determine its covers.

1) Compute all partial term pairs that cover the element c.
2) For each of these cover pairs, make each element of the

pair positive and odd.
3) Ignore cover pairs that are equivalent to a previously

generated pair by simply checking for equality of an
already existing pair (after the conversion in step 2).

4) Add each cover pair to the corresponding set of covers of
the value being processed, i.e., Aseti.

5) Add the MSD representations of each element of the
cover pair to Cset if the representation has not been
processed yet and if it is not in the set. Elements with
only one nonzero digit are discarded.

This loop is repeated until there are no more elements in
Cset. The pair of elements in each Aseti represents all possible
implementations of partial terms for a value i based on its MSD
representations. The generation of the Boolean network model
is then straightforward.

1) For each element pair in Aseti, generate the correspond-
ing AND gate.

2) Generate an OR gate for the value i with the outputs of all
the ANDs resulting from Aseti.

3) Identify all the OR outputs that represent a coefficient
(values belonging to Iset) and make them POs.

This algorithm can easily be adapted to obtain the network
using different coefficient representations. In the procedure
above, instead of starting and generating MSD representations,

1018 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 6, JUNE 2008

Fig. 6. Inclusion of an AND gate that creates an optimization variable used to
minimize the overall number of partial terms.

we perform this decomposition on the binary or CSD represen-
tations instead.

C. Addition of Optimization Variables for the Cost Function

In the generated Boolean network model, we need to include
free variables to be used in the cost function. There are basically
two variations on how to create these variables: We either
associate them with the use of a partial term or with the
implementation of a particular operation. As we will see, both
these metrics lead to the same optimum solution.
1) Minimizing Partial Terms: The minimization of the total

number of partial terms is equivalent to minimizing the number
of OR gates in the Boolean network that evaluate to one. Under
our model, we can achieve this objective by adding a two-input
AND gate for each OR gate in the network, where one input
is the output of the OR gate, and the other is the optimization
variable. This is illustrated in Fig. 6.
Lemma 1: If the optimization variable evaluates to 1 in the

optimum solution, then the output of the corresponding OR gate
evaluates to 1.

Since the cost function that we are minimizing is the summa-
tion of the optimization variables, if the optimization variable
evaluates to 1, then the output of the corresponding OR gate is
required in the optimum solution. Otherwise, the optimization
variable could be set to 0, and we would have a better solution,
which is a contradiction. �

Note that the converse is not true. If a pair of partial terms
that can be combined to generate a partial term with a single
operation is available, then the output of the OR gate will
evaluate to 1. For the example in Fig. 6, even if 15 is not
required as a partial term, if the partial term 3 is available, then
the output of the OR gate will automatically be 1. The meaning
of this is that the partial term could be computed using a single
operation with available partial terms. However, this does not
mean that this particular partial term is going to be computed,
i.e., that operation will actually be implemented.

We select the operations that we need to compute by choos-
ing one, from possibly several, of the AND gates of each OR

gate with an optimization variable set to 1. Hence, the number
of operations will be the same as the optimum value of the cost
function.
2) Minimizing Operations: The alternative approach is to

associate the optimization variables with the operations them-
selves. For this, we add a third input to each AND gate, as

Fig. 7. Addition of an extra input per AND gate to create an optimization
variable associated with each possible operation.

exemplified in Fig. 7. The solution to the minimization of the
sum of the optimization variables will directly indicate which
operations are required for the optimum solution.

We make two simple observations.
Lemma 2: There is only one optimization variable set to 1

among the AND gates that feed the same OR gate.
We first note that any optimization variable in an AND gate

with one other input set to 0 will necessarily be 0. Otherwise,
we have a contradiction, as setting it to 0 would be a solution
with a lower cost function.

For the remaining AND gates, one suffices to set the output
of the OR gate to 1. Hence, only one optimization variable over
those gates will be 1 in order to minimize the cost function. �
3) Lemma 3: Minimizing the number of operations is equiv-

alent to minimizing the number of partial terms.
In the minimization of the number of partial terms, if the

optimization variable at the output of an OR gate evaluates to 1,
then we will select, arbitrarily, one of the AND gates at its inputs
that evaluate to 1. Thus, we obtain one operation per required
partial term (which, by Lemma 1, is the same as optimization
variables set to 1).

In the minimization of the number of operations, Lemma 2
shows that we also obtain one operation per partial term.

In both approaches, since we have a one-to-one correspon-
dence between operation and partial term, and since these both
solutions are optimum, they have to yield the same cost. �

One advantage of this approach is that the result directly
indicates which operations to use. For the unconstrained min-
imization, this is not very relevant, because it is indifferent
which of the available operations is used to compute a partial
term. However, as we will discuss in Section IV, it is essential
for the delay-constrained optimization, where each operation
will correspond to a given level in terms of adder-steps.

One potential downside of this approach is that the number of
optimization variables is increased with respect to the approach
based on partial terms. As we will show, while this may signify
an increased difficulty for some SAT-based 0–1 ILP solvers,
others do perform better with a larger number of optimization
variables.
4) Network Simplification: Once we have added the opti-

mization variables to the Boolean network (using either of the
previous approaches), we use the following rules to simplify
the model. While these rules can be safely applied to the
unconstrained maximum sharing problem, only rules 1 and 2

AKSOY et al.: EXACT AND APPROXIMATE ALGORITHMS FOR OPTIMIZATION OF AREA AND DELAY 1019

Fig. 8. Simplification of the network of Fig. 5 after optimization variables for
minimizing partial terms were added.

Fig. 9. Simplification of the network of Fig. 5 after optimization variables for
minimizing operations were added.

can be applied to the maximum sharing problem under a delay
constraint.

1) Shifted versions of the input value are freely available;
hence, we set these inputs to 1 in the Boolean network
and propagate this value to remove unnecessary gates.

2) If the requirements of an operation are more stringent
than another operation that generates the same partial
term, we may remove it. For example, 15 = 9 + 3�1

requires partial terms 9 and 3, whereas 15 = 3�2 + 3
only requires partial term 3; thus, we may eliminate the
former, because if partial term 3 is available, we can
always use the latter.

3) If a coefficient can be implemented with a single oper-
ation whose inputs are the primary inputs and/or other
coefficients, then we do not need to represent this filter
coefficient in the Boolean network.

The impact of these simplifications heavily depends on the
particular instance. They may yield few simplifications in the
network or an immediate solution, hence avoiding the 0–1 ILP
solver altogether. To exemplify the impact of these simplifi-
cations, we present in Fig. 8 the network of Fig. 5, where
optimization variables for minimizing the number of partial
terms (i.e., an extra AND gate at the output of each OR gate)
were added and the described simplifications were applied.
Fig. 9 shows the simplified network of Fig. 5 when using
optimization variables that minimize the number of operations
(i.e., adding an extra input to each AND gate).

TABLE I
UPPER BOUNDS ON THE SIZE OF THE NETWORK

AND THE 0–1 ILP PROBLEM

Additionally, during the construction of the network and the
translation of the network into CNF for both problems, the
issues described in [34] that speed up a generic SAT-based 0–1
ILP solver are also considered.

D. Mapping Into a 0–1 ILP Optimization Model

We construct the cost function to be minimized as the
linear function of the optimization variables, where the cost
value of each optimization variable is set to 1. Then, we
map the Boolean network into a 0–1 ILP optimization model
by representing each gate in CNF format [35]. For exam-
ple, a two-input AND gate c = a ∧ b is translated to CNF as
(a + c̄)(b + c̄)(ā + b̄ + c). Each clause is converted into a 0–1
ILP constraint using the straightforward mapping presented
in [10]. The two-input AND gate would be described by the
following set of restrictions:

a − c ≥ 0
b − c ≥ 0

−a − b + c ≥ − 1
a, b, c ∈{0, 1}.

To guarantee that all coefficients are covered, we add a con-
straint that all POs must evaluate to 1. Thus, the obtained model
can serve as an input to a generic SAT-based 0–1 ILP solver.

E. Analysis of 0–1 ILP Problem Complexity

Consider the coefficient represented in binary with n bits all
set to 1. In this case, the Boolean network includes all partial
terms, with b bits, b ≤ n, set to 1. Thus, all coefficients that
include the number of 1 bit less than n are considered in the
network. Hence, for n-bit coefficients in any representation, the
complexity of the problem is bounded above by the case of
a single coefficient with all the n bits set to 1. Table I gives
the size of the Boolean network in terms of the number of
AND and OR gates, and the size of the 0–1 ILP problem in
terms of the number of variables, constraints, and optimization
variables for a single coefficient with different values of n
bits, all set to 1. We note that these results are obtained, when
the most complex case, i.e., the minimization of operations
model, is considered without taking into account the network
simplifications described in Section III-C3. Hence, an upper
bound on the size of the 0–1 ILP problem is found.

Although we can observe the exponential growth in
complexity, the size of the 0–1 ILP problem for up to n = 12 is
within the reach of current SAT-based 0–1 ILP solvers. In prac-
tice, coefficients with 12 bits set to 1 may suffice for many real
problems. Observe that the exact algorithm can be efficiently
applied to larger coefficients, when they are defined in CSD or
MSD. We also note that the network simplifications described
in Section III-C3 significantly reduce the problem size,

1020 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 6, JUNE 2008

particularly for the model of minimizing partial terms, hence
allowing the exact algorithm to be applied to larger designs.

IV. MINIMIZING AREA UNDER A DELAY CONSTRAINT

In this section, we describe the exact algorithm designed for
the problem of maximum sharing under a delay constraint. We
use the Boolean network model described in Section III-C2
and consider the delay as the number of adder-steps, which
denotes the maximal number of adders/subtracters in series to
produce any multiplication. Since the definition of adder-steps
is identical to the definition of level in combinational circuits,
in the following, we use both definitions interchangeably.

The exact algorithm can find a solution with either the
minimum delay that the network can have, i.e., min_delay, or
a user-specified maximum delay constraint, i.e., user_delay.

A. Computing the Levels of the Operations

In general, a partial term can be implemented with operations
that have different adder-steps. Therefore, we can define a range
of levels for each partial term, and consequently, a range of
levels for the operations that use this partial term.

For a partial term with n nonzero digits, the minimum latency
implementation has �log2 n� adder-steps and the maximum
latency implementation of a partial term has n − 1 adder-steps.
In the network, an OR gate associated with the partial term
gathers all of these operations. Therefore, a partial term can
be generated with the number of adder-steps ranging from its
minimum to maximum latency implementations. As can be
seen in Fig. 5, the coefficient 15 can be implemented with a
minimum of two and a maximum of three adders-steps, deter-
mined, for instance, by 15 = 3�2 + 3, which has a minimum
and a maximum of two adder-steps, and by 15 = 1�3 + 7,
which has a minimum and a maximum of three adder-steps.

After the Boolean network has been constructed, we compute
the minimum level (min_level) and maximum level (max_level)
values of each operation and partial term by traversing the net-
work from primary inputs to POs. Then, we find the min_delay
value by computing the maximum of the min_level values of the
POs. By setting user_delay=min_delay as the maximum delay
constraint, the algorithm that we propose is an exact algorithm
for the minimum area design that achieves minimum delay.
Naturally, if the user sets user_delay < min_delay, no solution
is possible.

B. Incorporating the Delay Information in the 0–1 ILP Model

Using the information on minimum and maximum levels, we
compute the paths in the network that exceed the maximum
delay constraint (overdelay paths). For each path, we add a
delay constraint to the 0–1 ILP problem to prevent the set of
operations in the path from being selected in the final solution.

Our algorithm starts by determining the POs of the network
with max_level values higher than the user_delay and storing
these outputs in a set called Pset. The elements of Pset are the
filter coefficients that can be implemented in a greater delay
than the user_delay. Then, for each element Pseti in Pset, if
an operation that implements it has a min_level value higher
than user_delay, this operation is deleted from the network,
since it can never be used in order to meet the user_delay.

Fig. 10. Illustrative example of determining the paths that exceed the maxi-
mum delay.

Otherwise, if an operation has a max_level value higher than
user_delay, then this operation is added to a set called pathj

as an initial node. Additionally, this operation is added to a
set called Oset with a target level, user_delay − 1, and the
associated path identifier j. When all elements in Pset have
been considered, the initial nodes of the paths that violate the
user_delay constraint are found. In the following iterative loop,
all these paths are constructed in a breadth-first manner.

1) Remove an operation from Oset with its target level target
and the associated path identifier j. For each input of the
operation Pi, i.e., a partial term, do the following.
a) If an operation that implements Pi has a min_level

value higher than target, then add this operation to
pathj as a terminal node, i.e., identify the complete
overdelay path.

b) Otherwise, if an operation has a max_level value
higher than target, then create an extended path by
adding this operation, as a nonterminal node, to pathj .
Additionally, insert this operation into Oset with its
target level, target − 1, and a path identifier.

2) Repeat step 1) until there is no element left in Oset.
We note that Oset includes the last added operations with

their target level values of the associated paths that have not
been constructed yet.

As an example, suppose that a situation, as illustrated in
Fig. 10, is encountered while finding the paths that exceed
the user_delay = 5. In this figure, optimization variables are
omitted, and the relevant paths are highlighted for the sake
of clarity. The operations and partial terms are labeled with
letters inside the gates and the min_level and max_level values
are given with a min–max pair above the gates. path includes
the operations that exceed the user_delay, which is determined
when traversing the network from the outputs to the inputs.

Suppose that the operation G with a target level,
target(G) = 4, and an associated path identifier n is removed
from Oset. Suppose also that the partial term H is considered as
the input of G. The operation K is added to pathn as a terminal
node, and the path is constructed, since the operation K can
be implemented in a minimum of five adder-steps that exceeds
target(G). Furthermore, a new path, namely, pathn+1, is
formed by inserting the operation I to pathn, since the
max_level value of the operation I is higher than target(G),
indicating that there is (are) operation(s) that cause greater
delay than the user_delay with the operations in this path.
Therefore, the operation I with its target level target(I) =

AKSOY et al.: EXACT AND APPROXIMATE ALGORITHMS FOR OPTIMIZATION OF AREA AND DELAY 1021

target(G) − 1 and associated path identifier n + 1 is added to
Oset. We note that the operation J is not considered to be added
to pathn, because it can be implemented in a maximum of four
adder-steps that does not exceed the target(G) value.

After all paths that violate user_delay have been found, a
single additional constraint for each complete overdelay path
is added to the 0–1 ILP problem: −optvar1 − optvar2 − · · · −
optvarm ≥ 1 − m, where optvarj , 1 ≤ j ≤ m, denotes the
optimization variable of an operation in the path, and m is the
number of operations in the path. The delay constraints express
that the operations in the path must not be included together in
the solution. This guarantees that the solution to be found by the
0–1 ILP solver respects the delay constraints and allows for the
possible sharing of partial terms in the paths with other partial
terms not in the critical paths. Finally, using the same cost
function, the constraints obtained from the Boolean network,
together with these delay constraints, are given to the 0–1 ILP
solver to find a solution with the minimum area.

V. APPROXIMATE ALGORITHMS

Although the exact algorithms presented in the two previous
sections can be applied effectively to relatively large MCM
problems, the execution time does tend to grow exponentially,
limiting its application to more complex instances.

The heuristic algorithms that we propose use as the un-
derlying model the Boolean network generated by the exact
algorithm, as described in Section III. In these heuristics, each
coefficient is synthesized one at a time by selecting an operation
among the set of possible operations, rather than finding the
minimum solution of the BCP that considers all coefficients, as
done in the proposed exact algorithms. In the selection of an
operation, initially, the implementation costs of all operations
are found by considering not-yet synthesized coefficients, and
then, the operation that has the minimum implementation cost
is chosen to implement the coefficient. The advantages of the
proposed heuristics are the use of the network that has the view
of all the possible manners a coefficient can be synthesized and
the use of a selection criteria that also considers not-yet syn-
thesized coefficients while choosing an operation to implement
a coefficient. The given properties make these heuristics quite
different from the heuristics that find pairs of the most common
nonzero digits [3] or the two-term common subexpressions
[19]. Since the heuristics of Hartley [3] and Hosangadi et al.
[19] build coefficients starting at the most simple (in the number
of nonzero digits) to the most complex by combining existing
partial terms, this bottom-up approach yields a much more
limited view of the search space.

In this section, initially, we describe the heuristic called
ASSUME-A, which is designed for unconstrained area opti-
mization, and, then, the heuristic called ASSUME-D, which
is designed for delay-constrained area optimization. We note
that the definitions given in Section IV are also used in the
description of these algorithms.

A. Unconstrained Area Optimization: ASSUME-A

In a preprocessing phase, by traversing the Boolean network
from primary inputs to POs, the min_adder and max_level
values of each operation and partial term are computed. The

min_adder is the minimum number of operations that are
required to implement an operation or a partial term. The
min_adder value of a partial term (OR gate) is determined by
finding the minimum of the min_adder values of operations
(AND gates) that implement the partial term. The min_adder
value of an operation (AND gate) is the sum of the min_adder
values of its inputs plus 1, if the inputs are different; otherwise,
it is the min_adder value of an input plus 1. The min_adder
value of a primary input is assigned to 0. As an example, consid-
er again the network given in Fig. 5, with the coefficient 15. The
min_adder value of the coefficient 15 is 2, which is determined,
for instance, by 15 = 3�2 + 3 and 3 = 1�2 − 1 operations.

In a manner similar to the algorithm of Dempster and
Macleod [28], ASSUME-A has two main parts: 1) optimal and
2) heuristic. The algorithm is given as follows.

1) Store the preprocessed coefficients of the filter (POs of
the network, all made positive and odd) in a set called
Aset, and label them as unimplemented.

2) Optimal part: For each element labeled as unimplemented
in Aset, if the element is implemented in the network with
an operation whose inputs are either primary inputs or are
in Aset, then synthesize the element with this operation,
and label it as implemented.

3) If there are not more elements labeled as unimplemented
in Aset, return the solution and stop.

4) Heuristic part: Take an unimplemented element from
Aset, i.e., Aset(i), that has the lowest max_level value.

5) For each operation O(j) that implements Aset(i), set its
cost value C(j) to its min_adder value, as determined
in the preprocessing phase and for each unimplemented
element in Aset, i.e., Aset(k), with i 	= k.
a) Determine Cbefore(k) by finding the min_adder value

of Aset(k), when the min_adder values of the elements
in Aset are assigned to 0. [Cbefore(k) is the cost of im-
plementation of Aset(k) at this phase of the algorithm,
since all elements in Aset will be implemented at the
end of the algorithm.]

b) Determine Cafter(k) as done in a), but assume also
that the inputs of O(j) are in Aset. [Cafter(k) is the
cost of implementing Aset(k) if Aset(i) is synthesized
with O(j) at this phase of the algorithm.]

c) Update the cost value, C(j), as C(j) = C(j) −
(Cbefore(k) − Cafter(k)).

6) After the cost value of each operation C(j) has been
computed, select the operation to synthesize Aset(i) that
has the minimum cost. If there are operations that have
the same minimum cost, select the operation that has
the minimum min_adder value among these operations.
Label Aset(i) as implemented.

7) Add each input of the selected operation to Aset, provided
that they do not already exist in Aset, and label them as
unimplemented. Go to step 2).

We note that in the first iteration, the elements of Aset are
the filter coefficients, and in later iterations, Aset may include
the partial terms needed for the synthesized operations. Observe
that all elements of Aset are implemented at the end of the
algorithm. We also note that if all elements of Aset are imple-
mented in the optimal part, then the global minimum solution is
obtained. If an element of Aset is implemented in the heuristic
part, the local minimum solution is obtained.

1022 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 6, JUNE 2008

B. Area Optimization Under a Delay Constraint: ASSUME-D

Just as the exact version, ASSUME-D can find a solution
with either the minimum delay of the network, i.e., min_delay,
or a maximum user-specified delay constraint, i.e., user_delay.

Again, we start by traversing the Boolean network to obtain
the min_adder, min_level, and max_level values of each opera-
tion and partial term. As defined in Section IV, the min_delay
is determined as the maximum of the min_level values of the
POs. A minimum delay solution can be obtained when the
user_delay is assigned to the min_delay.

ASSUME-D synthesizes the coefficients of the filter one
at a time in a top-down approach that yields more possible
implementations of a partial term while controlling the delay.
The algorithm is given as follows.

1) Store the preprocessed coefficients of the filter (POs
of the network, all made positive and odd) in a set
called Dset, and label them as unimplemented. Assign the
delay_limit value of each element in Dset to user_delay.

2) Take an element labeled as unimplemented from Dset,
i.e., Dset(i), that has the highest max_level value.
Store the operations that implement Dset(i) and whose
min_level value does not exceed delay_limit(i) in an
empty set called Oset.

3) if Dset(i) can be implemented with an operation in Oset
whose inputs are primary inputs or are in Dset, then
synthesize Dset(i) with the operation, and label it as
implemented. Assign the delay limit of each input of the
operation, i.e., delay_limit(j), to min(delay_limit(j),
delay_limit(i) − 1).

4) Otherwise, choose an operation from Oset to synthe-
size Dset(i) as done in steps 5) and 6) of ASSUME-A,
and label it as implemented. If the input(s) of the
operation is in Dset, then assign the delay limit
of the input delay_limit(j) = min(delay_limit(j),
delay_limit(i) − 1). If not, add this element to Dset,
label it as unimplemented, and assign its delay limit value
to delay_limit(i) − 1.

5) If there is an element left labeled as unimplemented in
Dset, go to step 2); otherwise, return the solution.

VI. EXPERIMENTAL RESULTS

In this section, we present the results obtained with the
exact and heuristic algorithms proposed for the unconstrained
maximum sharing problem, as well as the same problem under
a delay constraint. The benchmarks used in our experiments
include randomly generated and filter instances. In the algo-
rithms designed for maximum sharing problem under a delay
constraint, we set the user_delay to the min_delay, i.e., we
find the minimum area under minimum delay solutions. We
compare our results with several previously proposed CSE
heuristics, namely, with the heuristics of Hartley [3] and Park
and Kang [4], which we have implemented, and the heuristic
of Hosangadi et al. [19], [30], whose results were provided
by A. Hosangadi.

As the first experimental set, we used randomly generated
instances where constants are defined in 12 bit-width. The
number of constants ranges between 10 and 100, and for each
of them, we generated 30 instances. We compare the effect of

Fig. 11. Comparison of the number representations on the unconstrained
maximum sharing problem.

Fig. 12. Comparison of the number representations on the maximum sharing
problem under a delay constraint.

different number representations, i.e., binary, CSD, and MSD,
on the minimum number of operations and delay solutions.
The results of the exact algorithms on unconstrained maximum
sharing problem and maximum sharing problem under a delay
constraint are given in Figs. 11 and 12, respectively.

We can observe that these three representations yield about
the same solutions for instances with few constants. For
instances with a larger number of constants, the CSD represen-
tation achieves worse solutions than the binary and MSD rep-
resentations, requiring more than two additional operations on
the average. Binary and MSD representations yield very similar
results, with the binary performing better as the number of con-
stants increases. This demonstrates that having a third digit, i.e.,
the signed digit, while desirable in representing one or a few
constants, creates a more varied set of patterns that limits the
amount of sharing for a larger number of constants. This is par-
tially overcome by the redundancy in the MSD representation.

We compare the minimum delay solutions achievable with
the different number representations for the maximum sharing
problem under a delay constraint in Fig. 13. We observe that the
CSD and MSD representations provide solutions with, at most,
three operations in series, while the binary representation, on
the average, requires more operations in series, and this number
increases with the number of constants. Hence, the minimum

AKSOY et al.: EXACT AND APPROXIMATE ALGORITHMS FOR OPTIMIZATION OF AREA AND DELAY 1023

Fig. 13. Comparison of the average number of minimum delay under binary,
CSD, and MSD representations.

Fig. 14. Comparison of the exact and heuristic algorithms for the uncon-
strained maximum sharing problem.

Fig. 15. Comparison of the exact and heuristic algorithms for the maximum
sharing problem under a delay constraint.

delay solutions presented in Fig. 12, while similar in area, have
a much smaller delay in the cases of the CSD and MSD.

We also compare the exact solutions with the heuristics
[3], [4] and ASSUME-A for unconstrained maximum sharing
problem, and with ASSUME-D for the maximum sharing prob-
lem under a delay constraint on randomly generated instances
where constants are represented in CSD. The results are given
in Figs. 14 and 15.

TABLE II
CHARACTERISTICS OF THE FIR FILTERS

In this experiment, we observe that for the unconstrained
maximum sharing problem, while the average number of op-
erations between the ASSUME-A and the exact algorithm is
almost 1 on all instances, the average number of operations
between the heuristic of Park and Kang [4] and the exact
algorithm reaches up to 7.4 operations. Furthermore, since the
heuristic of Hartley [3] is a greedy algorithm that finds the most
common subexpression in each iteration of the algorithm, it is
easily trapped to the local minima on instances that include
more than 40 constants. On the instances with 100 constants,
the average number of operations between this heuristic and
the exact algorithm is almost 10. For the maximum sharing
problem under a delay constraint, ASSUME-D finds solutions
with almost two additional operations on the average, compared
to the exact solutions. This clearly shows that exact algorithms
find better solutions than the heuristic algorithms, and among
the heuristics, ASSUME-A finds much better solutions than the
heuristics of Hartley [3] and Park and Kang [4].

As the second experimental set, we used FIR filters where
filter coefficients were computed with the remez algorithm in
MATLAB. The specifications of filters are presented in Table II,
where pass and stop are normalized frequencies that define
the passband and stopband, respectively, #tap is the number of
coefficients, and width is the bit-width of the coefficients.

We compare our exact and heuristic algorithms with other
heuristic algorithms under binary, CSD, and MSD represen-
tations. The results are given in Tables III and IV for un-
constrained maximum sharing problem and maximum sharing
problem under a delay constraint, respectively. In these tables,
adder stands for the number of operations, and stp denotes the
maximum number of operations in series.

We note that the proposed exact algorithms can find
minimum solutions for real-sized filter instances. As can be ob-
served in Tables III and IV, while ASSUME-A and ASSUME-
D find similar solutions to the exact algorithms, they find better
solutions than other heuristics on overall filter instances. While
the average difference of the number of operations between the
heuristic of Park and Kang [4] and the exact algorithm is almost
1, the average difference of the number of operations between
the heuristics of Hartley [3] and Hosangadi et al. [19], [30] and
the exact algorithms is greater than 1.

The 0–1 ILP problem size of the proposed models (the
minimization of partial terms and minimization of operations
models for the unconstrained maximum sharing problem and
the minimization of operations with a delay constraint model
for the maximum sharing problem under a delay constraint)
for the filter coefficients defined under MSD representation are
given in Table V, where vars, cons, delay cons, and optvars

1024 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 6, JUNE 2008

TABLE III
SUMMARY OF THE RESULTS FOR THE UNCONSTRAINED MAXIMUM SHARING PROBLEM

TABLE IV
SUMMARY OF THE RESULTS FOR THE MAXIMUM SHARING PROBLEM UNDER A DELAY CONSTRAINT

TABLE V
SIZES OF THE 0–1 ILP PROBLEM FOR THE PROPOSED MODELS UNDER MSD REPRESENTATION

TABLE VI
RUN TIME COMPARISON OF THE SAT-BASED 0_1 ILP SOLVERS

denote total number of variables, constraints, delay constraints,
and optimization variables, respectively.

As can be seen in Table V, when the unconstrained maximum
sharing problem is defined using the model that considers the
minimization of partial terms, a smaller 0–1 ILP problem can
be obtained than is defined by the minimization of operations
model due to the network simplifications. On these problem
instances, we compare SAT-based 0–1 ILP solvers, i.e., Bsolo
[13] and MiniSat+ [11], in terms of CPU time required to find a
solution. The results are given in Table VI, where CPU denotes
the CPU time (in seconds) of a personal computer with dual
Pentium Xeon at 2.4 GHz and 4 GB of main memory, running
Linux. The allowed CPU time for the algorithms was 3600 s.
In this table, the italic results indicate that a satisfiable, rather
than the minimum, solution is obtained within the given CPU
time limit.

TABLE VII
CHARACTERISTICS OF FILTER INSTANCES

As can be seen in Table VI, Bsolo finds the minimum solu-
tions for all instances under all models, where MiniSat+ cannot
conclude with the minimum solution for filters 6 and 9 under the
minimization of operations model in an hour. We note that even
if the minimum solution is obtained for filter 6 by MiniSat+, it

AKSOY et al.: EXACT AND APPROXIMATE ALGORITHMS FOR OPTIMIZATION OF AREA AND DELAY 1025

TABLE VIII
SUMMARY OF THE RESULTS OF THE EXACT AND HEURISTIC ALGORITHMS AND THE 0–1 ILP PROBLEM SIZES

could not prove that the found solution is the minimum solution.
However, we note that the minimization of partial terms model
is more appropriate for MiniSat+, since this model includes
fewer optimization variables with respect to the minimization
of operations model. In addition, the minimization of operations
model is more appropriate for Bsolo than MiniSat+, since Bsolo
incorporates problem reduction techniques from both sides, i.e.,
SAT algorithms and branch-and-bound algorithms.

As the third experimental set, we used filter instances in-
troduced in [30] to find out the limitations of the exact al-
gorithm. In Table VII, the filter instances where coefficients
are defined in 24 bit-width are given. We compare the results
of the exact algorithm with heuristics for the unconstrained
maximum sharing problem where filter coefficients are defined
under CSD representation in Table VIII. In this table, the 0–1
ILP problem size of each filter is given under the problem sizes
columns. MiniSat+ was used to obtain the minimum solutions,
and the allowed CPU time was determined as 1 day. Again, the
italic results indicate that an optimal, rather than the minimum,
solution is obtained within the given CPU time limit. We note
that the results of heuristic algorithms are obtained with very
low computational effort.

In this experiment, we observe that the minimum solutions
of three out of 11 filters, i.e., filters 1, 2, and 6, are obtained
within the CPU time limit. However, the minimum solutions
of eight filters could not be found in 1 day. We note that
even if the problem size of filter 1 is greater than the problem
size of filter 4, a minimum solution could not be obtained
for filter 4. This shows that the size of the 0–1 ILP problem
and the hardness of the problem heavily depend on the filter
coefficients. We observe that for the filter instances where
the minimum solutions are not obtained, the found solution
by the exact algorithm can be far from the solutions that are
obtained using a heuristic, such as filters 7 and 8. On overall
instances, ASSUME-A finds the best optimum solutions
among these algorithms. This experiment also shows that
the use of a heuristic algorithm is indispensable when an
exact algorithm could not conclude to obtain the minimum
solution.

VII. CONCLUSION

We have described an exact algorithm that computes the min-
imum number of adder/subtracter modules in the implementa-
tion of MCM structures by maximizing the sharing of common
subexpressions. The algorithm can handle binary, CSD, and
MSD representations for the coefficients. Delay constraints can
be included in the model so that a user-specified delay can

be accommodated. A heuristic variation of this algorithm is
presented and shown to be extremely competitive. We presented
results for digital filter synthesis, where we demonstrate that
the exact algorithm can be applied to real-sized problems.
We compare our heuristic algorithm with previously proposed
heuristics and showed that, although these algorithms perform
reasonably well, our heuristic based on the exact model is
significantly superior.

An interesting result demonstrated in this paper is that the
binary representation allows for a greater amount of sharing,
hence producing more area-efficient implementations for MCM
problems than the CSD and MSD representations. However,
when seeking minimum delay solutions, the MSD representa-
tion should be used.

The algorithms proposed in this paper can be extended to
handle general number representation of constants by using
the techniques described in [36] and [37] to be competitive
with graph-based algorithms. As future work, we are cur-
rently working on the implementation of an exact graph-based
algorithm.

REFERENCES

[1] H. Nguyen and A. Chatterjee, “Number-splitting with shift-and-add de-
composition for power and hardware optimization in linear DSP synthe-
sis,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 8, no. 4,
pp. 419–424, Aug. 2000.

[2] P. Cappello and K. Steiglitz, “Some complexity issues in digital signal
processing,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-32,
no. 5, pp. 1037–1041, Oct. 1984.

[3] R. Hartley, “Subexpression sharing in filters using canonic signed digit
multipliers,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,
vol. 43, no. 10, pp. 677–688, Oct. 1996.

[4] I.-C. Park and H.-J. Kang, “Digital filter synthesis based on
minimal signed digit representation,” in Proc. Des. Autom. Conf., 2001,
pp. 468–473.

[5] P. Flores, J. Monteiro, and E. Costa, “An exact algorithm for the maximal
sharing of partial terms in multiple constant multiplications,” in Proc. Int.
Conf. Comput.-Aided Des., 2005, pp. 13–16.

[6] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Optimization of area under
a delay constraint in digital filter synthesis using SAT-based integer linear
programming,” in Proc. Des. Autom. Conf., 2006, pp. 669–674.

[7] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “ASSUMEs: Heuristic
algorithms for optimization of area and delay in digital filter synthesis,”
in Proc. Int. Conf. Electron., Circuits Syst., 2006, pp. 748–751.

[8] H. Garner, “Number systems and arithmetic,” Adv. Comput., vol. 6,
pp. 131–194, 1965.

[9] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 11, no. 1, pp. 4–
15, Jan. 1992.

[10] P. Barth, “A Davis–Putnam based enumeration algorithm for lin-
ear pseudo-Boolean optimization,” Max-Planck-Institut Für Informatik,
Saarbrücken, Germany, Tech. Rep. MPI-I-95-2-003, Jan. 1995.

[11] N. Een and N. Sorensson, “Translating pseudo-Boolean constraints into
SAT,” J. Satisfiability, Boolean Model. Comput., vol. 2, pp. 1–26, 2006.

1026 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 6, JUNE 2008

[12] N. Een and N. Sorensson, “An extensible SAT-solver,” in Proc. Theory
Appl. Satisfiability Testing, 2004, vol. 2919, pp. 502–518.

[13] V. Manquinho and J. Marques-Silva, “Effective lower bounding tech-
niques for pseudo-Boolean optimization,” in Proc. IEEE/ACM Des.,
Autom. Test Eur. Conf., Mar. 2005, pp. 660–665.

[14] Pseudo-Boolean Evaluation PB’06. [Online]. Available: http://www.
cril.univ-artois.fr/pb06/

[15] M. Mehendale, S. Sherlekar, and G. Venkatesh, “Techniques for low
power realization of FIR filters,” in Proc. Des. Autom. Conf., 1995,
pp. 404–416.

[16] H. Samueli, “An improved search algorithm for the design of multipli-
erless FIR filters with power-of-two coefficients,” IEEE Trans. Circuits
Syst., vol. 36, no. 7, pp. 1044–1047, Jul. 1989.

[17] A. Nannarelli, M. Re, and G. Cardarilli, “Tradeoffs between residue num-
ber system and traditional FIR filters,” in Proc. Int. Symp. Circuits Syst.,
May 2001, pp. 305–308.

[18] R. Hartley, “Optimization of canonic signed digit multipliers for filter
design,” in Proc. Int. Symp. Circuits Syst., 1991, pp. 1992–1995.

[19] A. Hosangadi, F. Fallah, and R. Kastner, “Reducing hardware complex-
ity of linear DSP systems by iteratively eliminating two-term common
subexpressions,” in Proc. IEEE Asia South Pacific Des. Autom., Jan. 2005,
pp. 523–528.

[20] M. Potkonjak, M. Srivastava, and A. Chandrakasan, “Multiple constant
multiplications: Efficient and versatile framework and algorithms for ex-
ploring common subexpression elimination,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 15, no. 2, pp. 151–165, Feb. 1996.

[21] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova, “A
new algorithm for elimination of common subexpressions,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 18, no. 1, pp. 58–68,
Jan. 1999.

[22] L. Aksoy, E. O. Gunes, E. Costa, P. Flores, and J. Monteiro, “Effect of
number representation on the achievable minimum number of operations
in multiple constant multiplications,” in Proc. IEEE Workshop Signal
Process. Syst., 2007, pp. 424–429.

[23] A. Dempster and M. Macleod, “Using all signed-digit representations
to design single integer multipliers using subexpression elimination,” in
Proc. Int. Symp. Circuits Syst., 2004, pp. 165–178.

[24] A. Dempster and M. Macleod, “Digital filter design using subexpression
elimination and all signed-digit representations,” in Proc. Int. Symp. Cir-
cuits Syst., 2004, pp. 169–172.

[25] A. Dempster and M. Macleod, “Constant integer multiplication using
minimum adders,” Proc. Inst. Electr. Eng.—Circuits, Devices Systems,
vol. 141, no. 5, pp. 407–413, Oct. 1994.

[26] O. Gustafsson, A. G. Dempster, K. Johansson, M. D. Macleod, and
L. Wanhammar, “Simplified design of constant coefficient multipliers,”
Circuits, Syst. and Signal Process., vol. 25, no. 2, pp. 225–251, Apr. 2006.

[27] D. Bull and D. Horrocks, “Primitive operator digital filters,” Proc. Inst.
Electr. Eng G—Circuits, Devices Systems, vol. 138, no. 3, pp. 401–412,
Jun. 1991.

[28] A. Dempster and M. Macleod, “Use of minimum-adder multiplier blocks
in FIR digital filters,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal
Process., vol. 42, no. 9, pp. 569–577, Sep. 1995.

[29] Y. Voronenko and M. Pschel, “Multiplierless multiple constant multipli-
cation,” ACM Trans. Algorithms, vol. 3, no. 2, May 2007.

[30] A. Hosangadi, F. Fallah, and R. Kastner, “Simultaneous optimization of
delay and number of operations in multiplierless implementation of linear
systems,” in Proc. Int. Workshop Logic Synthesis, 2005.

[31] E. Costa, P. Flores, and J. Monteiro, “Maximal sharing of partial terms
in MCM under minimal signed digit representation,” in Proc. IEEE Eur.
Conf. Circuit Theory Des., 2005, pp. 221–224.

[32] A. Dempster, S. Demirsoy, and I. Kale, “Designing multiplier blocks with
low logic depth,” in Proc. Int. Symp. Circuits Syst., 2002, pp. 773–776.

[33] H.-J. Kang, H. Kim, and I.-C. Park, “FIR filter synthesis algorithms for
minimizing the delay and the number of adders,” in Proc. Int. Conf.
Comput.-Aided Des., 2000, pp. 51–54.

[34] M. Velev, “Efficient translation of Boolean formulas to CNF in formal
verification of microprocessors,” in Proc. IEEE Asia South Pacific Des.
Autom., 2004, pp. 310–315.

[35] P. Flores, H. Neto, and J. Marques-Silva, “An exact solution to the mini-
mum size test pattern problem,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 6, no. 4, pp. 629–644, Oct. 2001.

[36] O. Gustafsson and L. Wanhammar, “ILP modelling of the common subex-
pression sharing problem,” in Proc. Int. Conf. Electron., Circuits Syst.,
2002, pp. 1171–1174.

[37] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Minimum number of op-
erations under a general number representation for digital filter synthesis,”
in Proc. IEEE Eur. Conf. Circuit Theory Des., 2007, pp. 252–255.

Levent Aksoy (S’06) was born in Istanbul, Turkey,
on September 19, 1976. He received the M.S. degree
in electronics and communication engineering from
Istanbul Technical University (ITU) in 2003. He is
currently working toward the Ph.D. degree in elec-
tronics at ITU.

Since 2001, he has been a Research Assistant with
the Division of Circuits and Systems, Faculty of
Electrical and Electronics Engineering, ITU. During
2005–2006, he was a Visiting Researcher with the
Algorithms for Optimization and Simulation Re-

search Unit, Instituto de Engenharia de Sistemas e Computadores (INESC-ID),
Lisbon, Portugal. His research interests include satisfiability algorithms,
pseudo-Boolean optimization, and electronic design automation problems.

Eduardo da Costa received the five-year engineer-
ing degree in electrical engineering from the Uni-
versity of Pernambuco, Recife, Brazil, in 1988, the
M.Sc. degree in electrical engineering from the Fed-
eral University of Paraiba, Campina Grande, Paraíba,
Brazil, in 1991, and the Ph.D. degree in computer
science from the Federal University of Rio Grande
do Sul, Porto Alegre, Brazil, in 2002. Part of his
doctoral work was developed at the Instituto de En-
genharia de Sistemas e Computadores (INESC-ID),
Lisbon, Portugal.

He is currently a Professor with the Departments of Electrical Engineering
and Informatics, Catholic University of Pelotas (UCPel), Pelotas, Brazil. He
is also with the Master Degree Program in Computer Science, UCPel, as a
Professor and a Researcher. His research interests are VLSI architectures and
low-power design.

Paulo Flores (S’92–M’00) received the five-year en-
gineering degree, M.Sc., and Ph.D. degrees in elec-
trical and computer engineering from the Instituto
Superior Técnico, Technical University of Lisbon,
Lisbon, Portugal, in 1989, 1993, and 2001, respec-
tively.

Since 1990, he has been teaching at Instituto
Superior Técnico, Technical University of Lisbon,
where he is currently an Assistant Professor in
the Department of Electrical and Computer Engi-
neering. He has also been with the Instituto de

Engenharia de Sistemas e Computadores (INESC-ID), Lisbon, since 1988,
where he is currently a Senior Researcher. His research interests are in
the area of embedded systems, test and verification of digital systems, and
computer algorithms, with particular emphasis on optimization of hardware/
software problems using satisfiability (SAT) models.

Dr. Flores is a member of the IEEE Circuit and Systems Society.

José Monteiro (S’93–M’96) received the five-year
engineering degree and the M.Sc. degree in elec-
trical and computer engineering from the Instituto
Superior Técnico, Technical University of Lisbon,
Lisbon, Portugal, in 1989 and 1992, respectively,
and the Ph.D. degree in electrical engineering and
computer science from the Massachusetts Institute of
Technology, Cambridge, in 1996.

Since 1996, he has been with Instituto Superior
Técnico, Technical University of Lisbon, where he is
currently an Associate Professor in the Department

of Computer Science and Engineering. He is currently the Director of the
Instituto de Engenharia de Sistemas e Computadores (INESC-ID), Lisbon.
His main interests are computer architecture and CAD for VLSI circuits, with
emphasis on synthesis, power analysis, and low-power and design validation.

Dr. Monteiro received the Best Paper Award from the IEEE TRANSACTIONS

ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS in 1995. He has
served on the Technical Program Committees of several conferences and
workshops.

