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Abstract

The image reconstruction problem for fully 3D TOF PET is challenging because of the large data 

sizes involved. One approach to this problem is to first rebin the data into one of the following 

lower dimensional formats: 2D TOF, 3D non TOF, or 2D non TOF. Here we present a unified 

framework based on a generalized projection slice theorem for TOF data that can be used to 

compute each of these mappings. We use this framework to develop approaches for rebinning into 

non TOF formats without significant loss of information. We first derive the exact mappings and 

then describe approximations which address the missing data problem for oblique sinograms. We 

evaluate the performance of approximate rebinning using Monte Carlo simulations. Our results 

show that rebinning into non TOF sinograms retains significant SNR advantages over sinograms 

collected without TOF information.

1. Introduction

Fully 3D time-of-flight (TOF) PET scanners offer the potential for previously unachievable 

signal to noise ratio in clinical PET. Recent developments of fast scintillators such as LSO 

(Moses and Derenzo 1999) and LaBr3 (Kuhn et al. 2004) make clinical TOF PET practical 

(Surti et al. 2006, Surti et al. 2007). However, fully 3D TOF PET image reconstruction 

using accurate system and noise models is a challenging task due to the huge data size. One 

approach to this problem is to first rebin 3D TOF PET data into a lower dimensional space. 

The single slice rebinning (SSRB-TOF) of (Mullani et al. 1982) combines the oblique TOF 

sinograms to form a set of stacked 2D TOF sinograms in a similar manner to SSRB for non 

TOF data. As an alternative to SSRB-TOF, Defrise and his colleagues proposed an 

approximate Fourier rebinning method, where the rebinning is performed in the Fourier 

domain. This approximate approach shows improved performance over SSRB-TOF (Defrise 

et al. 2005). An exact rebinning equation was derived based on a consistency condition 

expressed by a partial differential equation in the continuous data domain (Defrise et al. 

2008), where rebinning is performed with respect to the axial variables. This result 

motivated the development of an approximate discrete axial rebinning method. In this 

method a cost function based on a bias and variance tradeoff is used to find optimal pre-

computable rebinning coefficients. Using these coefficients, a weighted average of the axial 

lines of response is taken to estimate an appropriate line of response in a 2D direct plane. In 

our previous paper (Cho et al. 2008), we developed an alternative exact rebinning method 

which is based on the Fourier transform in the time of flight variable.
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All the rebinning methods reviewed above rebin 3D TOF data to 2D TOF data and 

specifically retain the TOF component in the rebinned data. Here we propose novel 

rebinning methods that rebin 3D TOF data to non TOF data in either 3D or 2D forms. A 

generalized projection slice theorem derived in our previous paper (Cho et al. 2008) is used 

to set up a unified framework to find all possible mappings between different data sets. 

Figure 1 illustrates all such mappings. Mapping D was used for the original Fourier 

rebinning methods for non TOF data (Defrise et al. 1997), and mapping B between 3D and 

2D TOF data was introduced in (Defrise et al. 2005). Mapping A between 3D TOF data and 

3D non TOF data, and mapping C between 3D TOF data and 2D non TOF data are the cases 

considered in this paper. Mapping E is a special case of mapping A for 2D TOF PET data. 

Note that the rebinnings A and C use the TOF information as part of the rebinning process 

so that the result of rebinning is not an explicit function of the timing information. However, 

since the mappings themselves do make use of the TOF information, the rebinned non TOF 

data are able to retain SNR advantages relative to count-matched data acquired without TOF 

information, or equivalently rebinnings computed by simply summing sinograms over the 

TOF bins.

We first derive exact mapping equations for rebinning 3D TOF data to 3D or 2D non TOF 

data. Both equations require a Fourier transform in the axial direction. However, the oblique 

data are axially truncated due to the finite axial aperture of the scanner. To address the 

missing data problem, we apply approximate mapping equations as in (Defrise et al. 1997). 

Next we evaluate the proposed rebinning methods. First, we investigate the accuracy of the 

approximate rebinning methods. Then we conduct Monte Carlo simulations to examine the 

noise properties of the rebinnings. Finally, we perform 3D TOF PET reconstruction from 

noisy data using the rebinning methods and compare results with those from using 3D non 

TOF data.

2. Theory

2.1. Derivation of mapping equations

The 3D TOF PET data p from a cylindrical scanner can be modeled as a line integral 

weighted by a TOF kernel h (Defrise et al. 2005):

(1)

where f denotes a 3D object, s and ϕ are the radial and angular coordinates, respectively, z is 

the axial midpoint of each line of response (LOR), δ is the tangent of the oblique angle θ, 

and t is the TOF variable (see figure 2). The TOF kernel is assumed to be shift invariant so 

that the integral in (1) can be written in the form of a convolution. If h = 1, then p in (1) 

represents non TOF data. When δ = 0, p represents stacked 2D sinograms; in this paper the 

stacked 2D sinograms are simply referred to as 2D data.

From (1), the following equation representing the generalized projection slice theorem for 

3D TOF PET data can be derived in a cylindrical scanner geometry (Cho et al. 2008):
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(2)

where F and H are the Fourier transforms of f and h, respectively;  is the Fourier transform 

of p(s, ϕ, z, δ; t) with respect to s, z and t; ωs, ωz and ωt are the frequency variables 

corresponding to s, z and t, and

(3)

The relationship in (2) also applies to other cases: a 3D non TOF PET case (when ωt = 0), a 

2D TOF case (when δ = 0) and a 2D non TOF case (when ωt = 0 and δ = 0). Note that ωt = 0 

corresponds to the DC component in the TOF variable direction, which is the sum through 

the TOF bin variable t and therefore represents non TOF data (Cho et al. 2008). This 

theorem may also be used as the basis for direct Fourier reconstruction from TOF data in a 

similar manner to the Fourier-based image reconstruction in (Matej and Kazantsev 2006) for 

3D non TOF PET.

The generalized projection slice theorem in (2) enables us to find exact mappings between 

various data sets. For example, a mapping between 3D TOF data and 3D non TOF data can 

be obtained as follows. First, by setting ωt to zero we have:

(4)

This relationship was originally used to derive the exact Fourier rebinning (FOREX) 

equation in (Liu et al. 1999). Equating the right hand sides of (2) and (4), we then have the 

following result:

(5)

subject to the following relationships:

(6)

with ωx and ωy denoting the first two coordinates of F. By solving (6) for  and ϕ′, we then 

obtain an exact inverse rebinning mapping from 3D non TOF data to 3D TOF data:

(7)

In a similar manner one can derive each of the other mappings listed in table 1 using the 

generalized projection slice theorem (2). Mapping D is equivalent to exact inverse Fourier 

rebinning (Defrise et al. 1997) and the exact Fourier rebinning equation (Liu et al. 1999) that 

maps between 2D non TOF data and 3D non TOF data. In (Cho et al. 2008), we used 
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mapping C to derive the exact inverse rebinning mapping from 2D non TOF data to 3D TOF 

data and used mapping B to derive the exact rebinning mapping from 3D TOF data to 2D 

TOF data. Mapping A, from which (7) is derived, and its 2D version, mapping E, are the 

main new results presented in this paper.

2.2. Non TOF Fourier rebinning and approximation (mapping D)

Since the approximate TOF rebinning methods described below use similar approximations 

to those for the non TOF case, we first review the exact and approximate Fourier rebinning 

for non TOF data (Defrise 1995, Defrise et al. 1997). The exact inverse Fourier rebinning 

equation (Defrise et al. 1997) can be written as

(8)

which can be derived from Mapping D in table 1. Note that the original form presented in 

(Defrise et al. 1997) can be obtained by taking the Fourier transform of (8) with respect to ϕ. 

Figure 3 shows a graphical interpretation of the exact mapping (8) in the (ωx, ωy) plane for 

fixed ωz in the image Fourier domain. The projection slice theorem relates 3D data to 2D 

data through the (ωx, ωy) plane for each ωz. In Figure 3, the line joining the points A and B 

is a trajectory (ωx, ωy) corresponding to 3D non TOF PET data (ωs, ϕ, ωz, δ; 0) 

parameterized by ωs for fixed ϕ, ωz and δ, through the relationships ωx = ωs cosϕ+δωz sinϕ 

and ωy = ωs sinϕ − δωz cosϕ, as given in mapping D in table 1. Then, exact inverse Fourier 

rebinning finds the coordinates ( , ϕ′) of (ωx, ωy) (for example, point B in Figure 3) 

through the relationships  and  for 2D non TOF data 

.

The exact mapping equation requires the Fourier transform of the data in the z direction. 

However, the oblique sinograms in 3D PET data are not axially complete since the data are 

truncated due to the finite axial aperture of the scanner. One needs to estimate the missing 

data before applying the rebinning (Liu et al. 1999). Alternatively, one can use the first order 

Taylor series truncation with respect to δωz/ωs,

(9)

to obtain an approximation to (8):

(10)

By taking the Fourier transform of (10) in ϕ and then taking the inverse Fourier transform in 

ωz and using the shift property of Fourier transforms, one can obtain the Fourier rebinning 

(FORE) equation (Defrise 1995, Defrise et al. 1997)
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(11)

where k is the Fourier series index corresponding to ϕ and  is the 3D Fourier transform of 

p(s, ϕ, z, δ; t) in s, ϕ and t. Note that (11) does not require the Fourier transform in the z 

direction. The approximation in (9) becomes more inaccurate as |δωz/ωs| increases. To 

reduce approximation errors, Defrise et al. used only oblique sinograms for small δ when |

ωs| is small (Defrise et al. 1997).

2.3. TOF rebinning mappings and approximations

We now consider mappings A and C in table 1, which rebin 3D TOF data to 3D and 2D non 

TOF data, respectively. To address the missing data problem, we propose approximations 

similar to the non TOF case reviewed in section 2.2 above, which do not require the Fourier 

transform in z. The Fourier rebinnings using mappings A and C are called FORET-3D 

(FOurier REbinning of Time-of-flight data to 3D non time-of-flight) and FORET-2D 

(FORET to 2D non time-of-flight), respectively.

2.3.1. Approximate mapping between 3D TOF and 2D non TOF data (mapping 

C)—Noting that the mapping equations for mapping C in table 1 are the same as those for 

mapping D for non TOF data except for the −ωz and χ terms, we use a first order Taylor 

series truncation with respect to χ/ωs, similar to (9),

(12)

Note that  is reasonably small as long as ωs is not too small for 

the following reasons. First, δωz/ωs is sufficiently small, as assumed when deriving the 

FORE equation in (11), since δ is practically small. Second, ωt is small compared to ωs in 

practice because the sampling interval in s is much smaller than that in the t direction. For 

example, in the realistic 3D TOF PET scanner simulated in section 3, the fold-over 

frequencies for t and s were  and 

, respectively. This difference arises 

naturally from the relatively low resolution in the TOF direction compared to spatial 

sampling of the sinogram determined by the detector spacing.

The approximation in (12) leads to the following approximate inverse rebinning equation

(13)

By taking the Fourier transform in ϕ and then taking the inverse Fourier transform in ωz and 

using the shift property of Fourier transforms, one can rewrite (13) as
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(14)

which does not require a Fourier transform in the z direction. Similarly, an approximate 

rebinning equation can be written as

(15)

which is used for FORET-2D. Figure 3 also applies to this case if we use χ in place of −δωz. 

Considering that (14) and the FORE equation (11) are of the same form except the scaling 

term , one can implement FORET-2D using the 

existing FORE code with minor modifications. The errors due to the approximations in (12) 

are comparable to those from (9) for FORE, as we show in section 2.3.3.

2.3.2. Approximate mapping between 3D TOF data and 3D non TOF data 

(mapping A)—The exact equations mapping between 3D TOF and 3D non TOF data are 

given in (5) and (7). To remove the dependency on ωz, we make the following 

approximation,

(16)

which can be seen as the zeroth order Taylor series truncation with respect to δωz/ωs. This 

approximation yields the following approximate inverse rebinning equation:

(17)

where P is the 2D Fourier transform of p(s, ϕ, z, δ; t) in s and t. The corresponding 

approximate rebinning equation can be written as

(18)

which is used for FORET-3D, where .
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The approximation error will increase with |δωz/ωs|, and also with |ωt| due to the term 

( ) which is ignored when approximating ωs′ in (16). Note that the 

approximations in (17) and (18) are exact for direct sinograms (δ = 0), and the approximate 

rebinning method uses fixed δ and z. In other words, the non TOF sinogram for a given (z, δ) 

is computed only from the TOF data for the same axial plane z with the oblique angle δ.

Figure 4 is a modified version of Figure 3 for this mapping. Here, point B corresponds to the 

3D TOF PET data (ωs, ϕ, ωz, δ; ωt) in the (ωx, ωy) plane. The inverse rebinning is 

equivalent to finding the 3D non TOF data  where  denotes the line 

segment from point C to B and ϕ′ is the sum of ϕ and ∠ABC. The approximation in (16) is 

to take point D in place of point C in Figure 4. That is,  and ϕ′ are approximated by the 

coordinate information (|DB| and αapprox) of the line segment from point D to B.

2.3.3. Comparison of approximation errors—We have described two approximate 

rebinning mappings (14) and (17). The inverse rebinning equations are used to estimate at 

each frequency the 3D TOF data (ωs, ϕ, z, δ; ωt) from 2D non TOF data (ωs, ϕ, z, 0; 0) or 

3D non TOF data (ωs, ϕ, z, δ; 0). To quantify the errors from the approximations in (12) 

and (16), we calculated the Euclidean distance between the exact and approximate points 

used for estimating the (ωs, ϕ, ωz, δ; ωt) data in the (ωx, ωy) plane as shown in Figure 3 and 

Figure 4. The error measure is defined as

(19)

where  and  are defined in table 2 for the mappings C and A. 

For mapping C, after some manipulation, one can obtain

which is not a function of ϕ. Similarly, one can show that the error measure E for mapping 

A does not depend on ϕ.

Figure 5 shows the approximation errors averaged over ωz and ωt at four different ring 

differences as a function of transaxial radial frequency ωs. The FORE case (mapping D) is 

also included in the figure for comparison. All the approximate mappings tend to have larger 

errors as the oblique angle (arctan δ) increases. The figure shows that the approximation 

errors are large when ωs is small. Therefore, as in the FORE implementation, special 

treatment is required for small ωs, as described in the next section.

The approximation errors for the FORET-2D case (mapping C) are similar to those for the 

FORE case (mapping D) particularly for large ring differences as shown in Figure 5. 

Observing that
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since δ ≪ 1, one can see that as the ring difference δ increases, χ approaches −δωz and 

therefore the mapping equations in (12) for FORET-2D become those in (9) for FORE.

As shown in Figure 5, the FORE case (mapping D) has smaller errors than the other 

approximate mappings when the ring difference is small; however, as the ring difference 

increases, the FORET-3D case (mapping A) yields smaller errors than the other mappings. 

This observation can be partially explained as follows. We focus on approximation errors in 

the radial frequency direction ( ). For mapping A, we define an approximation error as

since δ ≪ 1 where  and  are defined in (16). Similarly, we define an approximation 

error for mapping D in (9) as

Since εD/εA ≈ (ωz/(2ωt))δ, the approximation error εD in the radial direction for FORE is 

smaller than εA for FORET-3D when the ring difference δ is small, and εD is larger than εA 

for large δ. However, here we do not intend to put much emphasis on the contrast of the 

approximate mappings regarding approximation errors since for small ωs modified 

procedures are taken to avoid excessive errors as described in section 3.1 and both 

FORET-2D and FORET-3D result in negligible bias as shown in the next section.

3. Results

3.1. Simulation setup

We performed simulation studies in the geometry of the Siemens Biograph PET/CT True 

Point TrueV scanner (Jakoby et al. 2006), a state-of-the-art clinical scanner with planned 

TOF capabilities. The scanner geometry and simulation parameters are shown in table 3. A 

Gaussian TOF kernel function was used for TOF data generation and 3D projections 

computed based on line integrals as in (Groiselle and Glick 2004). A TOF resolution of 500 

ps was used and the data were sampled with the sampling period of 250 ps, leading to 13 

TOF bins over the field of view. The NCAT torso phantom as shown in Figure 6 was used 

as a 3D object (Segars 2001). Attenuation, randoms, scatters and detector efficiencies were 

not considered.
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In FORET-3D, for each ωt, we estimate 3D non TOF data (ωs, ϕ, z, δ; 0) from the 3D TOF 

data using the rebinning equation (18) and calculate an average over all ωt’s. As discussed in 

section 2.3.2, the approximation error is large when |ωs| is small and |ωt| is large. To reduce 

such errors as in (Defrise et al. 1997), when |ωs| is less than a threshold STH, we only use the 

data (ωs, ϕ, z, δ; ωt) for |ωt| smaller than a threshold TTH. In our simulation, STH = 7 and 

TTH = 1 were used.

For FORET-2D, as mentioned in section 2.3.1, we apply the FORE code with a minor 

modification to estimate for each ωt the 2D data (ωs, k, z, 0; 0) from the 3D TOF data (ωs, 

k, z, δ; ωt) and then calculate an average over all ωt’s. As suggested in (Defrise et al. 1997), 

when ωs and k are less than or equal to ωlim and klim, respectively, we use only sinograms 

with oblique angle indices less than δlim. In our simulation, ωlim = 2, klim = 2 and δlim = 2 

were used.

3.2. Comparison of rebinned data and non TOF data

To evaluate the performance of the approximate rebinning algorithms, we compare rebinned 

and non TOF sinogram data by Monte Carlo simulation. For comparison studies, we 

generated 100 noisy 3D TOF sinograms contaminated with Poisson noise, each of which 

had a total of 20M counts.

First, to evaluate the performance of FORET-3D, we compared 1) rebinned 3D sinograms 

obtained using FORET-3D from the TOF data and 2) non TOF 3D sinograms obtained by 

summing the 3D TOF data in the TOF bin direction. The mean and variance of the rebinned 

data and non TOF data were calculated and compared. Results for planes at axial center for 

two different ring differences are shown in Figure 7. Figure 7(a) shows the mean of the 

rebinned sinogram at zero ring difference. Since the approximate rebinning is exact when 

the ring difference is zero, it is unbiased. Figure 7(c) shows the profiles of the mean for the 

maximum ring difference. Even at this maximum ring difference there appears to be no 

significant approximation error. Figure 7(b) and (d) show the profiles of the variance of the 

rebinned and non TOF sinograms at two different ring differences. As the figures show, 

significant variance reduction was achieved by the rebinning when compared to simply 

summing over the TOF bins. This is a perhaps surprising result, since each non TOF 

sinogram for a fixed (z, δ) is computed from the same data for the two methods compared in 

these figures: in one case, by summing over the TOF bins, in the other by rebinning using 

FORET-3D in (18). In both cases the same number of TOF bin samples are summed and 

rebinned to each non TOF oblique sinogram.

Next, to evaluate the performance of FORET-2D, we compared 2D sinograms for the 

following three cases. First, we rebinned the 3D TOF to 3D non TOF data by FORET-3D 

and then rebinned the 3D non TOF to 2D non TOF data by FORE. Second, we rebinned the 

3D TOF directly to 2D non TOF by FORET-2D. Third, we rebinned 3D non TOF data, 

obtained by summing the 3D TOF data in the TOF bin direction, to 2D non TOF data by 

FORE. The profiles of the mean and variance of a 2D direct sinogram at axial center for 

those three cases are shown in Figure 8. The mean profiles were nearly the same as shown in 

Figure 8(a), implying that the rebinning methods such as FORET-2D and FORET-3D do not 

have significant approximation errors. Figure 8(b) shows that the variance was substantially 
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reduced by the rebinning methods, FORET-2D and FORET-3D + FORE. The FORE-3D + 

FORE combination showed slightly lower variance than FORE-2D; however, it will need 

further investigation to determine whether FORET-2D or FORET-3D performs better in 

general.

3.3. Comparison of reconstructed images

3.3.1. Monte Carlo simulation for 2D data reconstruction—To conclude we 

compare reconstructed images from non TOF data, TOF data rebinned to non TOF by 

FORET-3D, and unrebinned TOF data. For the Monte Carlo (MC) study, we first consider 

the 2D case. We generated 100 noisy 3D TOF sinograms and used the central plane of the 

stacked 2D sinograms (zero ring difference) for 2D image reconstruction. The photon count 

for the central direct 2D sinogram amounted to 1M. Images were reconstructed by the MAP 

method (Qi et al. 1998). Three cases were compared. First, the noisy TOF data were used for 

TOF MAP reconstruction (denoted by ‘TOF’). Second, we rebinned the TOF data to non 

TOF data using FORET-3D to rebin the 2D TOF sinogram and then used the rebinned data 

for MAP reconstruction (denoted by ‘FORET-3D’). Lastly, the noisy TOF data was summed 

over the TOF bins to generate non TOF data and then used for MAP reconstruction (denoted 

by ‘non TOF’).

To quantify the resolution and noise properties of the reconstructed images, we calculated 

the full-width-at-half-maximum (FWHM) of the local impulse response (Fessler and Rogers 

1996) and the sample variance of noisy reconstructed images for different regularization 

parameters. Figure 9 shows the results at 4 different pixel locations (see Figure 6). The 

results show that FORET-3D gives a better resolution vs. noise trade-off compared to the 

non TOF case and its performance is somewhat worse than that for the TOF case. Here, the 

MAP reconstruction method assumed a Poisson model although in practice the Poisson 

statistics are destroyed by rebinning as discussed in (Comtat et al. 1998, Liu et al. 2001). 

Despite possible degradation of image qualities due to the incorrect Poisson noise model, 

FORET-3D showed better performance than the non TOF case where the correct Poisson 

noise model was employed. We expect that reconstruction using more accurate statistical 

models will enhance the performance for rebinned data.

3.3.2. Monte Carlo simulation for 3D data reconstruction—Next we conducted a 

Monte Carlo simulation study for 3D image reconstruction. We generated 100 noisy 3D 

TOF sinograms with a total of 20M counts. A fully 3D MAP reconstruction method (Qi et 

al. 1998) was applied to the TOF data rebinned by FORET-3D and also to non TOF data 

obtained by summing the TOF data in the TOF bin direction. We did not include 3D TOF 

data reconstruction here due to the high computational cost.

As Figure 10 shows, again FORET-3D yields a better resolution-noise trade-off compared to 

the non TOF case. Figure 11 shows noisy reconstructed images from rebinned data and non 

TOF data, with matched resolution of FWHM 3.4mm in the transverse plane. As the figures 

shows, the 3D MAP reconstruction with the approximate rebinning yields less noisy images 

compared to the non TOF 3D reconstruction case.
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4. Conclusion

Using a generalized projection slice theorem we have developed a unified framework for 

rebinning of TOF data. Compared to previous rebinning methods (Mullani et al. 1982, 

Defrise et al. 2005, Vandenberghe et al. 2006, Defrise et al. 2008), where 3D TOF data is 

rebinned to 2D TOF data, our rebinning methods rebin the 3D TOF data to either 3D or 2D 

non TOF data. We have also described approximations that allow practical rebinning of 

TOF to non TOF data. Using simulated data we evaluated the performance of the 

approximate rebinnings. Both approximate rebinnings from 3D TOF data to 3D non TOF 

data and to 2D non TOF data were nearly bias-free. But FORET-3D, rebinning 3D TOF to 

3D non TOF data, showed slightly less variance than FORET-2D, rebinning 3D TOF to 2D 

non TOF data in a simulation study. Although fully 3D PET data reconstruction is 

computationally more demanding than 2D reconstruction applied to rebinned data, fast 

projectors (Matej et al. 2004, De Man and Basu 2004, Cho et al. 2007, Hong et al. 2007) or 

dedicated hardware (Shattuck et al. 2002, Bai and Smith 2006, Pratx et al. 2006) 

significantly reduce the cost and fully 3D iterative reconstruction is now practical in clinical 

scanners. However, further investigation will be needed for extensive comparisons of 

FORET-3D and FORET-2D.

Monte Carlo simulations showed that the approximate rebinning method produced improved 

SNR compared to data without TOF information, but with some loss in performance relative 

to full use of the TOF data without rebinning. Our proposed methods rebinning to non TOF 

data formats preserve the advantage of TOF information since they exploit the timing 

information in the rebinning process whereas the brute force mapping by summing over 

TOF bins lose all the TOF information completely. Simply summing over TOF bins is 

equivalent to throwing out all non-DC components of the signal in the TOF frequency ωt 

domain while the proposed methods rebin TOF data separately for each frequency ωt, 

enabling us to make use of the timing information. We plan to investigate quantitatively the 

performance of the proposed rebinnings by information theoretic analysis.

We also plan to investigate the degree to which iterative methods optimized for the 

statistical properties of rebinned data can achieve performance closer to that for the non 

rebinned case. First, we can optimize image reconstruction methods from rebinned data. We 

used the MAP reconstruction based on an independent Poisson noise model in our 

simulation although the rebinned data are correlated and do not follow the Poisson 

distribution (Comtat et al. 1998, Liu et al. 2001). Using a correct noise model for 

reconstruction will possibly improve the noise properties in reconstructed images in view of 

the Gauss-Markov theorem (Lehmann and Casella 1998). Challenges here are estimating the 

noise covariance of the rebinned data and incorporating the correlated noise covariance into 

the reconstruction procedure. Second, we can implement fully 3D TOF data reconstruction 

to examine the best performance achievable from TOF data. Since 3D TOF data follows an 

independent Poisson noise model, full TOF data reconstruction only requires an extension of 

the conventional MAP reconstruction for non TOF data. The challenge in this case is to find 

efficient ways of performing forward and backproject to minimize the computational cost. In 

closing we note that since 3D TOF data are highly redundant in terms of data sufficiency 

Cho et al. Page 11

Phys Med Biol. Author manuscript; available in PMC 2015 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conditions, there are a wide range of possible rebinning operators and other optimized 

methods may be found which achieve superior SNR.
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Figure 1. 
Using the generalized projection slice theorem, the mappings shown above can be derived. 

See table 1 for details.
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Figure 2. 
(a) Transverse and (b) 3D view of a cylindrical 3D PET scanner. For each line of response 

(LOR), the object is multiplied by the TOF kernel h and integrated along the line to form the 

TOF data.

Cho et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2015 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Graphical interpretation of the exact and approximate inverse Fourier rebinning mappings 

from 2D non TOF data to 3D non TOF data. Inverse Fourier rebinning is equivalent to 

finding the coordinates ( , ϕ′) of a point (for example, point B) on a trajectory (for 

example, the line joining the points A and B) mapped from the 3D sinogram. In the 

approximate inverse rebinning, |CB| and ∠ABC are approximated by |AB| and −δωz/ωs 

respectively.
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Figure 4. 
Graphical interpretation of the exact and approximate inverse Fourier rebinning mappings 

from 3D non TOF data to 3D TOF data. The exact inverse Fourier rebinning is equivalent to 

finding the coordinate information of the line segment CB (|CB| and ∠ABC) for the line 

segment AB. By the approximation in (16), |CB| and ∠ABC are approximated by |DB| and 

∠ABD, respectively.
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Figure 5. 
Averaged mapping errors of approximate rebinnings for different ring differences: (a) Ring 

difference (RD) = 10 (oblique angle θ = 2.7°), (b) RD = 25 (θ = 6.8°), (c) RD = 35 (θ = 

9.4°), (d) RD = 50 (θ = 13.4°). The error value is normalized by the image frequency sample 

interval (Δωx) in the transverse plane where Δωx = 1/2/256 mm−1 in our simulation. Notice 

the error is very large when ωs is small, so special consideration will be required in this 

region, similarly to the FORE implementation of (Defrise et al. 1997).
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Figure 6. 
A transverse and a sagittal plane of the NCAT torso phantom (Segars 2001) used for 

simulation studies. The resolution and variance of reconstructions were studied at the four 

points denoted by A, B, C and D.
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Figure 7. 
A comparison of the mean and variance of rebinned sinograms, obtained by FORET-3D, 

and non TOF sinograms for two ring differences: (a) Mean of rebinned sinograms for RD 

(ring difference) = 0, (b) Variance profiles of rebinned and non TOF sinograms (RD=0), (c) 

Mean profiles of rebinned and non TOF sinograms (RD=54), (d) Variance profiles of 

rebinned and non TOF sinograms (RD=54). The profiles were taken at the 160-th angle 

shown as a dashed line in (a).
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Figure 8. 
A comparison of the mean and variance of rebinned direct 2D sinograms obtained by 1) 

FORET-3D+FORE, 2) FORET-2D and 3) FORE of 3D non TOF data acquired summing 

the 3D TOF data over the TOF bins: (a) Mean of rebinned sinograms at axial center, (b) 

Variance of rebinned sinograms at axial center. The profiles were taken at the 160-th angle 

shown as a dashed line in Figure 7(a).
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Figure 9. 
MC simulation for 2D image reconstruction: Resolution (FWHM) versus pixel variance plot 

for four different locations. (a) Pixel location A, (b) Pixel location B, (c) Pixel location C, 

(d) Pixel location D (see Figure 6).
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Figure 10. 
MC simulation for 3D image reconstruction: Resolution (FWHM) versus voxel variance plot 

for four different locations in a transverse plane at axial center as shown in Figure 6. (a) 

Voxel location A, (b) Voxel location B, (c) Voxel location C, (d) Voxel location D.
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Figure 11. 
A comparison of 3D TOF data reconstruction by ‘FORET-3D+MAP’ (top row) and ‘non 

TOF+MAP’ (bottom row) in the transverse view (first column), coronal view (second 

column) and sagittal view (third column).
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Table 1

Rebinning mappings derived from the generalized projection slice theorem

Mapping Involved data sets Mapping equations

A
3D TOF data (ωs, ϕ, ωz, δ; ωt)
3D non TOF data

B
3D TOF data (ωs, ϕ, ωz, δ; ωt)
2D TOF data

C
3D TOF data (ωs, ϕ, ωz, δ; ωt)
2D non TOF data

D
3D non TOF data (ωs, ϕ, ωz, δ; 0)

2D non TOF data 

E
2D TOF data (ωs, ϕ, ωz, 0; ωt)
2D non TOF data
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Table 2

Exact and approximate points in (ωx, ωy) plane for the inverse rebinning for mappings C and A.

mapping C mapping A
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Table 3

Simulated 3D TOF cylindrical PET system parameters

Parameter Value

Ring radius (mm) 421

Detectors per ring 672

Number of rings 55

Rays (LORs) per angle 336

Maximum ring difference (MRD) 54

Maximum oblique angle θ (degrees) 14.4

Span 11

TOF resolution (ps) 500

Number of TOF bins 13

Image size 256 × 256 × 109

Transverse voxel size (mm) 2

Scanner axial FOV (mm) 216
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