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We present numerical quantum mechanical scattering calculations for the collinear H+H, reaction
on a realistic potential energy surface with an 0.424 eV (9.8 kcal) potential energy barrier. The reaction
probabilities and rate constants are believed to be accurate to within 29, or better. The calculations are
used to test the approximate theories of chemical dynamics. The reaction probabilities for ground vibra-
tional state reagents agree well with the vibrationally adiabatic theory for energies below the lowest threshold
for vibrational excitation, except when the reaction probability is less than about 0.1. For these low re-
action probabilities no simple one-mathematical dimensional theory gives accurate results. These low
reaction probabilities occur at low energy and are important for thermal reactions at low temperatures.
Thus, transition state theory is very inaccurate at these low temperatures. However, it is accurate within
409, in the higher temperature range 450-1250°K. The reaction probabilities for hot atom collisions of
ground vibrational state reagents with translational energies in the range 0.58 to 0.95 eV agree qualitatively
with the predictions of the statistical phase space theory. For vibrationally excited reagents the vibrational
adiabatic theory is not accurate as for ground vibrational state reagents. The lowest translational energy

of vibrationally excited reagents above which statistical behavior manifests itself is less than 1.0 eV.

I. INTRODUCTION

Recent advances in the application of computer-
based numerical methods to quantum mechanical prob-
lems of chemical interest have made possible accurate
solutions of the internuclear motion scattering problem
for many nonreactive collisions. Reactive collisions are
more complicated and essentially exact solutions have
only been obtained by reducing the dimensionality of
the problem,'® e.g., by considering purely collinear
collisions.}*~% Some studies have also been carried out
for collinear nonreactive collisions and for collinear
reactive model problems with unrealistic potential sur-
faces. In all cases that accurate numerical solutions
have been obtained for the internuclear motion scatter-
ing problem, they are for an assumed potential energy
surface. The H+H, reaction is a prototype case for
studies of this type for several reasons: (1) the elec-
tronic energy problem can be solved more accurately
than for most other reactions, engendering some confi-
dence in the potential energy assumed to govern the
internuclear motion; (2) excited electronic states are
higher in energy in this case than for most other reac-

tions, minimizing the error introduced by assuming the
scattering to occur on one unique potential energy
surface; (3) the atoms are light so that interesting
quantum effects are expected to show up more clearly
than for most other reactions. In this paper we report
the exact solution of the scattering problem for the
collinear H+H, reaction for an approximate but realis-
tic representation of the potential energy surface. How-
ever, the nuclear wavefunctions were not made anti-
symmetric with respect to interchange of identical
nuclei, and thus effects associated to such antisymme-
trization are not included. Similar calculations were
performed by Mortensen and Pitzer! and Mortensen
and Gucwa?® but were limited to a smaller energy range
(relative translational energies from 0.14 to 0.34 eV
plus a point at 0.49 eV) than that considered here
(relative translational energies from 0.005 to 1.22 V).
McCollough and Wyatt? have presented some results
from an exact treatment in a time-dependent formula-
tion. In that formulation the wave packet includes
particles with a distribution of energies. Their results
are at comparatively low energy. We have published
a preliminary report of the first exact calculations for
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this system in which excited vibrational levels became
important.* The present paper is an extension of that
work. Since then, Diestler® has published close-coupling
calculations for the collinear H4H, reaction for ener-
gies at which the first excited state of the reaction
product is accessible,

In general, calculations on collinear collisions cannot
be directly compared with experiment (in a few cases
they can be considered as an approximate treatment
of back-scattering collisions and compared to large-
angle scattering experiments). Their main interest is
that they can provide an exact solution of a well-
defined model problem incorporating a realistic poten-
tial energy surface, This exact solution can be com-
pared to approximate ones of the same model to test
and evaluate the approximate methods which are often
applied to real problems. In addition, the exact solution
of the realistic model problem is of intrinsic interest
in that it is a detailed chemical experiment which can-
not be performed in the laboratory. In this paper we
test several such approximate methods against the
exact solution. These methods include transition state
theory,® 20 the statistical theory of reactions with an
energy barrier,? and the vibrationally adiabatic
theory of reactions®-%

It will be interesting when many other approximate
theories are compared to these exact results in the
future. The most accurate treatment of the H+H,
reaction in three dimensions has been the approxi-
mate distorted wave treatment of Karplus and Tang.?®
(Their calculations were for relative translational en-
ergies of 0.25-3.3 eV). It would, therefore, be interest-
ing to compare the distorted wave theory for the
collinear reaction to the exact results reported here.

In Sec. II we present our potential energy surface.
In Sec. III we discuss the method used to solve the
Schrédinger equation and to compute exact reaction
probabilities and rate constants. Section IV discusses
the calculations using the approximate methods. In
Sec. V we present the results of our exact calculations.
In Sec. VI we discuss these results and compare them
with the approximate methods. Section VII is a sum-
mary of important conclusions.

II. POTENTIAL ENERGY SURFACE

The H+-H, reaction at energies up to a few eleciron
volts proceeds in the ground electronic state with the
nuclear motion determined by an effective potential
which can be calculated using the Born-Oppenheimer
separation of electronic and internuclear motions, This
potential has been calculated fairly accurately (using
configuration interaction techniques to solve for the
electronic wavefunctions) by Shavitt, Stevens, Minn,
and Karplus (SSMXK).?® Their results confirm the con-
clusion from many earlier less accurate ab initio calcu-
lations, that the lowest energy reaction path for the
H+H; reaction corresponds to a linear collision and
that the highest potential energy that must be achieved

2233

along this minimum energy path (or reaction path)
occurs for the symmetrical configuration where the two
bond lengths are equal (Rap=Rgc in the notation of
Sec. IT1.A.2). Their calculation predicts that this bar-
rier height E® is 0.477 eV, Shavitt!® estimated that the
best guess at the real barrier, as determined by compar-
ing transition state theory to the rate experiments of
Westenberg and de Haas' and others, is 0.424 eV, He
suggested that the barrier in the SSMK surface be
scaled by a factor (0.424/0.477) =0.89 along the entire
reaction path but that the predicted energy variation
not be scaled in directions transverse to this minimum
energy path. His suggested scaling can be applied in a
straightforward way at the barrier top (which is the
saddle point of the potential energy surface), but is
purposefully ambiguous at other places because transi-
tion state theory calculations depend mainly on the
region around the barrier top. In the H4H, reaction
there is a long range potential due to the induced
dipole-induced dipole dispersion interaction. This long
range interaction produces a shallow potential well in
the surface at large separation of H and H,. The depth
and shape of this well are not known accurately; how-
ever, an estimate which is probably accurate within a
factor of 2 of the depth is the value of 0.001 eV obtained
from the SSMK calculations.” The approximate calcu-
lations of Dalgarno, Henry, and Roberts also predict
a potential well depth of 0.001 eV.® This depth is more
than a factor of a hundred less than almost all the
translational energies in which we are interested here
for reactive collisions. It is thus not expected to have
a significant effect on the scattering considered here
and we will neglect it.

It is convenient for carrying out the scattering cal-
culations to have an analytic representation of the
potential energy as a function of the internuclear dis-
tances involved. Shavitt ef al. fit their surface for
linear collisions to an expression with 28 linear param-
eters and one nonlinear parameter.?® This is a fit to the
surface before scaling. If we consider only collinear
collisions, one way to generalize the scaling suggested
by Shavitt to the whole surface is by adopting a proce-
dure developed by Wall and Porter for constructing
parametrized potential energy surfaces3 This method
can be used to construct a surface which has the scaled
barrier height, the transition state parameters sug-
gested by Shavitt®® (as discussed above these are the
parameters of the SSMK surface except in the direc-
tion of the reaction coordinate), and the correct asymp-
totic Hy behavior in the separated atom plus diatom
limit. In addition the method still has one as yet
undetermined parameter (I in the notation of Wall
and Porter). The effect of this parameter is to change
the position of the minimum energy reaction path. It
turns out that this parameter can be chosen so that
the contours of the Wall-Porter-type surface (with
barrier height 0.424 eV) are approximately parallel all
over the surface to the contours for the SSMK surface
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TaBLE 1. Potential energy surface parameters.

D=4.7453 eV
2=0.08939
I=3
so=1.765a,

ot =0.70152a471

ap=1.04435¢,"1

xo=1.40083a,

Ry=3.62134,

with barrier height 0.477 V. This choice yields =3.
Figure 1 is a comparison of the SSMK surface and the
Wall-Porter parametrized surface with /=3 for the
linear Hj collision. If the shape of the accurate surface
(the SSMX surface) had been such that none of the
family of surfaces obtainable by the method of Wall
and Porter could be made to resemble it, we would
have had to use a different method to obtain an ana-
lytical representation of the surface.

The Wall-Porter-type fit with /=3 to the scaled
SSMK surface will simply be called the scaled SSMK
surface in the rest of this article, Table I lists all po-
tential parameters (in the notation of Wall and Porter®')
which are necessary to calculate the scaled SSMK sur-
face.

III. METHOD FOR EXACT SCATTERING
CALCULATIONS

A. Reaction Probabilities

To obtain the reaction probabilities as a function of
energy, we use a time-independent formulation. Sev-
eral methods have been proposed for the exact solution
of this collinear collision atom-diatomic molecule re-
arrangement scattering problem.?*$%-% Tn addition,
there are other more general numerical methods which
can be applied to this problem.®3 We used the finite-
difference boundary-value method (FDBVM) of Diest-
ler and McKoy (DM)?® with some modifications de-
scribed in this section. The FDBVM is similar to the
finite difference method first applied to this problem
by Mortensen and Pitzer.? The main difference is that
the boundary conditions are imposed noniteratively in
the FDBVM? and iteratively in the method used by
Mortensen and Pitzer 23

1. Changes in the Method of Diestler and McKoy

For the analyses in the asymptotic region of the
numerical solutions with arbitrary boundary conditions
(x’s in the notation of Ref. 32), DM used a fixed (i.e.,
independent of step size) approximation to the exact
eigenfunction for the vibrational potential well of the
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separated diatom. The integrals involving these func-
tions were evaluated by Simpson’s rule. These proce-
dures are inconsistent with the numerical method
(second differences) used by them and also here to
obtain the x’s and they can lead to spurious results.
For the analyses, we used numerical solutions for the
eigenfunctions which are obtained with the same order
finite difference approximation and the same step size
k as used to compute the x’s. Integrals over these func-
tions were evaluated using the trapezoidal rule. This
is a consistent analysis. Further, when the results are
extrapolated to A=0, the boundary values and the x’s
both converge at equivalent rates to the exact values.
In the method of DM, the x’s would converge to
accurate solutions for inexact boundary values, i.e., to
inexact solutions.

Diestler and McKoy extrapolated their approximate
scattering probabilities P (%;) for four different values
h; of the step size by solving the equations

4
P(hj)= 2 Piahi™,

=1

j=1,2,3,4 (1)

for the extrapolated scattering probability Py=P(0).
Tt is well known that the local truncation error due to
using the second central differences (the procedure
used here) to approximate elliptic differential operators
like those occurring in our problem can be expressed
as a power series in k; which includes only even powers.®
Thus we performed extrapolations using

M
P(hy) = 22 Piah?70,

=1

=12, M (2)

where M varied from 2 to 7. (For the final results re-
ported here we used M =2 or 3; see below.) By com-
paring several extrapolation methods with very accurate
ones (obtained using finer grids and large M) in test
cases, we found that (2) led to much more accurate
and consistent results than (1) for this problem. Equa-
tion (1) may lead to large errors, evidently because
the right hand side does not accurately represent the
finite difference errors. Use of Eq. (2) with M =2 or

Fic. 1. Three-dimensional projection views (viewing angles:
0=53° ¢=16°) of: (a) scaled SSMK surface (scaled Wall-
Porter type surface with !=3); (b) Shavitt-Stevens—Minn—
Karplus H; surface. The vertical axis is potential energy, and
the horizontal ones are the internuclear distances, as defined in
Sec. IT1.A.2.
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3 is called Richardson’s k2- or #*-extrapolation, respec-
tively 2

Diestler and McKoy analyzed their solutions in the
asymptotic region in terms of traveling waves.® This
is equivalent to analyzing the solutions directly for
(complex) elements of the scattering matrix S. We
analyzed our solutions in terms of standing waves.
This procedure yields directly the (real) elements of the
reactance matrix R. We can compute the scattering
matrix from the reactance matrix by the well-known
formulatt

S=(1—iR)}(14+R). 3)
The analysis for the R matrix elements is presented in
Appendix I. If one obtains a very accurate numerical
solution, S and R computed by either method are
automatically symmetric to several significant digits,
S is automatically unitary to several digits, and S
computed from R is equal to S computed directly. In
less accurate calculations, S computed by the method
of DM does not satisfy these properties. However, if
we use the standing-wave analysis, we can introduce

a symmetrized reactance matrix R* whose elements are
defined by

R.i#=3(Ri{+Rji). 4)
The scattering matrix computed using (3) and R is
then unitary and symmetric (the well-known interpre-
tation of these properties of the S matrix is that the
calculation satisfies detailed balance and conservation
of particle lux) # Accurately extrapolating to =0 the
S computed by either analysis scheme yields a unitary
and symmetric S, The main advantage of using the
symmetrized standing-wave analysis is that it is more
convenient (because the reactance matrix elements are
real and because the computed transition probabilities
always automatically sum to 1.0) and the results are
found to be more accurate for a given step size or set
of step sizes (and thus for a given computing time)
than for a direct traveling wave analysis. The latter
property is interesting since Delves*? showed for a simi-
lar scattering problem that the transformation (4) is a
variational improvement over a nonsymmetrical ap-
proximate R. We continued to perform the traveling
wave analysis for the purpose of providing an extra
indication of the accuracy of our results, but used the
symmetrized reactance matrix analysis for the results
we report. Although we find better results using the
standing wave analysis for the present calculations,
involving a symmetrical reaction, one should be cau-
tious about expecting such results in general.

Finally, our computer program used the generalized
R and T matrices of Johnson and Secrest! to facilitate
the handling of closed channels. This involves redefin-
ing some of the matrix elements involving closed chan-
nels so that the numbers are representable in the com-
puter.

2235

2. Details of the Numerical Work

We label the three H atoms A, B, and C, where B
is the central one. Let Rsp and Rgpc be the distances
between atoms A and B and between atoms B and C,
respectively. We solved numerically for the wave-
function in the square region bounded by the lines:
RA}3=O.3ag, RBC=0-3(10, RAB=4-200, .RBC=4.2(10. Each
numerical solution was assumed to vanish on the first
two of these lines and one other; on the fourth it was
taken to be one of the diatom numerical eigenfunc-
tions obtained as outlined in Sec. ITL.A.1 above.

For a given energy and step size where N/ reagent
plus product channels are open (in the notation of
Appendix IT), we obtained N''4-6 numerical solutions
in terms of which to expand the wavefunction. In the
energy range considered here this means we used 8 to
12 linearly independent x’s in each case.

The analysis of the x’s was carried out in each of the
two asymptotic regions in terms of all the open chan-
nels plus at least the next four channels (the first four
closed channels) in that asymptotic region; thus usually
five to seven channels in each asymptotic region were
kept for analysis.

The step sizes used for individual (unextrapolated)
runs were in the range £2=0.111-0.051ay. The calcula-
tions correspond to the solution of 1156-5625 simul-
taneous linear equations. The symmetric finite differ-
ence matrices are banded with bandwidths of 69-151.

The accuracy of reaction probabilities calculated
using these procedures was estimated by studying the
effect of varying each of the parameters of the numer-
ical method. All these parameters were fixed at values
such that the predominant numerical error is that due
to the finite step size. This error was estimated by
comparing results extrapolated from different sets of
runs using different step sizes. This procedure indicates
that the results presented here are accurate within 29,
or better, generally better. We will refer to these reac-
tion probabilities as the exact ones,

An example showing the degree of symmetry of the
reactance, scattering and probability matrices for a
case where Eq. (4) is not applied is given in Appendix
II and Table IX, which also shows the probability
matrix obtained from this equation.

B. Rate Constants

In one dimension, the rate of the bimolecular reac-
tion A+BC—AB+-Cis
d[A]/dt=d[BC]/dt=—k[A]BC], (5)
where [A] and [B] are concentrations in molecules/cm
and k, is the rate constant in centimeters per molecule
per second. By a procedure analogous to that used by
Eliason and Hirschfelder® in the three-dimensional case,
it is easily shown that for BC in the #th vibrational
state and a thermal distribution of relative translational
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energies the rate constant is
ko(n, T) = (2mukT)-12 / Po(E,)
0

Xexp(—E,/kT)dE,, (6)

where £ is Boltzmann’s constant, T is the absolute
temperature, P,(E,) is the probability of reaction
when the molecule is in state » with initial relative
translational energy E,, and

p=MsMzpc/ (Ma+Mzc) (N

is the reduced mass of the A4BC system. For a thermal
distribution of initial vibrational levels the rate con-

stant is
ke(T)= 2 ke(m, T) pu(T), (8)

where
Pn(T) =(Q")* eXP[_ (Ex"—Ey) /kT] 9)

is the fraction of reagent molecules in vibrational state
n, E," is the corresponding vibrational energy level,
and Q7 is the vibrational partition function (computed
with the zero of energy at the zero point energy of the
reactants).

The integral in Eq. (6) was evaluated accurately by
two different numerical methods. The rates k.(n, T)
and k,.(T) will be called the exact rate constants.

C. Tunneling Corrections

The usual method of calculating transition state the-
ory (TST) rate constants is to calculate a rate k,™ST
assuming that the motion along the reaction path is
classical and to calculate a quantum correction x; such
that the actual TST rate constant is

ETST(T) = ko (T) ko™ST(T). (10)

An expression for &™T(T) is given by Eq. (24) below.
We shall follow the usual convention of calling «; a
tunneling correction. It is also sometimes called the
transmission coefficient. It is usually assumed that a
separable reaction coordinate exists and «; is computed
as an approximate®18.38.1 or exact®#% quantum me-
chanical correction to a classical treatment of motion
along that coordinate. The potential energy as a func-
tion of distance along the reaction coordinate is a
barrier of height E¢* and thus

K1(T)=/ Tl(Eo)e_E"/deEo// T1eH(Ey) e BokTdEy,
0 0

(11)

where T1(F,) is the quantum mechanical transmission
probability for the one-dimensional problem at transla-
tional energy Eo. T1°'(E,) is the classical transmission
probability for the one-dimensional problem, equal to
0 for Eo<E® and 1 otherwise. The problem of how the
one-dimensional potential function for motion along

TRUHLAR AND A. KUPPERMANN

the reaction coordinate is related to the multidimen-
sional potential energy surface has been discussed else-
where.18:%:% In general one of the following two models
has been used: (1) conservation of vibrational energy
approximation (CVE), in which the barrier is the clas-
sical potential energy along the reaction path and
Ep=E,; (2) vibrational adiabaticity approximation
with no correction for reaction path curvature (called
VA in Ref. 45 but VAZC here to emphasize that the
zero-curvature approximation® for the reaction path
has an effect on the barrier; this is discussed further in
Sec. IV.B) in which the local vibrational energy is
assumed to adjust adiabatically along the reaction path
(i.e., the vibrational quantum number in the direction
transverse to the reaction path is conserved) and this
change modifies the effective potential energy for one
dimensional motion along the reaction path. In the
latter case, the barrier Eo is

E()VAZC — E6+E0vs—E0”, ( 12)

where E,* and Ey® are the zero point energies associ-
ated with the symmetric stretching vibration of the
classical transition state and the diatomic vibration,
respectively.

It is possible to modify the definition of the tunnel-
ing correction. For example, we can define an extended
tunneling correction by

ETST(T) = ko(T) kg™ (T), (13)
where
0 EO
T2 Eo X - 0
EZCE p(- 1) i
Kz(T) = E
/ T\ (Eo) exp (— k—;) dE,
= (2mu/kT) V2 exp(E/RT) ko (0, T), (14)

in which T(E,) is the exact reaction probability for
the two-mathematical-dimensional treatment of the
collinear reaction. This definition, however, assumes
knowledge of T2(Ey) =Py(E,). Under these conditions,
k.(0, T) can be obtained exactly from (6) and TST
would not be necessary. This further implies that
P.(E,) is obtainable and hence that %.(7") can be ob-
tained from Eq. (8) rather than from TST.

Just as for the one-dimensional tunneling treatments,
there are various possible choices of Eg® which corre-
spond to different models of the reaction. The choice
(12) is most consistent with the adiabatic derivation
of transition state theory,® and our results given in
Sec. IV show the choice E@=FE,VAZC leads to more
consistent results than Egt=E,,.

Another definition of the tunneling correction was
given by Mortensen.? He defined the transmission co-
efficient as

ke(T) =ke(T) k™" (T), (15)
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where the numerator is the exact rate constant [Eq.
(8)] and the denominator is that calculated by transi-
tion state theory without tunneling [Eq. (24)]. This
definition will be considered again in Sec. VI.H.

IV. METHODS FOR APPROXIMATE SCATTERING
CALCULATIONS

A. Statistical Theory

The statistical phase space theory in a classical me-
chanical version was applied to the three-dimensional
H+H; reaction by Lin and Light?' This application
involved postulating a requirement for strong-coupling
collisions in terms of an energy barrier Ex’. We now
formulate their theory for one-dimensional collisions in
a quantum mechanical form. We use the same energy
barrier requirement as postulated by them. Let P(n,
E,; m) be the probability of the molecule in a state n
with relative translational energy E, and vibrational
energy E,” reacting to produce product in state m.
Then

P(n, Ea; m)=[N(Er) ] (16)
with
ET=E,,+E"", (17)
N(Er) = Z h(i, Er), (18)
h(l, ET) =1 for (ET—E,'”) ZEA(’L)
=0 otherwise, (19)
EL—)\Ep
EA(7) =max (20)

0

Equation (20) shows that E,° is the energy barrier
to reaction if vibrational energy does not contribute,
and A, is the fraction of vibrational energy which con-
tributes to overcoming the barrier. Equation (18) gives
the total number of open channels which are strongly
coupled to one another when the total energy is Ep.
Lin and Light assumed E*=0.368 eV and \,=1 for
their treatment of the three-dimensional H+H, reac-
tion.

B. Vibrationally Adiabatic Theory

According to the vibrationally adiabatic theory of
reactions,®% the initial vibrational quantum of BC is
adiabatically transformed to a quantum of symmetric
stretching vibration of ABC at the transition state,
and finally to a quantum of AB vibration in the prod-
uct, Thus the vibrational quantum number does not
change, and

P(n, En; m) =8,,.T1(E,, n), (21)

where 6., is the Kronecker delta and T1(E,, #) is the
probability of transmission for the one-dimensional vi-
brationally adiabatic (VA) barrier. This barrier has
been discussed quantitatively elsewhere#® For the

REACTION 2237

TaBre II. Vibrational energies of reactants E,” and transition
state E,» and vibrationally adiabatic energy barriers E,VAZC.a

I,“"v Rl EnVAZC

n (eV) (eV) (eV)

0 0.2728 0.5487 0.2759
1 0.7940 0.7923 —0.0017
2 1.2830 1.0287 —0.2543
3 1.7397 1.2577 —0.4820
4 2.1641 1.4793 —0.6848
5 2.5562 1.6936 —0.8626

2 Calculated by a finite difference boundary value method and 44 extrap-
olation (see Eq. 2) using 55, 65, and 75 grid points and same boundaries
as for scattering calculation.

present study, we calculated the VA barrier for the
scaled SSMK surface by finding the reaction path in
normal coordinate space, and calculating for many
points along it the one-dimensional vibrational energy
of quantum state # in the direction perpendicular to
the reaction path. This local transverse vibrational
energy was added to the potential energy at each of
those points to give the effective potential energy for
one-dimensional motion along the reaction path in the
VA approximation for vibrational quantum state #.
This technique has been discussed in more detail previ-
ously.” In the calculation of this barrier we made the
harmonic approximation for the vibrations, We then
calculated transmission across this barrier in the Car-
tesian approximation, i.e., we straighten the barrier
out and do a calculation in one Cartesian coordinate.
This is an approximation since the actual reaction path
is quite curved near the saddle point on the potential
energy surface 9.4

We have thus excluded corrections for reaction path
curvature in normal-coordinate space from both the
computation of the transverse vibrational energy and
from the one-dimensional barrier transmission calcula-
tion. Our VA model is thus entirely equivalent to the
one Wyatt has called® the zero-curvature (ZC) ap-
proximation and we will refer to it as the vibrationally
adiabatic zero-curvature approximation (VAZC). In
the terminology of Marcus® we are assuming the
reaction coordinate is Cartesian and are neglecting
curvilinear-reaction-coordinate effects.

We consider two approximations to this motion along
the reaction path: (1) classical

TyYYE,., n)=0  for E,<E,VA%C
=1

otherwise, (22)

where E, is the relative reagent translational energy
for BC in vibrational state # and EVAZC is the corre-

sponding VAZC barrier height
EnVAZC=Eb+En“_En”- (23)

Here E,* is the energy of the transition state sym-
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TastLE ITI. 1-MD potential energy barrier parameters [Eq. (28) ].

Barrier
VAZC CVEZC
B (eV) 0.2772 0.4242
b (eV) 0.2982 0.2691
by (eV) —0.0224 0.0
by (a07%) 0.94185 1.01006
by (a07?) 0.11655 1.16372

8 Not optimized.

metric stretching vibration in quantum state #; (2)
quantum mechanical, in which case T,(E,, #) is the
exact solution of the one-dimensional quantum mechan-
ical barrier transmission problem. The numerical solu-
tion of such a one-dimensional problem has been
considered previously.®

The vibrational energy levels of the reactants and
the transition state are given in Table IT. They were
obtained by a numerical solution of the appropriate
vibrational eigenvalue equation. For the ground vibra-
tional state, this gives a VAZC barrier height of
0.276 eV, which is 0.001 eV less than that obtained
using a harmonic approximation to the corresponding
potentials. This provides some justification for using
this approximation in the calculation of the whole
VAZC barrier. This barrier for the ground vibrational
state (see Fig. 2) is rather flat over a large region
(about 0.4ay long) near the classical transition state.
This flat shape is also apparent in a vibrationally
adiabatic barrier calculated by Child for the lowest
vibrational-rotational state in a zero angular momen-
tum collision of H4-H, in a plane® (Child does not
give the full details of his calculation).

C. Transition State Theory

In transition state theory the one-dimensional rate
constant is given by Eq. (10) or (13) with?

ko™T(T) = (KT /h) (Q*/Q™'Q") exp(—Eg"A%°/kT),
(24)

where (° was defined in Eq. (9), Q! is the relative
motion translational partition function per unit length,
and Q7 is the partition function of the symmetric
stretching vibration of the transition state (computed
with the zero of energy at the zero point energy level
of the classical transition state). Using the energy
levels in Table II we computed ¢° and Q™ by direct
summation. Using methods published previously*® we
also computed the one-dimensional tunneling correc-
tion of Eq. (11) numerically for the scaled SSMK
surface in both the CVE and VAZC approximations.
(Since we make the zero-curvature assumption for the
reaction path in all the one-dimensional barrier calcu-
lations, the transmission probability computed from

D. G. TRUHLAR AND A. KUPPERMANN

the CVE barrier will henceforth be denoted CVEZC.)
These corrections «°VFZ° and xYA%C can be used to
calculate the transition state theory rate constants

E1CVEZC(T) = g CVBLC( T') k4TST(T) (25)
and

F\VAZO(T) = g VAZC(T) kgTST(T), (26)

We will not consider any transition state theory treat-
ments that do not assume zero curvature. Eq. (26) is
the usual method®%:"% of calculating transition state
theory rate constants except that we do not here as-
sume an approximate method (such as that of Bell® or
Eckart’®?) to compute xV¥4C, Equation (26) is the
method which is more consistent with the VA deriva-
tion of transition state theory.

In performing the 1-MD tunneling calculations for
Eqgs. (25) and (26) the barriers are represented ana-
lytically by nonlinear least squares fits of the form

V (s) = by sech?(bss?) +be exp (— bas?)

4 (B—by—by) exp(—4bts?), (27)

where s is the distance from the barrier maximum.
The parameters are given in Table ITT. This represen-
tation agrees with the actual barriers to within 0.004
eV over most of the range of the reaction coordinate.

We also use Eq. (14) with E>=E, to compute
kCVE and with Eg=FE,YA%C to compute k;"4%ZC. Then
we calculate the extended transition state theory rate
constants

ECVE(T) = keCVE(T) ko™ST(T) (28)
and
koVAZC(T) = kyVAZC(T) kIST(T') . (29)
15 T T T !
106
-
o
e doa __
£ 3
S B >
¥
£ 40.2

Fic. 2. Potential energy barriers for the collinear H-+H,
reaction as functions of distance s (in the normal-coordinate
space of Refs. 19 and 45) along the reaction path from the saddle
point of the surface. The barriers are symmetric about s=0 so
only half of each barrier is shown. The CVE barrier is the classical
conservation-of-vibrational-energy barrier. The VA one is the
one obtained by assuming vibrational adiabaticity. Both barriers
involve the zero-curvature assumption. The barriers on the right
are the ones obtained from the potential energy surface of this
article. The ones on the left are the more accurate barriers of
Ref. 45. The barriers on the left are not part of any potential
energy surface defined for Rap, Rpc off the reaction coordinate,
however.
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TasLE IV. Rate constants from exact calculations [£,(7") ] compared with those from transition state theory [krsr(T) ].»

krer(T) b
T (°K) xCVEZO x ECVEZC xCVE wol=1 K YAZC VA E(T)
200 2.15(0) 4.66(0) 1.24(3)  6.99(—3) 1.20(—=2) 2.44(—1)  2.07(—1)
250 4.63(0) 8.47(0) 1.17(3)  1.92(—1)  2.15(=1)  1.27(0) 1.19(0)
300 1.41(1) 2.06(1) 1.83(3) 1.78(0) 1.75(0) 6.18(0) 5.87(0)
350 3.92(1) 4.95(1) 2.93(3)  8.83(0) 8.26(0) 2.23(1) 2.13(1)
400 9.27(1) 1.08(2) 4.41(3)  2.96(1) 2.71(1) 6.16(1) 5.93(1)
450 1.90(2) 2.10(2) 6.22(3)  7.66(1) 6.94(1) 1.40(2) 1.35(2)
500 3.47(2) 3.71(2) 8.36(3) 1.65(2) 1.49(2) 2.75(2) 2.65(2)
600 9.01(2) 9.29(2) 1.34(4)  5.28(2) 4.77(2) 7.78(2) 7.53(2)
700 1.85(3) 1.87(3) 1.92(4)  1.23(3) 1.12(3) 1.68(3) 1.62(3)
800 3.26(3) 3.27(3) 2.57(4)  2.36(3) 2.16(3) 3.05(3) 2.92(3)
900 5.15(3) 5.14(3) 3.26(4)  3.96(3) 3.64(3) 4.92(3) 4.66(3)
1000 7.55(3) 7.51(3) 3.99(4)  6.05(3) 5.60(3) 7.29(3) 6.84(3)
1100 1.04(4) 1.04(4) 4.75(4)  8.64(3) 8.03(3) 1.01(4) 9.42(3)
1200 1.38(4) 1.37(4) 5.524) 1.17(4) 1.09(4) 1.35(4) 1.24(4)
1250 1.56(4) 1.55(4) 5.92(4) 1.34(4) 1.26(4) 1.54(4) 1.40(4)
Column 2 3 4 5 6 7 8

8 The units of & are centimeters per molecule per second.

b The transition state theory calculations differ in the tunneling correc-
tion that has been applied. One calculation (x=1) involves no tunneling
corrections, the others one-dimensional corrections (x1VA%C, (CVEZC, 4nd
xECVEZCy and extended tunneling corrections (x2YA and xCVE) as dis-

While (29) represents an improvement over (26) in
taking account that motion along the reaction coordi-
nate is not strictly separable, it is a quantity which is
not easily calculated for general reactions and as pointed
out in Sec. ITI.C obviates the need for TST. There-
fore, the x; calculation is done only for comparison
purposes.

The results of transition state theory calculations
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Fic. 3. Probabilities for reactive collisions Pg,® from ground
state of reagent to vibrational state » of product (n=0, 1, 2) as
a function of total energy E and of initial relative kinetic energy
E,. Arrows on E scale are thresholds for formation of vibrationally
excited product. Solid curves are results of present calculations,
with dashed portions less accurate than rest. The crosses are
Pyo® obtained by Mortensen and Gucwa,? for a different potential
energy surface after their E, scale is shifted by 0.057 eV (the
amount by which their barrier is lower than ours).

cussed in the text. All calculations in this table except &iECVEZC are from
numerical solutions of the Schridinger equation for the scaled SSMK
surface described in Sec. II. The mECVEZC calculation is based on the
Eckart barrier in the usual way. (The numbers in parentheses are powers
of 10 by which the preceding numbers must be multipiied.)

using Eqs. (24)-(29) are given in Table IV, In addi-
tion the table gives results for the case where the usual
Eckart barrier approximation (height and negative
force constant of the Eckart barrier equal to those for
the CVEZC barrier) is used as a substitute for the
numerical integration necessary to use obtain xCVPZC
for Eq. (25). This is called the Eckart-CVEZC ap-
proximation (ECVEZC).

V. RESULTS OF EXACT CALCULATIONS

Figures 3-8 show the exact probabilities for reactive
and nonreactive collisions of H with H; for different
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F1c. 4. Probabilities for nonreactive collisions Py,”, analogous to
the reactive ones of Fig. 3.
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TaBLE V. Probability of reaction at low energy.®

Exact VAZC model CVEZC model

Eqy (eV) Py® Ey (eV) Py® Ey (eV) Py®
0.005 1.85(—17) 0.0461 2.48(—8) 0.0432 2.87(~9)
0.010 3.89(-17) 0.0621 9.00(—8) 0.0492 4.63(~9)
0.020 1.03(—6) 0.0798 2.79(-7) 0.0707 2.12(~—8)
0.0432 4.16(—6) 0.0987 1.11(—6) 0.0952 1.04(=7)
0.0809 2.79(—5) 0.1184 3.87(—6) 0.1223 5.34(~7)
0.1174 1.77(—4) 0.1386 1.61(—5) 0.1512 2.85(~6)
0.1572 1.48(—3) 0.1588 5.77(—5) 0.1815 1.53(-5)
0.1980 1.49(—2) 0.1785 2.46(—4) 0.2124 8.03(—5)
0.2170 4.42(-2) 0.1974 7.99(—4) 0.2433 4.00(—4)
0.2361 1.29(—1) 0.2151 2.57(—-3) 0.2736 1.84(—3)
0.2311 9.03(—2) 0.3025 7.48(-3)
0.2451 2.46(-2) 0.3296 2.61(—2)
0.2569 5.89(—2) 0.3541 7.45(—2)
0.2661 1.10(—1) 0.3746 1.68(—1)

® Numbers in parentheses are powers of ten by which preceding numbers must be multiplied.

initial and final states of the diatomic molecule, as
functions of the total energy E and initial relative
kinetic energy E;. We use the notation PyE for the
probability that a molecule in state ¢ (=0, 1, 2) will
react to give a product in state 7. Similarly, P;;¥ denotes
the probability that a molecule in state ¢ will collide
nonreactively to produce a molecule in state j. These
probabilities can be compared to the exact calculations
for collinear H4H, collisions as computed by Morten-
sen and Gucwa? for a different but similar potential
energy surface. The barrier height E, is 0.057 eV lower
on their surface; therefore, to make the comparison
we add 0.057 eV to each of their relative translational
energies. The comparison is shown in Fig. 3. The agree-
ment is as good as could be expected for two different
potential energy surfaces; i.e., the small difference in
surfaces has apparently not caused any unexpectedly
large differences in the probabilities over the energy
range they investigated. Diestler® has performed more
recent calculations for yet another approximate H; po-
tential energy surface. His results are qualitatively
similar to ours.

It is also interesting to compare our results to some
exact calculations for A+BC—AB+C of Tang, Klein-
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Fic. 5. Probabilities for reactive collisions Pi.F analogous to
Fig. 3, with initial vibrational quantum number 1. E; is initial
relative kinetic energy.

man, and Karplus on a highly simplified surface’
They studied a case (their case 4) where all three
atoms have equal mass and where the potential energy
barrier is 0.833(Ey*—Ey*). In the present case the po-
tential energy barrier is 0.814(E,*— Ey*). The compar-
ison is given in Fig. 9 where the probabilities are plotted
against E/E,’, This choice of abscissa minimizes differ-
ences due to the different vibrational spectra of a
Morse oscillator and a particle in a box. The compar-
ison shows that the number of oscillations in the reac-
tion probability curves is the same in both cases; i.e.,
before the region of the threshold for the second ex-
cited vibrational level the Py® curve has two maxima
and two minima and the Pn® curve has two maxima
and one minimum, The qualitative agreement between
the two sets of probabilities, when plotted this way,
is surprisingly good.

Table V gives the exact reaction probabilities at en-
ergies too low to be shown in the figures. The exact
results are discussed in Sec. V and the approximate
theoretical results in this table are discussed in Sec.
VLE and VLF,
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F16. 6. Probabilities for nonreactive collisions P;,", analogous to
Fig. 5.
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Tasre VI. Exact rate constants k.(n, T) for specified vibrational
levels and exact thermal rate constants (7).

k(n, T)®

T (°K) n=0b n=1e k(T)2b
200 2.07(—1) .o 2.07(—1)
250 1.19(0) 1.5(3) 1.19(0)
275 2.74(0) 2.0(3) 2.74(0)
300 5.87(0) 2.6(3) 5.87(0)
350 2.13(1) 4.0(3) 2.13(1)
400 5.93(1) 5.6(3) 5.93(1)
500 2.65(2) 9.5(3) 2.65(2)
650 1.13(3) 1.6(4) 1.13(3)
800 2.91(3) 2.4(4) 2.92(3)
900 4.63(3) 2.9(4) 4.66(3)
1000 6.77(3) 3.44) 6.84(3)
1100 9.30(3) 3.8(4) 9.42(3)
1200 1.22(4) 4.3(4) 1.24(4)
1250 1.37(4) 4.6(4) 1.40(4)

3 The units of k are centimeters per molecule per second.

b Estimated error of about 2%.

¢ Estimated error less than 25% for 7<<400°K and less than 10% for
T>400°K. These errors are larger than those for » =0 because reaction
probabilities were calculated at fewer energies.

Table VI gives the calculated exact one-dimensional
rate constant for the ground and first excited vibra-
tional state and also the rate constant computed for a
thermal distribution of vibrational states [see Eq. (8)].
As expected from analogy with the three dimensional
quasiclassical reaction,* most reactive collisions are
shown to involve vibrationally unexcited reagents.

Figure 10 contains an Arrhenius plot of our exact
rate constants. Also shown is the Arrhenius fit to the
high temperature results

Ea(T) =A exp(—E./kT) (30)
04
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F1G. 7. Probabilities for reactive collisions, P;,E, analogous to

Fig. 3, with initial vibrational quantum number 2. E; is initial
relative kinetic energy.
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F1c. 8. Probabilities for nonreactive collisions Ps,¥ analogous to
Fig. 7.

with 4 =2.20X10° cm/molecule+sec and E,=0.299 eV,
This expression provides a good fit from the highest
temperature we considered (1250°K) to about 450°K,
where the deviation is 38%. Westenberg and de Haas"
made an experimental study of H4D, and found the
Arrhenius plot was linear within their experimental
precision (8%,) for temperatures above 450°K and non-
linear below that temperature. In the present case,
the nonlinearity is 8% at 650°K. Westenberg and
de Haas" also observed nonlinearity in the Arrhenius
plot for D+H, but at a lower temperature. Schultz
and Le Roy® found nonlinearity in their experimental
Arrhenius plot for H+H, at 320°K and Ridley, Schultz,
and LeRoy® found nonlinearity in their experimental
results for D+H, at 300°K. The largest nonlinearity
(defined as the ratio of the exact constant to the re-
sults predicted by extrapolation of the higher-tempera-
ture Arrhenius fit) observed experimentally for the
H+H, system and its isotopic analogues was 2.6 by
Westenberg and de Haas” for D+H, at 250°K. We
find nonlinearities of 2.8 at 300°K and 5.8 at 250°K.

PROBABILITY

\%
E/E)

F16. 9. Comﬁarison of reaction probabilities from present

work (P) with model calculations of Tang, Kleinman, and
Karplus (7). The solid lines are Poo® and the dotted lines are
PoE. The abscissa is total energy divided by the vibrational
energy of the first excited state. The curves in the present case
cover the energy range from O to the threshold for the second
excited vibrational state. In the case considered by Tang et al.
this threshold occurs at E/E;,=2.25, and in present calcula-
tions at 1.62.
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F16. 10. Accurate rate constant %,.(T) for a Boltzman distribu-
tion of vibrational levels (only »=0, and »=1 are important in
this temperature range) vs reciprocal temperature. This result
is dashed. It is compared to the Arrhenius fit [Eq. (30)] to the
high temperature data. This fit is solid. The ordinate for these
two curves is on the left. The dotted curve is £,(1, T). Its ordinate
is on the right.

The usual interpretation of this nonlinearity is that it
is due mainly to tunneling. We shall discuss tunneling
in Sec. VLA and in more detail in a subsequent article.

For reactions in three dimensions, a simple model
for the reaction probability is that the energy directed
along the line of centers of the reagents must exceed
a threshold E 5% The comparable model for collinear
collisions is

PIO(E,) =0
=Pa() (31)

where E, is the initial relative kinetic energy when the

reagent is in vibrational state n. The reaction prob-

ability P,.(o) and the threshold energy E,(n) are

constants with respect to E,. Putting this into (6)

yields

k6(n, T) = (k/2mu) Y2 Pu( 0 ) T2 exp(— E(n) /kT).
(32)

If we arbitrarily define the threshold energies to be the
energies where the exact probability of reaction curves

for E.<E.(n)

otherwise,

TRUHLAR AND A. KUPPERMANN

equal 0.01, we obtain E,(0)=0.198 eV and E,(1)=
0.024 eV. We define the temperature-dependent effec-
tive hard-collision probability of reaction as the quan-
tity P.(T), which, when replacing P,(®) in (32),
would make k£ C(n, T) =k.(n, T); i.e.,

Po(T) = (2ap/kT)'2 exp(E.(n) /kT) ke(n, T).

If the line-of-centers model were exact, P,(T) would
be independent of temperature. For the temperature
range 200° to 1250°K we find Py(T") =0.11 to 0.50 and
P(T)=0.06 to 0.38. Furthermore, for T=150°K,
Py(T)=3.05 and P1(T)=0.06. The mode! fails badly
at low temperature for the ground vibrational state.
While the results are somewhat reasonable, the temper-
ature dependence of the effective hard-collision prob-
abilities are too large for the model to be useful except
for qualitative work.

V1. DISCUSSION

A. Low Energy Tunneling

For the relative translational energies less than 0.151
eV and the reactant molecule having zero point vibra-
tional energy, reaction in this system is strictly classi-
cally forbidden; i.e., below this energy the total system
energy is less than the potential energy of the saddle
point and there is no possible classical mechanical tra-
jectory leading from one side to the other. At Ey=0.151
eV, the reaction probability is 0.0011. Between this
energy and 0.043 eV the reaction probability rises ex-
ponentially with energy and may be represented very
accurately by

P(Ey) = exp[ﬁ(Eo— Vo) ];

where 8=51.1 eV~! and V,=0.286 V.

The well-known analytical expression® for one-dimen-
sional scattering off an untruncated parabolic barrier
reduces at low energy to Eq. (33) where the barrier
height is (Vy—E,) greater than the incident energy
and B depends on the curvature of the barrier. The g8
found empirically in the present case corresponds to
an imaginary asymmetric stretch frequency of 922¢
cm™l. This empirical fit of the exact results to a one-
dimensional parabolic model leads to an effective para-
bolic barrier height close to the 0.277 eV VAZC barrier
and an effective parabolic asymmetric stretch frequency
close to the 1550; cm™ frequency found by normal
mode analysis? of the classical potential energy surface.

As E, approaches 0, so does P(E;). However, Eq.
(33) furnishes P(0) =4.5X1077. This small deviation
between the exact results and the fit of Eq. (33) in
the energy range 0 to 0.04 eV is sufficiently large,
nevertheless, to produce substantial errors in the ther-
mal rate constants below 250°K if Eq. (33) rather
than the exact results in this energy range were used
in Egs. (6)—(8). A more accurate fit at very low ener-

(33)
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gies is given by the expression
P(Eo) =¢ ¥ exp(BEs) —1]. (34)

This equation satisfies the condition P(0)=0. In the
energy range 0.005 to 0.081 eV the values 3=45.91
and V,=0.309 €V make Eq. (34) agree with the exact
values of P(E,) within 49 or better.

Discussions of quantum mechanical tunneling often
are confused by not having a good definition of tunnel-
ing. The nonzero reaction probabilities we find at
Ey<0.151 eV are quantum mechanical tunneling even
in the strictest sense of the word as discussed above.
However, the transmission probabilities at energies
even 0.1 eV higher than that could be called tunneling,
depending on the definition used. A particularly rigorous
definition would be based on the probability current
density vector and the associated stream lines. The
fraction of the flux of this current density into the
separated product region of configuration space that
is associated with stream lines that have penetrated
into classically forbidden regions (i.e., regions of nega-
tive total kinetic energy) is a very general and model-
independent definition of a tunneling coefficient. Cal-
culations using this definition are being carried out
with some of the present wavefunctions. In a subsequent
publication we will use this definition and report the
corresponding tunneling coefficients. Other definitions
are based on models for the distribution of energy be-
tween translation and vibration. Using the VAZC
model, for which the height of the corresponding bar-
rier is E,VA%2C=0.2759 eV [see Eq. (12), and Table IT],
for this distribution, even at Ey=0.25 €V, say, there
is a negative translational energy along the reaction
coordinate at the barrier and in this model the reaction
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F16. 11. Total probabilities for nonreactive collisions P;¥ (=0,
1, 2) as a function of total energy E and relative initial kinetic
energy E; for ground state (=0}, first excited state (i=1)
and second excited state (¢=2) reagents.
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F1c. 12. Total reaction probabilities P;R(3=0, 1, 2) as a
function of total energy E and relative initial kinetic energy E:
for ground state (i=0), first excited state (¢=1) and second
excited state (¢=2) reagents.

proceeds entirely by tunneling. The VAZC model is
discussed in Secs. ITII.B and VLF.

B. Energy Region above Excitation Threshold

As the relative kinetic energy for ground state rea-
gents exceeds the threshold energy for inelastic excita-
tion, the elastic probability Py” goes through three
maxima as shown in Fig. 4. The first occurs slightly
above the first excitation threshold and the third above
the second excitation threshold. This is an interesting
phenomenon, since it suggests that as more competing
channels open up, the probability associated to the
elastic channel increases. This behaviour may be for-
tuitous, but it deserves further investigation concerning
generality and mechanism. The total nonreactive prob-
ability Py¥ exhibits a similar energy dependence, as
shown in Fig. 11.

The threshold for production of Hp molecules in their
first vibrationally excited state is 0.79 eV. From that
energy to 0.89 eV, vibrationally excited reagents have
0.79 €V vibrational energy and 0.0 to 0.1 eV transla-
tional energy, while ground-vibrational-state reagents
have 0.27 eV vibrational energy and 0.52-0.62 eV
translational energy. Figure 12 shows that for this
energy region, the probability of reaction is much
greater for ground state reagents. This illustrates that
it is not necessary merely to have enough energy to
react, but that the energy must be dynamically avail-
able to overcome the barrier. Apparently the dynamics
of the system require more of the vibrational energy
to remain tied up as motion transverse to the curved
reaction path in the case where the reagent initially
has a greater fraction of energy in this transverse
mode. This requirement is an indication of the diffi-
culty of changing the local vibrational energy in this
energy region,

The classical and quasiclassical trajectory calcula-
tions on the collinear and three-dimensional H+-H,
reaction, by Wall, Hiller, Mazur, Porter, Karplus, and
Sharma,® did not include a study of vibrationally ex-
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TasLE VII. Average reactive and inelastic collision probabili-
ties for different initial vibrational states at energies above
second threshold.

Initial state

7 P'.Av a P,'R b
0 0.56 0.28
1 0.58 0.69
2 0.52 0.68
Averagee 0.55 0.55
Statisticald 0.67 0.50

® Probability for change of vibrational state (reactive plus nonreactive)
averaged over energy, for energies above second excitation threshold.

b Probability of reaction, averaged as above.

¢ Average over initial states 1.

d Prediction of statistical theory of Lin and Light.2t

cited molecules. However, a similar effect was noticed
in comparing the threshold energy for reaction of rea-
gent having zero point vibrational energy with that of
reagent having #o initial vibrational energy.

At energies more than 0.1 eV above the vibrational
excitation threshold, the reaction probabilities of sys-
tems with the same total energy but different initial
vibrational energies become comparable (see Fig. 12).
According to the statistical theory of collinear reactions
discussed in the next section, the probability of reac-
tion is independent of initial vibrational state for sys-
tems with the same total energy. The next section thus
provides a more quantitative discussion of this energy
region,

C. Comparison with Statistical Theory

The exact results are in qualitative agreement with
the statistical theory predictions that between the first
and second excitation thresholds the total probability
of reaction (into ground plus excited product) is 0.5
and the total probability of a change of vibrational
state (for reactive plus nonreactive collisions) is 0.5. To
obtain a more quantitative comparison we must choose
the theory’s parameters. Since there is no good @ priori
criterion for picking Ea® and A, [see Eq. (20)], we
treat them as adjustable empirical parameters of the
theory. Setting Es(0)=0.2489 eV (the translational
energy where the probability of reaction is 0.25) and
E5(1)=0.0820 eV (the translational energy where the
probability of reaction of vibrationally excited mole-
cules is 0.25) gives Ex°=0.336 ¢V and A\,=0.32, a rea-
sonable pair of values. With these parameters, the
range of total energies for which the theory predicts
the total probability of a change of vibrational state
to be 0.5 and the total probability of reaction to be 0.3
is 0.876 to 1.283 eV (the theory actually predicts the
probability of reaction to be 0.5 for all total energies

TRUHLAR AND A. KUPPERMANN

above 0.522 eV). In this energy range the exact results
show an average (over initial energy) probability of
change of vibrational state of 0.48 (irrespective of ini-
tial vibrational level) and an average probability of
reaction of 0.36 for initial vibrational level =0 and
0.63 for initial vibrational level v=1. Thus after fitting
Ex®and \, empirically there is good quantitative agree-
ment with the predictions of the statistical theory on
the average and the exact results tend to oscillate around
their statistical values. The amplitude of the oscilla-
tions is about 309,.

Lin and Light® point out that some information
about A, could be obtained by comparing reaction
thresholds in classical and quasiclassical trajectory cal-
culations; in particular, the collinear trajectories of
Karplus, Porter, and Sharma®b yield A,=0.62 when
analyzed this way. No reasonable agreement can be
obtained with this value of A, or with A\,=1.0 as as-
sumed for the treatment of experimental data by Lin
and Light?

The parameters used above predict Ea(2) =0.0. We
have not made a detailed study of the second threshold
but our limited results do indicate the effective E4(2)
must be very small, surely less than 0.03 eV and prob-
ably less. Thus there is agreement of the theory and
the exact results in that there is no significantly de-
layed onset of reaction at the second threshold. For
the parameters above, it turns out that the statistical
theory predicts that for total energies in the range
1.283 to 1.74 eV the probability of change of vibra-
tional state (for reactive plus nonreactive collisions)
is 0.67 and the probability of reaction is 0.5 (both
irrespective of initial vibrational level). Our limited
results (5 energies in the range 1.323 to 1.497 eV) are
summarized in Table VII. There is fair agreement in
this case also, but more definite conclusions are pre-
cluded by the small sample of exact results,

The general conclusion is that the statistical approx-
imation is correct in spirit for this reaction at total
system energies greater than about 0.86 eV. The sta-
tistical theory is even, in some cases, semiquantita-
tively accurate; however, the more important conclu-
sion is that it is entirely correct in its general prediction
that there is appreciable probability for all processes
which are energetically allowed and that all these proc-
esses occur with about equal probability.

For two reasons, it should perhaps not be surprising
that the statistical theory works well for this reaction,
First, the potential surface is a simple repulsive barrier.
This should favor impulsive reaction models. Second,
collinear collisions should be harder and more impulsive
than sideways collisions. It is possible to justify®—%
the statistical theory using the sudden approximation,
which is an impulsive model. This is probably the
reason for the success of the statistical theory at high
energies (total system energy greater than about 0.86
eV) in the present case.
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D. Oscillations in Cross Sections

In the region above the vibrational excitation thresh-
old where the statistical theory appears useful, there
are important oscillations in every reactive and non-
reactive probability vs energy curve. In an early study
of the quantum dynamics of the H-+H, reaction,
Micha® found fairly rapid oscillations in the prob-
ability curves at energies below the vibrational excita-
tion threshold. This calculation was made using an
approximate distorted wave method. Subsequently,
Karplus and Tang?® did further calculations using this
general type of approach but eliminating many of the
simplifying assumptions made in the earlier treatment.
In the calculations of Karplus and Tang the oscilla-
tions below the vibrational excitation threshold do not
appear. This indicates the oscillations in Micha’s prob-
ability curves were artifacts of his simplifying approxi-
mations. These calculations were not extended to ener-
gies above the excitation threshold since the distorted
wave method becomes inaccurate® when the transition
probability becomes fairly large. In our exact calcula-
tions we find no oscillations below the excitation
threshold.

The oscillations we observe in the probability curves
above the excitation threshold are similar to those often
observed in quantum calculations of vibrational excita-
tion in nonreactive collisions. (See, e.g., Refs. 63—66).
These are most easily explained using Miller’s and
Marcus’s semiclassical theories.¥®® According to these
theories, the oscillations are due to interfering ampli-
tudes for different semiclassical paths between rea-
gents and products with the correct quantized energy
levels.8?™ The oscillations observed in both the non-
reactive and the reactive probability curves in this
work should be explainable in terms of this semiclassical
theory, although calculations for this reactive class
have not yet been reported. Such calculations are also
being performed in our laboratory.

E. Comparison with Conservation of Vibrational
Energy Theory

The two-mathematical-dimensional problem of col-
linear collisions can be reduced approximately to a
one-dimensional problem by making an assumption
which separates out one of the degrees of freedom. If
we assume the vibrational energy is conserved through-
out the reaction we reduce the reactive scattering prob-
lem to transmission across a barrier which is the clas-
sical potential energy along the reaction path. This
one-dimensional problem may be solved classically or
quantum mechanically. Comparison of these two
CVEZC treatments with the exact results for prob-
ability of reaction of reactants in the ground vibra-
tional state is given in Fig. 13. The model is not very
accurate; it predicts a high threshold energy because
it uses the full classical barrier height which ignores
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Eo(eV)

F16. 13. Accurate and approximate reaction probabilities P
for ground state reagent as a function of total energy E and of
initial relative kinetic energy E,. Arrows on E scale are thresholds
for formation of vibrationally excited product. Curve (a) is the
result of the exact calculations. Curves (b) and (c) are VAZC
results for the quantum and classical versions of this model,
respfctively. Curves (d) and (e) are the corresponding CVEZC
results.

contributions from the zero point energy of the reagent.
In addition, the variation of the CVEZC quantum
reaction probability with energy is far too slow because
of excessive tunneling through the thin CVE barrier
and excessive nonclassical reflection.

F. Comparison with Vibrationally Adiabatic Theory

Another way to separate the degrees of freedom from
one another is to assume vibrational adiabaticity (VA)
as in the vibrationally adiabatic zero-curvature model
(VAZC), discussed in Sec. IV.B. The reaction prob-
abilities T1(E,, 0) discussed there are shown in Fig. 13.
This model is in much better agreement than the
CVEZC one with the exact results. However, it too
fails at very low energies. Table V shows that when
the exact probability of reaction is less than 0.1, neither
of the methods we use to separate the degree of freedom
gives accurate results,

For an untruncated parabolic one-dimensional bar-
rier, the probability of reflection is 0.50 for an energy
exactly equal to the barrier height.* For a more general
barrier, this is only approximately true. Because of the
broad plateau on the lowest VAZC barrier for the
collinear H+H, reaction, the VAZC probability of
reaction is 0,29 for an energy equal to the barrier height
and 0.50 for an energy 0.010 eV above the barrier
height. The correct reaction probability at these two
energies is 0.62 and 0.76 respectively.

There are two reasons why the VAZC quantum
mechanical calculation does not agree perfectly with
the exact results: (1) the VA separation of the trans-
verse vibrations is only an approximation, i.e., the
reaction is not perfectly vibrationally adiabatic; (2)
the neglect of curvilinear effects in treating the VAZC
model is a further approximation. The second reason
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involves two important effects: (a) a centrifugal effect
causing the actual reaction path to lie off the minimum
energy reaction path; (b) the approximation of calcu-
lating transmission over a barrier in one curvilinear
dimension by simply straightening out the path. Be-
cause of approximation (2) the VAZC calculation is
not a direct test of vibrational adiabaticity. It is actu-
ally a test of a model which both neglects curvilinear
effects and assumes vibrational adiabaticity, We will
consider a test of vibrational adiabaticity itself in a
future article.

The breakdown of approximation (1) may semi-
classically be described as leading in part to reacting
particle trajectories “cutting the corner” (i.e., crossing
the Rap=Rgc line with Ryg larger than its saddle point
value) or otherwise crossing the Rap=Rpc line in a
nonadiabatic symmetric-stretch vibrational state, How-
ever, the centrifugal effect usually (an important ex-
ception is discussed below) tends to make the reaction
coordinate lie on the convex side of the minimum energy
path.# For this reason it has been called the bobsled
effect. Thus, it is possible that approximations (1)
and (2a) may cancel to some extent. Only a more
direct test of vibrational adiabaticity without further
assumptions will determine the full extent of such can-
cellation. The fact that the exact reaction probability
for a translational energy equal to the VAZC barrier
height is 0.65 rather than the 0.29 predicted by the
VAZC model suggests that one must be cautious in
stressing the VAZC requirement that energy of the
system at the transition state be tied up adiabatically
as zero point energy of the transverse symmetric
stretching vibration. In addition, if it turns out upon
evaluation of the tunneling coefficient via probability
current densities (as mentioned in Sec. VI.A) that
reaction at energies at and just below the VAZC bar-
rier height proceeds mainly via classically allowed re-
gion (i.e., regions of positive total kinetic energy), the
validity of the VAZC approximation will have to be
further reevaluated since according to it the reaction
at these energies proceeds via tunneling. Nevertheless,
it is important to emphasize the success of the VA
model used here as a practical tool for reproducing
important aspects of the full calculation by means of
a much simpler one. Its success also indicates it could
be useful and valid for predicting qualitative trends in
similar processes.

Wyatt® has quantitatively studied curvilinear effects
within the VA model for a near-linear H+H, collision
in a plane. His calculations indicate that the VAZC
model for that case predicts appreciable reaction at
energies about 0.02-0.04 €V lower than models assum-
ing vibrational adiabaticity but not assuming zero
curvature. If the effects of curvature are in the same
direction for the case studied here then the assump-
tions (1) and (2) do indeed lead to partially compen-
sating errors.

Table V compares the exact reaction probabilities
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at very low energies with the predictions of the CVEZC
and VAZC models. The VAZC model is closer than
the CVEZC one to the exact results but both models
fail badly in this energy region where the reaction
probability is very small. This means that the full
two-dimensional treatment is necessary to adequately
describe this tunneling region; curvilinear effects can-
not be ignored. Marcus®*? has pointed out that for
the energy range with translational energies below the
VA barrier the centrifugal effect is negative and causes
the reaction coordinate to lie on the concave side of
the minimum energy path. Thus the reaction most
probably cuts the corner and the quantum mechanical
interaction of the translational and vibrational modes
is very important. McCullough and Wyatt’s studies of
the collinear H+4-H, reaction’ by time-dependent quan-
tum mechanics have shown that an important reaction
route for low energy particles is a diagonal cut across
the center. This is most likely the same phenomenon
we observe here.

The interpretation that a cut across the barrier at
large Rap, Rpc becomes a more favorable tunneling
path at very low energies than proceeding along the
minimum energy reaction path is consistent with the
exact results being larger than the one-dimensional
model results at low energy. Then the VAZC model
results show that the reaction probability would be
about two orders of magnitude smaller at low energies
if the system were forced to proceed along the mini-
mum energy reaction path. Calculation of the prob-
ability current densities and streamlines from our
scattering wave functions should give useful informa-
tion on these points. Such calculations are in progress.

The failure of the one-dimensional models at low
energies has important implications for the usual
one-dimensional tunneling calculations,3—16.18-20.44.45 T
means that these one-dimensional theories cannot be
used at low temperature where the tunneling correc-
tion is very sensitive to the low-energy transmission
probabilities. This defect of the one-dimensional the-
ories will be discussed in the next subsection (VI.G).

At translational energies of 0.08-0.22 eV, the de
Broglie wavelength for the relative motion of H+H,
is 1.2 to 1.6 A. This is large compared to the range of
internuclear distances near the saddle point over which
the normal-mode coordinate separation is valid.?®
Thus, at low energies the separation of vibration and
translation is not expected to be a good approxima-
tion. This is why a quantum mechanical treatment in
two mathematical dimensions is necessary.

At energies above the threshold we find appreciable
probabilities for the change of vibrational state. These
probabilities violate the vibrationally adiabatic approx-
imation. Thus the VA approximation appears to be
bad for total energies above about 0.85 eV. It is inter-
esting, however, that in the region above the first
threshold, Pyf> Py and P> Py %, i.e., the reaction
probability is a little greater for the reactive channel
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in which the vibrational quantum number is conserved.
This is a small remnant of the success of the VA theory
at lower energies.

G. Comparison with Transition State Theory

The comparison of the accurate results with transi-
tion state theory including one-dimensional tunneling
corrections has been discussed briefly in a preliminary
communication.” Further comparison is made in Table
IV and Figs. 14 and 15.

The transition state theory without tunneling is in-
accurate by 119, at 1000°K. This means it is a good
working hypothesis for the interpretation of experimen-
tal data to assume such a transition state theory calcu-
lation is accurate at temperatures around 1000°K. At
1250°K, the error is 29,. We have not tested transition
state theory at temperatures higher than this. At 750°K
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Fr6. 14. Accurate rate constant and three transition state
theory rate constants for the collinear H+H; reaction as func-
tions of reciprocal temperature. Each rate constant is divided
by the Arrhenius fit k4(7) so that the plot indicates the devia-
tions of the exact and the three approximate Arrhenius plots from
nonlinearity. Curve (a) is the accurate rate constant and curve
(b) is transition state theory rate constant without tunneling.
The other curves are transition state theory calculations including
tunneling along the one-dimensional minimum energy path as
calculated by (c), the VAZC approximation, and (d) the
ECVEZC approximation. See Secs. IV.C and VI.G of text.
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F16. 15. The ratios of five TST rate constants to the accurate
one, as functions of reciprocal temperature. Different one-mathe-
matical dimensional (1-MD) transmission coefficient correc-
tions are used: (a) classical motion for a Cartesian reaction co-
ordinate, (b) quantum vibrationally adiabatic zero curvature
(VAZC) model, (¢) quantum conservation of vibrational energy
zero curvature (CVEZC) model, (d) analogous to (c) with Eckart
fit to the height and the curvature at the top of the CVEZC
barrier. In Curve (e) the 2-MD transmission coefficient of Eq.
(14) with E= E,YAZC is employed. The horizontal dashed line
would represent the results of an exact theory.

the error is 219, and in the 444° to 300°K range for
which Schulz and LeRoy studied H4H, experimentally,
the theory is 43 to 709, low.

According to the vibrational adiabatic derivation of
transition state theory,%." the potential energy re-
sponsible for motion along the reaction coordinate is
the vibrationally adiabatic potential. Hence, formally,
if a one-mathematical-dimensional (1-MD) tunneling
correction is made, it should be for such a potential
barrier.*® Table IV and Figs. 14 and 15 show, however,
that the numerically calculated 1-MD VAZC tunneling
correction is much too small at low temperature and
is in the right direction only at temperatures less than
290°K. Fig. 13 shows, however, that this tunneling
correction improves the temperature dependence of
TST below about 500°K [i.e., in this range the slope
of Curve (c) is closer than the slope of Curve (b) to
that of Curve (¢)]. The low-temperature results are
sensitive to the low-energy reaction probabilities which
we have seen (Sec. VLF) are too large to be explained
by a treatment which separates out the reaction co-
ordinate. The two-mathematical-dimensional (2-MD)
VA tunneling correction leads to transition state theory
rate constants (next to last column of Table IV) in
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TaBLE VIII. Ratio of accurate to transition state theory rate
constants.®

T Karplus Present

(°K) et al.be worke Mortensene-d
200 29.79
300 6.13 3.30 25.08
400 3.20 2.00 8.26
500 2.25 1.61 4.72
600 1.81 1.42 3.38
700 1.57 1.31 2.72
800 1.41 1.23 2.33
900 1.29 1.17 2.07

1000 1.20 1.12 1.90

1100 1.08

1200 1.04

1250 1.02

8 This ratio is the quantity k. (7T) defined by Eq. (15).

b These are the results of Karplus, Porter, and Sharma (Ref. 54) for the
quasiclassical three-dimensional reaction.

°® Three different but very similar potential energy surfaces were used
for the calculations in this table,

d These are the results (Ref. 2) for the quantum mechanical 3-MD
reaction with the approximation of collinear collisions on a potential energy
surface incorporating a correction to take approximate account of bending
from the collinear configuration.

much better agreement with experiment than the one-
dimensional tunneling correction. It is possible that
an appropriate 2-MD treatment could be used for the
noncollinear collision as an improvement over the
VAZC theory, However, it is basically inconsistent
with the assumption of reaction coordinate separability
in transition state theory.

The CVEZC and ECVEZC one- and two-dimen-
sional tunneling calculations are included for complete-
ness, The CVEZC tunneling correction has been dis-
cussed in an earlier article® where we showed that it
is inconsistent with transition state theory so that we
cannot give these results a dynamical interpretation.
Table IV shows that in the present case there are large
deviations between it and either the transition state
theory calculations with VAZC tunneling or the accu-
rate results. Nevertheless the transition state theory
calculations with 1-MD CVEZC and ECVEZC tunnel-
ing corrections show large nonlinearity on an Arrhenius
plot (see Fig. 14), and in this regard they resemble
the accurate results. Since these calculations are based
on conservation of energy of the transverse vibration
as the system proceeds along the reaction path and
since this is known (Fig. 13) to be a poor dynamical
approximation, we cannot learn much about the reac-
tion from such calculations (which are very common)
even if we ignore the formal difficulties referred to in
the second sentence of this paragraph. At 200°K, the
ECVEZC rate constant is 23 times the correct one,
and the CVEZC calculation, which contains one less
approximation, is still 10 times too large.
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These transition state theory calculations for a case
where accurate rate constants are known and the po-
tential energy surface is known provide an important
test of the theory. Previous tests (see Refs. 74 and 75
for recent summaries) were complicated by lack of
knowledge of the real potential surface. The conclu-
sion of our work is that transition state theory, al-
though qualitatively correct, is not a good enough
model to explain the accurate rate constants quantita-
tively. Thus the theory cannot be used to obtain un-
known potential surfaces except approximately,

Karplus, Porter, and Sharma* made a test of transi-
tion state theory against their quasiclassical trajectory
calculations for the three-dimensional H+H, reaction.
Their results are compared to ours in Table VIII. They
find larger transmission coefficients than are found in
the present work., One reason for this is the lack of
quantization of vibrational modes (other than in the
initial conditions) in the quasiclassical calculation,
This releases energy from the symmetric stretch vi-
brational mode of the transition state into the reaction
coordinate and thus increases the reaction probability.
Since the physical mechanisms behind their and our
transmission coefficients are so different, it is not sur-
prising that they quantitatively show little agreement.

H. Comparison with Mortensen’s Calculations for
Linear Collisions with Bending Corrections

Mortensen,? in a continuation of the now classic work
of Mortensen and Pitzer,! calculated «.(T) for quantum
mechanical collinear collisions with bending corrections
to make the results be an approximation to the experi-
mental reaction. His results as given in Table VII are
larger than the present ones. This is easily understood
in terms of the nature of the bending corrections to
the potential energy surface. These corrections make
his barrier thinner than ours; thus there is more tunnel-
ing in his case.

Another important observation by Mortensen? was
that the curve representing the accurate probability of
reaction rises steeply at an energy about 0.040 eV less
than would be expected on the basis of the VAZC
model (see Fig. 8 of Ref. 2). We obtain a qualitatively
similar result (see Fig. 3 of this article). However, we
find a downward shift in this energy of only 0.010 eV,
Mortensen’s interpretation was that the effective zero
point energy of the transition state symmetric stretch
cannot be calculated by a normal mode analysis of the
transition state, i.e., by the VAZC model. The com-
parison of the two sets of results shows that the VAZC
model is better for the symmetric stretching mode in
the absence of the bending modes (our collisions only
involve the symmetric stretching mode) than in their
presence. A small shift (of the size we observed) is not
unexpected on the basis of the nonseparability of vi-
bration and translation as discussed in Sec. VLF.
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VII. SUMMARY

Reaction probabilities and rate constants have been
obtained for the collinear H4-H, reaction on a realistic
potential energy surface which are accurate to within
29, or better. These results can be used to test approxi-
mate models of chemical reactions. The range of rela-
tive translational energies considered was 0.005-1.22 V.

We find that tunneling is important at low energies.
We find effective translational energy thresholds of
about 0.25 and 0.08 eV for reaction of v=0, and v=1
molecules, respectively, but hardly any (<0.03 eV)
threshold for reactions of »=2 molecules. This indi-
cates the efficiency with which energy can be used to
overcome the barrier. At energies above the threshold
for vibrational excitation quantum mechanical oscilla-
tions in the reactive and nonreactive probability curves
(as functions of energy) are very important and are
attributed to interference effects.

Our reaction probabilities are compared with the
vibrationally adiabatic theory of reactions and with
the statistical phase space theory. They agree well
with the former for total energy (in the center-of-mass
system) in the range 0.49-0.85 eV and with the latter
for total energies greater than these. At energies below
about 0.49 eV no simple theory seems to predict the
accurate results properly.

Our rate constants are compared with unit trans-
mission coefficient transition state theory, They dis-
agree by about the same factor as found in previous
tests of this theory by Karplus, Porter, and Sharma
and by Mortensen, Because the vibrationally adiabatic
assumption fails to predict reaction probabilities accu-
rately at very low energy, transition state theory cal-
culations using a transmission coefficient calculated by
the vibrationally adiabatic model do not agree well
with the accurate results in the low temperature region
where quantum mechanical effects on the transmission
coefficient are important. The calculations also indicate
that much more tunneling is present than was observed
in previous experiments when the three-dimensional
H+Hp reaction is studied at lower temperatures, Other
details of our results are also discussed.

Our calculations provide an example of the exact
quantum dynamics for a realistic model system. How-
ever, in many detailed respects the results are indica-
tive only of the dynamics in similar systems, i.e., light
atoms scattering on a potential surface with a simple
symmetric barrier. The methods used in this study are
general, however, and further applications to other
potential surfaces and heavier atoms are necessary to
provide more understanding of the quantum dynamics
of chemical reactions.

In the present article we have concentrated on the
reaction probabilities and rate constants. The former
are the results of single collisions and the latter are
averages over the results of many collisions. To gain
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further insight we feel it is important to study the
wavefunction and the corresponding probability cur-
rent densities in the interaction region where all inter-
nuclear distances are small (in a time-dependent calcu-
lation this could correspond to studying the results
before even a single collision was finished). In most
quantum mechanical calculations carried out so far the
emphasis has been on the reaction probabilities alone.
We are continuing the present calculation™ by studying
the wavefunctions and current densities and these re-
sults will be reported subsequently.
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APPENDIX A

R Matrix Analysis

In this appendix we use the notation of Ref. 32
wherever possible, The elements of the velocity matrix
V are defined by

Vij=viby;, (A1)
where v; is the relative velocity in channel i, i.e.,
Ui=ﬁki/}l.i, (AZ)

where u; is the reduced mass of relative motion of the
atom and molecule in channel i, There are N open
channels and T—XN closed channels corresponding to
A+4BC and N’ open channels and 7/— N’ closed chan-
nels corresponding to AB4C. Let N”"=N+N’ and
T"=T+T’ so that V is of dimensions N”"XN"'. We
obtain 7" linearly independent numerical solutions x;
of the Schriédinger equation. The matrices A (of di-
mensions N'XT"), A(T"XT"), and I'(T""XN) are
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defined in Ref. 32. Let I”(T""XN') be defined as
0

r=[1 | (A3)

0,

where 0; and 0, are null matrices of dimensions (TXN')
and ([T"—N'"]XN’), respectively, and I is an identity
matrix of order N, and let I°(7T"" X N’’) be

IP=(1T"). (A4)
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The analysis procedure used by Diestler and McKoy
is equivalent to the scattering matrix analysis where
the probability of going from initial state i to final
state 7 is

Py=| Sl (AS)

where

S= — VI2AA-1IDY-1/2, (A6)

The reactance matrix analysis proceeds analogously
except that the asymptotic form of the x’s is expressed
in the notation of Ref. 32 as

N —
Xi= Z {Dl(j) sin[kz(ax12+x23) :H'Dl(j) COS[kl(ax12+f€23)]}¢l($12)

=1
+ T (B exp[—ki(awietom) B explki(omutzn) [} oi(2n), 2u>7x,
SN
N
xi= 2 {6, sin[k) (axm+212) J+8:” cos[ky' (as+212) 1} F (@)
=1
+ 2 {81 exp[— k) (Bruta1) J4+-8:1 explki/ (Brmt+2) [} $1(2m),  2222:® (A7)

>N

TaBLE IX. Reactance, scattering, and probability matrices for E=0.9678 eV.»b

Extrapolated reactance matrix®

1.613 —2.422
—2.399 2.422
1.852 —2.305
—2.281 2.003

Extrapolated scattering matrixe

1.852 —2.305

—2.281 2.003

1.613 —2.422

—2.399 2.422
0.2686—0.0034¢ 0.3234—0.1773;

0.3274—0.1790;
—0.6025—0.4572;
0.2938—0.3926:

0.1673—0.5342¢
0.2950—0.3817;
—0.5765+-0.1317;

—0.6025—0.4572i
0.2938—0.3926¢
0.2686~0.0034:
0.3274—0.1790:

0.2950—0.3817;
—0.5765+0.1317¢
0.3234—-0.1773¢
0.1673—0.5342¢

Probability matrix from preceeding extrapolated scattering matrixe-d

0.0722 0.1392 0.5720 0.2405 1.0239e
0.1360 0.3134 0.2327 0.3497 1.0318e
0.5720 0.2405 0.0722 0.1392 1.0239¢
0.2327 0.3497 0.1360 0.3134 1.0318e
1.0129¢ 1.0428¢ 1.0129¢ 1.0428¢

Extrapolated probability matrix from symmetrized reactance matrices?-«

0.0710 0.1328 0.5661 0.2301 1.0000
0.1328 0.2928 0.2301 0.3444 1.0000=
0.5661 0.2301 0.0710 0.1328 1.0000°
0.2301 0.3444 0.1328 0.2928 1.0000°
1. 0000t 1.0000¢t 1.0000¢ 1.0000¢

8 This is a typical case. The procedures used for this comparison are
discussed in Appendix B.

® The key to the matrix element identification is given in Table X. See
also Appendix A, especially Eq. (AS).

¢ The reactance matrix has not been symmetrized and the corresponding
transition probabilities are not as accurate as the ones obtained from the
symmetrized reactance matrices, which are used throughout this article.

d Conservation of particle flux requires that all row and column sums
be unity. The sums are carried out before rounding to four significant
figures.

¢ Row sum.

f Column sum.

& See Sec. II1.A for description.

Downloaded 21 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http:/jcp.aip.org/jcp/copyright.jsp



COLLINEAR H+H, REACTION

instead of as in Eq. (18) of Ref. 32. We now define the
matrices D(T"XT") and D(N""XT") analogously to
A and A; for example, for the symmetric case with
N=N’"and T'=T'=N+13, they are given by

Dij=D; i=1,+++, N
=B, i=N+1, -+, N+3
=8 n3® i=N-+4,---,2N+3
—Bins®  i=2N-+4, .-+ 2N+6, (AS)
Di,-=D,~"7 i=1,+++ N
=§; ns® i=N+1,-:- 2N, (A9)
The reactance matrix is given by
R=V/2DD-PV-12, (A10)

If the scattering matrix is now computed from the
reactance matrix by

S=(1-iR)7*(1+iR), (A11)

and the reaction probability is computed from the
scattering matrix by Eq. (AS5), the results will be
exactly the same as for the analysis directly in terms
of scattering matrix elements. The main advantage of
the present scheme lies in the possibility of symmetriz-
ing the R obtained from (A10) before using (A11). It
may sometimes also be considered an advantage that
the elements of R are real.

APPENDIX B

Our accurate results are based on extrapolated prob-
abilities computed from symmetrized reactance ma-
trices as discussed in the text (Sec. ITT.A). As explained
there, these results are believed to be accurate to 29,
or better. In general, it is a much weaker criterion to
require the symmetry of the probability, reactance or
scattering matrices to be within a certain tolerable
error limit than to require the accuracy of these ma-
trices within the same limit. Nevertheless, the symme-
try of these matrices is a widely used and necessary
criterion of accuracy. Our probability matrices auto-
matically satisfy the symmetry criterion because of the
method we used to evaluate them. To facilitate com-
parison of our results with the commonly used accuracy
criteria, we present in Table IX a typical case for the
extrapolated (unsymmetrized) reactance matrix, scat-
tering matrix, and probability matrix (see also Table
X). For this comparison, the scattering matrix is cal-
culated directly from the wavefunction (by a proce-
dure equivalent to that used by Diestler and McKoy)
rather than from the reactance matrix. In addition, we
give the extrapolated probability matrix according to
the symmetrized reactance matrix method used in this
paper. The results are extrapolated from calculations
using 2025, 3025, and 4225 grid points. For each cal-

2251

Taste X. Table of channel labels (row or column) defining
notation for matrix elements of Table IX. Numbers in paren-
theses after each molecule designate the vibrational quantum
numbers.

Label Channel
1 A+BC(0)
2 A+BC(1)
3 AB(0)+C
4 AB(1)+C

culation we used 10 linearly independent numerical
solutions in terms of which the wavefunction was ex-
panded, corresponding to two open plus three closed
channels for the reagents and equal numbers for the
products. The first three matrices of Table IX are
symmetric within 39, or better. This compares favor-
ably with the results reported by Miller and Light.®
Their reflection probability matrix should have been
symmetric but the symmetry was not obtained; the
asymmetry in the tables they presented varied from
449, to a factor of 178. For the unsymmetrized prob-
ability matrix of Table IX, conservation of particle
flux is satisfied to 3%. The probabilities from the
symmetrized reactance matrix method adopted in this
paper satisfy symmetry and conservation of particle
flux automatically, as demonstrated by the fourth ma-
trix in Table IX. The difference between any pair of
corresponding elements of these two matrices is less
than 0.02, and for most pairs less than 0.01.
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