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We consider an extension of the concept of spherical ¢-designs to the unitary group in order
to develop a unified framework for analyzing the resource requirements of randomized quantum
algorithms. We show that certain protocols based on twirling require a unitary 2-design. We describe
an efficient construction for an exact unitary 2-design based on the Clifford group, and then develop
a method for generating an e-approximate unitary 2-design that requires only O(nlog(1/¢)) gates,
where n is the number of qubits and ¢ is an appropriate measure of precision. These results lead to
a protocol with exponential resource savings over existing experimental methods for estimating the
characteristic fidelities of physical quantum processes.

The importance of generating random states and ran-
dom unitary operators in quantum information proces-
sors has become increasingly clear from the growing num-
ber of algorithms and protocols that presume such a
resource [1, 12, 13, 4 6, [d]. In several of the above
applications the Haar-measure on the unitary group is
the relevant randomization measure [, 1, []. It is well-
known that generating Haar-random unitary operators
on a quantum information processor is inefficient: the
number of gates grows exponentially with the number of
qubits n. Consequently it is useful to identify subsets
of the unitary group that admit efficient gate decomposi-
tions and that can adequately simulate the Haar-measure
for a given randomization task.

In this context we find it useful to classify finite sub-
sets of the unitary group according to the highest degree
polynomial for which averages over the subset are in-
distinguishable from averages with respect to the Haar
measure. Following recent work that has extended the
related concept of spherical t-design to classify finite
sets of quantum states [§], we define a unitary t-design
as a set {U, 1, C U(D) of unitary operators such that,
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for all (m,1) < (t,t) where P, ;(U) denotes a polyno-
mial of degree (m, 1) in the (complex) matrix elements of
U |9]. In the above dU denotes the Haar measure on the
unitary group U(D).

It is easy to see from this definition that the
Heisenberg-Weyl group and the generalized Pauli group
(defined below) both generate unitary 1-designs. An ex-
ample of a randomization task for which a unitary 1-
design is necessary and sufficient is the private quantum
channel [1l]. This protocol requires sampling from a set of
unitary operators such that an average over the set takes
any input state to the completely mixed (identity) state:
this condition corresponds to averaging a polynomial of

degree (1,1). As is known, exact randomization with re-
spect to a unitary 1-design can be done efficiently: only
n quantum gates acting in parallel are required.

Several quantities of experimental and theoretical in-
terest can be expressed as Haar averages of polynomials
of degree (2,2). Important examples are the entangle-
ment fidelity [L0] and the average gate fidelity |11] of a
physical quantum process, and the average entanglement
between subsystems expressed in terms of subsystem pu-
rity [0]. In this Letter we show that the Clifford group,
which has been considered previously as an appropriate
Haar-substitute for certain protocols [2, [12], constitutes
an exact unitary 2-design. In addition, we devise a cir-
cuit construction for generating an e-approximate unitary
2-design that requires only O(nlog(1/¢€)) quantum gates.
We then describe how our circuit construction enables an
efficient, scalable protocol for experimentally estimating
the entanglement and average gate fidelities mentioned
above.

We start by observing that for ¢ = 2 the definition
above is equivalent to:
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for all linear operators A, X, B. This condition empha-
sizes that the close relationship between unitary 2-designs
and the physical transformation known as twirling [13].

Definition 1. For a mapping A : CP*P — CP*P and
a probability measure S on U(D), an S-twirl applied to
A consists of the mapping

X / dS(U) UTA(UXUNU. (3)
U(D)

It follows that a unitary 2-design will adequately sim-
ulate the Haar-measure for any randomization proto-
col based on the expectation of a twirled superoperator
Id, 13, 114]). A similar result holds for protocols based on



bilateral twirling of a bipartite quantum state [2] (see [13]
for further details.)

We now specialize to dimensions D = 2™ and prove
that the Clifford group C, forms a generic unitary 2-
design. Our strategy is to show that a C,-twirl of any
linear superoperator of the form A(X) = AX B is equiv-
alent to a Haar-twirl. C, is defined as the normalizer
of the generalized Pauli group P,, which consists of all
n-fold tensor products of the one-qubit Pauli operators
{I, X,Y, Z}. We denote the elements of P, as {P;} 2
where P; is the n-fold tensor product of I.
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Lemma 2. Applying a P, -twirl to the mapping A(X) =
AXB, where A, B € CP*P | results in a mapping of the
form
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Proof. Note that we can express A = Zle aq P, and
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with the symplectic inner product Sp on the index space
(see [14] for details). Therefore, setting ry = oSk, sat-
isfies the conditions of the Lemma. O

Using Lemma Bl we prove the following.

Theorem 3. Let A be any mapping of the form A(X) =
AXB, where A,B € CP*P . Then applying a Clifford-
twirl to A is equivalent to applying a Haar-twirl to A.
That is, for all X,

dU UTAUXUTBU =

IC | Z UtAUXUBU.

U(D) vecC,

Proof. First, as shown in Ref. [1], we can interpret the
arguments in the 2-design as the action of the linear su-
peroperator A to obtain

dU UTAUXU'BU = w%
U(D)
+DTr(A})T(ré§)_—l')I’r(AB) <X B Tr(X)%) )

We can express each U € Cp, asU = C; Py, where P, € P,
and C; € C,/P,. First we twirl A by P, and then by
Cn/Pn.

The effect of P,-twirling is established in Lemma B2
and applying a C,/P,-twirl to the resulting operator
yields

Cnl/IPn| D?
S>> nClIPCiXCLPCy. (7)
j=1 k=1

Next we distinguish the identity element P, = I and make
use of the fact that the Clifford group is the normalizer of
the Pauli group and hence, under conjugation, maps each
non-identity Pauli element to every other non-identity
Pauli element with equal frequency. It follows that the
final state is

D> [Cal/|Pnl
Xt C. |Z > clpcixclpc

j=1
1 D? D?
= rX P XP,. 8
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Using the fact that Y2, P;XP; = DTr(X)L, and the
equations in Lemmal it is straightforward to show that
the right sides of Eqs. () and (@) are equivalent.
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By linearity, we deduce the following.
Corollary 4. For an arbitrary trace-preserving CP map
Alp) = >, AkpA}LC (with Y, ALAk = 1), applying a

Clifford-twirl to A is equivalent to applying a Haar-twirl
to A. That is,

/ dU > UAUTpUALUT = pp + (1 — p)Tx(p)1/D, (9)
k
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Since the size of the Clifford group is exponential in n?,
the implementation of a Clifford group element requires
at least order n?/logn quantum gates [16]. In light of
the practical usefulness of Clifford-twirling in the fidelity-
estimation protocol described below and other contexts
(e.g., [2]) it is useful to analyze the resource savings that
may be achieved by generating an approximate unitary
2-design with a subset of the Clifford group.

From Lemma Bl it can be deduced that applying a
Pauli-twirl to any channel yields a Pauli channel, and
the cost of this is O(n) gates. In order to convert an
arbitrary Pauli channel into a good approximation of a
depolarizing channel, we add slightly more than O(n)



further twirling operations to approximately uniformize
the probabilities associated with each P, for all a # 1.

This process consists of a series of repetitions of the
following basic procedure:

1. Co/Po-twirl qubit k for all k € {1,...,n}.
operation is defined below.)

(This

2. Conjugate the first qubit by a random XOR. (This
operation is defined below.)

3. H-conjugate the first qubit, and Ca/Po-twirl qubit
kforall k € {2,...,n}.

4. Conjugate the first qubit by a random XOR.

5. H-conjugate the first qubit, and Ca/Po-twirl qubit
kforallk € {2,...,n}.

6. With probability 1/2, S-conjugate the first qubit.
7. Conjugate the first qubit by a random XOR.

A Cy/Pa-twirl of a qubit is defined as follows. Let R =
SH, where S = |0)(0]| +4|1)(1], and H is the Hadamard
transform. Select ¢ € {0,1,2} uniformly and conjugate
the register by R’. This operation has the property that,
if it is applied to the identity channel I, it has no net
effect; however, for a Pauli channel of the form X, Y, or
Z, this operation causes the channel to become a uniform
mixture of X, Y, and Z.

Conjugating the first qubit by a random XOR is the
following operation. For each k € {2,...,n}, with inde-
pendent probability 3/4, conjugate by a CNOT gate with
the first qubit as target and qubit k as control.

Consider the effect of starting with a channel of the
form p — P,pP,, for some fixed a # 1, and applying the
above procedure. To analyze the result, we trace through
the effect of each of the seven steps:

1. For each k, if component k of P, is I then it remains
I, and if component k is X, Y, or Z then it becomes
a uniform mixture of X, Y, and Z.

2. Call an execution of this procedure good if, after
Step 2, the first component of the channel is X or
Y. This happens with probability at least 1/2.

Case 1: Forallk € {2,...,n}, component k of P, is
I. In this case, the CNOT gates have no effect, but
since a # 1, component 1 of P, is not I. Therefore,
after the previous step, the first component of P,
is uniformly distributed over X, Y, and Z. Hence
the first component of the channel is X or Y with
probability 2/3.

Case 2: For some k € {2,...,n}, component k of
P, is not I. With probability (2/3)(3/4) = 1/2,
component k has X or Y and the CNOT gate is
present. This causes the first component to evolve
as follows. If it is X or I then it becomes an equal

mixture of I and X. Also, if it is Y or Z then it
becomes an equal mixture of Y and Z. In either

case, the first component is X or Y with probability
1/2.

3. If the execution is good then the first component is
Y or Z. For each k € {2,...,n}, component k is
either I or a uniform mixture of X, Y, and Z.

4. If the execution is good then for each k €
{2,...,n}, component k is I with independent
probability 1/4, and some mixture of X, Y, Z with
probability 3/4. To see why this is so, for each k,
consider the effect of the back-action of the CNOT
gates in the following two cases separately.

Case 1: After the previous step, component k is I.
In this case, it remains I with probability 1/4, and
it becomes Z with probability 3/4.

Case 2: After the previous step, component k is
a uniform mixture of X, Y, and Z. In this case,
with probability 3/4, the channel becomes a uni-
form mixture of Y, X, and I. Hence the component
becomes I with probability (3/4)(1/3) = 1/4.

5. If the execution is good then, after this step, the
first component of the channel is X or Y, and, for
each k € {2,...,n}, component k is independently
a uniform mixture of I, X, Y, and Z.

6. If the execution is good then, after this step, the
first component of the channel is a uniform mixture
of X and Y.

7. Call an execution very good if it is good and, af-
ter Step 6, there is at least one component k €
{2,...,n} that is not I. If the execution is very
good, the first component of the channel is a uni-
form mixture of I, X, Y, and Z (independent of
the other components of the channel).

To see why this is so, consider the effect of any
non-I component k € {2,...,n}. Prior to the po-
tential conjugation by CNOT, the first component
is uniformly distributed among X and Y and com-
ponent k is uniformly distributed among X, Y, and
Z. Therefore, with probability (2/3)(3/4) = 1/2,
the first component becomes a uniform mixture of
I and Z.

Now, suppose that an execution of the basic procedure
is very good (this occurs with probability (1/2)(1 —
(1/4)"71)). Then the resulting channel is an approxi-
mately uniform distribution of all P,, for a # 1 in the
following sense. All Paulis that are not I in all compo-
nents 2 through n occur with probability 1/4"; yielding
a total variation distance O(1/4™) from the uniform dis-
tribution.



Repeating the procedure O(log(1/¢)) times, we can in-
crease the probability of a very good execution to 1—e. It
follows that the channel after the repeated procedure has
variation distance € + 1/4™ from a depolarizing channel.

Each execution of the procedure consists of O(n) gates,
that can be implemented in O(logn) depth (see [13] for
details). Therefore, the repeated procedure can be imple-
mented with O(nlog1/e) gates in O(log nlog1/e) depth.

We now turn to a discussion of the fidelity estimation
problem for which the above unitary 2-design construc-
tions lead to an efficient, scalable protocol. Consider the
Haar-averaged fidelity [, [17]

(F)

/dUTr[U|o><0|UTA(U|0><0|UT]
u(D)

2
_ Z |TI‘(142k)| +D' (11)
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of a quantum operation A(p) = >, AkpAL. The Haar-
averaged fidelity is trivially related to two standard fi-
delity benchmarks: the entanglement-fidelity Fe, which
has been proposed as means of characterizing the noise
strength in a physical quantum channel A [1(], and the
gate-fidelity F;, which has been used to characterize the
quality of quantum memory [1&] or of an implementa-
tion of a target unitary U, on a noisy quantum process-
ing device |11, [19]. In the latter scenario we imagine
the implementation of a gate sequence U, followed im-
mediately by its inverse U;f, and make the identification
A(p) = UJE(UypU])U,, where the map &(p) represents
the noise accumulated over the course of implementing
UJUQ' Then, using the results of Ref. [4, (L0, 111, [17], we
find the following simple relationship between the Haar-
average fidelity and the previously proposed gate-fidelity
and entanglement-fidelity,

<F>—DFQ+1—DF€+1
" D+1  D+1

(12)

Standard methods for estimating F, and Fj are based
on either state or process tomography and the best known
methods require a number of experiments that grows ex-
ponentially with n = log, D |11, 20]. However, as de-
scribed in Ref. [7], we can estimate (F') directly by the
following protocol: apply a random unitary operator U
to the initial state |0), followed by the quantum opera-
tion A, and then apply UT to the output state. Then
from Eq. () we see that (F) can be estimated by re-
peating this procedure with U sampled randomly from
the Haar measure in each experiment. Given that F'is a
polynomial function of homogeneous degree (2,2), The-
orem B implies that we can estimate (F) by sampling
from any unitary 2-design. For an arbitrary, but fixed,
average fidelity 0 < (F') < 1, the Chernoff bound guaran-
tees that the number of experiments required to estimate

(F) to precision § > 1/4™ is independent of the dimen-
sion D. Finally, the e-approximate unitary 2-design de-
scribed above implies that each experiment requires only
O(nlog(1/e)) gates. Hence the fidelity (F), and equiva-
lently Fy, and F,, may be estimated by a scalable, efficient
experimental protocol.

Turning to dimensions other than powers of two, con-
sider the case where D = p, for an odd prime p. We
can replace the Pauli group by the Heisenberg-Weyl
(HW) group generated by the two operators X|k) =
|k 4+ 1), Z|k) = w|k) (where w = €'2™/P). Following a
similar approach to above, one can show that the HW
normalizer forms a unitary 2-design. Furthermore, this
normalizer is generated approximately by repeated con-
jugation under a unitary drawn uniformly at random
from the set of MUB unitaries and their inverses [21]].
Since the MUB unitaries have circuit decompositions of
O(log? p) gates (see [11]), we have an efficient approxi-
mate 2-design for general odd prime dimensions. Using
the MUB unitaries may also be a promising approach to
efficiently constructing 2-designs for general odd prime
power dimensions.

It remains an interesting open question whether an
arbitrary quantum randomization algorithm can be re-
duced to a t-design condition, and hence classified within
this framework. This would provide further motivation
to generalize the methods of this paper to obtain unitary
and state t-designs for ¢ > 2. The alternate definition
proposed in [9] might be a good starting point for re-
search in this direction.
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