
Exact and Approximation Algortihms for Clustering

�

Pankaj K. Agarwal

y

Cecilia M. Procopiuc

z

July 8, 1997

Abstract

In this paper we present a n

O(k

1�1=d

)

time algorithm for solving the k-center problem in

R

d

, under L

1

and L

2

metrics. The algorithm extends to other metrics, and can be used to

solve the discrete k-center problem, as well. We also describe a simple (1 + �)-approximation

algorithm for the k-center problem, with running time O(n log k) + (k=�)

O(k

1�1=d

)

. Finally, we

present a n

O(k

1�1=d

)

time algorithm for solving the L-capacitated k-center problem, provided

that L =
(n=k

1�1=d

) or L = O(1). We conclude with a simple approximation algorithm for

the L-capacitated k-center problem.

�

The work on this paper was partially supported by a National Science Foundation Grant CCR-93{01259, by an

Army Research O�ce MURI grant DAAH04-96-1-0013, by a Sloan fellowship, by an NYI award and matching funds

from Xerox Corporation, and by a grant from the U.S.-Israeli Binational Science Foundation.

y

Department of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129, USA

z

Department of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129, USA

0

Introduction 1

1 Introduction

Clustering a set of points into a few groups is frequently used for statistical analysis and classi�cation

in numerous applications, including information retrieval [6, 7, 8, 26], facility location [11, 30],

data mining [2, 28], spatial data bases [9, 20, 25], data compression [23], image processing [19, 27],

astrophysics [22], and scienti�c computing [5]. Because of such a diversity of applications, several

variants of clustering problems have been proposed and widely studied. However, they all require

a partition of a given set of points into clusters that optimizes a given objective function. In this

paper we present e�cient algorithms for a number of clustering problems.

Problem statement and our model. Let S be a set of n points in a d-dimensional metric

space (R

d

; �), and k � n a positive integer. A k-clustering of S is a partition � of S into k subsets

S

1

; : : : ; S

k

. Each S

i

is called a cluster and k is called the number of clusters. We de�ne the size

of a cluster S

i

to be the maximum distance (under the �-metric) between a �xed point c

i

, called

the center of the cluster, and a point of S

i

. The size of a k-clustering � is the maximum size of

a cluster in �. Such a clustering is called center k-clustering of size w.

1

The underlying metric �

depends on the application.

The so-called k-center problem is de�ned as follows: Given a set S of n points in a d-dimensional

metric space (R

d

; �) and an integer k, compute a k-clustering of S of the smallest possible size. The

k-center problem can be formulated as covering S by k congruent disks (under the �-metric) of the

smallest possible size. If the centers of the clusters are required to be a subset of the input points,

the problem is called the discrete k-center problem.

In some applications (e.g. facility location [11, 30], astrophysics [22]), not only the size of a

cluster is important but also the number of points in the cluster. We can generalize the notion of

k-clustering as follows. Given an integer L > 0, a L-capacitated k-clustering is a k-clustering in

which there are at most L points in each cluster. The capacitated k-center problem is to compute

a k-clustering of the smallest size so that each cluster has at most L points.

Previous results. There is a vast literature on clustering problems, see, for example, the books

[3, 11, 18], the survey paper [1], and the references there in. Even the simplest clustering problems

are known to be NP-Hard, including the Euclidean k-center problem in the plane [13, 24]. In fact, it

is NP-Hard to approximate the two-dimensional k-center problem within a factor of < 2 even under

the L

1

-metric [12]. The greedy algorithm by Gonzalez [14] gives a 2-approximation algorithm for

the k-center problem in any metric space. This algorithm requires O(kn) distance computations.

The running time was improved by Feder and Greene [12] to O(n log k) for any L

p

-metric. Several

e�cient algorithms have been developed for Euclidean and rectilinear k-center problems when k is

small; see the survey by Agarwal and Sharir [1] for a summary of such results.

Gonzalez [15] presented an n

O(l)

-time algorithm for the k-center problem in R

d

under the L

1

metric, when the points lie in a horizontal strip of height l; it can be extended to the L

2

-metric as

well. Hwang et al. [17] gave an n

O(

p

k)

-time algorithm for the Euclidean k-center problem in the

plane. There algorithm is based on the following property: If S can be covered by k congruent

1

Another commonly used de�nition of the size of a cluster S

i

is the maximum distance between any two points of

S

i

. k-clustering of size w under this de�nition is called a pairwise k-clustering of size w.

Clustering Algorithms July 8, 1997

The Exact Algorithm 2

disks of radius r, then there exist a set D of k disks of radius r and a line ` so that D covers S,

each disk of D contains two points of S on its boundary, ` intersects O(

p

k) disks of D, and at most

2k=3 disks of D are contained in each of the halfplanes bounded by `. Using this property, they

develop a dynamic-programming based algorithm that determines in n

O(

p

k)

time whether S can

be covered by k disks of radius r. By doing a binary search, they compute an optimal k-clustering.

This approach can be extended to the L

1

-metric as well [29]. In another paper, Hwang et al. [16]

gave a n

O(

p

k)

time algorithm that also works for the Euclidean discrete k-center problem.

Not much is known about the capacitated k-center problem. Bar-Ilan et al. [4] gave the �rst

polynomial time approximation algorithm for the capacitated k-center problem, achieving an ap-

proximation factor of 10. They also proposed an approximation algorithm for the capacitated

problem with �xed cluster size. The algorithm approximates the minimum number of clusters

by a factor of dlnne. Khuller and Sussmann [21] improved the approximation factor for capaci-

tated k-center to 6 (5 for a slightly di�erent version of the problem). Recently Shmoys et al. [30]

presented approximation algorithms for some generalizations of the capacitated k-center problem,

using relaxation techniques.

Our results. One of the main results of this paper is an n

O(k

1�1=d

)

-time algorithm for the k-center

problem in R

d

, under any L

p

-metric (Section 2). In fact our algorithm works for more general

metrics, as discussed in the next section. For the sake of simplicity, we will describe the algorithm

for the L

1

-metric in the plane. In this case our algorithm is based on following observation: If

S can be covered by a set C of k congruent squares, then either S lies in a horizontal strip of

width

p

k + 2 or there exists a a horizontal line ` that intersects at most

p

k squares of C. Using

this observation and the algorithm by Gonzalez [15], we develop a dynamic-programming based

algorithm for �nding an optimal solution. Our approach also yields an n

O(k

1�1=d

)

-time algorithm

for the discrete k-center problem in R

d

.

Recall that the algorithm by Hwang et al. [17] also runs in time n

O(

p

k)

for d = 2. Our algorithm

is however not only considerably simpler than theirs, but the constant hidden in the big-Oh notation

is smaller. Moreover, our algorithm is straightforward to extend to higher dimensions.

In Section 3 we describe a simple (1 + �)-approximation algorithm for the k-center problem,

whose running time is O(n log k) + (k=�)

O(k

1�1=d

)

. It is a combination of the greedy algorithm by

Gonzalez and our algorithm for computing an optimal k-center.

Finally, we study the capacitated k-center problem in Section 4. Our exact algorithm does not

extend to the capacitated k-center problem for all ranges of capacity (see Section 4 for a more

detailed discussion), but we present an n

O(

p

k)

-time algorithm for computing an L-capacitated k-

center under any L

p

-metric, provided L = O(1) or L =
(n=

p

k). Our argument can be generalized

to higher dimensions too. Finally, we present a simple approximation algorithm for the capacitated

k-center problem.

2 The Exact Algorithm

In this section we describe a subexponential algorithm for computing the optimal k-center for a set

S of n points in R

d

. For the sake of simplicity we describe the algorithm for the L

1

metric, though

Clustering Algorithms July 8, 1997

The Exact Algorithm 3

it works for other metrics too. As noted above, the k-center problem under the L

1

metric can be

formulated as covering S by k congruent hypercubes of the smallest possible size.

Let �

�

be the size of the optimal k-clustering. We claim that �

�

= d

1

(p

i

; p

j

)=2 for some

p

i

; p

j

2 S. Indeed, if C is an optimal cover of S, then there exists a hypercube C 2 C and two

opposite facets f

1

; f

2

of C so that f

1

and f

2

contain at least one point of S. Otherwise, we can

shrink all hypercubes of size w

�

and obtain a cover of S of smaller size. Hence, twice the size of an

optimal k-clustering is one of the O(n

2

) distances (under the L

1

metric) between any two of the

input points. The algorithm performs a binary search on the set of these distances, testing at each

step whether S can be covered by k congruent hypercubes of size �, for some given � > 0.

A similar approach can be employed when the metric is L

2

. In this case, the clusters are balls,

and there exists a k-clustering of S of smallest size so that each ball in the cluster is de�ned by at

most d + 1 points of S [10]. Then, �

�

is the radius of one of the balls de�ned by � d + 1 input

points. There are O(n

d+1

) radii of balls determined by � d + 1 points of S, and we can compute

each one in time O(d

3

).

It thus su�ces to describe an algorithm for the decision problem. We present the decision

procedure for the planar case �rst, under the L

1

metric, and then discuss how to extend our

algorithm to the L

2

metric and to higher dimensions.

2.1 The Decision Procedure in R

2

Assume without loss of generality that � = 1=2. In this case, the problem is to decide whether

S can be covered by k unit squares, and if so, to return such a cover (by unit squares, we mean

squares of sidelength 1). We assume that the x- and y-coordinates of all points are distinct. In the

full version, we will discuss how to modify the algorithm to handle points in degenerate position.

De�nition 2.1 The index of a set of squares fC

1

; : : : ; C

q

g; q � n is the 2n-vector

(1; : : : ;1; x

1

; : : : ; x

q

;1; : : : ;1; y

1

; : : : ; y

q

);

where (x

i

; y

i

) is the lower left corner of the square C

i

; 1 � i � q, and x

1

� x

2

� : : : � x

q

(x

1

is at

position n� q + 1, and y

1

is at position 2n� q + 1). Given a set of n points S, the optimal cover

of S by squares of size 1 is the cover C

�

whose index is maximal in the lexicographic order.

An immediate observation is that the optimal cover of S has the minimum number of squares

among all the covers of S. By de�nition, the optimal cover is unique. We will also use the word

subcover to denote a set of squares that cover some subset of S.

De�nition 2.2 A square of C is called anchored if it has at least one input point on its left side and

one (not necessarily di�erent) input point on its bottom side. We call the two points the anchors

of the square. Let C be a cover of S. We say that C is an anchored cover if all of its squares are

anchored, and moreover, the anchors of each square are not covered by the any other square of C

(see Figure 1).

We denote by � the set of all anchored unit squares. Following a similar argument to the one

Clustering Algorithms July 8, 1997

The Exact Algorithm 4

Figure 1: An anchored cover of S

in [15], we can prove the following lemma.

Lemma 2.3 The optimal cover of S is an anchored cover.

Given an integer k, our algorithm will either compute the optimal cover (if the number of

squares in the optimal cover is at most k), or it will return that S cannot be covered by k squares.

The algorithm is based on the following property of the optimal cover, which we prove in the lemma

below: there exists a set of horizontal lines that divide the plane into strips, so that any strip that

contains input points has height at most

p

k+ 2, and so that each of these lines intersects at most

p

k squares of the optimal cover. We compute the optimal covers on these strips and then take

their union. We show that the lines can be chosen out of a �nite set of lines, and we use dynamic

programming. To compute the optimal cover on a \thin" strip, we use a slightly modi�ed version

of the algorithm by Gonzalez [15], which we refer to as the Strip Algorithm. We present the main

ideas of this algorithm below.

Strip Algorithm: Let S be a set of n points lying in a horizontal strip of height l. Gonzalez

describes a sweep line algorithm for computing a cover of S by the minimum number of squares.

His algorithm relies on the following lemma, whose proof follows from a simple packing argument.

Lemma 2.4 Every vertical line intersects at most 2l � 1 squares of the optimal cover of S.

The algorithm sweeps the plane from left to right and maintains a family F = fC

1

; : : : ; C

u

g

with the following properties:

(i) Each C

i

is a subset of �, and it covers all points lying to the left of the sweep line.

(ii) Let C

0

be the subset of squares in the optimal cover of S that do not lie entirely to the right

of the sweep line. Then C

0

2 F .

(iii) For each i; 1 � i � u, the subset of squares of C

i

intersected by the sweep line is distinct.

Condition (iii) and Lemma 2.4 imply u = O(n

4l�2

). Whenever the sweep line passes through a

point of S, the algorithm updates the set F so that conditions (i)-(iii) are satis�ed. See the original

paper [15] for details. We can modify the algorithm so that it returns the optimal cover of S in the

sense of our de�nition.

Handling thick strips: To describe how we generate the optimal cover when the points do

not lie in a strip of bounded height, we need a few more de�nitions. Let H be the set of at most

Clustering Algorithms July 8, 1997

The Exact Algorithm 5

2n+ 1 horizontal lines de�ned as

H = fy = y(p) j p 2 Sg [fy = y(p) + 1 j p 2 Sg [fy = y

min

� 1g;

where y(p) denotes the y-coordinate of the point p, and y

min

is the minimum among y(p); p 2 S.

Note that each horizontal edge of a square in � is contained in a line in H. Therefore, for any

X � �, any horizontal lines lying between two consecutive lines of H intersect the same squares of

X. The lines that divide the plane, as discussed above, will be chosen only from the set H.

Lemma 2.5 Let S be a set of n points lying in a horizontal strip w, and let C be the optimal cover

of S with at most k squares. If the height of w is at least

p

k+2, and no square of C intersects the

boundary of w, then there exists a line h 2 H lying in the interior of w that intersects at most

p

k

squares of C.

Proof: Let `

1

and `

2

denote the two horizontal lines that form the boundary of w. Fix an

arbitrarily small parameter � and divide w by equidistant horizontal lines h

1

; : : : ; h

r

, so that the

distance between h

i

and h

i+1

is 1+�, the distance between `

1

and h

1

is �, and the distance between

h

r

and `

2

is at most 1 + �. Then, no square intersecting h

i

can intersect h

i+1

. Suppose that each

h

i

intersects more than

p

k squares of C. Then, r < C=

p

k �

p

k, and the height of the strip is at

most �+ (1 + �)r <

p

k + �(1 +

p

k). Choosing � su�ciently small, we obtain a contradiction with

the fact that w has height >

p

k + 2:

Hence, there exists an h

i

that intersects at most

p

k squares of C. If h

i

2 H, choose h = h

i

.

Otherwise, let h

�

; h

+

be the horizontal lines of H that lie immediately below and above h

i

. Clearly,

h

�

; h

+

lie in w. It is easy to check that h

�

and h

i

intersect the subset of C. If h

�

6= `

1

, choose

h = h

�

. If h

�

= `

1

, then h

�

does not intersect any square of C, and so h

+

intersects at most one

square of C. Moreover, h

+

6= `

2

(otherwise, S = ;), so we can choose h = h

+

. 2

Remark 2.6 (i) If the points are in general position, the lemma works even if the height of w

is bigger than

p

k. But we state it as above in anticipation of the result for points in degenerate

position.

(ii) The proof holds for any cover of S by at most k unit squares.

De�nition 2.7 (i) For any h 2 H and D � �, we say that (h;D) is a canonical pair if all squares

in D intersect h, and 0 � jDj �

p

k.

(ii) We de�ne a c-strip to be the triple � = (w;A;B); where w is a horizontal strip with lower

boundary `

1

and upper boundary `

2

, so that (`

1

; A) and (`

2

; B) are canonical pairs. Let S

�

� S be

the set of input points that lie in w, but not in any square of A [B. We de�ne the optimal cover

associated with � , C

�

, to be the optimal cover of S

�

.

(iii) A c-strip � is legal if no square of C

�

intersects the boundary of w. Otherwise, � is illegal.

Using Lemma 2.5, we obtain the following result (see Appendix for a proof).

Lemma 2.8 Let � = (w;A;B) be a legal c-strip of height bigger than

p

k + 2. If S

�

6= ; and

jC

�

j � k, there exists a canonical pair (h;D) so that h divides w into two strips w

�

; w

+

, each of

Clustering Algorithms July 8, 1997

The Exact Algorithm 6

height strictly less than the height of w, and so that �

�

= (w

�

; A;D) and �

+

= (w

+

;D;B) are legal

c-strips. Moreover, C

�

= C

�

�

[D [C

�

+

.

Decision Algorithm. In the following, we say that a c-strip � is thin if the height of w is at

most

p

k + 2. Otherwise, � is thick. Lemma 2.8 suggests the following recursive algorithm. Start

with a legal strip �

B

that contains all input points. If �

B

is a thin strip, compute C

�

B

using the

strip algorithm by Gonzalez. Otherwise, divide �

B

into two smaller legal strips, by a canonical pair

(h;D), and solve the problem recursively on each one of the strips. Instead of trying all possibilities

of dividing a large legal c-strip, we use dynamic programming and work our way up the recursion

tree, starting from the leaves that correspond to thin strips. We now describe the algorithm in

more detail.

The algorithm builds a table, each of whose entry is indexed by a c-strip � = (w;A;B). If � is

legal and jC

�

j � k, the entry stores k(�) = jC

�

j and the index I(�) of C

�

; otherwise, k(�) is set to

1 and I(�) is unde�ned. Fill the entry � as follows: If S

�

= ;, then k(�) = 0 and I(�) has 1 on

all positions. If � is a thin strip, compute C

�

using the strip algorithm for S

�

. If any square of C

�

intersects a boundary of w, or jC

�

j > k, set k(�) = 1; otherwise, store k(�) and I(�). Finally, if

� is a thick strip, compute all canonical pairs (h;D) for which h lies inside w. For each canonical

pair (h;D), let w

�

(respectively w

+

) be the portion of w lying below (respectively above) h. Let

k(�) = min

(h;D)

(k(�

�

) + k(�

+

) + jDj):

If (h

�

;D

�

) is the pair for which this minimum is attained, and k(�) 6=1, then I(�) is the index of

C

�

�

�

[D

�

[C

�

�

+

(�

�

�

; �

�

+

are the two c-strips determined by (h

�

;D

�

)). This index can be computed

in O(k) time from I(�

�

�

) and I(�

�

+

). If there is a tie for the minimum, always choose the canonical

pair that maximizes I(�).

Let w

B

be the strip bounded by the lowest and highest lines of H. The entry corresponding to

�

B

= (w

B

; ;; ;) gives the size and the index of the optimal cover of S. The running time can be

proved to be O(n

8

p

k+10

): The correctness of the algorithm follows from Lemma 2.8 and the rules

for computing k(�) and I(�). Putting everything together, we conclude:

Theorem 2.9 If S is a set of n points in the metric space (R

2

; L

1

), we can �nd the optimal

k-clustering of S in time O(n

8

p

k+10

).

If the underlying metric is L

2

, the decision problem becomes whether S can be covered by k

circles of diameter 1. Using arguments similar to the above, we can still prove a claim similar

to Lemma 2.5, and modify the algorithm in a straightforward manner. Although the constants

change, the table size and the Strip Algorithm are of the same order as before. Omitting all the

details, we conclude the following

Theorem 2.10 If S is a set of n points in the metric space (R

2

; L

2

), we can �nd the optimal

k-clustering of S in time n

O(

p

k)

.

Remark 2.11 The algorithm can be modi�ed to solve the discrete k-center problem, as well.

The techniques presented in this paper extend to any metric � for which the following conditions

Clustering Algorithms July 8, 1997

The Approximation Algorithm 7

are met: the unit disk under the metric � has constant complexity and constant aspect ratio, and

a unit square can be covered by a constant number of unit disks under the metric �. In particular,

the algorithm works under any L

p

metric.

2.2 The Decision Procedure in R

d

The main ingredients we need for computing the exact cover in R

d

are the Strip Algorithm in R

d

and an extension of Lemma 2.5 to higher dimensions. We de�ne a strip to be the intersection

of 2d � 2 halfspaces of the form x

i

� a

1

and x

i

� b

i

, for 1 � i � d � 1, where a

i

; b

i

2 R. The

notion of anchored square can be extended in a natural way (note that we need d anchors per

hypercube). The set H will contain hyperplanes orthogonal to any of the �rst d� 1 directions, so

that a hyperplane orthogonal to the ith direction contains an input point (x

1

; : : : ; x

i

; : : : ; x

d

), or

the point (x

1

; : : : ; x

i

+ 1; : : : ; x

d

), or is so that S lies strictly in one of its halfspaces.

Lemma 2.4 can be generalized as follows: when the points lie in a strip of width at most l in

each of the �rst d � 1 directions, any hyperplane of equation x

d

= a; a 2 R; intersects at most

2l

d�1

� 1 hypercubes of the optimal cover. The generalization of Lemma 2.5 is as follows: if the

points lie in a strip of width
(k

1=d

) in some direction i � d�1, and the optimal cover of the points

does not intersect the boundaries of the strip, then there exists a hyperplane h 2 H in the interior

of the strip, that is orthogonal to direction i and intersects O(k

1�1=d

) hypercubes of the optimal

cover.

We obtain the following result.

Theorem 2.12 If S is a set of points in the metric space (R

d

; L

1

), we can �nd the optimal k-

clustering of S in time n

O(k

1�1=d

)

.

3 The Approximation Algorithm

Even for moderate values of n, the algorithm of the previous section is not practical. However, we

can obtain a faster algorithm if we accept an approximate solution for the k-center problem. More

precisely, we want to solve the following problem: Given a set S of n points, an integer k � n, and

a real parameter �; 0 < � < 1, compute a k-clustering of S of size (1 + �)�

�

, where �

�

is the size of

an optimal k-clustering of S.

We present the algorithm for the L

1

metric; it can also be adapted for any L

p

-metric. First,

compute a real number �

0

, so that �

�

� �

0

� 2�

�

, using the algorithm by Feder and Greene [12],

in time O(n log k). Let Z be a grid of size � = �

0

�=3, i.e. Z = f(i�; j�) j i; j 2 Zg. Let P be the

set of grid points v, so that at least one of the grid cells adjacent to v contains a point of S. See

Figure 2.

Next, compute the optimal cover of P , using the algorithm described in the previous section.

Suppose the algorithm returns C = fC

1

; : : : ; C

k

g as optimal cover of P , and that the size of each

hypercube C

i

is �

1

. For each C

i

2 C, let C

0

i

be the hypercube with the same center as C

i

and of

size �

2

= �

1

+ �

0

�=6. Return C

0

= fC

0

1

; : : : ; C

0

k

g.

The proof of correctness of the above algorithm follows from the following lemma, whose proof

Clustering Algorithms July 8, 1997

The Capacitated k-Center Problem 8

Figure 2: The set of grid vertices P

is given in the appendix.

Lemma 3.1 (i) C

0

is a cover of S.

(ii) �

2

� (1 + �)�

�

.

An easy calculation shows that jP j = O(k=�

d

), so we obtain the following result.

Theorem 3.2 Given a set S of n points in the metric space (R

d

; L

1

), we can �nd a cover of S of

cluster size (1 + �)w

�

in time O(n log k + (k=�)

O(k

1�1=d

)

).

4 The Capacitated k-Center Problem

In this section, we propose a sub-exponential algorithm for the capacitated k-center problem,

provided that L, the maximum number of points in a cluster, is either
(n=

p

k) or O(1). We

assume that the points are in general position. The overall approach is similar to that in Section 2.

For simplicity, we describe the algorithm in R

2

under the L

1

metric. In this case, the decision

problem for the capacitated k-center can be formulated as follows: Let S be a set of n points in the

plane, and k; L be two positive integers. Do there exist k unit squares (not necessarily distinct),

so that each point of S can be assigned to one of the squares containing it in such a way that each

square is assigned at most L points? If the answer is \yes", the algorithm should return a multiset

C of at most k squares and an assignment function � : S ! C that satis�es the required conditions.

We will therefore denote the output as (C; �). Throughout this section, by a cover of S we will

mean a L-capacitated cover of S with unit squares. We will use the term smallest cover to denote

a cover with minimum number of squares.

In general, the decision algorithm does not extend to capacitated k-clustering. Although Lemma

2.5 and the correspondent of Lemma 2.8 can still be proved, Lemma 2.4 required for Gonzalez's

algorithm is not true for arbitrary values of L. In particular, we can construct a counterexample

of a set of n points lying in a horizontal strip of height l, so that for any smallest cover (C; �) of S,

there are vertical lines that intersect
(L � l) squares of C (see Lemma A.1 in the appendix).

We can however prove Lemma 2.4 for some restricted values of L, namely when L =
(n=l) or

L = O(1). We �rst state the result for L =
(n=l) (see Appendix for a proof).

Clustering Algorithms July 8, 1997

The Capacitated k-Center Problem 9

Lemma 4.1 Let S be a set of n points lying in a horizontal strip of height l, and L be a natural

number. If L =
(n=l), then any vertical line intersects O(l) squares of a smallest cover of S.

A more interesting situation occurs when L = O(1). In general, a vertical line may intersect up

to k =
(n) squares of a smallest cover, but we will prove a slightly weaker result that is su�cient

to extend Gonzalez's algorithm. For any cover (C; �) of S, we say that a square C of C is active

with respect to a vertical line ` if there exist two points p; q assigned to C, so that p lies to the left

of `, or on `, and q lies strictly to the right of `. Otherwise, C is inactive with respect to `.

Lemma 4.2 Let S be a set of n points that lie in a horizontal strip of height l, and let L be a

constant number. There exists a smallest cover (C; �) of S, so that there are at most O(l) active

squares of C with respect to any vertical line.

We prove the lemma using the following two results (see appendix for proof of Lemma 4.3).

Lemma 4.3 Let S be a set of n points lying in a unit square, and let 1 � L � n be an integer.

There exists a smallest cover (C; �) of S so that at most one square of C is active with respect to

any vertical line.

Lemma 4.4 Let S

1

; : : : ; S

u

be a family of pairwise disjoint sets of points in the plane, so that each

S

i

lies in a unit square U

i

. There exists a smallest cover (C; �) of S =

S

u

i=1

S

i

, so that at most

L

u+1

squares are assigned points belonging to more than one set.

Proof: We prove the claim for u = 2. The proof can be generalized to any u. Let (C; �) be a

smallest cover of S, with the minimum number of squares having points assigned from more than

one set.

For 1 � i; j � L�1, so that i+j � L�1, letM

ij

= fC 2 C j jC\S

1

j = i and jC\S

2

j = jg. We

claim that jM

ij

j < L. Indeed, if jM

ij

j � L, then let C

1

; : : : ; C

L

be L squares of M

ij

. Let X

i

� S

i

,

i 2 f1; 2g, be the set of points assigned to C

1

; : : : ; C

L

. Obviously, jX

1

j = iL; jX

2

j = jL. Replace

C

1

; : : : ; C

L

in C by i copies of U

1

and j copies of U

2

, and assign L points of X

1

(respectively X

2

)

to each copy of U

1

(respectively U

2

). If i+ j < L, we obtain a smaller cover of S; and if i+ j = L,

we obtain a smallest cover of S with fewer squares having points assigned from both S

1

and S

2

, a

contradiction. The lemma is now immediate. 2

Proof of Lemma 4.2 Cover S by a family U of pairwise disjoint unit squares. For each U

i

2 U , let

S

i

� S be the set of points contained in U

i

. We say that two squares U

i

; U

j

2 U are neighbours if

the minimum distance between S

i

and S

j

is at most 1. Since the squares in U are pairwise disjoint,

any square U

i

has at most 8 neighbours. Note that, if a square C 2 C is assigned points from a set

S

i

, as well as from some other sets, then any point assigned to C is either contained in U

i

, or in

some neighbour of U

i

.

Using this observation and the result of Lemma 4.4, it is not di�cult to prove that there exists

a smallest cover (C; �) of S so that, for each set S

i

, at most L

9

squares of C are assigned points

from S

i

and from at least one other set.

We construct another L-capacitated cover (C

0

; �

0

) as follows: Let C

�

� C be the set of squares to

which points belonging to at least two sets are assigned. Let S

0

i

denote the points of S

i

that are not

Clustering Algorithms July 8, 1997

The Capacitated k-Center Problem 10

assigned to any square in C

�

, and (C

i

; �

i

) be a cover of S

0

i

satisfying Lemma 4.3. Set C

0

= (

S

C

i

)[C

�

and let �

0

(p) = �(p) if �(p) 2 C

�

, and �

0

(p) = �

i

(p) if p 2 S

0

i

. It is easy to see that (C

0

; �

0

) is a

smallest L-capacitated cover of S.

We claim that there are at most O(l) active squares of C with respect to any vertical line.

Indeed, let ` be a vertical line, and R

`

be the set of all points in the strip within distance 1 from `

(R

`

is a rectangle of height l and width 2). We de�ne U

`

� U as the subset of squares that intersect

R

`

. Since the squares in U are pairwise disjoint, jU

`

j = O(l). Any square C 2 C

0

intersected by ` lies

in R

`

and all the points assigned to C lie in U

`

. Hence, at most L

9

� jU

`

j squares of C

0

are assigned

points from at least two sets, and are intersected by `. The way we obtained (C

0

; �

0

) ensures that

the line ` intersects at most jU

`

j squares of C

0

that are assigned points from only one set. The total

number of squares intersected by ` is thus at most (L

9

+ 1) � jU

`

j = O(l). 2

To generate the optimal cover on a c-strip, we follow the approach of the Strip Algorithm, but

we replace condition (iii) by

(iii') If A

i

(`) denotes the set of active squares of C

i

with respect to the sweep line `, then

A

i

(`) 6= A

j

(`), for any 1 � i < j � u.

Next, we modify our dynamic programming algorithm to obtain the following

Theorem 4.5 Given a set S of n points in the plane, and integers k and L, the optimal solution

of the capacitated k-center problem for S, with load constraint L, can be obtained in time n

O(

p

k)

if

one of the following is true: L =
(n=

p

k), or L = O(1).

We conclude by presenting an approximation algorithm for the capacitated k-center problem.

Given the set of points S, we de�ne a (c

1

k; c

2

L; c

3

�

�

) cover of S as a cover that uses at most c

1

k

clusters, each containing at most c

2

L points, and of cluster size at most c

3

�

�

, where �

�

is the cluster

size of the optimal solution. Khuller and Sussmann [21] gave a polynomial algorithm for computing

a ((2=c)k; cL; 2�

�

) cover, for any c > 1.

We present an algorithm that computes a (

2

1+�

k; (1 + �)L; (1 + �)�

�

) cover of S, for any �; �

so that 0 < �; � < 1. The algorithm proceeds as follows: Compute a cover C that is an (1 + �)-

approximation of the optimal uncapacitated cover of S. For each C 2 C, let unassigned(C) be

the number of points covered by C and not yet assigned to any square (initially, all points are

unassigned). Let unassigned(C) = qL + �; 0 � � � L � 1. If � � �L, create q � 1 copies of C,

else create q copies of C, and assign the unassigned(C) points evenly to C and its copies. Return

the union of all these squares, together with the assignment.

Theorem 4.6 Given a set S of n points in the plane, and k; L two natural numbers, we can obtain

a (

2

1+�

k; (1 + �)L; (1 + �)�

�

) cover of S in time O(n log k + (k=�)

O(

p

k)

), for any 0 < �; � < 1.

Clustering Algorithms July 8, 1997

References 11

References

[1] P. K. Agarwal and M. Sharir, E�cient algorithms for geometric optimization, Tech. Rep. CS-1996-19,

Dept. Computer Science, Duke University, 1996.

[2] R. Agrawal, A. Ghosh, T. Imielinski, B. Iyer, and A. Swami, An interval classi�er for database mining

applications, Proceedings of the 18th Conference on Very Large Databases, Morgan Kau�man, August

1992.

[3] M. R. Anderberg, Cluster Analysis for Applications, Academic Press, New York, 1973.

[4] J. Bar-Ilan, G. Kortsarz, and D. Peleg, How to allocate network centers, J. Algorithms, 15 (1993),

385{415.

[5] M. Berger and I. Rigoutsos, An algorithm for point clustering and grid generation, IEEE Trans. Systems,

Man and Cybernetics., 21 (1991), 1278{1286.

[6] M. Charikar, C. Chekuri, T. Feder, and R. Motwani, Incremental clustering and dynamic information

retrieval, Proceedings of the 29th Annual ACM Symposium on Theory of Computing, 1997, pp. 626{634.

[7] D. R. Cutting, D. R. Karger, and J. O. Pedersen, Constant interaction-time scatter/gather browsing

of very large document collections, Proceedings of the Sixteenth Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, 1993, pp. 126{134.

[8] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey, Scatter/gather: A cluster-based approach

to browsing large document collections, Proceedings of the Fifteenth Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, 1992, pp. 318{329.

[9] A. A. Diwan, S. Rane, S. Seshadri, and S. Sudarshan, Clustering techniques for minimizing external

path length., Proceedings of the International Conference on Very Large Databases, Morgan Kau�man,

1996.

[10] Z. Drezner, The p-centre problems | Heuristic and optimal algorithms, J. Oper. Res. Soc., 35 (1984),

741{748.

[11] Z. Drezner, ed., Facility Location, Springer-Verlag, New York, 1995.

[12] T. Feder and D. H. Greene, Optimal algorithms for approximate clustering, Proc. 20th Annu. ACM

Sympos. Theory Comput., 1988, pp. 434{444.

[13] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto, Optimal packing and covering in the plane are

NP-complete, Inform. Process. Lett., 12 (1981), 133{137.

[14] T. Gonzalez, Clustering to minimize the maximum intercluster distance, Theoret. Comput. Sci.,

38 (1985), 293{306.

[15] T. Gonzalez, Covering a set of points in multidimensional space, Inform. Process. Lett., 40 (1991),

181{188.

[16] R. Z. Hwang, R. C. Chang, and R. C. T. Lee, The generalized searching over separators strategy to

solve some NP-Hard problems in subexponential time, Algorithmica, 9 (1993), 398{423.

[17] R. Z. Hwang, R. C. T. Lee, and R. C. Chang, The slab dividing approach to solve the Euclidean p-center

problem, Algorithmica, 9 (1993), 1{22.

Clustering Algorithms July 8, 1997

References 12

[18] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Englewood Cli�s, NJ, 1988.

[19] J. Jolion, P. Meer, and S. Batauche, Robust clustering with applications in computer vision, IEEE

Trans. Pattern Analysis Mach. Intell., 13 (1991), 791{802.

[20] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, John

Wiley & Sons, 1990.

[21] S. Khuller and Y. J. Sussmann, The capacitated k-center problem, Proceedings of the 4th Annual

European Symposium on Algorithms, 1996, pp. 152{166.

[22] R. Lupton, F. M. Maley, and N. Young, Data collection for the sloan digital sky survey: A network-

ow heuristic, Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,

ACM/SIAM, January 1996, pp. 296{303.

[23] J. Makhoul, S. Roucos, and H. Gish, Vector quantization in speech coding, Proceedings of the IEEE,

73 (1985), 1551{1588.

[24] N. Megiddo and K. J. Supowit, On the complexity of some common geometric location problems, SIAM

J. Comput., 13 (1984), 182{196.

[25] R. T. Ng and J. Han, E�cient and E�ective Clustering Methods for Spatial Data Mining, Proceedings

of the Twentieth International Conference on Very Large Databases, 1994, pp. 144{155.

[26] P. Raghavan, Information retrieval algorithms: A survey, Proceedings of the Eighth Annual ACM-SIAM

Symposium on Discrete Algorithms, January 1997, pp. 11{18.

[27] P. Schroeter and J. Big�un, Hierarchical image segmentation by multi-dimensional clustering and

orientation-adaptive boundary re�nement, Pattern Recognition., 28 (1995), 695{709.

[28] J. Shafer, R. Agrawal, and M. Mehta, Sprint: A scalable parallel classi�er for data mining., Proceedings

of the International Conference on Very Large Databases, Morgan Kau�man, 1996.

[29] M. Sharir, Private communication, (1997).

[30] D. Shmoys, E. Tardos, and K. Aardal, Approximation algorithms for facility location problems, Pro-

ceedings of the 29th Annual ACM Symposium on Theory of Computing, 1997, pp. 265{274.

A Appendix: Proofs of Lemmata

Lemma 2.8 Let � = (w;A;B) be a legal c-strip of height bigger than

p

k + 2. If S

�

6= ; and

jC

�

j � k, there exists a canonical pair (h;D) so that h divides w into two strips w

�

; w

+

, each of

height strictly less than the height of w, and so that �

�

= (w

�

; A;D) and �

+

= (w

+

;D;B) are

legal c-strips. Moreover, C

�

= C

�

�

[D [C

�

+

.

Proof: By Lemma 2.5, there exists a line h 2 H that intersects at most

p

k squares of C

�

. Let D

denote the set of squares of C

�

intersected by h. Then �

�

= (w

�

;D;B) and �

+

= (w

+

; A;D) are c-

strips. Let C

1

(respectively C

2

) be the set of squares of C

�

that lie in the interior of w

+

(respectively

w

�

). It can be shown that C

1

(respextively C

2

) is the optimal cover of S

�

�

(respectively S

�

+

). Since

� is a legal c-strip, no square of C

1

[C

2

intersects the boundaries of � . Therefore, �

+

and �

�

are

legal c-strips.

Clustering Algorithms July 8, 1997

References 13

Obviously, C

�

= C

1

[D [C

2

= C

�

�

[D [C

�

+

. 2

Lemma 3.1 (i) C

0

is a cover of S.

(ii) �

2

� (1 + �)�

�

.

Proof: (i) For any p 2 S, there exists a point v 2 P so that d

1

(p; v) � �

0

�=6. Indeed, p lies in a

grid cell of size �

0

�=3, and so at least one vertex v of the cell is at a distance � �

0

�=6 of p (under

the L

1

metric). By construction, v 2 P . If C

i

is a hypercube of C that covers v, then C

0

i

covers p.

(ii) We �rst prove that �

1

� (1 + 2�=3)�

�

. Let C

�

be the optimal cover of S. For each

hypercube C

�

i

2 C

�

, let C

`

i

be the hypercube of size �

�

+ �

0

�=3, with the same center as C

�

i

, but

of size . We claim that C

`

= fC

`

1

; : : : ; C

`

k

g is a cover of P . Indeed, for any v 2 P , there exists

p 2 S so that p lies in a cell adjacent to v (by construction). Then, d

1

(v; p) � �

0

�=3. If C

�

i

is a

hypercube of C

�

that covers p, then C

`

i

covers v. Because C is the optimal cover of P , we obtain

�

1

� �

�

+ �

0

�=3 � (1 + 2�=3)�

�

. Hence, �

2

= �

1

+ �

0

�=6 � (1 + �)�

�

. 2

Lemma 4.1 Let S be a set of n points lying in a horizontal strip of height l, and L be a natural

number. If L =
(n=l), then any vertical line intersects O(l) squares of a smallest cover of S.

Proof: Let L � A � n=l, for some constant A � 1. The argument follows the ideas in [15]. It is

su�cient to show that all the points lying in a rectangle of height l and width 2 can be assigned to

at most (2 + 1=A)l � 1 squares. Indeed, we need at most 2l squares to cover all the points in the

rectangle. If some square covers L

0

> L points, we assign L of the points to that square, and create

a new square that covers the remaining L

0

� L points. We repeat this procedure until all squares

satisy the load constraint. Because L � A � n=l, we create at most l=A� 1 new squares, for a total

of (2 + 1=A)l � 1. 2

Lemma 4.3 Let S be a set of n points lying in a unit square, and let 1 � L � n be an integer.

There exists a smallest cover (C; �) of S so that at most one square of C is active with respect to

any vertical line.

Proof: Let the points of S be ordered in the increasing order of their x-coordinates. Assign the

�rst L points to a square C

1

, the next L points to a square C

2

, and so on. Because all points lie

in a unit square, it is always possible to construct the squares C

i

. Let (C; �) be the cover of S

obtained by this method. Clearly, (C; �) is a smallest cover, and any vertical line intersects at most

one active square of C (remember that the points are in general position). 2

Lemma A.1 There exists a set S of n points lying in a horizontal strip of height l, so that for any

smallest cover (C; �) of S, there exists a vertical line that intersects
(L � l) squares of C.

Proof Sketch Consider
(l) groups of L squares as in Figure 4. Each square has one point in its

upper left corner, and L�1 points very close to its lower right corner (represented as the small black

rectangle). All squares lie in a vertical strip of height l and width 2. The groups are su��ciently far

from each other, so that no unit square can cover points from two distinct groups. The clustering

in the �gure is the only smallest capacitated clustering of the points, and there exists a vertical line

that intersects
(L � l) squares. 2

Clustering Algorithms July 8, 1997

References 14

Figure 3: A vertical line intersects
(L � l) squares

Clustering Algorithms July 8, 1997

