
Algorithmica (1995) 13:180-210

Algorithmica
�9 1995 Springer-Verlag New York Inc.

Exact and Approximation Algorithms for Sorting by
Reversals, with Application to Genome Rearrangement

J. K e c e c i o g l u 1 a n d D. S a n k o f f 2

Abstract. Motivated by the problem in computational biology of reconstructing the series of

chromosome inversions by which one organism evolved from another, we consider the problem of

computing the shortest series of reversals that transform one permutation to another. The permutations

describe the order of genes on corresponding chromosomes, and a reversal takes an arbitrary substring

of elements, and reverses their order.

For this problem, we develop two algorithms: a greedy approximation algorithm, that finds a

solution provably close to optimal in O(n 2) time and O(n) space for n-element permutations, and a

branch-and-bound exact algorithm, that finds an optimal solution in O(mL(n, n)) time and O(n 2) space,

where m is the size of the branch-and-bound search tree, and L(n, n) is the time to solve a linear

program of n variables and n constraints. The greedy algorithm is the first to come within a constant

factor of the optimum; it guarantees a solution that uses no more than twice the minimum number

of reversals. The lower and upper bounds of the branch-and-bound algorithm are a novel application

of maximum-weight matchings, shortest paths, and linear programming.

In a series of experiments, we study the performance of an implementation on random permutations,

and permutations generated by random reversals. For permutations differing by k random reversals,

we find that the average upper bound on reversal distance estimates k to within one reversal for k < �89

and n < 100. For the difficult case of random permutations, we find that the average difference between

the upper and lower bounds is less than three reversals for n < 50. Due to the tightness of these bounds,

we can solve, to optimality, problems on 30 elements in a few minutes of computer time. This

approaches the scale of mitochondrial genomes.

Key Words. Computational biology, Approximation algorithms, Branch-and-bound algorithms,

Experimental analysis of algorithms, Edit distance, Permutations, Sorting by reversals, Chromosome

inversions, Genome rearrangements.

1. I n t r o d u c t i o n . M u c h r e s e a r c h h a s b e e n d e v o t e d to eff ic ient a l g o r i t h m s for t h e

ed i t d i s t a n c e b e t w e e n t w o s t r ings , t h a t is, t h e m i n i m u m n u m b e r o f i n s e r t i o n s ,

d e l e t i o n s , a n d s u b s t i t u t i o n s to t r a n s f o r m o n e s t r i n g i n t o a n o t h e r . M o t i v a t i o n

Department of Computer Science, The University of Georgia, Athens, GA 30602, USA.

kece@cs.uga.edu. This research was supported by a postdoctoral fellowship from the Program in

Mathematics and Molecular Biology of the University of California at Berkeley under National Science

Foundation Grant DMS-8720208, and by a fellowship from the Centre de recherches math6matiques

of the Universit6 de Montrral.

2 Centre de recherches mathrmatiques, Universit6 de Montrral, Case postal 6128, succursale A,

Montrral, Qurbec H3C 3J7, Canada. sankoff@ere.umontreal.ca. This research was supported by grants

from the Natural Sciences and Engineering Research Council of Canada, and the Fonds pour la

formation de chercheurs et raide ~ la recherche (Qurbec). The author is a fellow of the Canadian

Institute for Advanced Research.

Received October 9, 1992; revised February 19, 1993. Communicated by E. W. Myers.

Exact and Approximation Algorithms for Sorting by Reversals 181

I

I I
I

I

1
2
3

I 4

t 5

Fig. 1. Evolution of the pea chloroplast genome by five overlapping inversions.

comes in large part from computational biology: at the level of individual characters,

genetic sequences mutate by these operations, so edit distance is a useful measure

of evolutionary distance.

At the chromosome level, however, genetic sequences mutate by more global

genome rearrangements, such as the reversal of a substring (inversion), the deletion

and subsequent reinsertion of a substring far from its original site (transposition),

the copying of a substring (duplication), and the exchange of prefixes or suffixes

of two chromosomes in the same organism (translocation). An inversion, which

takes a substring of unrestricted size and replaces it by its reverse in one operation,

has the effect of reversing the order of the genes contained within the substring,

and is perhaps the most common of these operations [21, pp. 174-175], especially

in organisms with one chromosome.

For example, the only major difference between the gene orders of two of the

most well-known bacteria, Escherichia coli and Salmonella typhimurium, is an

inversion of a long substring of the chromosomal sequence [17]. In plants, Palmer

et al. [18] modeled the evolution of part of the pea chloroplast genome, which is

also a single chromosome, in terms of five successive overlapping inversions, as we

illustrate in Figure 1. In the fruit fly, genus Drosophila, inversions are a far more

frequent reflection of differences between and within species than translocation or

other processes [4, p. 155].

The importance of inversion in these examples suggests that algorithmic study

of genome rearrangement by inversion alone is a worthwhile step in the study of

evolutionary distance at the level of the chromosome. Once this problem is

understood, other processes such as transposition [19] and translocation [16] can

be added to refine the model.

In the mathematical problem that we consider, we are given the order of n genes

in two related single-chromosome organisms or two related organelles, which we

represent by permutations 00 = (a 1 0~ " ' " 00n) and z = (zl T2 " ' " Zn) -3 (In this

notation, 00i denotes 00(i).) Such gene orders often come from genetic maps, that are

the distillation of the work of many experimental geneticists. In current practice,

the positions of the genes are increasingly found by sequence comparison, or

DNA hybridization, as opposed to the mapping experiments of traditional

genetics.

3 Genes in one organism may be missing in the other. We assume, however, that such genes

can be removed from the analysis, and that gene insertions and deletions can be analyzed

separately.

182 J. Kececioglu and D. Sankoff

We model an inversion by the reversal of an interval of elements. Formally, a

reversal of interval [i,j] is the permutat ion 4

i + 1

P = j - - 1 "" "

Applying p to a by the composition s a- p has the effect of reversing the order of

genes ai, try+ 1 , aj. Our problem is the following.

DEFINITION. The reversal distance problem on permutations is, given permuta-

tions a and z, find a series of reversals pt, P2 pn such that

f f 'Pl "Pz ' "Pd = ~,

and d is minimum.

We call d the reversal distance 6 between a and z. Like edit distance, it satisfies

the axioms of a metric. Reversal distance measures the amount of evolution that

must have taken place at the chromosome level, assuming evolution proceeded

�9 by inversion.

Notice that the reversal distance between tr and z is equal to the reversal distance

between z - l ' a and the identity permutat ion z, where z-1 denotes the inverse of

z. 7 Hence, we can take as our input the permutat ion n = z-~a, and compute its

distance from t. We call this formulation of the problem, sorting by reversals. Note

also that any algorithm for the reversal distance between two strings that does not

exploit a bounded-size alphabet must, as a special case, solve the reversal distance

problem on permutations.

From an algebraic point of view, reversals generate the group of permutations

under composition. Given an arbitrary group element n, we seek a shortest product

of generators PIP2"'" Pn that equals n.

1.1. Related Work. Little is known about reversal distance: even its computa-

tional complexity is open. The only reference to an algorithm appears to be in

Watterson et al. [24], which gives the first definition of the problem, and a heuristic

for computing reversal distance that is described in Section 2. Since there are so

few references, we can give a fairly exhaustive coverage of related work.

T h i s no t a t i on is s h o r t h a n d for p(i)=j ,p (i + 1) = j - 1, etc. Ou t s ide interval [i,j], p leaves the

e lements unchanged.

5 The composition of pe rmu ta t i ons a and p, ind ica ted by a . p, is a pe rmu ta t i on n where n(i) = a(p(i)).

6 We also in formal ly refer to d as the inversion distance.

7 The identity p e r m u t a t i o n t is (1 2 ... n). The inverse of p e r m u t a t i o n n is the p e r m u t a t i o n ~z -1

sat isfying n - ~" n = t.

Exact and Approximation Algorithms for Sorting by Reversals 183

From the perspective of edit distance, the work of Wagner [23] is interesting.

Wagner considers the problem of computing the minimum number of insertions,

deletions, substitutions, and transpositions of adjacent characters, to convert one

string to another, and shows that if the operations are restricted to deletion and

transposition, the problem is NP-complete. If we restrict our problem to reversals of

length two, in other words the adjacent transpositions of Wagner, the reversal

distance between a and z reduces to the so-called inversion number of rc = z- ~cr,

the number of pairs of i < j such that rc i > re j, which is clearly computable in

polynomial time (see [13, p. 11]). Tichy [22] also considers a variation of edit

distance, but it is less closely related to our work. More recently, Sch6niger and

Waterman [20] present a heuristic for computing edit distance when only

nonoverlapping inversions are allowed.

From the perspective of sorting, related work is by Gates and Papadimitriou

[9]. They consider the problem of sorting a permutation by p r e f i x reversals, s which

are reversals of the form [1, i], and derive bounds on the diameter of the problem.

The diameter of the prefix reversal problem, which we denote by dpre~x(n), is the

maximum of the minimum number of prefix reversals to sort any permutation on n

elements. Gates and Papadimitriou show that dprefix(n) __< 35n + 5, and that for
> 1 7 . infinitely many n, dpr~fix(n)_ ~n . Under the requirement that each element is

reversed an even number of times, which may be appropriate if elements have an

orientation (see Section 5), they show 3n - 1 < dpr~fix(n) _< 2n + 3. In other work,

Aigner and West [1] consider the diameter of sorting when the operation is

reinsertion of the first element, and Amato et al. [2] consider a variation inspired

by the problem of reversing trains on a track.

For our problem of sorting by unrestricted reversals, it appears tighter bounds

on the diameter are possible. The heuristic of Watterson et al. [24] sorts any

n-element permutation in n - 1 reversals, so, writing d(n) for the diameter of our

problem, we know d (n) < n - 1. From the other direction, Golan [10] has

conjectured 9 that a particular n-element permutation, which we denote by ytn),

requires n - 1 reversals, and has verified this for n up to 12. Recursively,

((1), n is zero,

Y~n+l)=~(Y(l") Y~")"'" Y~)-i n + l ~(~')), nisodd,

~(y(n) y(2 n) . . . ~(nn)_2 n + l y(~)Y~)-l), n iseven.

Using the lower bound developed in Section 3.2, we have verified the conjecture

for n up to 200 when n mod 3 = 1 ; for n mod 3 ~ 1 , our computation

showed 7(n) requires n - 2 reversals. If Golan's conjecture is true, d(n) = n - 1.

Note that studying the diameter of the problem, and algorithms that meet the

s This is also known as the pancakeflippin9 problem.
9 Golan's full conjecture is somewhat stronger: that, for every n, ~,~n) and its inverse are the only
permutations requiring n - 1 reversals.

184 J. Kececioglu and D. Sankoff

diameter, does not give a guarantee of quality of approximation. For

example, �89 + �89 is a lower bound on the diameter of our problem, and as we have

indicated, the algorithm of Watterson et al. [24] uses no more than n - 1 reversals;

nevertheless, as we will show, there are permutations for which this algorithm

performs arbitrarily poorly in ratio. Section 2presents an approximation algorithm

that does achieve a performance ratio of 2 for unrestricted reversals.

Finally, from the perspective of group theory, [6] and [11] are interesting. Even

and Goldreich [6] show that, given a set of generators for a permutation group G,

and a permutation n, determining the shortest product of generators that equals

is NP-hard. 1~ Their reduction implies that the problem remains NP-hard even

when every generator is its own inverse, as is the case in our problem. Jerrum [11]

established that the problem is PSPACE-complete, and remains so when restricted

to two generators, it

In our problem, the generator set is fixed. Thus, while these complexity results

give us a sense of the problem, they do not imply the intractability of sorting by

reversals. Nevertheless, we believe sorting by reversals is NP-complete. Section 5

indicates one possible direction for a proof.

1.2. Overview. In the next section, we present an approximation algorithm for

sorting by reversals. We show that it never exceeds the minimum number by more

than a factor of 2, and has a simple quadratic-time implementation.

Section 3 develops an exact algorithm using the branch-and-bound technique.

The lower bound uses a relaxation to maximum-weight matchings, and linear

programming.

Section 4 presents results from experiments with these algorithms. We study

their performance on random permutations, and permutations generated by a

fixed number of random reversals.

Section 5 concludes with some open problems and conjectures.

2. An Approximation Algorithm. Perhaps the most natural algorithm for sorting

by reversals, suggested by Watterson et al. [24], is to bring element 1 into place,

then element 2, and so on up to element n. Formally, at step i, perform reversal

[i, n~- t], if zc i ~ i. Once step n - 1 is completed, element n must be in position n,

so this sorts any n-element permutation in at most n - 1 reversals.

While it is likely that permutations exist for every n that require n - 1 reversals

[10], which, if true, means this algorithm is worst-case optimal, for specific instances

the algorithm can perform arbitrarily poorly. Consider, for example, the

10 Even and Goldreich also show that computing the diameter of G is NP-hard. Determining whether
there is a product equal to n is solvable in polynomial time 17].
11 This result is best possible, since the case of a single generator can be solved in polynomial time.
Jerrum also shows that the problem is polynomial-time solvable for any of the standard sets of
generators for the symmetric and alternating groups: all transpositions or 2-cycles, all adjacent
transpositions, all transpositions adjacent on the circle, all 3-cycles, and all 3-cycles with all pairs of
disjoint transpositions.

Exact and Approximation Algorithms for Sorting by Reversals !85

permuta t ion (n 1 2 "" n - 1). Bringing 1 into place, then 2, and so on, uses n - 1

reversals, yet the permuta t ion can be sorted in two steps: reverse [-1, n], then

[1, n - 1]. Thus, this algori thm can produce a solution ~n - 1) times longer than

the shortest solution, for arbitrari ly large n. Using the idea of a breakpoint , also

in t roduced in [24], we show there is a simple algori thm guaranteed to use no

more than twice the minimum number of reversals. To the best of our knowledge,

this is the first constant-factor approximat ion for sorting by reversals.

In order to describe the algorithm, we first define some terminology.

A breakpoint of a permuta t ion rc is a pair of adjacent positions (i, i + 1) such

that [n~+ 1 - n/I ~ 1. In other words, (i, i + 1) forms a breakpoint if values rq and

n~ + 1 are not consecutively increasing or decreasing. To handle the boundaries, we let

n o have the value 0, n ,+ l have the value n + 1, and allow i to range from 0 to n

in the definition. Thus, (0, 1) is a breakpoint if nl ~ 1, and (n, n + 1) is a breakpoint

if n, ~ n. Notice that the identity permuta t ion has no breakpoints , any other

permuta t ion has some breakpoint , and the number ofbreakpoints is at most n + 1.

When [n~+ 1 - n l l = 1, we say values hi+ a and n i are adjacent, and write

h i + 1 "~ h i .

A strip of n is an interval I-/,j] such that (i - 1, i) and (j, j + 1) are breakpoints ,

and no breakpoint lies between them. In other words, a strip is a maximal run of

increasing or decreasing elements.

A reversal p affects the breakpoints of n only at the endpoints of p. (In the

interior, p only makes an increasing pair (n~, hi+ x) decreasing, and vice versa.) Let

us write ~(n) for the number of breakpoints in n, and, for a given reversal p, let

A(I)(n) = r - (I) (n . p) .

Since a reversal [i , j] changes the adjacency of only two points, namely (i - 1, i)

and (j, j + 1), the only values A~(n) can take on are between - 2 and 2. Since a

solution must decrease the number of breakpoints from ~(n) to zero, a greedy

strategy is to choose a reversal of maximum A~(n), which achieves the greatest

decrease. As any n r t has a reversal with AO(n) > 0, we can always achieve a

decrease of 2, 1, or 0.

Figure 2 specifies our greedy algorithm. The algori thm removes zero break-

points when there are no reversals that remove one or two, so it is not obvious

that it terminates. With the rule " favor reversals that leave decreasing strips," not

only does the algori thm terminate, it exceeds the minimum by at most a factor of 2.

2.1. Quality of the Approximation. In the following, a strip [i , j] is decreasing if

n~, n~+ ~ n i is decreasing. We consider a strip of one element to be decreasing,

except for n o and r~, + ~, which are always increasing. Thus, the identity permuta t ion

forms one increasing strip, extending from 0 to n + 1.

LEMMA 1. Every permutation with a decreasing strip has a reversal that removes

a breakpoint.

186 J. Kececioglu and D. Sankoff

algorithm GREEDY(~) begin

i : = 0

while ~z contains a breakpoint do begin

i : = i + 1
Let p~ be a reversal that removes the most breakpoints of n, resolving ties

among those that remove one breakpoint in favor of reversals that leave a

decreasing strip.

: : 7~ �9 Pi

end

return i, (Pl, P2 , Pi)

end

Fig. 2. The greedy algorithm.

PROOF. Consider the decreasing strip of n whose last element, rc~, is smallest .

Element n l - 1 mus t be in an increasing strip (else zc~ is not smallest), which lies

either to the left or to the right of the strip containing 7q, as shown in Figure

3. In either case, the indicated reversal removes at least one breakpoint . []

LEMMA 2. Let re be a permutation with a decreasing strip. I f every reversal that

removes a breakpoint o f 7z leaves a permutation with no decreasing strips, n has a

reversal that removes two breakpoints.

PROOF. Again consider the decreasing strip of rc containing the smallest element

rc i. Case (b) of Figure 3 cannot occur, since p is a reversal that removes a b reakpoin t

and leaves a decreasing strip. Thus, the increasing strip containing z~i - 1 must be

to the left of the strip containing rc i, as in case (a). Call the reversal of case (a), Pi.

Consider the decreasing strip of rc whose first element, re j, is greatest. Element

rcj + 1 must be in an increasing strip (else rcj is not greatest) that is to the right of

the strip containing re j, as otherwise, a reversal ana logous to case (b) removes a

~176176

7[

~ri--i

�9 ., p

�9 ~ . ~ . . . ~ . . . ~ r r i - l - i l T r ~ . . .

�9 . . I . I... .I . . .
,J ~ J

P p

(a) (b)

Fig. 3. A permutat ion n with a decreasing strip has a reversal p that removes a breakpoint. Element

n i is the smallest element that is in a decreasing strip.

Exact and Approximation Algorithms for Sorting by Reversals 187

7ri-lfr l ~rj ~rj+ 1

�9 . . I - - - - - - - - I . . . - - - - - - - . . .

7T

Pi Y

P j

Fig. 4. If every reversal that removes a breakpoint of n leaves a permutation with no decreasing strips,

Pl and p~ must overlap. Elements n~ and nj are the smallest and largest in decreasing strips.

breakpoint and leaves a decreasing strip. Call pj the reversal for rc~ that is analogous

to Pi.

Notice that nj must lie in interval Pi and nj + 1 must lie outside, else p~

leaves a decreasing strip. Similarly, ni must lie in pj and n ~ - 1 outside, else pj

leaves a decreasing strip. The situation is as shown in Figure 4. Intervals p, and pj

overlap.

We now argue that not only do p~ and Pi overlap, they must be the same interval.

For suppose p~ - pj is not empty. If it contains a decreasing strip, reversal pj

leaves a decreasing strip, and if it contains an increasing strip, reversal p,

leaves a decreasing strip. Similarly, interval pj - p~ must be empty, which implies

p~ = pj.

Since reversal p~ removes the breakpoint on its left, and reversal pj removes the

breakpoint on its right, and as these breakpoints are distinct, reversal p = pi = pj

removes two breakpoints. []

LEMMA 3, The greedy algorithm sorts a permutation n with a decreasing strip in

at most ~(n) - 1 reversals.

PROOF. The proof is by induction on ~(n). If n has a decreasing strip, O(n) > 2.

When ~(n) = 2, n has a unique reversal p that removes the two breakpoints and

sorts n. Since GREEDY will choose p, it sorts n in one reversal, and the basis holds.

Suppose the lemma holds for all n' with less than ~(n) breakpoints. Since n has

a decreasing strip, by Lemma 1 there is a reversal p that removes at least one

breakpoint of n. Thus, the first step of GREEDY will transform n into a permutat ion

n' with at most qb(n) - 1 breakpoints. If n' has a decreasing strip, GREEDY sorts it

in at most ~(n) -- 2 reversals by the induction hypothesis, which sorts n in at most

�9 (n) - 1 reversals.

Now consider a n ' with no decreasing strips. We argue that ~(n') = ~(n) - 2.

For suppose ~(n') = qb(n) -- 1, the only other possibility. Since GREEDY chooses a

reversal that removes the most breakpoints, every reversal that removes a

188 J. Kececioglu and D. Sankoff

breakpoint must remove exactly one breakpoint. Since, in such an event, GREEDY

chooses a reversal that leaves a decreasing strip whenever possible, every available

reversal that removes a breakpoint must leave no decreasing strips. However, by

Lemma 2, this implies r~ has a reversal that removes two breakpoints, a

contradiction. Thus q)(lr') = ~(Tr) - 2.

Every reversal on a permutation with no decreasing strips creates a decreasing

strip, which implies GREEDY will transform 7r' to a permutation 7r" with a decreasing

strip. Moreover, ~(Tr") < q>(n') = q~(n) - 2. By induction, GREEDY sorts re" in at

most ~(n) -- 3 reversals. Since GREEDY transformed n to 7r" in two steps, this sorts

rr in at most ~(Tr) - 1 reversals. []

THEOREM 1. The greedy algorithm sorts every permutation ~ in at most c~(n)

reversals.

PROOF. If ~ has a decreasing strip, by Lemma 3, GREEDY sorts it within ~(r0

reversals. If rc has no decreasing strip, any reversal chosen by GREEDY transforms

to a permutation re' with a decreasing strip such that O(rc') < q~(~). By Lemma

3, GREEDY sorts re' in at most q)(rc') -- 1 reversals, which sorts ~ in at most q~(rc)

reversals. []

Since q)(rc) < n + 1, Theorem 1 implies that the greedy algorithm terminates in

O(n) iterations. In the next section, we consider how to implement an iteration;

here we simply note that an iteration runs in polynomial time.

An algorithm for an optimization problem that runs in polynomial time and

delivers a solution whose value is within a factor a of optimal is known as an

~-approximation algorithm. An immediate consequence of Theorem 1 is the

following.

COROLLARY 1. The greedy algorithm is a 2-approximation algorithm for sorting by

reversals.

PROOF. Write OPT(~) for the minimum number of reversals to sort a permutation

re, and GREEDY(E) for the number taken by the greedy algorithm. Since a solution

must remove all breakpoints, and any reversal can remove at most two,

11 OPT(7~) > (I)(7~) > -- GREEDY(/I:).
- - - - 2

[]

We do not know whether the bound of Corollary 1 is tight.

2.2. Time and Space. How much time does an iteration of the greedy algorithm

take? As there are in general (~) reversals to consider, a naive implementation

could take O(n 2) time per iteration, or O(n a) time in total. By considering the form

of reversals that remove breakpoints, we can find the greedy reversal for an iteration

in O(n) time, which yields an O(n2)-time algorithm.

Exact and Approximation Algorithms for Sorting by Reversals 189

~r"" x [y ... x'J y ' ...

Fig. 5. The form of a reversal that removes two breakpoints. Vertical bars denote breakpoints, x ~ x',

and y ~ y'.

A reversal that removes two breakpoints must have each endpoint at a break-

point, and must create two adjacencies. Let us denote the left endpoint by

(i, i + 1) and the right endpoint by (j, j + 1). Then reversal [i + 1, j] removes two

breakpoints iff (i, i + 1) and (j , j + 1) are breakpoints, ni "~ nj, and ~zi+ 1 --~ rcj+ 1.

This is illustrated in Figure 5.

We can search for a reversal of this form as follows. Scanning zc, we identify

each breakpoint (i, i + 1). If this is the left end of such a reversal, there must be a

position j > i such that (j , j + 1) is a breakpoint, nj ,-~/ri, and nj+ 1 ' ~ ' 7~i+ 1. There

are two possible values for n j, namely n i - 1 and ni + 1. Given n-1, we can find

the positions where n~ - 1 and n~ + 1 occur in O(1) time. If either position meets

the criteria above, we have found a reversal that removes two breakpoints. As

there are O(n) candidates for the left endpoint, and n-1 can be computed in O(n)

time, this finds a reversal that removes two breakpoints (if one exists) in O(n) time.

If there is no reversal that removes two breakpoints, the greedy algorithm

considers reversals that remove one breakpoint. A reversal that removes one

breakpoint must have an endpoint at the breakpoint it removes; the other

end may or may not lie at a breakpoint as shown in Figure 6. Given n - 1, we can

find a reversal of form (a) or (b) in O(1) time per breakpoint, as explained above.

The only question is how to determine efficiently whether the reversal leaves a

decreasing strip. ~2

Consider a reversal of form (a). Reversal I-i, j] leaves a decreasing strip iff

�9 [1, i) contains a decreasing strip other than x, or

�9 [i,j] contains an increasing strip 13 other than x', or

�9 (j, n] contains a decreasing strip, or

�9 xx' is decreasing.

The only difficulty is in determining whether an interval contains an increasing

strip, or a decreasing strip, in O(1) time. We can solve this by forming an array,

. . . ,jz I ?"l . . .

(a) (b)

Fig. 6. The form of a reversal that removes one breakpoint. In the figure, x ~ x ' ~ x" ~ x " and y ~ z.

Mirror images of (a) and (b) are considered to be the same form.

12 Recall that the greedy algorithm breaks ties among reversals that remove one breakpoint by favoring

reversals that leave decreasing strips.

13 A strip is increasing if its elements are strictly increasing, or it contains a single element. Thus, a

single-element strip is both increasing and decreasing.

190 J. Kececioglu and D. Sankoff

down[i], that gives the position of the left end of the leftmost decreasing strip

beginning at, or to the right of, position i. Then interval [a, b] contains a decreasing

strip iff down[a] < b. Similarly, we can form an array up[i] that gives the left end

of the leftmost increasing strip at, or to the right of, i. Both arrays can be computed

from 7c in O(n) time, for example by the recurrence,

I
n + i , i > n,

i, i < n, 7"(,i ~/J ~ i _ l , 7~i ~/~ 7~i +1,
down(i)= i, i < n, rci 76 ~zi-x, 7zi~ rci+l,

down(i + 1), otherwise.

~i > 7~i+ 1,

Thus, if there is a reversal of form (a), we can find it in O(n) time, whether or not

we require that it leave a decreasing strip. We can also search for a reversal of

form (b) in O(n) time, using the same technique.

If there is no reversal that removes a breakpoint, the greedy algorithm chooses

a reversal that does not increase O(n). One such reversal is [i, hi- 1], where i is the

smallest position such that rcl # i. Notice that this reversal cannot increase O(zc)

since it always removes breakpoint (i - 1, i).

To summarize, we find a greedy reversal as follows:

(1) Compute re-1, down, and up.

(2) Search for a reversal that removes two breakpoints.

(3) If none exists, search for a reversal that removes one breakpoint and leaves a

decreasing strip.

(4) If none exists, search for a reversal that removes one breakpoint.

(5) If none exists, bring the smallest out-of-place element into position.

Each step can be performed in O(n) time; which gives an O(nZ)-time

implementation of the greedy algorithm (and with more care, O(n + ~2(n)) time

can be achieved). We suspect that an O(n log n)-time implementation may be

possible; our experience, however, suggests that the approximation algorithm will

be far from the dominant step in practice; as we discuss in Section 4.

3. Exact Algorithm. In the preceding section, we obtained an algorithm that

comes close to the optimum by applying a greedy strategy: of all reversals, select one

that removes the most breakpoints. To obtain an algorithm that reaches the

optimum, we use a branch-and-bound strategy: consider all reversals, and eliminate

those that cannot lead to an optimal solution.

Figure 7 shows the form of our branch-and-bound algorithm. We maintain

three global variables: bound, a dynamic upper bound on the solution value; best,

an array of reversals that sort the permutation in bound steps; and current, the

series of reversals currently under consideration. At the start, we initialize bound

Exact and Approximation Algorithms for Sorting by Reversals 191

global bound, current[1., n], best[1., n]

algorithm BRANCHANDBOUND(~Z) begin

bound, best := UPPERBOUND(7~)
SEARCH(TC, 0)

return bound, best

end

algorithm SEARCH(7~, depth) begin

if n is the identity permutation then

if depth < bound then bound, best:= depth, current

else

for each reversal p in order of decreasing AO(n) do

if LOWERBOUND(~Z �9 p) d- depth + 1 < bound then begin

current[depth + 1] := p

SEARCH(~Z'p, depth + 1)

end

end

Fig. 7. The branch-and-bound algorithm.

and best to values obtained from an upper-bound algorithm. 14 The algorithm we use

is essentially GREEDY with a fixed-depth look-ahead, and is described in Section 3.3.

After obtaining an upper bound, we explore a tree of subproblems depth-first.

Each invocation of SEARCH corresponds to a node of the tree and is labeled with

n, a permutat ion to be sorted, and depth, the number of edges from the root to

the node. Array current is maintained as a stack by SEARCH, and holds the reversals

on the path from the root to the current node. We chose a depth-first strategy for

traversing the tree as this uses a polynomial amount of space, even when the tree

is of exponential size, since space, not time, is often the limiting resource.

Examining all reversals yields a very large tree: with (~) children per node, and

a height of n - 1, there are O(n2n/2 n) nodes. In Section 5, we state several conjectures

on the form of a solution, which, if true, reduce the children per node from O(n 2)

to O(~2(n)). Lacking a proof of these conjectures, the two means we have to reduce

the size of the search trees are ordering children, and computing lower bounds. The

algorithm of Figure 7 orders children by decreasing AO, on the assumption that

the optimal solution uses reversals of greatest A~. By trying such reversals first,

we hope to lower our upper bound quickly, to prune subtrees early on. We now

explain how the lower bound is computed.

3.1. A Lower Bound f rom Matchings. As stated in the proof of Corollary 1,

a simple lower bound on OPT(n) is [-~(n)/27. While this is sufficient to

prove an approximation factor of 2, i t is extremely weak. It assumes every

14 We use Xl, ... , x n : = el,..., e, as shorthand for the parallel assignments x~:= e~. Function UPPER-
BOUND, like GREEDY, returns two values: an integer, followed by a list of reversals.

192 J. Kececioglu and D. Sankoff

breakpoint of rc can be eliminated by a reversal that removes two breakpoints,

which can rarely be achieved. To obtain a better bound, we ask, for a given

permutation, how many breakpoints can possibly be eliminated by reversals that

remove two breakpoints?

A pair of breakpoints p = (i, i + 1) and q = (j , j + 1), with values (hi, rq+ l)=

(x, y) and (Trj, ~rj+ 1) = (x', y'), can be eliminated in one reversal iffx ~ x' and y ~ y'.

This holds whether p is to the left or to the right of q. The only requirement is

that x and y occur in the same order as x' and y'.

Notice that such a reversal also affects other pairs of breakpoints. A pair with

values (x, y) and (y', x'), which cannot be eliminated immediately because adjacent

values are not in the same order, can be eliminated in one step if preceded by a

reversal that contains exactly one breakpoint of the pair. Such a reversal trans-

forms the pair to the preceding case.

In general, determining when a collection of 2m breakpoints can be eliminated

by a sequence of m reversals appears difficult. (In Section 5, we conjecture it is

NP-complete.) To obtain a lower bound that can be efficiently computed, we

ignore dynamic information about the order and interaction of reversals. The static

information we retain is simply the adjacency of values between breakpoints, which

can be represented by a graph.

Figure 8 shows the construction. Each breakpoint of n is mapped to a vertex

of GOt). We place an edge between breakpoints p and q if either of the above two

cases apply. Effectively, if two breakpoints can be eliminated by one reversal,

possibly after a sequence of other reversals that eliminate two breakpoints, they

share an edge. Note that the order of the two values at a breakpoint is not

important in the construction.

Since each edge models a reversal, and performing the reversal removes both

endpoints, a series on reversals on rc that each eliminate two breakpoints

corresponds to a set of vertex-disjoint edges in G(Ir). A set of vertex-disjoint edges

is called a matching. The key property of G(rc) is that the most reversals we can

possibly perform on n that each remove a pair of breakpoints, without performing

any intervening reversals that remove less than two breakpoints, is the size of a

maximum-cardinality matching of G(rc).

Let m be the number of vertices in a maximum-cardinality matching of G(n),

in other words, twice the number of edges in the matching. How many reversals

must be performed to remove the remaining O(rc) - m breakpoints of n? The best

we can do is to expend a reversal that removes one breakpoint to set up a reversal

that removes two breakpoints. Notice that we cannot remove one breakpoint,

7C"" xl Y "'" X'I y' '

P q

o r

... xly ... ~t'l x'..-
P q

Fig. 8. Breakpoints {x, y} and {x', y'} share an edge in G(n) iff x ~ x' and y ~ y'.

Exact and Approximation Algorithms for Sorting by Reversals 193

then two, then two again. (A reversal that removes one breakpoint can affect

only one additional breakpoint. This implies the third reversal must have been

available from the start, which contradicts that the matching is of maximum

cardinality.) In short, the best we can do is to remove three breakpoints in two

reversals. This gives a lower bound of

(1) [-�89 + ~O(u) -- m)],

which has the extreme value F-~(n)-].

We can construct G(n) from n in O(n) time. (Certainly the O(n) breakpoints of

n can be determined in O(n) time. Moreover, every breakpoint is incident to a

constant number of edges, since the only values adjacent to x are x + 1 and x - 1.

So, with the help of n - t , we can determine all edges in O(n) time as well.) A

maximum-cardinality matching of a graph with V vertices and E edges can be

computed in O(Ew/V) time [15]. Thus, since V and E for G(n) are both O(n), we

can evaluate the lower bound of (1) in O(n 3/2) time.

3.2. A Family o f Lower Bounds. We can improve the lower bound further, by

considering 3-tuples of breakpoints, 4-tuples of breakpoints, and so on.

Let us call a reversal that eliminates k breakpoints, a k-move. Thus, a 2-move is

a reversal that eliminates two breakpoints, and a (-2) -move is a reversal that

creates two breakpoints.

In general, for k > 3, we define a k-move as follows. Over all permutations,

consider all series of reversals that eliminate k breakpoints. A k-move, for k _> 3,

is a shortest series that eliminates a set of k breakpoints, given that no 2-, 3-, up to

(k - 1)-moves are available on the set. For example, a 3-move is a 1-move followed

by a 2-move. (Notice that this arose in the analysis of lower bound (1).)

The following lemma characterizes the structure of a k-move.

LEMMA 4. For k >_ 3, a k-move is a series of k - 1 reversals, that decomposes into

either

(i) a 1-move followed by a (k - 1)-move, or

(ii) a O-move followed by an i-move and a j-move, where i + j = k.

PROOF. Any series of reversals begins with a 2-, 1-, 0-, (-1) - , or (-2)-move. By

definition, a k-move for k > 3 cannot begin with a 2-move. Furthermore, any series

that creates breakpoints is not among the shortest. Thus, 1-moves and 0-moves

are the only candidates for the first reversal in a k-move.

Consider a series that begins with a 1-move. The 1-move can change the values

of at most two breakpoints, namely, those at its endpoints. One of the two

breakpoints is eliminated by the 1-move. The other can at best be eliminated in

a (k - 1)-move. Note that the k - 1 breakpoints remaining cannot be eliminated

by two or more higher-order moves, as any second higher-order move would be

available from the start, contradicting the definition of a k-move.

Now consider a series that begins with a 0-move. This move can again affect

194 J. Kececioglu and D. Sankoff

the values of at most two breakpoints, thereby setting up at most two higher-order

moves. The k breakpoints again cannot be eliminated by three or more higher-

order moves, after performing the initial 0-move, since a third higher-order move

would be available initially. That a k-move uses k - 1 reversals follows by

induction. []

With this decomposition, we can characterize the breakpoints in a k-move.

LEMMA 5. For k > 2, the pairs of values at the breakpoints eliminated by a k-move

have the form

(2)

where xi ,,~ x'i for 1 < i <_ k.

PROOF. Notice that the lemma holds for k = 2, which corresponds to the picture

of Figure 8. Assume the lemma then for all k' < k. We show it holds for k + 1.

By Lemma 4, a (k + 1)-move decomposes into a 1-move followed by a k-move,

or a 0-move followed by an/ -move and a j-move. Consider the case of an initial

l-move.

This move eliminates one of the k + 1 breakpoints, and brings the remaining k

breakpoints into the configuration of a k-move. By induction, the values at these

k breakpoints have the form of(2). Notice that this form is unchanged by a rotation

of the breakpoints, i.e., a renaming of the form xi w-, xi .d and x'i ~ x'i.a, for any

d, where i @ d denotes ((i + d) mod k) + 1. Thus, we may assume without loss of

generality, that the 1-move affects the values in (2) by bringing Xl, x~ together into

a breakpoint, and some other pair of values y, y' together to create an adjacency

y ~ y'. This (k + 1)-move then has the form

. . . xl},

which is the same form as (2).

Now consider the case of a 0-move that sets up an /-move and a j-move. By

induction, the/-move has the form

{x ,xl} {x2 ,x ;} . - - { x , , x ; } ,

and the j-move has the form

{y ,yl} ' {yj,

Without loss of generality, assume the 0-move brings x 1, x~ together and yl, y~

Exact and Approximation Algorithms for Sorting by Reversals 195

together. Since the form of (2) is unchanged by renaming xi ~ x'i and x'i ~ xi, we

may further assume that the 0-move brings these values together by touching

breakpoints

{xl, Yl} {xl, yl}.

The (k + 1)-move then has the form

{x2, x~} {x3, x~,} "'" {xi, x'l} {xl, yl} {Yj, Y'I} {Yj-~,Y)} "'" {Y2, Y~} {X'z,y'2}.

As the reader may verify, this is the same form as (2). []

We now describe how to construct a graph H(rc) that allows us to effi-

ciently identify sets of breakpoints of form (2). In the construction, breakpoints

of n are mapped to vertices of H(rc), and pairs of breakpoints that share an

adjacency, such as {x, a} {x', b} where x ~ x', are mapped to edges, as shown in

Figure 9.

Edges of H(zc) are directed, but not in the standard sense. An edge touching v

and w contributes to either the in- or out-degree of v and w. In a directed graph,

an edge (v, w) that contributes to the out-degree of v necessarily contributes to the

in-degree of w, and vice versa. However, in what we call a bidirected graph, there

are two more possibilities: (v, w) may contribute to the in-degree of both v and w,

or to the out-degree of both v and w.

This gives rise to the four types of edges of Figure 9. We indicate the direction

of an edge with double-ended arrows. When drawing an edge incident to v, we

place an arrowhead pointing into v, at the end touching v, if the edge contributes

to v's in-degree. Otherwise, we direct the arrowhead out of v.

x[a blx'
P q

alx xlb
P q

xla x'lb
P q

P q

Fig. 9. Construction of graph H(n). Values x and x' are adjacent, and induce an edge that contributes

to the in- or out-degree of p, and the in- or out-degree of q, depending on whether the value is to the

right or to the left of the breakpoint.

196 J. Kececioglu and D. Sankoff

The utility of this construction is in the correspondence between cycles in the

graph and k-moves on the permutation, as summarized in the following lemma.

A k-cycle in a bidirected graph is a series of edges

v2) --- (vk, vO

such that the vi are distinct, and every v~ has in- and out-degree 1.

LEMMA 6. The sets of breakpoints of rc whose values have the form of k-moves

are in one-to-one correspondence with the k-cycles of H(rc).

PROOF. By Lemma 5, the values in a k-move have the form

In the ith breakpoint, {x~, x'i. 1}, value xi~l is adjacent to value xi.1 of the (i �9 1)th

breakpoint. Whether x'i is to the left or right of x'i** in the ith breakpoint,

breakpoint i is linked in H(n) to breakpoints i O 1 and i O 1 by edges that

contribute exactly once to its in- and out-degree.

Similarly, any k-cycle of H(n) describes a set of k breakpoints with the property

that every breakpoint in the set has values that are adjacent to the

preceding and succeeding breakpoints on the cycle. As every vertex of the cycle

has in- and out-degree 1, these values, by the construction, are distinct. By Lemma

5, this is the form of a k-move. []

We now have the tools to generalize the lower bound of Section 3.1. In outline,

we construct a hypergraph G~k)(rc) whose vertices correspond to breakpoints, but

whose edges are sets of up to k vertices that correspond to k'-moves for k' < k. A

series of moves on rc maps to a matching of G ~k), where a matching of a hypergraph

is a collection of vertex-disjoint edges. Choosing a k-move corresponds to perform-

ing a series of k - 1 reversals. We weight edges by the number of reversals they

represent, and seek, as before, a maximum-weight matching. However, computing

a maximum-weight matching of a hypergraph is in general NP-complete [8].

We express the matching problem as an integer programming problem, and relax

the integrality constraint to obtain a linear programming problem. This

gives a somewhat weaker lower bound that is computable in polynomial

time.

This approach is summarized in the following theorem. The k-oirth of a graph

is the length of a shortest cycle of more than k edges. If the graph does not contain

such a cycle, we define its k-girth to be n + 1, where n is the number of vertices.

Exact and Approximation Algorithms for Sorting by Reversals 197

THEOREM 2. Let (V, E) be the graph G(k)(Tz), let g be the k-girth of H(n), and let

~k(n) be the solution value of the linear program

minimize

subject to

g - 1 ~ g - l e l
- - (I) (~) - - 2.a - - X e '

g ~ e g

0 <_ x e <_ 1, for all e ~ E,

Xe <- 1, for all v e F.
e l w e

Then O P T (T Z) ~ r~k(70].

PROOF. As in the lower bound of Section 3.1, the only characteristic of a reversal

that we consider are the values at its endpoints. This means we ignore the effect

of a reversal on its interior, namely, that it changes the relative order of

elements.

This being the case, we first argue that to demonstrate our lower bound, the

only series that we have to consider are those that do not create breakpoints. For

suppose a reversal in a series creates a breakpoint. Eventually this breakpoint

must be removed, and the best we can possibly do is to eliminate it with a 2-move,

which allows us to remove one more breakpoint. The best we can then have

achieved is to remove one breakpoint in two reversals. This is worse than any of

the higher-order moves we consider in the lower bound, which always remove k

breakpoints in k - 1 reversals. Admittedly, the (- 1)-move and subsequent 2-move,

by changing the relative order of elements, may have made some advantageous

moves possible in an actual series, but we have already accounted for such effects

by ignoring the order of values at breakpoints in our graph representation.

Thus, it suffices to consider series that do not create breakpoints. Such a series

operates only on breakpoints in the original permutation, by moving values from

one breakpoint to another, so as to create adjacencies. Decomposing the series

into higher-order moves, every k'-move, where k' < k, maps to an edge of G (k), no

matter where it occurs in the series. Moreover, the edges so identified in G (k) are

vertex disjoint, and form a matching M. Thus, the number of reversals taken by

k'-moves in the series, where k' < k, is

(l e l - 1).
eeM

The remaining moves of the series are k'-moves where k' > k. By Lemma 6,

every one of these moves maps to a cycle of H(n), so the smallest k' > k for which

the series contains a k '-move is at least g, the k-girth of H(n). Thus, the number of

reversals taken by k'-moves in the series, where k' > k, is at least

198 J. Kececioglu and D. Sankoff

which is

Thus, the total number of reversals in an optimal series is at least

minM [~M ~ (l e l - - 1) +

which is

g eeM -~ "

This is equivalent to finding a matching in G (k) of maximum total weight, where

the weight of an edge e is (g - l e l) / g . We can express this as an integer pro-

gramming problem. For each edge e of G tk), we have a variable xe, that takes on

the values 0 or 1. Selecting e is encoded by assigning xe the value 1. We can ensure

that the assignment represents a matching by requiring

x e < 1,
e]v~e

for every vertex v. Extending the domain of x e to real values between 0 and 1

results in the linear programming problem of the theorem. []

Notice that the lower bound of Theorem 2 has the extreme value

[-((g- 1)/g)(I)0r)7. When the k-girth g is large (as is the case with the Golan

permutation y(") even for small k), this can be as great as ~0r), which meets the

upper bound of Theorem 1.

How much time does it take to evaluate ~ak? There are three tasks:

(1) Constructing H and computing its k-girth.

(2) Constructing G tk~ and its associated linear program.

(3) Solving the linear program.

Constructing H takes time O(n). There are O(n) breakpoints, and each break-

point has at most four in-edges and out-edges, which can be identified in O(1)

time using zc-1.

We can compute the k-girth of H in o(4kn 2) time, as follows. A shortest cycle

of more than k edges, that contains a fixed vertex v, is a path P of k edges from v

to some vertex w, followed by a shortest path from w to v that does not visit any

other vertices on P. Paths in a bidirected graph such as H alternate in- and

out-edges: if we enter a vertex by an in-edge, we must leave by an out-edge, and

vice versa. As every vertex of H has in- and out-degree at most four, there are at

Exact and Approximation Algorithms for Sorting by Reversals 199

most 4 k paths of length k from a fixed vertex v. For each path P, we can mark its

vertices, and compute a shortest return path from its end w back to v, taking care

not to visit marked vertices. This shortest path can be found by a breadth-first

search from w in O(n) time. Repeating for all start vertices v, all paths P, and

recording the minimum over all cycles found, takes time o(4kn2).

Similarly, we can construct the edges of G ok) in o(4kn) time, by enumerating the

cycles of H of k or fewer edges in a depth-first search, is Space for all edges is

O(k4kn).

The resulting linear program has o(4kn) variables, and O(n) constraints. Writing

L(a, b) for the time to solve a linear program of a variables and b constraints, the

linear programming problem takes O(L(4kn, n)) time. This dominates the time to

compute the lower bound. Thus, for any fixed k, Ae k can be computed in

O(L(n, n)) time.

3.3. A Family o f Upper Bounds. As well as a lower bound on the solution value,

our exact algorithm requires an upper bound. The simplest approach is to use the

approximation algorithm of Section 2, but for large n this gives too weak a bound

to prune away much of the search tree.

Consider a series of k reversals that removes the most breakpoints among series

of that length. The greedy strategy of the approximation algorithm is really based

on the observation that, once we are k reversals away from sorting a permutation,

such a series is optimal. GREEDY corresponds to the case k = 1.

Such a series can be found by looking ahead k reversals, and this search can

be made tractable by again employing branch-and-bound. The basic form of the

computation is identical to BRANCHANDBOUND, except that the recursion is

stopped at depth k. The two requirements are a lower bound on the number of

breakpoints that can be eliminated in a series of k reversals, and a method for

computing an upper bound on the number eliminated by an optimal extension of

a partial series.

We can compute the lower bound by running GREEDY. Computing an upper

bound is a little more difficult, but can be tackled by the methods of the previous

section, as summarized in the following theorem.

THEOREM 3.

ofthe linear program

Let (V, E) be the graph G tk+ 1)(Tz), and let qlk(n) be the solution value

maximize k + ~ xe,
eeE

subject to 0 < x e < 1, for all e ~ E,

~, Xe < 1, for all v ~ V,
elwe

(lel - 1)Xe < k.
e~E

t5 Note that determining the edges of G (k) by examining all k-sets would take O(n k) time.

200 J. Kececioglu and D. Sankoff

Then La//k(rOJ is an upper bound on the number of breakpoints of n that can be

eliminated in k reversals.

PROOF. The proof is similar to that of Theorem 2.

Given an allotment of k reversals, we want to eliminate as many breakpoints

as possible. Suppose we consider all k'-moves for k ' < k + 1. Packing these

k'-moves into the k reversals corresponds to finding a matching M of G (k+l)

satisfying

Z (lel - 1) ~ k,
e e M

since, bY Lemmas 4 and 6, each edge e of M represents [e l - 1 reversals. The

number of breakpoints eliminated by these reversals is

Y~ lel.
e e M

Having used ~e~M (lel -- 1) reversals, we have k - 2 e e M (lel - 1) remaining in

our allotment. Notice that any unconsidered k'-move, which must have k' > k + 2,

will not completely fit in our allotment of k reversals, since by Lemma 4 such a

move takes at least k + 1 reversals. Lemma 4 also implies that any prefix of such

a k'-move that is packed into our allotment, can on average remove at most one

breakpoint per reversal. Thus, the number of breakpoints eliminated by the

reversals remaining in our allotment, is at most

k - ~ (lel- 1).
e ~ M

Adding the number of breakpoints eliminated by the reversals in M to the

number of breakpoints eliminated by the remaining reversals, the total number

eliminated within k reversals is at most

k + ~ 1.
e e M

Expressing this matching problem as an integer program, and extending its dom-

ain to the reals, results in the linear programming problem of the theorem. []

For fixed k, the time and space to compute upper bound G//(k is the same as for

lower bound &~ k, which is O(L(n, n)) time and O(n) space.

Given that we can find a series of k reversals that removes the most breakpoints,

how should we piece together a solution from such a series? One extreme is to

perform only the first reversal of the series, arrive at a new permutation, and again

look ahead k reversals. The other extreme is to execute all k of the series. We call

the number of reversals that are performed from a series, the follow-through of the

algorithm.

Exact and Approximation Algorithms for Sorting by Reversals 201

It might be predicted that a follow-through of one reversal is best, since this

retains the maximum flexibility. In our experience, however, this performed

unexpectedly poorly, in the sense that the final solution tended to degrade as the

look-ahead was increased beyond some critical value. An experimental analysis of

this phenomenon would be interesting, but is beyond the scope of our paper.

We also remark that looking ahead farther does not in general guarantee a

better solution. After looking ahead k + 1 reversals, we are simply in some state,

and unless the permutation can be sorted in k + 2 reversals, this state does not

necessarily lead to a shorter solution than the one we arrive at after looking

ahead k reversals.

Nevertheless, choosing a follow-through equal to the look-ahead k did have the

desired property that the quality of the solution tended to improve as the

look-ahead was increased, and this is the value that we chose for the experiments

of the next section. A follow-through of k reversals also has the advantage of

reducing the number of invocations of the branch-and-bound procedure. It would

be interesting, however, to investigate other values, such as a follow-through of

k/2 with a look-ahead of k.

To summarize, our exact algorithm constructs a solution conceptually in

three stages, the first two of which are interleaved. The first stage runs the greedy

algorithm to lower bound the number of breakpoints that can be eliminated within

the look-ahead. The second stage improves this greedy solution by branch-and-

bound to a fixed depth, to obtain a series that is optimal within the look-ahead.

Successive locally optimal series are then concatenated, to obtain a solution that

upper bounds the global problem. The third and final stage improves this solution

to a global optimum by a full branch-and-bound computation, now that a good

upper bound is in hand.

This bootstrapping approach has proven to be quite effective, as is discussed

in the next section.

4. Computational Results. To examine the effectiveness of these ideas, we tested

a full implementation of the exact and approximation algorithms on biological

and simulated data. The implementation comprises approximately 9500 lines of

C, of which roughly 2500 lines are a sparse linear programming package.

An unusual aspect of the code is the manipulation of the bidirected graphs of

Section 3.2. These graphs are sufficiently different from standard directed and

undirected graphs to make the correct implementation of simple computations

like shortest paths and cycle enumeration surprisingly tricky. Without going into

detail, we note that a straightforward translation of the standard breadth-first

search algorithm for single-source shortest paths is not correct, since a vertex can

be reached in two different ways from the source: once by paths that end with an

in-edge, and once by paths that end in an out-edge. This means that essentially

two distances must be maintained for a vertex: an in-edge distance, and an

out-edge distance.

We also note that the code enumerates cycles of length at most k using the

method outlined in Section 3.2, which can spend time exponential in k between

202 J. Kececioglu and D. Sankoff

Table 1. The number of permutations on n elements at

distance d from the identity.

n

d 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1

1 1 3 6 10 15 21 28

2 2 15 51 127 263 483

3 2 56 390 1,562 4,635

4 2 185 2,543 16,445

5 2 648 16,615

6 2 2,111

7 2

reporting cycles. The algorithm of Johnson [-12] for enumerating the cycles of a

directed graph spends time linear in the size of the graph between reporting each

cycle, and it would be interesting to see whether this algorithm can be adapted

to our application.

In all, we tested the implementation on four types of data: all permutations on

a fixed number of elements, published gene order data from the biology literature,

random permutations, and permutations generated by scrambling the identity with

a fixed number of random reversals.

In the first set of experiments, which served as a good test of the program, we

ran the implementation to optimality on all permutations of up to eight elements.

The exact distribution of reversal distance from these tests is given in Table

1. Notice that the data supports Golan's conjecture: for each n > 2, there are

exactly two permutations requiring n - 1 reversals (and these are ~") and its

inverse).

On these experiments, we also measured the Worst-case performance ratio of the

approximation algorithm. On permutations of up to eight elements, the maximum

ratio is 8/5, which is achieved on permutation (4 7 2 6 8 5 3 1).

As an illustration of the algorithm on biological data, we give the example of

Figure 10. This permutation gives the order of the 36 genes that are common to

the linearized mitochondrial genomes of mammals I-3] and the flatworm Ascar i s

suum [25]. While we have been able to solve other permutations arising from

mitochondria data in a small amount of time, 16 this 36-element permutation has

proven extremely difficult to solve to optimality. The near-optimal solution of the

figure was found after 24 s of computation on a 33 Mhz Silicon Graphics Iris

x6 Computing the inversion distance between the mitochondrial genomes of mammals and the yeast

Sehizosaceharomyeespombe took 3.5 rain (29 genes and 19 inversions), and between mammals and the

fly Drosophila yakuba took 1.7 rain (37 genes and 16 inversions). We make no claim for the biological

significance of the particular solutions found, though the inversion distance tends to reflect evolutionary

divergence.

Exact and Approximation Algorithms for Sorting by Reversals 203

12 [31 34 28 26 17 2 9 4 9 3 6 1 8 3 5 1 9 1 16 14 32 33 22 1511 2 7 5 2 0 1 3 1 3 0 2 3 1 0 6 3 2 4 2 1 8 2 5 2 7

12 13 2 0 5 2 7 1 1 1 5 2 2 3 3 3 2 1 4 1 6 119 ~ 36 9 4 2917 26 28 34 3130 2310 6 3 24 218 25 2 7

12 13 20152711 15 22 33 32 14 16 1 1 9 1 8 3 5 3 6 9 1 4 2 9 1 7 2 6 2 8 3 4 3 1 3 0 2 3 1 0 6 3 2 4 2 1 8 2 5 2 7 "

12 13 20193635 18 1 9 1 1 6 1 4 3 2 3 3 2 2 1 5 11 2 7 5 4 2 9 1 7 2 6 2 8 3 4 3 1 3 0 2 3 1 0 6 3 2 4 2 1 1 8 2 5 2 7

12 13 20 21 2413 610 23 30 3134 28 2617 29 4 5 271115 22 33 '3214161 19 18 35 3 6 9 8 2 5 1 2 7

112 13 20 21 24 2 5 8 9 3 6 3 5 18 191 16 14 32 33 22 15111 2 7 5 4 2 9 1 7 2 6 2 8 3 4 3 1 3 0 2 3 1 0 6 3 2 7

15122 33 32 14 16 1 19 18 35 36 9 8 25 24121 20 13 12 11 27 5 4 29 17 26 28 34 31 30 23 I0 6 3 2 7

1!52425893635 18 1 9 1 1 1 6 1 4 3 2 3 3 2 2 2 1 2 0 1 3 1 2 1 1 2 7 5 4 2 9 1 7 2 6 2 8 3 4 3 1 3 0 2 3 1 0 6 3 2 7

1 19 1 8 1 3 5 3 6 9 8 2 5 2 4 15 16 14 32 33 22 21 20 13 12 11 2 7 5 4 2 9 1 7 2 6 2 8 1 3 4 3 1 3 0 2 3 1 0 6 3 2 7

1 19 1 8 1 2 8 2 6 1 7 1 2 9 4 5 2 7 1 1 1 2 1 3 2 0 2 1 2 2 3 3 3 2 14 16 15 24 2 5 8 9 3 6 3 5 3 4 3 1 3 0 2 3 1 0 6 3 2 7

11191817 26 28 29 4 5 27111213120 2122 33 32 14 16 15 24 2 5 8 9 3 6 3 5 3 4 3 1 3 0 2 3 1 0 6 3 2 7

1 [..13 12 11 27 5 4 29 28 26 17:18 19 20 21 22 33 32] 14 16 15 24 25 g 9 36 35 34 31 30 23 10 6 3 2 7

1132 33 22 21 20 19 18 17 26 28 29 4 5 27 11 12 13 i4 16 15 24 25 8 9 36 35 34 31 30 23 10 6 3 2] 7

1 2 3 6 1 1 0 2 3 3 0 3 1 3 4 3 5 3 6 1 9 8 2 5 2 4 1 5 1 6 1 4 1 3 1 2 1 1 2 7 5 4 2 9 2 8 2 6 1 7 1 8 1 9 2 0 2 1 2 2 3 3 3 2 7

1 2 3 6 1 3 6 3 5 3 4 3 1 3 0 2 3 1 0 9 8 2 5 2 4 1 5 16 14 1312 "1127 5 4 29 28 2 6 1 7 1 8 1 9 20 2122 33 32 71

1 2 3 1 6 7 3 2 3 3 2 2 2 1 2 0 1 9 1 8 1 7 2 6 2 8 2 9 4 1 5 2 7 1 1 1 2 1 3 1 4 16 15 24 2 5 8 9 1 0 2 3 3 0 3 1 3 4 3 5 3 6

1 2 3 4 2 9 2 8 2 6 1 1 7 1 8 1 9 2 0 2 1 2 2 3 3 3 2 7 6 5 2 7 1 1 1 2 13 14116 15 24 2 5 8 9 1 0 2 3 3 0 3 1 3 4 3 5 3 6

1 2 3 4 2 9 2 8 2 6 14 13 12 11127 5 6 7 32 33 22 2 1 2 0 1 9 1 8 1 7 1 6 i5 24 25 8 910123 30 3134 35 36

1 2 3 4 29 28 26114 13 12 11 I0 9 8 25 24115 16 17 18 19 20 21 22 33 32 7 6 5 27 23 30 31 34 35 36

1 2 3 4 2 9 2 8 2 6 1 2 4 2 5 8 9 1 0 1 1 1 2 13 14 15 16 17 18'"i9 20 21 22 33 3 2 7 6 5 2 7 1 2 3 3 0 3 1 3 4 3 5 3 6

1 2 3 4 1 2 9 2 8 2 6 2 7 5 6 7 3 2 3 3 2 2 2 1 2 0 1 9 1 8 17 16 15 14 13 1211 1 0 9 8 2 5 2 4 2 3 1 3 0 3 1 3 4 3 5 3 6

1 2 3 4 1 2 3 2 4 2 5 8 9 1 0 1 1 1 2 13 14 15 16 17 18 19 20 21 22 33 3 2 7 6 5 [2 7 2 6 2 8 2 9 3 0 3 1 3 4 3 5 3 6

1 2 3 4 5 6 7 L 3 2 3 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 II 1 0 9 8 1 2 5 2 4 2 3 2 7 2 6 2 8 2 9 3 0 3 1 3 4 3 5 3 6

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 16 17 18 19 20 21 22133 32 25 24 23 27 26 28 29 30 31134 35 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 2 1 3 1 3 0 2 9 2 8 2 6 2 7 2 3 2 4 2 5 1 3 2 3 3 3 4 3 5 3 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ~ 27 26 28 29 30 3132 33 34 35 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21:22 23 24 25 ~ 28 29 30 3132 33 34 35 36

Fig. Ifl, Near-optimal solution for gene orders from the mitchondrial genomes of mammals and the

flatworm Ascaris suum. This solution of 27 reversals is provably within two reversals of opti-

mal.

4D/300GTX. The lower and upper bounds from this run, of 25 and 27 reversals,

were found using a lower-bound family of six and an upper-bound look-ahead of

five reversals.~7 The search tree during look-ahead had a maximum size of 2234

nodes, where this counts all nodes at which a linear programming problem was

solved (including nodes that were pruned by the lower bound). From the difference

between the upper and lower bounds, we know that this solution is within two

reversals of optimal. A family of ten and a look-ahead of eight, which required a

search of 408,653 nodes and terminated after 7.5 h of computation, failed to

improve the bounds by one reversal.

The limit of what we can reliably solve to optimality is around 30 elements.

Table 2 gives the running time and search-tree size to solve a sample of 10 random

17 As described in Section 3.3, the follow-through for the upper bound was equal to the look-ahead

in all experiments.

204 J. Kececioglu and D. Sankoff

Table 2. Running time and search-tree size for exact solution of random permutations on 30 elements.*

Running time

Tree size

Upper bound algorithm Exact algorithm

Min. Max. Med. Ave. Min . Max. Med. Ave. Min. Max. Med. Ave.

0: 05 43 : 48 1 : 29 6 : 53 228 372,563 11,419 45,393 0 8,291 29 843

* The lower-bound family is eight, the upper-bound look-ahead is six reversals, and the sample size is ten
permutations. The running time is the total time for the exact algorithm in minutes, which includes the time to
compute the upper bound. The'tree size for the upper-bound algorithm is the maximum size of the search tree during
look-ahead. The average reversal distance of the sample is 20.6.

permutations on 30 elements to optimality. Though the lower-bound family and

upper-bound look-ahead were the same across these runs, the execution time and

search-tree size varied by three orders of magnitude. Since the average running

time and tree size are skewed by these outliers, we also give median values, which

are more representative of the sample.

That we could solve these instances to optimality is due to the tightness of the

bounds. Over the ten permutations, the maximum difference between the upper

and lower bound was two reversals, and in each case, the exact solution value was

equal to the lower bound. Except for the one permutation on which the exact

algorithm examined over 8000 nodes, a common picture emerged from these runs.

Optimal solution involved the upper-bound algorithm exploring a rather large tree

to find a solution within one or two reversals of optimal; with this solution

in hand, the exact algorithm hugged the left chain of its search tree to make up the

difference to the lower bound, which was exact.

The effect of varying the family and look-ahead is shown in Table 3. On random

permutations of 50 elements, the average lower bound reached a maximum of

roughly 36 reversals at family 6, and the average upper bound did not improve

much on 38 reversals beyond look-ahead 5.18 Consequently, these values, family

6 and look-ahead 5, were used in the remaining experiments.

The search tree for these runs was limited to 50,000 nodes. Once this limit was

exceeded, the best series known within the look-ahead was used to form the upper

bound. Column T gives the median tree-size for the sample, where the tree size

of a run is the maximum size of the search tree during look-ahead. For a

look-ahead of six or more, the majority of runs had a tree size meeting the limit.

Column C gives the median number of cycle sets on k or few breakpoints, which

is equivalent to the number of variables in the linear program for the lower bound

at family k. The number of constraints on these variables is essentially the number

of breakpoints in the permutation.

In the third set of experiments, we studied the quality of the approximation

algorithm and the upper-bound algorithm on random permutations. Results are

18 Notice that the average upper bound actually increased at look-ahead 8.

Exact and Approximation Algorithms for Sorting by Reversals 205

Table 3. Lower bound L, upper bound U, number of cycle sets C,

and tree size T, at various families and look-aheads, for random

permutat ions on 50 elements.*

L U C T

k Ave. Ave. Med. Med.

1 26.0 43.7 0 917

2 32.1 40.8 4 2,907

3 34.5 39.5 14 4,312

4 35.5 39.1 40 24,242

5 35.7 38.4 119 36,676

6 35.9 38.2 353 50,000

7 35.9 38.0 910 50,000

8 35.9 38.9 2,464 50,000

* The maximum tree-size is 50,000 nodes, and sample size is 10 permutations.
Row k gives the lower bound for family k, the upper bound for look-ahead k,
the number of cycle sets of at most k breakpoints for the lower bound, and the
maximum tree-size for the upper bound during look-ahead.

given in Table 4, where Dev. denotes the standard deviation. Note that the

maximum difference between the upper and lower bound, which is what limits the

range of optimal solution, was at most two reversals for n up to 30, while the

average difference between the bounds was around 2.5 reversals for n up to 50.

This suggests that, while we can find optimal solutions for at most around 30

elements, we can find near-optimal solutions that may be acceptable quality for

up to 50 elements.

Table 4. Lower bound L, upper bound U, approximation A, and tree size T for random permutat ions

on n elements.*

L U U - L A A / L T

n Ave. Dev. Ave. Dev. Ave. Max. Ave. Dev. Ave. Max. Med.

10 6.0 1.1 6.0 1.1 0.0 0 6.1 1.0 1.02 1.20 0

20 12.6 1.2 13.2 1.5 0.6 2 14.8 1.5 1.18 1.31 517

30 20.8 0.9 21.8 1.6 1.0 2 24.9 1.5 1.20 1.25 4,615

40 28.5 1.1 30.3 1.6 1.8 4 33.8 2.0 1.t9 1.24 23,712

50 35,9 1.4 38.4 1.8 2.5 5 43.7 2.7 1.22 1.31 36,676

60 43.6 1.1 46.7 1.5 3.1 5 52.6 1.6 1.21 1.26 50,000

70 51.7 1.3 56.7 2.4 5.0 8 63.4 3.0 1.23 1.30 50,000

80 58.9 1.0 64.5 2.0 5.6 8 72.3 2.3 1.23 1.26 50,000

90 67.6 1.4 74.1 2.1 6.5 8 83.2 1.8 1.23 1.25 50,000

100 74.2 1.1 82.4 2.6 8.2 10 91.9 2.7 1.24 1.27 50,000

* The lower-bound family is six, the upper-bound look-ahead is five reversals, the maximum tree size is 50,000 nodes,
and the sample size is ten permutations. Approximation A is the number of reversals from the greedy algorithm.
Tree size T is the maximum tree-size for the upper bound during look-ahead.

206 J. Kececioglu and D. Sankoff

Table 5. Upper bound U and lower bound L for permutations on

100 elements generated by k random reversals.*

U L

k Ave. Dev. Ave. Dev.

5 5.0 0.0 5.0 0.0

10 10.0 0.0 10.0 0.0

15 15.2 0.4 15.0 0.0

20 19.5 0.9 19.4 1.0

25 25.0 0.9 24.5 0.9

30 30.0 1.3 29.3 1.0

35 34.6 2.1 33.5 1.8

40 39.0 1.6 37.3 2.0

45 43.9 2.2 42.5 2.2

50 47.3 2.0 45.5 1.4

55 51.8 3.0 48.5 2.8

60 54.2 2.7 50.7 2.0

65 58.5 2.6 54.3 2.5

70 60.0 4.3 56.0 3.1

75 62.0 2.8 57.7 2.4

80 64.9 3.9 60.4 2.8

85 67.0 2.6 61.9 2.0

90 69.8 3.0 64.9 2.2

95 72.2 2.2 65.1 1.5

100 72.0 2.9 65.3 1.7

* The upper-bound look-ahead is five
six, the maximum tree-size is 50,000
permutations.

reversals, the lower-bound family is
nodes, and the sample size is ten

The average performance ratio of the approximation algorithm for the sample

was around 5/4, while the poorest ratio was less than 4/3.

In the final set of experiments, we were interested in the following question: How

well does reversal distance recover the actual number of reversals performed on a

permutation? To examine this, we generated permutations by scrambling the

identity with k random reversals, taking care not to reverse single elements. Table

5 gives upper and lower bounds on the reversal distance, for permutations on 100

elements with up to 100 random reversals. For k < �89 the average upper bound

estimated k to within one reversal, but for k > �89 it increasingly underestimated k.

Notice that when both endpoints of every reversal in a series of length k fall

at new positions, the reversal distance for the resulting permutation is precisely

k. 19 Since a permutation on n elements can have at most n + 1 breakpoints, the

maximum number of reversals for which this can happen is �89 + 1), which may

partly explain why we observe a change in behavior around k = �89

19 This follows because k is a lower bound, as well as an upper bound, on the reversal distance: the number

of breakpoints divided by two, which lower bounds reversal distance, is in this situation equal to k.

Exact and Approximation Algorithms for Sorting by Reversals 207

5. Conclusion. Algorithmic study of the reversal distance between permutations

is in its earliest stages. We have presented two algorithms: a greedy approximation

algorithm, and a branch-and-bound exact algorithm. By analyzing the A O

sequence of the greedy algorithm, we were able to show it achieves a worst-case

approximation factor of 2, and by applying matchings, shortest paths, and linear

programming, we derived a class of nontrivial lower bounds for our exact

algorithm.

Experiments with the exact algorithm indicate that we can solve random

permutations up to around 30 elements to optimality, usually in a few minutes,

and that for permutations generated by k random reversals, the average solution

value is a good estimate of the number of reversals when k is less than half the

number of elements.

We close with some conjectures and lines for future research.

5.1. Further Research. One question that we would like to resolve is the

computational complexity of sorting by reversals. We conjecture it is NP-complete,

and believe the crux of the problem is the following.

CONJECTURE 1. Deciding whether OvT(n) < �89 is NP-complete.

Notice that this special case has a lot of additional structure--for instance, every

breakpoint must be paired with another in G(n)--which should simplify a proof (or

disproof). On the other hand, a disproof by an efficient algorithm would improve

our lower bounds of Section 3.2.

To design a more efficient exact algorithm, we need theorems on the structure

of a solution. In particular, do we really need to consider all (~) reversals to find

an optimal solution?

It is natural to think we can throw out reversals that cut strips, since such a

reversal separates elements that will have to be joined together later. Un-

fortunately, this is incorrect. Permutation (3 4 1 2), for example, requires three

reversals if we do not cut strips, yet it can be sorted in two reversals, as follows:

1341121 F- 114321 ~- 1 2 3 4 .

Nevertheless, we believe the following is true.

CONJECTURE 2. Every permutation has an optimal solution that does not cut strips

other than at their first or last element.

If true, this reduces the number of candidate reversals from O(n 2) to O(tI)2(Tz)).
Our belief in Conjecture 2 is based on the following.

CONJECTURE 3. Every permutation has an optimal solution that never increases the

number of breakpoints.

208 J. Kececioglu and D. Sankoff

Another tempting idea is to decompose the permutation into knots, where a

knot of x is an interval [a, b] such that

�9 zr(/)e[1, a) for i e [1 , a),

�9 rr(/) e [a, b] for i ~ [a, b], and

�9 ~z(i) e (b, n] for i e (b, n],

and then solve knots independently. This is appealing, since a permutation can

always be sorted without an element crossing a knot. Perhaps surprisingly,

it is not optimal. Permutation (2 1 5 6 3 4), for example, has knots [1, 2]

and I-3, 6], and takes four reversals if we solve the knots separately. Yet, by working

on the knots together, the permutation can be sorted in three reversals, as shown

below:

1211561341 F- 1 6 5 1 1 2 3 4 1 ~- 1 4 3 2 1 1 5 6 F- 1 2 3 4 5 6 .

Finally, we note that the suboptimality of the greedy algorithm is not due to

the fact that it chooses arbitrarily among moves that appear equally good. It is

necessary to consider 1-moves when 2-moves are available. Permutation

(5 6 2 1 8 7 3 4), for example, has one 2-move, [3, 6], and taking this move

leads to a solution of four reversals. Yet the permutation can be sorted in three

reversals, as follows:

15 612 118 713 41 ~- 1 216 518 713 41 ~- 1 216 5 4 317 8 ~- 1 2 3 4 5 6 7 8.

Before concluding, we remark that the biological motivation for reversal

distance suggests several variations. Here we identify five aspects of the problem

that may be varied:

(1) The linear~circular variation. Some organisms and organelles have circular

chromosomes, for which the data is the order of genes around a circle. In this

case, cyclic shifts of a permutation are isomorphic, which means (zq .-. %) is

equivalent to (z~i-. �9 ~, nl "'" rci_ 1). A solution is then a series of reversals and

cyclic shifts that transform one permutation to another, and we seek a solution

with the fewest reversals.

(2) The signed/unsioned variation. A gene is not a point on a line or circle; it is a

region of sequence. The sequence has a reading direction, and a reversal

reverses not only the order of genes, but their direction as well.

When two chromosomes are compared, information may be available on

gene direction, as well as order. We can encode this information by associating

a sign with each element: positive for the forward direction, and negative for

the reverse. A reversal then changes the sign of elements it reverses.

In the signed case, we have two signed permutations, and we seek a shortest

series of signed reversals that transform one into the other. In some respects,

this case is easier to analyze. Conjecture 3, for instance, holds.

(3) The directed~undirected variation. When a chromosome is analyzed, sometimes

only the adjacency of genes is determined, not their absolute order. In the

Exact and Approximation Algorithms for Sorting by Reversals 209

linear case, this means the given order may be left to right, or right to left, and

in the circular case, clockwise or counterclockwise.

(4) The weighted/unweiohted variation. We have assumed that all reversals are

equally probable, so it is appropriate to count their number. For a first

approximation this is reasonable, but a finer analysis might weight reversals

by a function of their length, and find a series of minimum total weight.

(5) The pairwise/multiple variation. Even though the objective of the reversal

distance problem is not to find an alignment of the input, as is often the case

with sequence comparison, we can define a multiple-chromosome comparison

problem in analogy to multiple alignment. Given a set of orderings of

the same genes, how can we infer an evolutionary tree, and a set of

hypothetical ancestral orderings, so as to minimize the total reversal distance

of the tree? Admittedly, a practical exact solution method appears unlikely,

but a good approximation method would be useful as well.

Clearly, there are many possibilities for exploration.

Acknowledgments. Guillaume Leduc, in analyzing signed reversals, contributed

to the line of proof that ~(n) bounds OPT(n). Holger Golan began the study of

the distribution of OPT(n) for small n, and with his conjectures on the diameter

of the symmetric group generated by reversals, stimulated the search for better

lower bounds. Michel Berkelaar generously provided the sparse linear pro-

gramming code used in our experiments.

Our thanks to the referees for their comments. The first author also wishes to

thank Dan Gusfield, Paul SteUing, and Lucas Hui for many helpful discussions.

Note Added in Proof A shorter version of this paper appeared as [12a], and an

extension to signed permutations is given in [12b]. For signed permutations, we

observe an average difference, between the greedy approximation and a

simplified lower bound, of less than one reversal, for n up to 10,000. Bafna and

Pevzner [2a] have since improved the performance ratio to 7/4 for unsigned

permutations, and 3/2 for signed permutations, and have also established Gollan's

conjecture.

References

[1] Aigner, M., and D. B. West. Sorting by insertion of leading elements. Journal of Combinatorial

Theory, Series A, 45, 306-309, 1987.

[21 Amato, N., M. Blum, S. lrani, and R. Rubinfeld. Reversing trains: a turn of the century sorting

problem. Journal of Algorithms, i0, 413-428, 1989.

[2a] Bafna, V., and P. A. Pevzner. Genome rearrangements and sorting by reversals. Proceedings

of the 34th Symposium on Foundations of Computer Science, November 1993, pp. 148-157.

[3] Bibb, M. J., R. A. van Etten, C. T. Wright, M. W. Walberg, and D. A. Clayton. Sequence and gene

organization of mouse mitochondrial DNA. Cell, 26, 167-180, 1981.

210 J. Kececioglu and D. Sankoff

[4] Dobzhansky, T. Genetics of the Evolutionary Process. Columbia University Press, New York,

1970.

I-5] Driscoll, J. R., and M. L. Furst. Computing short generator sequences. Information and

Computation, 72, 117-132, 1987.

[6] Even, S., and O. Goldreich. The minimum-length generator sequence problem is NP-hard.

Journal of Algorithms, 2, 311-313, 1981.

[7] Furst, M., J. Hopcroft, and E. Luks. Polynomial-time algorithms for permutation groups.

Proceedinos of the 21st Symposium on Foundations of Computer Science, 1980, pp. 36~1.

I-8] Garey, M. R., and D. S. Johnson. Computers and Intractability." A Guide to The Theory of

NP-Completeness. Freeman, New York, 1979.

[9] Gates, W. H., and C. H. Papadimitriou. Bounds for sorting by prefix reversal. Discrete

Mathematics, 27, 47-57, 1979.

[10] Golan, H. Personal communication, 1991.

[11] Jerrum, M. R. The complexity of finding minimum-length generator sequences. Theoretical

Computer Science, 36, 265-289, 1985.

[12] Johnson, D. B. Finding all the elementary circuits of a directed graph. SIAM Journal on

Computing, 4(1), 77-84, 1975.

1-12a] Kececioglu, J., and D. Sankoff. Exact and approximation algorithms for the inversion distance

between two chromosomes. Proeeedinos of the 4th Symposium on Combinatorial Pattern

Matching, Lecture Notes in Computer Science, vol. 684, Springer-Verlag, Berlin, June 1993,

pp. 87-105. (An earlier version appeared as "Exact and approximation algorithms for sorting

by reversals," Technical Report 1824, Centre de recherches mathrmatiques, Universit6 de

Montrral, July 1992).

[12b] Kececioglu, J., and D. Sankoff. Efficient bounds for oriented chromosome-inversion distance.

Proceedinos of the 5th Symposium on Combinatorial Pattern Matchin#, Lecture Notes in

Computer Science, vol. 807, Springer-Verlag, Berlin, June 1994, pp. 307-325.

[13] Knuth, D. E. The Art of Computer Programming, Vol. 3. Addison-Wesley, Reading, MA, 1973.

[14] Mannila, H. Measures of presortedness and optimal sorting algorithms, IEEE Transactions on

Computers, 34, 318-325, 1985.

[15] Micali, S. and V. Vazirani. An O(Ix/~ ' lE[) algorithm for finding maximum matchings in

general graphs. Proceedings of the 2lst Symposium on Foundations of Computer Science, 1980,

pp. 1%27.

[16] Nadeau, J. H., and B. A. Taylor. Lengths of chromosomal segments conserved since divergence

of man and mouse. Proceedinos of the National Academy of Sciences of the USA, 81, 814, 1984.

[17] O'Brien, S. J., ed. Genetic Maps: Locus Maps of Complex Genomes. 6th edition. Cold Spring

Harbor Laboratory Press, Cold Spring Harbor, NY, 1993.

[18] Palmer, J. D., B. Osorio, and W. F. Thompson. Evolutionary significance of inversions in legume

chloroplast DNAs. Current Genetics, 14, 65-74, 1988.

[19] Sankoff, D., G. Leduc, N. Antoine, B. Paquin, B. F. Lang, and R. Cedergren. Gene order

comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proceedings of

the National Academy of Sciences of the USA, 89, 6575-6579, 1992.

[20] Sch6niger, M., and M. S. Waterman. A local algorithm for DNA sequence alignment with

inversions. Bulletin of Mathematical Biology, 54, 521-536, 1992.

[21] Sessions, S. K. Chromosomes: molecular cytogenetics. In Molecular Systematics, D. M. Hillis

and C. Moritz, eds., Sinauer, Sunderland, MA, 1990, pp. 156-204.

[22] Tichy, W. F. The string-to-string correction problem with block moves. ACM Transactions on

Computer Systems, 2(4), 309-321, 1984.

[23] Wagner, R. A. On the complexity of the extended string-to-string correction problem. In Time

Warps, Strin 9 Edits, and Macromolecules: The Theory and Practice of Sequence Comparison,

D. Sankoff and J. B. Kruskal, eds., Addison-Wesley, Reading, MA, 1983, pp. 215-235.

[24] Watterson, G. A., W. J. Ewens, T. E. Hall, and A. Morgan. The chromosome inversion problem.

Journal of Theoretical Biolooy, 99, 1-7, 1982.

[25] Wolstenholme, D. R., J. L. MacFarlane, R. Okimoto, D. O. Clary, and J. A. Wahleithner. Bizarre

tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms.

Proceedinos of the National Academy of Sciences of the USA, 84, 1324-1328, 1987.

