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Exact and Approximation Algorithms for Sorting by 
Reversals, with Application to Genome Rearrangement 

J. K e c e c i o g l u  1 a n d  D.  S a n k o f f  2 

Abstract. Motivated by the problem in computational biology of reconstructing the series of 

chromosome inversions by which one organism evolved from another, we consider the problem of 

computing the shortest series of reversals that transform one permutation to another. The permutations 

describe the order of genes on corresponding chromosomes, and a reversal takes an arbitrary substring 

of elements, and reverses their order. 

For this problem, we develop two algorithms: a greedy approximation algorithm, that finds a 

solution provably close to optimal in O(n 2) time and O(n) space for n-element permutations, and a 

branch-and-bound exact algorithm, that finds an optimal solution in O(mL(n, n)) time and O(n 2) space, 

where m is the size of the branch-and-bound search tree, and L(n, n) is the time to solve a linear 

program of n variables and n constraints. The greedy algorithm is the first to come within a constant 

factor of the optimum; it guarantees a solution that uses no more than twice the minimum number 

of reversals. The lower and upper bounds of the branch-and-bound algorithm are a novel application 

of maximum-weight matchings, shortest paths, and linear programming. 

In a series of experiments, we study the performance of an implementation on random permutations, 

and permutations generated by random reversals. For permutations differing by k random reversals, 

we find that the average upper bound on reversal distance estimates k to within one reversal for k < �89 

and n < 100. For the difficult case of random permutations, we find that the average difference between 

the upper and lower bounds is less than three reversals for n < 50. Due to the tightness of these bounds, 

we can solve, to optimality, problems on 30 elements in a few minutes of computer time. This 

approaches the scale of mitochondrial genomes. 

Key Words. Computational biology, Approximation algorithms, Branch-and-bound algorithms, 

Experimental analysis of algorithms, Edit distance, Permutations, Sorting by reversals, Chromosome 

inversions, Genome rearrangements. 
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Fig. 1. Evolution of the pea chloroplast genome by five overlapping inversions. 

comes in large part from computational biology: at the level of individual characters, 

genetic sequences mutate by these operations, so edit distance is a useful measure 

of evolutionary distance. 

At the chromosome level, however, genetic sequences mutate by more global 

genome rearrangements, such as the reversal of a substring (inversion), the deletion 

and subsequent reinsertion of a substring far from its original site (transposition), 

the copying of a substring (duplication), and the exchange of prefixes or suffixes 

of two chromosomes in the same organism (translocation). An inversion, which 

takes a substring of unrestricted size and replaces it by its reverse in one operation, 

has the effect of reversing the order of the genes contained within the substring, 

and is perhaps the most common of these operations [21, pp. 174-175], especially 

in organisms with one chromosome. 

For example, the only major difference between the gene orders of two of the 

most well-known bacteria, Escherichia coli and Salmonella typhimurium, is an 

inversion of a long substring of the chromosomal sequence [17]. In plants, Palmer 

et al. [18] modeled the evolution of part of the pea chloroplast genome, which is 

also a single chromosome, in terms of five successive overlapping inversions, as we 

illustrate in Figure 1. In the fruit fly, genus Drosophila, inversions are a far more 

frequent reflection of differences between and within species than translocation or 

other processes [4, p. 155]. 

The importance of inversion in these examples suggests that algorithmic study 

of genome rearrangement by inversion alone is a worthwhile step in the study of 

evolutionary distance at the level of the chromosome. Once this problem is 

understood, other processes such as transposition [19] and translocation [16] can 

be added to refine the model. 

In the mathematical problem that we consider, we are given the order of n genes 

in two related single-chromosome organisms or two related organelles, which we 

represent by permutations 00 = (a 1 0~ " ' "  00n) and z = (zl T2 " ' "  Zn) -3 (In this 

notation, 00i denotes 00(i).) Such gene orders often come from genetic maps, that are 

the distillation of the work of many experimental geneticists. In current practice, 

the positions of the genes are increasingly found by sequence comparison, or 

DNA hybridization, as opposed to the mapping experiments of traditional 

genetics. 

3 Genes in one organism may be missing in the other. We assume, however, that such genes 

can be removed from the analysis, and that gene insertions and deletions can be analyzed 

separately. 
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We model an inversion by the reversal of an interval of elements. Formally, a 

reversal of interval [i,j] is the permutat ion 4 

i + 1  

P =  j - - 1  "" " 

Applying p to a by the composition s a-  p has the effect of reversing the order of 

genes ai, try+ 1 . . . .  , aj. Our  problem is the following. 

DEFINITION. The reversal distance problem on permutations is, given permuta- 

tions a and z, find a series of reversals pt, P2 . . . . .  pn such that 

f f 'Pl  "Pz ' "Pd  = ~, 

and d is minimum. 

We call d the reversal distance 6 between a and z. Like edit distance, it satisfies 

the axioms of a metric. Reversal distance measures the amount  of evolution that 

must have taken place at the chromosome level, assuming evolution proceeded 

�9 by inversion. 

Notice that the reversal distance between tr and z is equal to the reversal distance 

between z - l ' a  and the identity permutat ion z, where z-1 denotes the inverse of 

z. 7 Hence, we can take as our input the permutat ion n = z-~a,  and compute its 

distance from t. We call this formulation of the problem, sorting by reversals. Note 

also that any algorithm for the reversal distance between two strings that does not 

exploit a bounded-size alphabet must, as a special case, solve the reversal distance 

problem on permutations. 

From an algebraic point of view, reversals generate the group of permutations 

under composition. Given an arbitrary group element n, we seek a shortest product 

of generators PIP2"'" Pn that equals n. 

1.1. Related Work. Little is known about  reversal distance: even its computa-  

tional complexity is open. The only reference to an algorithm appears to be in 

Watterson et al. [24], which gives the first definition of the problem, and a heuristic 

for computing reversal distance that is described in Section 2. Since there are so 

few references, we can give a fairly exhaustive coverage of related work. 

# T h i s  no t a t i on  is s h o r t h a n d  for p( i )=j ,p ( i  + 1 ) = j -  1, etc. Ou t s ide  interval  [i,j], p leaves the 

e lements  unchanged.  

5 The composition of pe rmu ta t i ons  a and  p, ind ica ted  by a .  p, is a pe rmu ta t i on  n where n(i) = a(p(i)). 

6 We  also in formal ly  refer to d as the inversion distance. 

7 The identity p e r m u t a t i o n  t is (1 2 ... n). The  inverse of p e r m u t a t i o n  n is the p e r m u t a t i o n  ~z -1 

sat isfying n -  ~" n = t. 
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From the perspective of edit distance, the work of Wagner [23] is interesting. 

Wagner considers the problem of computing the minimum number of insertions, 

deletions, substitutions, and transpositions of adjacent characters, to convert one 

string to another, and shows that if the operations are restricted to deletion and 

transposition, the problem is NP-complete. If we restrict our problem to reversals of 

length two, in other words the adjacent transpositions of Wagner, the reversal 

distance between a and z reduces to the so-called inversion number of rc = z-  ~cr, 

the number of pairs of i < j such that rc i > re j, which is clearly computable in 

polynomial time (see [13, p. 11]). Tichy [22] also considers a variation of edit 

distance, but it is less closely related to our work. More recently, Sch6niger and 

Waterman [20] present a heuristic for computing edit distance when only 

nonoverlapping inversions are allowed. 

From the perspective of sorting, related work is by Gates and Papadimitriou 

[9]. They consider the problem of sorting a permutation by p r e f i x  reversals,  s which 

are reversals of the form [1, i], and derive bounds on the diameter of the problem. 

The diameter  of the prefix reversal problem, which we denote by dpre~x(n), is the 

maximum of the minimum number of prefix reversals to sort any permutation on n 

elements. Gates and Papadimitriou show that dprefix(n ) __< 35n + 5, and that for 
> 1 7 .  infinitely many n, dpr~fix(n)_ ~n .  Under the requirement that each element is 

reversed an even number of times, which may be appropriate if elements have an 

orientation (see Section 5), they show 3n - 1 < dpr~fix(n ) _< 2n + 3. In other work, 

Aigner and West [1] consider the diameter of sorting when the operation is 

reinsertion of the first element, and Amato et  al. [2] consider a variation inspired 

by the problem of reversing trains on a track. 

For our problem of sorting by unrestricted reversals, it appears tighter bounds 

on the diameter are possible. The heuristic of Watterson et  al. [24] sorts any 

n-element permutation in n - 1 reversals, so, writing d(n) for the diameter of our 

problem, we know d ( n ) <  n -  1. From the other direction, Golan [10] has 

conjectured 9 that a particular n-element permutation, which we denote by ytn), 

requires n - 1 reversals, and has verified this for n up to 12. Recursively, 

((1), n is zero, 

Y~n+l)=~(Y(l") Y~")"'" Y~)-i n + l  ~(~')), nisodd, 

~(y(n) y(2 n) . . .  ~(nn)_2 n + l  y(~)Y~)-l), n iseven. 

Using the lower bound developed in Section 3.2, we have verified the conjecture 

for n up to 200 when n mod 3 = 1 ;  for n mod 3 ~ 1 ,  our computation 

showed 7(n) requires n - 2 reversals. If Golan's conjecture is true, d(n) = n - 1. 

Note that studying the diameter of the problem, and algorithms that meet the 

s This is also known as the pancakeflippin9 problem. 
9 Golan's full conjecture is somewhat stronger: that, for every n, ~,~n) and its inverse are the only 
permutations requiring n - 1 reversals. 
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diameter, does not give a guarantee of quality of approximation. For  

example, �89 + �89 is a lower bound on the diameter of our problem, and as we have 

indicated, the algorithm of Watterson et al. [24] uses no more than n - 1 reversals; 

nevertheless, as we will show, there are permutations for which this algorithm 

performs arbitrarily poorly in ratio. Section 2presents an approximation algorithm 

that does achieve a performance ratio of 2 for unrestricted reversals. 

Finally, from the perspective of group theory, [6] and [11] are interesting. Even 

and Goldreich [6] show that, given a set of generators for a permutation group G, 

and a permutation n, determining the shortest product of generators that equals 

is NP-hard. 1~ Their reduction implies that the problem remains NP-hard even 

when every generator is its own inverse, as is the case in our problem. Jerrum [11] 

established that the problem is PSPACE-complete, and remains so when restricted 

to two generators, it  

In our problem, the generator set is fixed. Thus, while these complexity results 

give us a sense of the problem, they do not imply the intractability of sorting by 

reversals. Nevertheless, we believe sorting by reversals is NP-complete. Section 5 

indicates one possible direction for a proof. 

1.2. Overview. In the next section, we present an approximation algorithm for 

sorting by reversals. We show that it never exceeds the minimum number by more 

than a factor of 2, and has a simple quadratic-time implementation. 

Section 3 develops an exact algorithm using the branch-and-bound technique. 

The lower bound uses a relaxation to maximum-weight matchings, and linear 

programming. 

Section 4 presents results from experiments with these algorithms. We study 

their performance on random permutations, and permutations generated by a 

fixed number of random reversals. 

Section 5 concludes with some open problems and conjectures. 

2. An Approximation Algorithm. Perhaps the most natural algorithm for sorting 

by reversals, suggested by Watterson et al. [24], is to bring element 1 into place, 

then element 2, and so on up to element n. Formally, at step i, perform reversal 

[i, n~- t], if zc i ~ i. Once step n - 1 is completed, element n must be in position n, 

so this sorts any n-element permutation in at most n - 1 reversals. 

While it is likely that permutations exist for every n that require n - 1 reversals 

[10], which, if true, means this algorithm is worst-case optimal, for specific instances 

the algorithm can perform arbitrarily poorly. Consider, for example, the 

10 Even and Goldreich also show that computing the diameter of G is NP-hard. Determining whether 
there is a product equal to n is solvable in polynomial time 17]. 
11 This result is best possible, since the case of a single generator can be solved in polynomial time. 
Jerrum also shows that the problem is polynomial-time solvable for any of the standard sets of 
generators for the symmetric and alternating groups: all transpositions or 2-cycles, all adjacent 
transpositions, all transpositions adjacent on the circle, all 3-cycles, and all 3-cycles with all pairs of 
disjoint transpositions. 
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permuta t ion  (n 1 2 ""  n - 1). Bringing 1 into place, then 2, and so on, uses n - 1 

reversals, yet the permuta t ion  can be sorted in two steps: reverse [-1, n], then 

[1, n - 1]. Thus, this algori thm can produce  a solution ~n  - 1) times longer than 

the shortest  solution, for arbitrari ly large n. Using the idea of a breakpoint ,  also 

in t roduced in [24], we show there is a simple algori thm guaranteed to use no 

more  than twice the minimum number  of  reversals. To  the best of our  knowledge, 

this is the first constant-factor  approximat ion  for sorting by reversals. 

In order  to describe the algorithm, we first define some terminology. 

A breakpoint of a permuta t ion  rc is a pair of adjacent positions (i, i + 1) such 

that  [n~+ 1 - n/I ~ 1. In other  words, (i, i + 1) forms a breakpoint  if values rq and 

n~ + 1 are not  consecutively increasing or decreasing. To  handle the boundaries,  we let 

n o have the value 0, n ,+ l  have the value n + 1, and allow i to range from 0 to n 

in the definition. Thus, (0, 1) is a breakpoint  if nl ~ 1, and (n, n + 1) is a breakpoint  

if n, ~ n. Notice  that  the identity permuta t ion  has no breakpoints ,  any other  

permuta t ion  has some breakpoint ,  and the number  ofbreakpoints  is at most  n + 1. 

When  [n~+ 1 - n l l  = 1, we say values hi+ a and n i are adjacent, and write 

h i +  1 "~ h i .  

A strip of n is an interval I-/,j] such that  (i - 1, i) and (j, j + 1) are breakpoints ,  

and no breakpoint  lies between them. In other  words, a strip is a maximal  run of 

increasing or decreasing elements. 

A reversal p affects the breakpoints  of n only at the endpoints  of p. (In the 

interior, p only makes an increasing pair  (n~, hi+ x) decreasing, and vice versa.) Let  

us write ~(n) for the number  of breakpoints  in n, and, for a given reversal p, let 

A(I)(n)  = r  - ( I ) ( n . p ) .  

Since a reversal [ i , j ]  changes the adjacency of only two points, namely (i - 1, i) 

and (j, j + 1), the only values A~(n) can take on are between - 2  and 2. Since a 

solution must  decrease the number  of breakpoints  from ~(n) to zero, a greedy 

strategy is to choose a reversal of maximum A~(n), which achieves the greatest 

decrease. As any n r t has a reversal with AO(n) > 0, we can always achieve a 

decrease of 2, 1, or 0. 

Figure 2 specifies our  greedy algorithm. The algori thm removes zero break- 

points when there are no reversals that remove one or two, so it is not  obvious 

that  it terminates. With the rule " favor  reversals that  leave decreasing strips," not  

only does the algori thm terminate,  it exceeds the minimum by at most  a factor of 2. 

2.1. Quality of the Approximation. In the following, a strip [ i , j ]  is decreasing if 

n~, n~+ ~ . . . . .  n i is decreasing. We consider a strip of one element to be decreasing, 

except for n o and r~, + ~, which are always increasing. Thus, the identity permuta t ion  

forms one increasing strip, extending from 0 to n + 1. 

LEMMA 1. Every permutation with a decreasing strip has a reversal that removes 

a breakpoint. 
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algorithm GREEDY(~) begin 

i : = 0  

while ~z contains a breakpoint do begin 

i : = i +  1 
Let p~ be a reversal that removes the most breakpoints of n, resolving ties 

among those that remove one breakpoint in favor of reversals that leave a 

decreasing strip. 

: :  7~ �9 Pi 

end 

return i, (Pl, P2 . . . .  , Pi) 

end 

Fig. 2. The greedy algorithm. 

PROOF. Consider  the decreasing strip of  n whose last element, rc~, is smallest .  

Element  n l -  1 mus t  be in an increasing strip (else zc~ is not  smallest), which lies 

either to the left or  to the right of  the strip containing 7q, as shown in Figure 

3. In  either case, the indicated reversal removes  at least one breakpoint .  [ ]  

LEMMA 2. Let  re be a permutation with a decreasing strip. I f  every reversal that 

removes a breakpoint o f  7z leaves a permutation with no decreasing strips, n has a 

reversal that removes two breakpoints. 

PROOF. Again consider the decreasing strip of  rc containing the smallest element 

rc i. Case (b) of  Figure  3 cannot  occur, since p is a reversal that  removes  a b reakpoin t  

and leaves a decreasing strip. Thus,  the increasing strip containing z~i - 1 must  be 

to the left of  the strip containing rc i, as in case (a). Call the reversal of  case (a), Pi. 

Consider  the decreasing strip of  rc whose first element, re j, is greatest.  Element  

rcj + 1 must  be in an increasing strip (else rcj is not  greatest) that  is to the right of 

the strip containing re j, as otherwise, a reversal ana logous  to case (b) removes  a 

~176176 

7[ 

~ri--i 

�9 ., p 

�9 ~ . ~  . . .  ~ . . .  ~ r r i - l - i l T r ~  . . .  

�9 . . I .  I... .I . . .  
,J ~ J 

P p 

(a) (b) 

Fig. 3. A permutat ion n with a decreasing strip has a reversal p that  removes a breakpoint. Element 

n i is the smallest element that is in a decreasing strip. 
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7ri-lfr l  ~rj ~rj+ 1 

�9 . .  I - - - - - - - - I  . . .  - - - - - - -  . . .  

7T 

Pi  Y 

P j  

Fig. 4. If every reversal that removes a breakpoint of n leaves a permutation with no decreasing strips, 

Pl and p~ must overlap. Elements n~ and nj are the smallest and largest in decreasing strips. 

breakpoint  and leaves a decreasing strip. Call pj the reversal for rc~ that is analogous 

to Pi. 

Notice that nj must lie in interval Pi and nj + 1 must lie outside, else p~ 

leaves a decreasing strip. Similarly, ni must lie in pj and n ~ -  1 outside, else pj 

leaves a decreasing strip. The situation is as shown in Figure 4. Intervals p, and pj 

overlap. 

We now argue that not only do p~ and Pi overlap, they must be the same interval. 

For  suppose p~ - pj is not empty. If it contains a decreasing strip, reversal pj 

leaves a decreasing strip, and if it contains an increasing strip, reversal p, 

leaves a decreasing strip. Similarly, interval pj - p~ must be empty, which implies 

p~ = pj. 

Since reversal p~ removes the breakpoint  on its left, and reversal pj removes the 

breakpoint  on its right, and as these breakpoints are distinct, reversal p = pi = pj 

removes two breakpoints. []  

LEMMA 3, The greedy algorithm sorts a permutation n with a decreasing strip in 

at most ~(n) - 1 reversals. 

PROOF. The proof  is by induction on ~(n). If n has a decreasing strip, O(n) > 2. 

When ~(n) = 2, n has a unique reversal p that removes the two breakpoints and 

sorts n. Since GREEDY will choose p, it sorts n in one reversal, and the basis holds. 

Suppose the lemma holds for all n' with less than ~(n) breakpoints. Since n has 

a decreasing strip, by Lemma 1 there is a reversal p that removes at least one 

breakpoint of n. Thus, the first step of GREEDY will transform n into a permutat ion 

n' with at most  qb(n) - 1 breakpoints. If n' has a decreasing strip, GREEDY sorts it 

in at most  ~(n) -- 2 reversals by the induction hypothesis, which sorts n in at most  

�9 ( n ) -  1 reversals. 

Now consider a n '  with no decreasing strips. We argue that ~(n') = ~(n) - 2. 

For  suppose ~(n') = qb(n) -- 1, the only other possibility. Since GREEDY chooses a 

reversal that removes the most  breakpoints, every reversal that removes a 
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breakpoint must remove exactly one breakpoint. Since, in such an event, GREEDY 

chooses a reversal that leaves a decreasing strip whenever possible, every available 

reversal that removes a breakpoint must leave no decreasing strips. However, by 

Lemma 2, this implies r~ has a reversal that removes two breakpoints, a 

contradiction. Thus q)(lr') = ~(Tr) - 2. 

Every reversal on a permutation with no decreasing strips creates a decreasing 

strip, which implies GREEDY will transform 7r' to a permutation 7r" with a decreasing 

strip. Moreover, ~(Tr") < q>(n') = q~(n) - 2. By induction, GREEDY sorts re" in at 

most ~(n) -- 3 reversals. Since GREEDY transformed n to 7r" in two steps, this sorts 

rr in at most ~(Tr) - 1 reversals. []  

THEOREM 1. The greedy algorithm sorts every permutation ~ in at most c~(n) 

reversals. 

PROOF. If ~ has a decreasing strip, by Lemma 3, GREEDY sorts it within ~(r0 

reversals. If rc has no decreasing strip, any reversal chosen by GREEDY transforms 

to a permutation re' with a decreasing strip such that O(rc') < q~(~). By Lemma 

3, GREEDY sorts re' in at most q)(rc') -- 1 reversals, which sorts ~ in at most q~(rc) 

reversals. []  

Since q)(rc) < n + 1, Theorem 1 implies that the greedy algorithm terminates in 

O(n) iterations. In the next section, we consider how to implement an iteration; 

here we simply note that an iteration runs in polynomial time. 

An algorithm for an optimization problem that runs in polynomial time and 

delivers a solution whose value is within a factor a of optimal is known as an 

~-approximation algorithm. An immediate consequence of Theorem 1 is the 

following. 

COROLLARY 1. The greedy algorithm is a 2-approximation algorithm for sorting by 

reversals. 

PROOF. Write OPT(~) for the minimum number of reversals to sort a permutation 

re, and GREEDY(E) for the number taken by the greedy algorithm. Since a solution 

must remove all breakpoints, and any reversal can remove at most two, 

11 OPT(7~) > (I)(7~) > -- GREEDY(/I:). 
- -  - - 2  

[] 

We do not know whether the bound of Corollary 1 is tight. 

2.2. Time and Space. How much time does an iteration of the greedy algorithm 

take? As there are in general (~) reversals to consider, a naive implementation 

could take O(n 2) time per iteration, or O(n a) time in total. By considering the form 

of reversals that remove breakpoints, we can find the greedy reversal for an iteration 

in O(n) time, which yields an O(n2)-time algorithm. 



Exact and Approximation Algorithms for Sorting by Reversals 189 

~r"" x [ y  ... x'J y '  ... 

Fig. 5. The form of a reversal that removes two breakpoints. Vertical bars denote breakpoints, x ~ x', 

and y ~ y'. 

A reversal that removes two breakpoints must have each endpoint at a break- 

point, and must create two adjacencies. Let us denote the left endpoint by 

(i, i + 1) and the right endpoint by (j, j + 1). Then reversal [i + 1, j ]  removes two 

breakpoints iff (i, i +  1) and ( j , j  + 1) are breakpoints, ni "~ nj, and ~zi+ 1 --~ rcj+ 1. 

This is illustrated in Figure 5. 

We can search for a reversal of this form as follows. Scanning zc, we identify 

each breakpoint (i, i + 1). If this is the left end of such a reversal, there must be a 

position j > i such that ( j , j  + 1) is a breakpoint, nj ,-~/ri, and nj+ 1 ' ~ '  7~i+ 1. There 

are two possible values for n j, namely n i - 1 and ni + 1. Given n-1,  we can find 

the positions where n~ - 1 and n~ + 1 occur in O(1) time. If either position meets 

the criteria above, we have found a reversal that removes two breakpoints. As 

there are O(n) candidates for the left endpoint, and n-1  can be computed in O(n) 

time, this finds a reversal that removes two breakpoints (if one exists) in O(n) time. 

If there is no reversal that removes two breakpoints, the greedy algorithm 

considers reversals that remove one breakpoint. A reversal that removes one 

breakpoint must have an endpoint at the breakpoint it removes; the other 

end may or may not lie at a breakpoint as shown in Figure 6. Given n -  1, we can 

find a reversal of form (a) or (b) in O(1) time per breakpoint, as explained above. 

The only question is how to determine efficiently whether the reversal leaves a 

decreasing strip. ~2 

Consider a reversal of form (a). Reversal I-i, j ]  leaves a decreasing strip iff 

�9 [1, i) contains a decreasing strip other than x, or 

�9 [i,j] contains an increasing strip 13 other than x', or 

�9 (j, n] contains a decreasing strip, or 

�9 xx' is decreasing. 

The only difficulty is in determining whether an interval contains an increasing 

strip, or a decreasing strip, in O(1) time. We can solve this by forming an array, 

. . .   ,jz . . . . . .  ... I ?"l . . .  

(a) (b) 

Fig. 6. The form of a reversal that removes one breakpoint. In the figure, x ~ x '  ~ x"  ~ x "  and y ~ z. 

Mirror images of (a) and (b) are considered to be the same form. 

12 Recall that the greedy algorithm breaks ties among reversals that remove one breakpoint by favoring 

reversals that leave decreasing strips. 

13 A strip is increasing if its elements are strictly increasing, or it contains a single element. Thus, a 

single-element strip is both increasing and decreasing. 
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down[i], that gives the position of the left end of the leftmost decreasing strip 

beginning at, or to the right of, position i. Then interval [a, b] contains a decreasing 

strip iff down[a] < b. Similarly, we can form an array up[i] that gives the left end 

of the leftmost increasing strip at, or to the right of, i. Both arrays can be computed 

from 7c in O(n) time, for example by the recurrence, 

I 
n +  i ,  i > n, 

i, i < n, 7"(,i ~/J ~ i _  l ,  7~i ~/~ 7~i +1, 
down(i)= i, i < n, rci 76 ~zi-x, 7zi~ rci+l, 

down(i + 1), otherwise. 

~i > 7~i+ 1, 

Thus, if there is a reversal of form (a), we can find it in O(n) time, whether or not 

we require that it leave a decreasing strip. We can also search for a reversal of 

form (b) in O(n) time, using the same technique. 

If there is no reversal that removes a breakpoint, the greedy algorithm chooses 

a reversal that does not increase O(n). One such reversal is [i, hi- 1], where i is the 

smallest position such that rcl # i. Notice that this reversal cannot increase O(zc) 

since it always removes breakpoint (i - 1, i). 

To summarize, we find a greedy reversal as follows: 

(1) Compute re-1, down, and up. 

(2) Search for a reversal that removes two breakpoints. 

(3) If none exists, search for a reversal that removes one breakpoint and leaves a 

decreasing strip. 

(4) If none exists, search for a reversal that removes one breakpoint. 

(5) If none exists, bring the smallest out-of-place element into position. 

Each step can be performed in O(n) time; which gives an O(nZ)-time 

implementation of the greedy algorithm (and with more care, O(n + ~2(n)) time 

can be achieved). We suspect that an O(n log n)-time implementation may be 

possible; our experience, however, suggests that the approximation algorithm will 

be far from the dominant step in practice; as we discuss in Section 4. 

3. Exact Algorithm. In the preceding section, we obtained an algorithm that 

comes close to the optimum by applying a greedy strategy: of all reversals, select one 

that removes the most breakpoints. To obtain an algorithm that reaches the 

optimum, we use a branch-and-bound strategy: consider all reversals, and eliminate 

those that cannot lead to an optimal solution. 

Figure 7 shows the form of our branch-and-bound algorithm. We maintain 

three global variables: bound, a dynamic upper bound on the solution value; best, 

an array of reversals that sort the permutation in bound steps; and current, the 

series of reversals currently under consideration. At the start, we initialize bound 
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global bound, current[1., n], best[1., n] 

algorithm BRANCHANDBOUND(~Z) begin 

bound, best := UPPERBOUND(7~) 
SEARCH(TC, 0) 

return bound, best 

end 

algorithm SEARCH(7~, depth) begin 

if n is the identity permutation then 

if depth < bound then bound, best:= depth, current 

else 

for each reversal p in order of decreasing AO(n) do 

if LOWERBOUND(~Z �9 p) d- depth + 1 < bound then begin 

current[depth + 1] := p 

SEARCH(~Z'p, depth + 1) 

end 

end 

Fig. 7. The branch-and-bound algorithm. 

and best to values obtained from an upper-bound algorithm. 14 The algorithm we use 

is essentially GREEDY with a fixed-depth look-ahead, and is described in Section 3.3. 

After obtaining an upper bound, we explore a tree of subproblems depth-first. 

Each invocation of SEARCH corresponds to a node of the tree and is labeled with 

n, a permutat ion to be sorted, and depth, the number  of edges from the root to 

the node. Array current is maintained as a stack by SEARCH, and holds the reversals 

on the path from the root to the current node. We chose a depth-first strategy for 

traversing the tree as this uses a polynomial amount  of space, even when the tree 

is of exponential size, since space, not time, is often the limiting resource. 

Examining all reversals yields a very large tree: with (~) children per node, and 

a height of n - 1, there are O(n2n/2 n) nodes. In Section 5, we state several conjectures 

on the form of a solution, which, if true, reduce the children per node from O(n 2) 

to O(~2(n)). Lacking a proof  of these conjectures, the two means we have to reduce 

the size of the search trees are ordering children, and computing lower bounds. The 

algorithm of Figure 7 orders children by decreasing AO, on the assumption that 

the optimal solution uses reversals of greatest A~. By trying such reversals first, 

we hope to lower our upper bound quickly, to prune subtrees early on. We now 

explain how the lower bound is computed. 

3.1. A Lower Bound f rom Matchings. As stated in the proof  of Corollary 1, 

a simple lower bound on OPT(n) is [-~(n)/27. While this is sufficient to 

prove an approximation factor of 2, i t  is extremely weak. It assumes every 

14 We use Xl, ... , x n : =  el,..., e, as shorthand for the parallel assignments x~:= e~. Function UPPER- 
BOUND, like GREEDY, returns two values: an integer, followed by a list of reversals. 
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breakpoint of rc can be eliminated by a reversal that removes two breakpoints, 

which can rarely be achieved. To obtain a better bound, we ask, for a given 

permutation, how many breakpoints can possibly be eliminated by reversals that 

remove two breakpoints? 

A pair of breakpoints p = (i, i +  1) and q = (j , j  + 1), with values (hi, rq+ l )=  

(x, y) and (Trj, ~rj+ 1) = (x', y'), can be eliminated in one reversal iffx ~ x' and y ~ y'. 

This holds whether p is to the left or to the right of q. The only requirement is 

that x and y occur in the same order as x' and y'. 

Notice that such a reversal also affects other pairs of breakpoints. A pair with 

values (x, y) and (y', x'), which cannot be eliminated immediately because adjacent 

values are not in the same order, can be eliminated in one step if preceded by a 

reversal that contains exactly one breakpoint of the pair. Such a reversal trans- 

forms the pair to the preceding case. 

In general, determining when a collection of 2m breakpoints can be eliminated 

by a sequence of m reversals appears difficult. (In Section 5, we conjecture it is 

NP-complete.) To obtain a lower bound that can be efficiently computed, we 

ignore dynamic information about the order and interaction of reversals. The static 

information we retain is simply the adjacency of values between breakpoints, which 

can be represented by a graph. 

Figure 8 shows the construction. Each breakpoint of n is mapped to a vertex 

of GOt). We place an edge between breakpoints p and q if either of the above two 

cases apply. Effectively, if two breakpoints can be eliminated by one reversal, 

possibly after a sequence of other reversals that eliminate two breakpoints, they 

share an edge. Note that the order of the two values at a breakpoint is not 

important in the construction. 

Since each edge models a reversal, and performing the reversal removes both 

endpoints, a series on reversals on rc that each eliminate two breakpoints 

corresponds to a set of vertex-disjoint edges in G(Ir). A set of vertex-disjoint edges 

is called a matching. The key property of G(rc) is that the most reversals we can 

possibly perform on n that each remove a pair of breakpoints, without performing 

any intervening reversals that remove less than two breakpoints, is the size of a 

maximum-cardinality matching of G(rc). 

Let m be the number of vertices in a maximum-cardinality matching of G(n), 

in other words, twice the number of edges in the matching. How many reversals 

must be performed to remove the remaining O(rc) - m breakpoints of n? The best 

we can do is to expend a reversal that removes one breakpoint to set up a reversal 

that removes two breakpoints. Notice that we cannot remove one breakpoint, 

7C"" xl Y "'" X'I y' ' 

P q 

o r  

... xly ... ~t'l x'..- 
P q 

Fig. 8. Breakpoints {x, y} and {x', y'} share an edge in G(n) iff x ~ x' and y ~ y'. 
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then two, then two again. (A reversal that removes one breakpoint can affect 

only one additional breakpoint. This implies the third reversal must have been 

available from the start, which contradicts that the matching is of maximum 

cardinality.) In short, the best we can do is to remove three breakpoints in two 

reversals. This gives a lower bound of 

(1) [-�89 + ~O(u) -- m)], 

which has the extreme value F-~(n)-]. 

We can construct G(n) from n in O(n) time. (Certainly the O(n) breakpoints of 

n can be determined in O(n) time. Moreover, every breakpoint is incident to a 

constant number of edges, since the only values adjacent to x are x + 1 and x - 1. 

So, with the help of n - t ,  we can determine all edges in O(n) time as well.) A 

maximum-cardinality matching of a graph with V vertices and E edges can be 

computed in O(Ew/V ) time [15]. Thus, since V and E for G(n) are both O(n), we 

can evaluate the lower bound of (1) in O(n 3/2) time. 

3.2. A Family o f  Lower Bounds. We can improve the lower bound further, by 

considering 3-tuples of breakpoints, 4-tuples of breakpoints, and so on. 

Let us call a reversal that eliminates k breakpoints, a k-move. Thus, a 2-move is 

a reversal that eliminates two breakpoints, and a ( -2 ) -move  is a reversal that 

creates two breakpoints. 

In general, for k > 3, we define a k-move as follows. Over all permutations, 

consider all series of reversals that eliminate k breakpoints. A k-move, for k _> 3, 

is a shortest series that eliminates a set of k breakpoints, given that no 2-, 3-, up to 

(k - 1)-moves are available on the set. For  example, a 3-move is a 1-move followed 

by a 2-move. (Notice that this arose in the analysis of lower bound (1).) 

The following lemma characterizes the structure of a k-move. 

LEMMA 4. For k >_ 3, a k-move is a series of k - 1 reversals, that decomposes into 

either 

(i) a 1-move followed by a (k - 1)-move, or 

(ii) a O-move followed by an i-move and a j-move, where i + j = k. 

PROOF. Any series of reversals begins with a 2-, 1-, 0-, ( -1) - ,  or ( -2)-move.  By 

definition, a k-move for k > 3 cannot begin with a 2-move. Furthermore, any series 

that creates breakpoints is not among the shortest. Thus, 1-moves and 0-moves 

are the only candidates for the first reversal in a k-move. 

Consider a series that begins with a 1-move. The 1-move can change the values 

of at most two breakpoints, namely, those at its endpoints. One of the two 

breakpoints is eliminated by the 1-move. The other can at best be eliminated in 

a (k - 1)-move. Note that the k - 1 breakpoints remaining cannot be eliminated 

by two or more higher-order moves, as any second higher-order move would be 

available from the start, contradicting the definition of a k-move. 

Now consider a series that begins with a 0-move. This move can again affect 
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the values of at most two breakpoints, thereby setting up at most two higher-order 

moves. The k breakpoints again cannot be eliminated by three or more higher- 

order moves, after performing the initial 0-move, since a third higher-order move 

would be available initially. That a k-move uses k -  1 reversals follows by 

induction. []  

With this decomposition, we can characterize the breakpoints in a k-move. 

LEMMA 5. For k > 2, the pairs of values at the breakpoints eliminated by a k-move 

have the form 

(2) 

where xi ,,~ x'i for 1 < i <_ k. 

PROOF. Notice that the lemma holds for k = 2, which corresponds to the picture 

of Figure 8. Assume the lemma then for all k' < k. We show it holds for k + 1. 

By Lemma 4, a (k + 1)-move decomposes into a 1-move followed by a k-move, 

or a 0-move followed by an/ -move and a j-move. Consider the case of an initial 

l-move. 

This move eliminates one of the k + 1 breakpoints, and brings the remaining k 

breakpoints into the configuration of a k-move. By induction, the values at these 

k breakpoints have the form of(2). Notice that this form is unchanged by a rotation 

of the breakpoints, i.e., a renaming of the form xi w-, xi .d and x'i ~ x'i.a, for any 

d, where i @ d denotes ((i + d) mod k) + 1. Thus, we may assume without loss of 

generality, that the 1-move affects the values in (2) by bringing Xl, x~ together into 

a breakpoint, and some other pair of values y, y' together to create an adjacency 

y ~ y'. This (k + 1)-move then has the form 

. . .  xl},  

which is the same form as (2). 

Now consider the case of a 0-move that sets up an /-move and a j-move. By 

induction, the/-move has the form 

{x ,xl} {x2 ,x ;}  . - - { x , , x ; } ,  

and the j-move has the form 

{y ,yl} ' {yj, 

Without loss of generality, assume the 0-move brings x 1, x~ together and yl, y~ 
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together. Since the form of (2) is unchanged by renaming xi ~ x'i and x'i ~ xi, we 

may further assume that the 0-move brings these values together by touching 

breakpoints 

{xl, Yl} {xl, yl}. 

The (k + 1)-move then has the form 

{x2, x~} {x3, x~,} "'" {xi, x'l} {xl, yl} {Yj, Y'I} {Yj-~,Y)} "'" {Y2, Y~} {X'z,y'2}. 

As the reader may verify, this is the same form as (2). [] 

We now describe how to construct a graph H(rc) that allows us to effi- 

ciently identify sets of breakpoints of form (2). In the construction, breakpoints 

of n are mapped to vertices of H(rc), and pairs of breakpoints that share an 

adjacency, such as {x, a} {x', b} where x ~ x', are mapped to edges, as shown in 

Figure 9. 

Edges of H(zc) are directed, but not in the standard sense. An edge touching v 

and w contributes to either the in- or out-degree of v and w. In a directed graph, 

an edge (v, w) that contributes to the out-degree of v necessarily contributes to the 

in-degree of w, and vice versa. However, in what we call a bidirected graph, there 

are two more possibilities: (v, w) may contribute to the in-degree of both v and w, 

or to the out-degree of both v and w. 

This gives rise to the four types of edges of Figure 9. We indicate the direction 

of an edge with double-ended arrows. When drawing an edge incident to v, we 

place an arrowhead pointing into v, at the end touching v, if the edge contributes 

to v's in-degree. Otherwise, we direct the arrowhead out of v. 

x[a blx' 
P q 

alx xlb 
P q 

xla x'lb 
P q 

P q 

Fig. 9. Construction of graph H(n). Values x and x' are adjacent, and induce an edge that contributes 

to the in- or out-degree of p, and the in- or out-degree of q, depending on whether the value is to the 

right or to the left of the breakpoint. 



196 J. Kececioglu and D. Sankoff 

The utility of this construction is in the correspondence between cycles in  the 

graph and k-moves on the permutation, as summarized in the following lemma. 

A k-cycle in a bidirected graph is a series of edges 

v2) ---  (vk, vO 

such that the vi are distinct, and every v~ has in- and out-degree 1. 

LEMMA 6. The sets of breakpoints of rc whose values have the form of k-moves 

are in one-to-one correspondence with the k-cycles of H(rc). 

PROOF. By Lemma 5, the values in a k-move have the form 

In the ith breakpoint, {x~, x'i. 1}, value xi~l is adjacent to value xi.1 of the (i �9 1)th 

breakpoint. Whether x'i is to the left or right of x'i** in the ith breakpoint, 

breakpoint i is linked in H(n) to breakpoints i O 1 and i O 1 by edges that 

contribute exactly once to its in- and out-degree. 

Similarly, any k-cycle of H(n) describes a set of k breakpoints with the property 

that every breakpoint in the set has values that are adjacent to the 

preceding and succeeding breakpoints on the cycle. As every vertex of the cycle 

has in- and out-degree 1, these values, by the construction, are distinct. By Lemma 

5, this is the form of a k-move. [] 

We now have the tools to generalize the lower bound of Section 3.1. In outline, 

we construct a hypergraph G~k)(rc) whose vertices correspond to breakpoints, but 

whose edges are sets of up to k vertices that correspond to k'-moves for k' < k. A 

series of moves on rc maps to a matching of G ~k), where a matching of a hypergraph 

is a collection of vertex-disjoint edges. Choosing a k-move corresponds to perform- 

ing a series of k - 1 reversals. We weight edges by the number of reversals they 

represent, and seek, as before, a maximum-weight matching. However, computing 

a maximum-weight matching of a hypergraph is in general NP-complete [8]. 

We express the matching problem as an integer programming problem, and relax 

the integrality constraint to obtain a linear programming problem. This 

gives a somewhat weaker lower bound that is computable in polynomial 

time. 

This approach is summarized in the following theorem. The k-oirth of a graph 

is the length of a shortest cycle of more than k edges. If the graph does not contain 

such a cycle, we define its k-girth to be n + 1, where n is the number of vertices. 
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THEOREM 2. Let (V, E) be the graph G(k)(Tz), let g be the k-girth of H(n), and let 

~k(n) be the solution value of the linear program 

minimize 

subject to 

g - 1 ~ g - l e l  
- -  ( I ) ( ~ )  - -  2.a - -  X e '  

g ~ e  g 

0 <_ x e <_ 1, for all e ~ E, 

Xe <- 1, for all v e F. 
e l w e  

Then O P T ( T Z )  ~ r~k(70]. 

PROOF. As in the lower bound of Section 3.1, the only characteristic of a reversal 

that we consider are the values at its endpoints. This means we ignore the effect 

of a reversal on its interior, namely, that it changes the relative order of 

elements. 

This being the case, we first argue that to demonstrate our lower bound, the 

only series that we have to consider are those that do not create breakpoints. For  

suppose a reversal in a series creates a breakpoint. Eventually this breakpoint  

must be removed, and the best we can possibly do is to eliminate it with a 2-move, 

which allows us to remove one more breakpoint.  The best we can then have 

achieved is to remove one breakpoint  in two reversals. This is worse than any of 

the higher-order moves we consider in the lower bound, which always remove k 

breakpoints in k - 1 reversals. Admittedly, the ( -  1)-move and subsequent 2-move, 

by changing the relative order of elements, may have made some advantageous 

moves possible in an actual series, but we have already accounted for such effects 

by ignoring the order of values at breakpoints in our graph representation. 

Thus, it suffices to consider series that do not create breakpoints. Such a series 

operates only on breakpoints in the original permutation, by moving values from 

one breakpoint  to another, so as to create adjacencies. Decomposing the series 

into higher-order moves, every k'-move, where k' < k, maps to an edge of G (k), no 

matter  where it occurs in the series. Moreover,  the edges so identified in G (k) are 

vertex disjoint, and form a matching M. Thus, the number of reversals taken by 

k'-moves in the series, where k' < k, is 

( l e l -  1). 
eeM 

The remaining moves of the series are k'-moves where k' > k. By Lemma 6, 

every one of these moves maps to a cycle of H(n), so the smallest k' > k for which 

the series contains a k '-move is at least g, the k-girth of H(n). Thus, the number of 

reversals taken by k'-moves in the series, where k' > k, is at least 
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which is 

Thus, the total number of reversals in an optimal series is at least 

minM [~M ~ ( l e l - - 1 ) +  

which is 

g eeM  -~ " 

This is equivalent to finding a matching in G (k) of maximum total weight, where 

the weight of an edge e is (g - l e l ) / g .  We can express this as an integer pro- 

gramming problem. For  each edge e of G tk), we have a variable xe, that takes on 

the values 0 or 1. Selecting e is encoded by assigning xe the value 1. We can ensure 

that the assignment represents a matching by requiring 

x e < 1, 
e]v~e 

for every vertex v. Extending the domain of x e to real values between 0 and 1 

results in the linear programming problem of the theorem. []  

Notice that the lower bound of Theorem 2 has the extreme value 

[-((g-  1)/g)(I)0r)7. When the k-girth g is large (as is the case with the Golan 

permutation y(") even for small k), this can be as great as ~0r), which meets the 

upper bound of Theorem 1. 

How much time does it take to evaluate ~ak? There are three tasks: 

(1) Constructing H and computing its k-girth. 

(2) Constructing G tk~ and its associated linear program. 

(3) Solving the linear program. 

Constructing H takes time O(n). There are O(n) breakpoints, and each break- 

point has at most four in-edges and out-edges, which can be identified in O(1) 

time using zc-1. 

We can compute the k-girth of H in o(4kn 2) time, as follows. A shortest cycle 

of more than k edges, that contains a fixed vertex v, is a path P of k edges from v 

to some vertex w, followed by a shortest path from w to v that does not visit any 

other vertices on P. Paths in a bidirected graph such as H alternate in- and 

out-edges: if we enter a vertex by an in-edge, we must leave by an out-edge, and 

vice versa. As every vertex of H has in- and out-degree at most four, there are at 
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most 4 k paths of length k from a fixed vertex v. For  each path P, we can mark its 

vertices, and compute a shortest return path from its end w back to v, taking care 

not to visit marked vertices. This shortest path can be found by a breadth-first 

search from w in O(n) time. Repeating for all start vertices v, all paths P, and 

recording the minimum over all cycles found, takes time o(4kn2). 

Similarly, we can construct the edges of G ok) in o(4kn) time, by enumerating the 

cycles of H of k or fewer edges in a depth-first search, is Space for all edges is 

O(k4kn). 

The resulting linear program has o(4kn) variables, and O(n) constraints. Writing 

L(a, b) for the time to solve a linear program of a variables and b constraints, the 

linear programming problem takes O(L(4kn, n)) time. This dominates the time to 

compute the lower bound. Thus, for any fixed k, Ae k can be computed in 

O(L(n, n)) time. 

3.3. A Family o f  Upper Bounds. As well as a lower bound on the solution value, 

our exact algorithm requires an upper bound. The simplest approach is to use the 

approximation algorithm of Section 2, but for large n this gives too weak a bound 

to prune away much of the search tree. 

Consider a series of k reversals that removes the most breakpoints among series 

of that length. The greedy strategy of the approximation algorithm is really based 

on the observation that, once we are k reversals away from sorting a permutation, 

such a series is optimal. GREEDY corresponds to the case k = 1. 

Such a series can be found by looking ahead k reversals, and this search can 

be made tractable by again employing branch-and-bound. The basic form of the 

computation is identical to BRANCHANDBOUND, except that the recursion is 

stopped at depth k. The two requirements are a lower bound on the number of 

breakpoints that can be eliminated in a series of k reversals, and a method for 

computing an upper bound on the number eliminated by an optimal extension of 

a partial series. 

We can compute the lower bound by running GREEDY. Computing an upper 

bound is a little more difficult, but can be tackled by the methods of the previous 

section, as summarized in the following theorem. 

THEOREM 3. 

ofthe linear program 

Let (V, E) be the graph G tk+ 1)(Tz), and let qlk(n) be the solution value 

maximize k + ~ xe, 
eeE 

subject to 0 < x e < 1, for all e ~ E, 

~, Xe < 1, for all v ~ V, 
elwe 

(lel - 1)Xe < k. 
e~E 

t5 Note that determining the edges of G (k) by examining all k-sets would take O(n k) time. 
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Then La//k(rOJ is an upper bound on the number of breakpoints of n that can be 

eliminated in k reversals. 

PROOF. The proof is similar to that of Theorem 2. 

Given an allotment of k reversals, we want to eliminate as many breakpoints 

as possible. Suppose we consider all k'-moves for k ' <  k + 1. Packing these 

k'-moves into the k reversals corresponds to finding a matching M of G (k+l) 

satisfying 

Z (lel - 1) ~ k, 
e e M  

since, bY Lemmas 4 and 6, each edge e of M represents [ e l -  1 reversals. The 

number of breakpoints eliminated by these reversals is 

Y~ lel. 
e e M  

Having used ~e~M (lel -- 1) reversals, we have k - 2 e e M  (lel - 1) remaining in 

our allotment. Notice that any unconsidered k'-move, which must have k' > k + 2, 

will not completely fit in our allotment of k reversals, since by Lemma 4 such a 

move takes at least k + 1 reversals. Lemma 4 also implies that any prefix of such 

a k'-move that is packed into our allotment, can on average remove at most one 

breakpoint per reversal. Thus, the number of breakpoints eliminated by the 

reversals remaining in our allotment, is at most 

k -  ~ (lel- 1). 
e ~ M  

Adding the number of breakpoints eliminated by the reversals in M to the 

number of breakpoints eliminated by the remaining reversals, the total number 

eliminated within k reversals is at most 

k + ~  1. 
e e M  

Expressing this matching problem as an integer program, and extending its dom- 

ain to the reals, results in the linear programming problem of the theorem. [] 

For  fixed k, the time and space to compute upper bound G//( k is the same as for 

lower bound &~ k, which is O(L(n, n)) time and O(n) space. 

Given that we can find a series of k reversals that removes the most breakpoints, 

how should we piece together a solution from such a series? One extreme is to 

perform only the first reversal of the series, arrive at a new permutation, and again 

look ahead k reversals. The other extreme is to execute all k of the series. We call 

the number of reversals that are performed from a series, the follow-through of the 

algorithm. 
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It might be predicted that a follow-through of one reversal is best, since this 

retains the maximum flexibility. In our experience, however, this performed 

unexpectedly poorly, in the sense that the final solution tended to degrade as the 

look-ahead was increased beyond some critical value. An experimental analysis of 

this phenomenon would be interesting, but is beyond the scope of our paper. 

We also remark that looking ahead farther does not in general guarantee a 

better solution. After looking ahead k + 1 reversals, we are simply in some state, 

and unless the permutation can be sorted in k + 2 reversals, this state does not 

necessarily lead to a shorter solution than the one we arrive at after looking 

ahead k reversals. 

Nevertheless, choosing a follow-through equal to the look-ahead k did have the 

desired property that the quality of the solution tended to improve as the 

look-ahead was increased, and this is the value that we chose for the experiments 

of the next section. A follow-through of k reversals also has the advantage of 

reducing the number of invocations of the branch-and-bound procedure. It would 

be interesting, however, to investigate other values, such as a follow-through of 

k/2 with a look-ahead of k. 

To summarize, our exact algorithm constructs a solution conceptually in 

three stages, the first two of which are interleaved. The first stage runs the greedy 

algorithm to lower bound the number of breakpoints that can be eliminated within 

the look-ahead. The second stage improves this greedy solution by branch-and- 

bound to a fixed depth, to obtain a series that is optimal within the look-ahead. 

Successive locally optimal series are then concatenated, to obtain a solution that 

upper bounds the global problem. The third and final stage improves this solution 

to a global optimum by a full branch-and-bound computation, now that a good 

upper bound is in hand. 

This bootstrapping approach has proven to be quite effective, as is discussed 

in the next section. 

4. Computational Results. To examine the effectiveness of these ideas, we tested 

a full implementation of the exact and approximation algorithms on biological 

and simulated data. The implementation comprises approximately 9500 lines of 

C, of which roughly 2500 lines are a sparse linear programming package. 

An unusual aspect of the code is the manipulation of the bidirected graphs of 

Section 3.2. These graphs are sufficiently different from standard directed and 

undirected graphs to make the correct implementation of simple computations 

like shortest paths and cycle enumeration surprisingly tricky. Without going into 

detail, we note that a straightforward translation of the standard breadth-first 

search algorithm for single-source shortest paths is not correct, since a vertex can 

be reached in two different ways from the source: once by paths that end with an 

in-edge, and once by paths that end in an out-edge. This means that essentially 

two distances must be maintained for a vertex: an in-edge distance, and an 

out-edge distance. 

We also note that the code enumerates cycles of length at most k using the 

method outlined in Section 3.2, which can spend time exponential in k between 
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Table 1. The number of permutations on n elements at 

distance d from the identity. 

n 

d 2 3 4 5 6 7 8 

0 1 1 1 1 1 1 1 

1 1 3 6 10 15 21 28 

2 2 15 51 127 263 483 

3 2 56 390 1,562 4,635 

4 2 185 2,543 16,445 

5 2 648 16,615 

6 2 2,111 

7 2 

reporting cycles. The algorithm of Johnson [-12] for enumerating the cycles of a 

directed graph spends time linear in the size of the graph between reporting each 

cycle, and it would be interesting to see whether this algorithm can be adapted 

to our application. 

In all, we tested the implementation on four types of data: all permutations on 

a fixed number of elements, published gene order data from the biology literature, 

random permutations, and permutations generated by scrambling the identity with 

a fixed number of random reversals. 

In the first set of experiments, which served as a good test of the program, we 

ran the implementation to optimality on all permutations of up to eight elements. 

The exact distribution of reversal distance from these tests is given in Table 

1. Notice that the data supports Golan's conjecture: for each n > 2, there are 

exactly two permutations requiring n -  1 reversals (and these are ~") and its 

inverse). 

On these experiments, we also measured the Worst-case performance ratio of the 

approximation algorithm. On permutations of up to eight elements, the maximum 

ratio is 8/5, which is achieved on permutation (4 7 2 6 8 5 3 1). 

As an illustration of the algorithm on biological data, we give the example of 

Figure 10. This permutation gives the order of the 36 genes that are common to 

the linearized mitochondrial genomes of mammals I-3] and the flatworm Ascar i s  

suum [25]. While we have been able to solve other permutations arising from 

mitochondria data in a small amount of time, 16 this 36-element permutation has 

proven extremely difficult to solve to optimality. The near-optimal solution of the 

figure was found after 24 s of computation on a 33 Mhz Silicon Graphics Iris 

x6 Computing the inversion distance between the mitochondrial genomes of mammals and the yeast 

Sehizosaceharomyeespombe took 3.5 rain (29 genes and 19 inversions), and between mammals and the 

fly Drosophila yakuba took 1.7 rain (37 genes and 16 inversions). We make no claim for the biological 

significance of the particular solutions found, though the inversion distance tends to reflect evolutionary 

divergence. 
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12 [31 34 28 26 17 2 9 4 9 3 6 1 8 3 5 1 9 1  16 14 32 33 22 1511 2 7 5 2 0 1 3 1 3 0 2 3 1 0 6 3 2 4 2 1 8 2 5 2 7  

12 13 2 0 5 2 7 1 1 1 5 2 2 3 3 3 2 1 4 1 6  119 ~ 36 9 4 2917 26 28 34 3130 2310 6 3 24 218 25 2 7 

12 13 20152711 15 22 33 32 14 16 1 1 9 1 8 3 5 3 6 9 1 4 2 9 1 7 2 6 2 8 3 4 3 1 3 0 2 3 1 0 6 3 2 4 2 1 8 2 5 2 7 "  

12 13 20193635 18 1 9 1 1 6 1 4 3 2 3 3 2 2 1 5  11 2 7 5 4 2 9 1 7 2 6 2 8 3 4 3 1 3 0 2 3 1 0 6 3 2 4 2 1 1 8 2 5 2 7  

12 13 20 21 2413 610 23 30 3134 28 2617 29 4 5 271115 22 33 '3214161  19 18 35 3 6 9 8 2 5 1 2 7  

112 13 20 21 24 2 5 8 9 3 6 3 5  18 191 16 14 32 33 22 15111 2 7 5 4 2 9 1 7 2 6 2 8 3 4 3 1 3 0 2 3 1 0 6 3 2 7  

15122 33 32 14 16 1 19 18 35 36 9 8 25 24121 20 13 12 11 27 5 4 29 17 26 28 34 31 30 23 I0 6 3 2 7 

1!52425893635 18 1 9 1 1 1 6 1 4 3 2 3 3 2 2 2 1 2 0 1 3 1 2 1 1 2 7 5 4 2 9 1 7 2 6 2 8 3 4 3 1 3 0 2 3 1 0 6 3 2 7  

1 19 1 8 1 3 5 3 6 9 8 2 5 2 4  15 16 14 32 33 22 21 20 13 12 11 2 7 5 4 2 9 1 7 2 6 2 8 1 3 4 3 1 3 0 2 3 1 0 6 3 2 7  

1 19 1 8 1 2 8 2 6 1 7 1 2 9 4 5 2 7 1 1 1 2 1 3 2 0 2 1 2 2 3 3 3 2  14 16 15 24 2 5 8 9 3 6 3 5 3 4 3 1 3 0 2 3 1 0 6 3 2 7  

11191817  26 28 29 4 5 27111213120  2122 33 32 14 16 15 24 2 5 8 9 3 6 3 5 3 4 3 1 3 0 2 3 1 0 6 3 2 7  

1 [..13 12 11 27 5 4 29 28 26 17:18 19 20 21 22 33 32] 14 16 15 24 25 g 9 36 35 34 31 30 23 10 6 3 2 7 

1132 33 22 21 20 19 18 17 26 28 29 4 5 27 11 12 13 i4 16 15 24 25 8 9 36 35 34 31 30 23 10 6 3 2] 7 

1 2 3 6 1 1 0 2 3 3 0 3 1 3 4 3 5 3 6 1 9 8 2 5 2 4 1 5 1 6 1 4 1 3 1 2 1 1 2 7 5 4 2 9 2 8 2 6 1 7 1 8 1 9 2 0 2 1 2 2 3 3 3 2 7  

1 2 3 6 1 3 6 3 5 3 4 3 1 3 0 2 3 1 0 9 8 2 5 2 4 1 5  16 14 1312 "1127 5 4 29 28 2 6 1 7 1 8 1 9  20 2122 33 32 71 

1 2 3 1 6 7 3 2 3 3 2 2 2 1 2 0 1 9 1 8 1 7 2 6 2 8 2 9 4 1 5 2 7 1 1 1 2 1 3 1 4  16 15 24 2 5 8 9 1 0 2 3 3 0 3 1 3 4 3 5 3 6  

1 2 3 4 2 9 2 8 2 6 1 1 7 1 8 1 9 2 0 2 1 2 2 3 3 3 2 7 6 5 2 7 1 1 1 2  13 14116 15 24 2 5 8 9 1 0 2 3 3 0 3 1 3 4 3 5 3 6  

1 2 3 4 2 9 2 8 2 6  14 13 12 11127 5 6 7 32 33 22 2 1 2 0 1 9 1 8 1 7 1 6  i5 24 25 8 910123 30 3134 35 36 

1 2 3 4 29 28 26114 13 12 11 I0 9 8 25 24115 16 17 18 19 20 21 22 33 32 7 6 5 27 23 30 31 34 35 36 

1 2 3 4 2 9 2 8 2 6 1 2 4 2 5 8 9 1 0 1 1 1 2  13 14 15 16 17 18'"i9 20 21 22 33 3 2 7 6 5 2 7 1 2 3 3 0 3 1 3 4 3 5 3 6  

1 2 3 4 1 2 9 2 8 2 6 2 7 5 6 7 3 2 3 3 2 2 2 1 2 0 1 9 1 8  17 16 15 14 13 1211 1 0 9 8 2 5 2 4 2 3 1 3 0 3 1 3 4 3 5 3 6  

1 2 3 4 1 2 3 2 4 2 5 8 9 1 0 1 1 1 2  13 14 15 16 17 18 19 20 21 22 33 3 2 7 6 5 [ 2 7 2 6 2 8 2 9 3 0 3 1 3 4 3 5 3 6  

1 2 3 4 5 6 7 L 3 2 3 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2  II  1 0 9 8 1 2 5 2 4 2 3 2 7 2 6 2 8 2 9 3 0 3 1 3 4 3 5 3 6  

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  16 17 18 19 20 21 22133 32 25 24 23 27 26 28 29 30 31134 35 36 

1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 18 19 20 21 2 2 1 3 1 3 0 2 9 2 8 2 6 2 7 2 3 2 4 2 5 1 3 2 3 3 3 4 3 5 3 6  

1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 18 19 20 21 22 ~ 27 26 28 29 30 3132 33 34 35 36 

1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 18 19 20 21:22 23 24 25 ~ 28 29 30 3132 33 34 35 36 

Fig. Ifl, Near-optimal solution for gene orders from the mitchondrial genomes of mammals and the 

flatworm Ascaris suum. This solution of 27 reversals is provably within two reversals of opti- 

mal. 

4D/300GTX. The lower and upper bounds from this run, of 25 and 27 reversals, 

were found using a lower-bound family of six and an upper-bound look-ahead of 

five reversals.~7 The search tree during look-ahead had a maximum size of 2234 

nodes, where this counts all nodes at which a linear programming problem was 

solved (including nodes that were pruned by the lower bound). From the difference 

between the upper and lower bounds, we know that this solution is within two 

reversals of optimal. A family of ten and a look-ahead of eight, which required a 

search of 408,653 nodes and terminated after 7.5 h of computation, failed to 

improve the bounds by one reversal. 

The limit of what we can reliably solve to optimality is around 30 elements. 

Table 2 gives the running time and search-tree size to solve a sample of 10 random 

17 As described in Section 3.3, the follow-through for the upper bound was equal to the look-ahead 

in all experiments. 
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Table 2. Running time and search-tree size for exact solution of random permutations on 30 elements.* 

Running time 

Tree size 

Upper bound algorithm Exact algorithm 

Min. Max.  Med. Ave. Min .  Max. Med. Ave. Min. Max. Med. Ave. 

0: 05 43 : 48 1 : 29 6 : 53 228 372,563 11,419 45,393 0 8,291 29 843 

* The lower-bound family is eight, the upper-bound look-ahead is six reversals, and the sample size is ten 
permutations. The running time is the total time for the exact algorithm in minutes, which includes the time to 
compute the upper bound. The'tree size for the upper-bound algorithm is the maximum size of the search tree during 
look-ahead. The average reversal distance of the sample is 20.6. 

permutations on 30 elements to optimality. Though the lower-bound family and 

upper-bound look-ahead were the same across these runs, the execution time and 

search-tree size varied by three orders of magnitude. Since the average running 

time and tree size are skewed by these outliers, we also give median values, which 

are more representative of the sample. 

That we could solve these instances to optimality is due to the tightness of the 

bounds. Over the ten permutations, the maximum difference between the upper 

and lower bound was two reversals, and in each case, the exact solution value was 

equal to the lower bound. Except for the one permutation on which the exact 

algorithm examined over 8000 nodes, a common picture emerged from these runs. 

Optimal solution involved the upper-bound algorithm exploring a rather large tree 

to find a solution within one or two reversals of optimal; with this solution 

in hand, the exact algorithm hugged the left chain of its search tree to make up the 

difference to the lower bound, which was exact. 

The effect of varying the family and look-ahead is shown in Table 3. On random 

permutations of 50 elements, the average lower bound reached a maximum of 

roughly 36 reversals at family 6, and the average upper bound did not improve 

much on 38 reversals beyond look-ahead 5.18 Consequently, these values, family 

6 and look-ahead 5, were used in the remaining experiments. 

The search tree for these runs was limited to 50,000 nodes. Once this limit was 

exceeded, the best series known within the look-ahead was used to form the upper 

bound. Column T gives the median tree-size for the sample, where the tree size 

of a run is the maximum size of the search tree during look-ahead. For a 

look-ahead of six or more, the majority of runs had a tree size meeting the limit. 

Column C gives the median number of cycle sets on k or few breakpoints, which 

is equivalent to the number of variables in the linear program for the lower bound 

at family k. The number of constraints on these variables is essentially the number 

of breakpoints in the permutation. 

In the third set of experiments, we studied the quality of the approximation 

algorithm and the upper-bound algorithm on random permutations. Results are 

18 Notice that the average upper bound actually increased at look-ahead 8. 
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Table 3. Lower bound L, upper bound U, number  of cycle sets C, 

and tree size T, at various families and look-aheads, for random 

permutat ions on 50 elements.* 

L U C T 

k Ave. Ave. Med. Med. 

1 26.0 43.7 0 917 

2 32.1 40.8 4 2,907 

3 34.5 39.5 14 4,312 

4 35.5 39.1 40 24,242 

5 35.7 38.4 119 36,676 

6 35.9 38.2 353 50,000 

7 35.9 38.0 910 50,000 

8 35.9 38.9 2,464 50,000 

* The maximum tree-size is 50,000 nodes, and sample size is 10 permutations. 
Row k gives the lower bound for family k, the upper bound for look-ahead k, 
the number of cycle sets of at most k breakpoints for the lower bound, and the 
maximum tree-size for the upper bound during look-ahead. 

given in Table 4, where Dev. denotes the standard deviation. Note that the 

maximum difference between the upper and lower bound, which is what limits the 

range of optimal solution, was at most two reversals for n up to 30, while the 

average difference between the bounds was around 2.5 reversals for n up to 50. 

This suggests that, while we can find optimal solutions for at most around 30 

elements, we can find near-optimal solutions that may be acceptable quality for 

up to 50 elements. 

Table 4. Lower bound L, upper bound U, approximation A, and  tree size T for random permutat ions 

on n elements.* 

L U U - L A A / L  T 

n Ave. Dev. Ave. Dev. Ave. Max. Ave. Dev. Ave. Max. Med. 

10 6.0 1.1 6.0 1.1 0.0 0 6.1 1.0 1.02 1.20 0 

20 12.6 1.2 13.2 1.5 0.6 2 14.8 1.5 1.18 1.31 517 

30 20.8 0.9 21.8 1.6 1.0 2 24.9 1.5 1.20 1.25 4,615 

40 28.5 1.1 30.3 1.6 1.8 4 33.8 2.0 1.t9 1.24 23,712 

50 35,9 1.4 38.4 1.8 2.5 5 43.7 2.7 1.22 1.31 36,676 

60 43.6 1.1 46.7 1.5 3.1 5 52.6 1.6 1.21 1.26 50,000 

70 51.7 1.3 56.7 2.4 5.0 8 63.4 3.0 1.23 1.30 50,000 

80 58.9 1.0 64.5 2.0 5.6 8 72.3 2.3 1.23 1.26 50,000 

90 67.6 1.4 74.1 2.1 6.5 8 83.2 1.8 1.23 1.25 50,000 

100 74.2 1.1 82.4 2.6 8.2 10 91.9 2.7 1.24 1.27 50,000 

* The lower-bound family is six, the upper-bound look-ahead is five reversals, the maximum tree size is 50,000 nodes, 
and the sample size is ten permutations. Approximation A is the number of reversals from the greedy algorithm. 
Tree size T is the maximum tree-size for the upper bound during look-ahead. 
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Table 5. Upper  bound U and lower bound L for permutations on 

100 elements generated by k random reversals.* 

U L 

k Ave. Dev. Ave. Dev. 

5 5.0 0.0 5.0 0.0 

10 10.0 0.0 10.0 0.0 

15 15.2 0.4 15.0 0.0 

20 19.5 0.9 19.4 1.0 

25 25.0 0.9 24.5 0.9 

30 30.0 1.3 29.3 1.0 

35 34.6 2.1 33.5 1.8 

40 39.0 1.6 37.3 2.0 

45 43.9 2.2 42.5 2.2 

50 47.3 2.0 45.5 1.4 

55 51.8 3.0 48.5 2.8 

60 54.2 2.7 50.7 2.0 

65 58.5 2.6 54.3 2.5 

70 60.0 4.3 56.0 3.1 

75 62.0 2.8 57.7 2.4 

80 64.9 3.9 60.4 2.8 

85 67.0 2.6 61.9 2.0 

90 69.8 3.0 64.9 2.2 

95 72.2 2.2 65.1 1.5 

100 72.0 2.9 65.3 1.7 

* The upper-bound look-ahead is five 
six, the maximum tree-size is 50,000 
permutations. 

reversals, the lower-bound family is 
nodes, and the sample size is ten 

The average performance ratio of the approximation algorithm for the sample 

was around 5/4, while the poorest ratio was less than 4/3. 

In the final set of experiments, we were interested in the following question: How 

well does reversal distance recover the actual number of reversals performed on a 

permutation? To examine this, we generated permutations by scrambling the 

identity with k random reversals, taking care not to reverse single elements. Table 

5 gives upper and lower bounds on the reversal distance, for permutations on 100 

elements with up to 100 random reversals. For  k < �89 the average upper bound 

estimated k to within one reversal, but for k > �89 it increasingly underestimated k. 

Notice that when both endpoints of every reversal in a series of length k fall 

at new positions, the reversal distance for the resulting permutation is precisely 

k. 19 Since a permutation on n elements can have at most n + 1 breakpoints, the 

maximum number of reversals for which this can happen is �89 + 1), which may 

partly explain why we observe a change in behavior around k = �89 

19 This follows because k is a lower bound, as well as an upper bound,  on the reversal distance: the number  

of breakpoints divided by two, which lower bounds  reversal distance, is in this situation equal to k. 
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5. Conclusion. Algorithmic study of the reversal distance between permutations 

is in its earliest stages. We have presented two algorithms: a greedy approximation 

algorithm, and a branch-and-bound exact algorithm. By analyzing the A O  

sequence of the greedy algorithm, we were able to show it achieves a worst-case 

approximation factor of 2, and by applying matchings, shortest paths, and linear 

programming, we derived a class of nontrivial lower bounds for our exact 

algorithm. 

Experiments with the exact algorithm indicate that we can solve random 

permutations up to around 30 elements to optimality, usually in a few minutes, 

and that for permutations generated by k random reversals, the average solution 

value is a good estimate of the number of reversals when k is less than half the 

number of elements. 

We close with some conjectures and lines for future research. 

5.1. Further Research. One question that we would like to resolve is the 

computational complexity of sorting by reversals. We conjecture it is NP-complete, 

and believe the crux of the problem is the following. 

CONJECTURE 1. Deciding whether OvT(n) < �89 is NP-complete. 

Notice that this special case has a lot of additional structure--for instance, every 

breakpoint must be paired with another in G(n)--which should simplify a proof (or 

disproof). On the other hand, a disproof by an efficient algorithm would improve 

our lower bounds of Section 3.2. 

To design a more efficient exact algorithm, we need theorems on the structure 

of a solution. In particular, do we really need to consider all (~) reversals to find 

an optimal solution? 

It is natural to think we can throw out reversals that cut strips, since such a 

reversal separates elements that will have to be joined together later. Un- 

fortunately, this is incorrect. Permutation (3 4 1 2), for example, requires three 

reversals if we do not cut strips, yet it can be sorted in two reversals, as follows: 

1341121 F- 114321 ~- 1 2 3 4 .  

Nevertheless, we believe the following is true. 

CONJECTURE 2. Every permutation has an optimal solution that does not cut strips 

other than at their first or last element. 

If true, this reduces the number of candidate reversals from O(n 2) to O(tI)2(Tz)). 
Our belief in Conjecture 2 is based on the following. 

CONJECTURE 3. Every permutation has an optimal solution that never increases the 

number of breakpoints. 
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Another tempting idea is to decompose the permutation into knots, where a 

knot of x is an interval [a, b] such that 

�9 zr(/)e[1, a) for i e [1 ,  a), 

�9 rr(/) e [a, b] for i ~ [a, b], and 

�9 ~z(i) e (b, n] for i e (b, n], 

and then solve knots independently. This is appealing, since a permutation can 

always be sorted without an element crossing a knot. Perhaps surprisingly, 

it is not optimal. Permutation (2 1 5 6 3 4), for example, has knots [1, 2] 

and I-3, 6], and takes four reversals if we solve the knots separately. Yet, by working 

on the knots together, the permutation can be sorted in three reversals, as shown 

below: 

1211561341  F- 1 6 5 1 1 2 3 4 1  ~- 1 4 3 2 1 1 5 6  F- 1 2 3 4 5 6 .  

Finally, we note that the suboptimality of the greedy algorithm is not due to 

the fact that it chooses arbitrarily among moves that appear equally good. It is 

necessary to consider 1-moves when 2-moves are available. Permutation 

(5 6 2 1 8 7 3 4), for example, has one 2-move, [3, 6], and taking this move 

leads to a solution of four reversals. Yet the permutation can be sorted in three 

reversals, as follows: 

15 612 118 713 41 ~- 1 216 518 713 41 ~- 1 216 5 4 317 8 ~- 1 2 3 4 5 6 7 8. 

Before concluding, we remark that the biological motivation for reversal 

distance suggests several variations. Here we identify five aspects of the problem 

that may be varied: 

(1) The linear~circular variation. Some organisms and organelles have circular 

chromosomes, for which the data is the order of genes around a circle. In this 

case, cyclic shifts of a permutation are isomorphic, which means (zq .-. %) is 

equivalent to (z~i-. �9 ~, nl "'" rci_ 1). A solution is then a series of reversals and 

cyclic shifts that transform one permutation to another, and we seek a solution 

with the fewest reversals. 

(2) The signed/unsioned variation. A gene is not a point on a line or circle; it is a 

region of sequence. The sequence has a reading direction, and a reversal 

reverses not only the order of genes, but their direction as well. 

When two chromosomes are compared, information may be available on 

gene direction, as well as order. We can encode this information by associating 

a sign with each element: positive for the forward direction, and negative for 

the reverse. A reversal then changes the sign of elements it reverses. 

In the signed case, we have two signed permutations, and we seek a shortest 

series of signed reversals that transform one into the other. In some respects, 

this case is easier to analyze. Conjecture 3, for instance, holds. 

(3) The directed~undirected variation. When a chromosome is analyzed, sometimes 

only the adjacency of genes is determined, not their absolute order. In the 
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linear case, this means the given order may be left to right, or right to left, and 

in the circular case, clockwise or counterclockwise. 

(4) The weighted/unweiohted variation. We have assumed that all reversals are 

equally probable, so it is appropriate to count their number. For a first 

approximation this is reasonable, but a finer analysis might weight reversals 

by a function of their length, and find a series of minimum total weight. 

(5) The pairwise/multiple variation. Even though the objective of the reversal 

distance problem is not to find an alignment of the input, as is often the case 

with sequence comparison, we can define a multiple-chromosome comparison 

problem in analogy to multiple alignment. Given a set of orderings of 

the same genes, how can we infer an evolutionary tree, and a set of 

hypothetical ancestral orderings, so as to minimize the total reversal distance 

of the tree? Admittedly, a practical exact solution method appears unlikely, 

but a good approximation method would be useful as well. 

Clearly, there are many possibilities for exploration. 
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Note Added in Proof A shorter version of this paper appeared as [12a], and an 

extension to signed permutations is given in [12b]. For signed permutations, we 

observe an average difference, between the greedy approximation and a 

simplified lower bound, of less than one reversal, for n up to 10,000. Bafna and 

Pevzner [2a] have since improved the performance ratio to 7/4 for unsigned 

permutations, and 3/2 for signed permutations, and have also established Gollan's 

conjecture. 
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