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Exact and Direct Modeling 

Technique for Rotor-Bearing 

Systems with Arbitrary 

Selected Degrees-of -Freedom 

An exact and direct modeling technique is proposed for modeling of rotor-bearing 
systems with arbitrary selected degrees-of-freedom. This technique is based on the 
combination of the transfer and dynamic stiffness matrices. The technique differs 
from the usual combination methods in that the global dynamic stiffness matrix for 
the system or the subsystem is obtained directly by rearranging the corresponding 
global tramfer matrix. Therefore, the dimension of the global dynamic stiffness ma
trix is independent of the number of the elements or the substructures. In order to 
show the simplicity and efficiency of the method, two numerical examples are given. 
© 1994 John Wiley & Sons, Inc. 

INTRODUCTION 

The subject of rotor-bearing dynamics has re

ceived considerable attention over the last few 

decades. The reason for this interest in rotor
bearing dynamics is almost certainly the demand 

placed on manufacturers to continuously im

prove both the power rating and the reliability of 

rotating machinery (Goodwin, 1992). For dy

namic analysis, modeling of the rotor-bearing 

systems is the first step. Various methods for 

modeling rotor-bearing systems have been devel

oped and widely used during the past few dec

ades. Among these techniques, the transfer ma

trix method (TMM) and the finite element 

method (FEM) may be most commonly used for 

multi-degree-of-freedom (MDOF) rotor-bearing 

systems. 
The outstanding advantage of the TMM is that 

it requires calculations using matrices of fixed 

size, irrespective of the number of DOF in the 

problem. This means that the computational 
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complexity is low even when dealing with sys

tems with hundreds of DOF. However, only the 

natural frequencies, mode shapes, and harmonic 

response are available so far by this method. The 
other important modal parameters such as modal 

mass, modal stiffness, and transfer function of 

the system cannot be obtained. Furthermore, the 

stiffness and mass matrices that are important for 
modeling the systems are not available when the 

TMM is used. 
At the current state of rotor dynamic technol

ogy, the FEM has proved to be powerful and 

versatile. It is also the only validated tool avail
able at the present time for nonlinear systems 

and for transient dynamic analysis. However, in 

this method, the number of DOF is very high for 

large rotor-bearing systems. Many unwanted 

DOF such as rotational and internal DOF are 

used in the model. This makes it difficult for the 

FEM model to compare with the experimental 

model due to the large difference in the numbers 

of coordinates used in both models. If such com-

CCC 1070-9622/94/060497-10 

497 



498 Chen and Geradin 

parison is necessary, the FEM model has to be 

reduced, which may be uneconomical in some 

cases. 
Another alternative is the dynamic stiffness 

matrix method (DSM). It may be considered as 

an improved FEM. Being different from the 

FEM, the DSM uses the analytical solutions of 

the governing equations as shape functions. 

Therefore, the obtained DSM is exact in the 
sense ofthe exact governing equation. These ma

trices are in general parametric in terms of the 

vibration frequency and the load factor. 

One of the most important advantages of the 

DSM is that the DOF needed to model a struc

ture is significantly reduced compare to the 

FEM. This is due to the fact that a uniform shaft, 

for example, can be taken as long as needed in 

the DSM. There is a significant number of refer

ences describing the method. Fergusson and 

Pilkey (1991a,b, 1993a,b) have reviewed the rele

vant literature up to 1992. Most of the literature 
up to the end of 1992 may be found in their re

views. 

However, there are some drawbacks associ
ated with the DSM. First, the number of DOF is 

still high for large structures. Similarly to the 

FEM, many unwanted DOF such as rotational 

degrees remain in the model. Second, the calcu

lation of modal parameters requires the solution 
of a highly nonlinear (trascendental) eigen

problem: 

[D(w)]X = o. 

To this purpose, some special algorithms should 

be used, for example, the algorithms described 
by Williams and Wittrick (1970), Wittrick and 

Williams (1971), and Richards and Leung (1977). 

The former algorithm requires calculation of nat

ural frequencies for each individual beam ele

ment with its end fixed. This increases the com

putational time significantly. 
In order to minimize the dynamic DOF with

out any loss of accuracy, a combination method 

was introduced by Dokainish (1972) for plate vi

bration problems in which the element transfer 

matrix was obtained directly from the element 

stiffness and mass matrices. In recent years, this 

combination method has been improved by other 

researchers (Chiatti and Sestieri, 1979; Ohga 

et aI., 1983; Degen et aI., 1985) for different ap

plications. In this method, the eigenfrequencies 

and mode shapes are calculated from the global 

transfer matrix. Therefore, it may be considered 

as an improved transfer matrix method with ap

plication to plates. However, for rotor-bearing 

systems it seems to be unnecessary to obtain the 

element transfer matrix from the element stiff

ness and mass matrices because the element 

transfer matrix may be derived directly from the 

governing equations in an exact manner (Lund 

and Orcutt, 1967; Lee et aI., 1991). 

For rotor-bearing systems, the idea of combin

ing the TMM and FEM to reduce the DOF was 
first proposed by Dimarogonas (1975). A static 

deflection function between nodes were used in 
his article. This idea was used for stability analy

sis of a rotating shaft. 

In this article an exact and direct modelling 

technique for rotor-bearing systems based on the 
combination of transfer and dynamic stiffness 

matrices is presented. In this technique, the en

tire structure is first divided into several sub

structures based on the required master DOF. 
Each substructure may consist of a large number 

of basic elements. The DOF for a substructure 

may be partitioned into two sets. One set is the 

internal DOF, and the other set is the boundary 

DOF. The transfer matrix of each substructure 
relates only the boundary DOF. The dynamic 

stiffness matrix of the substructure is obtained by 

rearranging the corresponding transfer matrix. In 

this way, the internal DOF are not used in the 
model. In other words, a substructure is reduced 

exactly to an equivalent element whose nodal 

coordinates are the boundary coordinates of the 
substructure. The boundary coordinates dy

namic stiffness matrices of substructures become 

the basic matrices for assembling the global dy

namic stiffness matrix for the original structure. 

The order of the system eigenvalue equation is 
equal to the number of physical boundary coordi

nates between substructures and is frequency de

pendent. Because the dynamic stiffness matrices 

of the basic elements such as shaft, lumped mass, 

and stiffness elements are exact, the number of 

modes predicted by the model is not limited by 

the number of master DOF used in the model. 

The consistent equations of motion of a rotat

ing Timoshenko shaft subject to axial force de
rived recently by Choi et al. (1992) are used as 

the governing equations. In the equations, the 

effects of rotary inertia, gyroscopic, and trans

verse shear are taken into account. An exact 
transfer matrix for the shaft is derived directly 

from the governing equations following the pro

cedure proposed by Lee et al. (1991). The rotor

bearing system is then reduced to a low dimen

sion model with arbitrary selected DOF. All 



modal parameters of the rotor-bearing systems 

such as eigenfrequencies, mode shapes, modal 

masses, modal stiffness, and frequency response 

functions can be obtained from the established 

model. Two numerical examples are given to 

show the simplicity and high accuracy of the 

method. As a by-product, the exact dynamic 

stiffness matrix for a rotating shaft subject to ax

ial force can be obtained by rearranging the cor

responding exact transfer matrix using the tech

nique described here. 

In the YZ plane: 

with the following quantities: E is the Young's 

modulus, G the shear modulus, K the shear fac

tor, p the mass density, A the cross section area, 

and P the axial compression load. It is noted that 

not only the gyroscopic moments but also the 

axial load terms are consistently captured in the 

above equations. 

Transfer Matrix for a Shaft 

The steady-state solutions of Eq. (1) may be rep

resented in the form 
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DERIVATION OF EXACT TRANSFER 

MATRIX FOR A SHAFT 

Governing Equations 

Let us first examine a uniform shaft subject to 

constant compression axial load as shown in Fig. 

1. For such a shaft, the consistent equations of 

motion have been derived recently using the 

finite strain beam theory (Choi et aI., 1992). In 

the XZ plane: 

X(Z, t) = Xs(Z)sin f!t 

Y(Z, t) = Yc(Z)cos f!t 

where f! is the whirling angular frequency. 

(2) 

Substituting Eqs. (2) into (1) would result in 

two homogeneous equations as follows. In the 

XZ plane 

d4Xs (pf!2 pf!2) d2Xs (p2f!4 _ PAf!2) 2pwf! d2yc -l- 2p2wf!3 
dZ4 + E + KG dZ2 + KGE EI Xs + E dZ2 ' KGE Yc 

P ( P) d2Xs pPf!2 p2 d2Xs pAf!2 (2P p2 p2 ) (3a) 

+ EI 1 + KAG dZ2 - EIKG Xs - E2AI dZ2 - ---m - EA - EAKAG + (EA)2 X,\ = O. 

In the YZ plane 

P ( P) d2yc pPf!2 p2 d2yc pAf!2 (2P p2 p2 ) 
+ EI 1 + KAG dZ2 - EIKG Yc + E2AI dZ2 - ---m - EA - EAKAG + (EA)2 Y, = O. 

(3b) 
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FIGURE 1 Rotating Timoshenko shaft subject to 
axial load. 

The solutions of Eqs. (3) take the form 

Xs = UseAZ 

Yc = Vc eAZ 

(4) 

where Us, Vc are arbitrary real constants and }.. 

are the roots of the determinant equation 

II}.. 4 + f}.. 2 + g h}.. 2 + k "- 0 
h}..2 + k }..4 + f}..2 + g - (5) 

with 

p02 p02 P p2 p2 

f = E + KG + El + KAGEl - E2Al 

p204 pA02 pP02 pA 2P02 

g = KGE - ~ - EIKG + El EA 

pp202 p2p02 

+ E21AKG - E3Al 

h = 2pwO k = 2p2w03 

E' KGE' 

Equation (5) is equivalent to the following equa

tions: 

}..4 - b,}..2 + c, = 0 

}..4 - b2 }..2 + C2 = 0 

(5a) 

(5b) 

where b, = h - f, c, = g - k, b2 = -(f + h), C2 = 
g + k. 

Let us consider first Eq. (5a). The following 

two cases are considered. 

Case 1. Vbi - 4c, > b,. This is true for CI < 
O. Physically, this case would correspond to 

lower frequency vibrations. A numerical test has 
shown that this is the case for most rotor-bearing 

systems. The solutions for}.. are given by: 

in which 

Case 2. Vbi - 4cI < b l • This is true for bl > 
0, and c, > O. Physically, this case would corre

spond to higher frequency vibrations. The solu

tions of Eq. (5b) in this case are given by: 

in which 

The numerical test has shown that this case may 
happen only at very high frequency. This is not 

the case for most industrial rotors. 

Combining the above two cases, the roots of 

the characteristic function of Eq. (5) may take 
the form: 

for a constant value of w (see also Lee et al., 

1991; Zu and Han, 1992). 

In the same way as the displacements, the 

slopes, moments, and shear forces may be de
fined as follows: 

a(Z, t) = as(Z)sin Ot 

(3(Z, t) = (3c(Z)cos Ot 

Mx(Z, t) = Mxs(Z)sin Ot 

My(Z, t) = Myc(Z)cos Ot 

QxCZ, t) = Qxs(Z)sin Ot 

Qy(Z, t) = QycCZ)cos Ot. 

The state vector is defined as follows: 

(6) 

The state vector on the right-hand side of the 

shaft is related to the state vector on the left

hand side by the following matrix equation: 

Si = [T]Si-1 (7) 



where [T] is the transfer matrix of a shaft ele

ment with dimension 8 x 8 and 

[T] = [A]-I[N][A]. (8) 

The matrices [A] and [N] are given in the Ap

pendix. 

GLOBAL FREQUENCY-DEPENDENT 
MATRICES 

Substructure Transfer Matrix 

A typical substructure is shown in Fig. 2 that 

consists of Nk elastic supports, N m lumped 

masses, Nd rigid disks, and Nb beam elements. 
The global transfer matrix for the substructure 

IS: 

(9) 

where N is the total number of elements and N = 

Nb + Nk + N m + N d. It should be noted that 
although the shaft element length may be taken 

as long as possible in the case of uniform cross 

section because of the use of the exact transfer 

matrix, the total number of elements of a sub

structure or the entire structure may still be large 
for very long rotor systems. In this case, numeri

cal instability due to matrix multiplication may 

occur. This difficulty may be overcome by using 

symbolic computation, for example the Maple 

software. On the other hand, if N is very large, a 

lot of matrix multiplication is needed. To speed 
up the calculation, parallel algorithms may be 

used. 

Substructure Dynamic Stiffness Matrix 

The global transfer matrix [T] of a substructure 

relates the forces and displacements at both ends 
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of the substructure in the following way: 

(10) 

where Fl and Xl are the force and displacement 

vectors at the left end of the substructure, Fr and 

Xr are the same quantities at the right end. Equa

tion (10) may be rewritten in the dynamic stiff

ness matrix form: 

with 

Dll = - TI2l Til 

Dl2 = TI2l 

D2l = -T2l + T22 T I}TIl 

D22 = - T22 TI-} 

(11) 

where [D] is the global dynamic stiffness matrix 

of the substructure whose elements are fre
quency dependent. Note that the global dynamic 

stiffness matrix of the substructure has the same 

dimension as the element transfer matrix. 
Equation (11) tells us that the substructure 

shown in Fig. 2 is reduced to an equivalent ele

ment whose nodal coordinates are the boundary 

coordinates of the substructure. The internal 

coordinates of the substructure are not used in 
Eq. (11). 

Global Dynamic Stiffness Matrix 

The global dynamic stiffness matrix for the entire 

structure can be assembled using the above dy

namic stiffness matrices of all substructures. Af-

i+4 i+6 

FIGURE 2 A substructure. 
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ter introducing the boundary conditions at both 

ends, the dimension of the global stiffness matrix 

can further be decreased. The restrained global 

dynamic stiffness matrix is denoted by [Dg]. The 

unwanted DOF such as rotational DOF can be 

removed in an exact manner as shown in the fol

lowing numerical examples. 
It is of interest to note that the global dynamic 

stiffness matrix obtained in this way is very low 
in dimension. It uses only the boundary coordi

nates of the substructures as the DOF. The inter

nal DOF are not contained in the model. It 

should be pointed out that if the selected DOF 

happen to be the boundary coordinates of the 

entire structure, then only one substructure is 

needed and all the internal DOF are not con

tained in the model. 

Global Frequency-Dependent Matrices 

The global frequency-dependent matrices, that 

is, mass matrix, [M], gyroscopic matrix [G], and 

stiffness matrix, [K], may be obtained from the 

global dynamic stiffness matrix [Dg] (Richards 

and Leung, 1977; Yang and Pilkey, 1992; Leung 

and Fergusson, 1993): 

[M ( !1)] = _ d[Dg(w, 0)] 
g W, d(!12) 

d[Dg(w, 0)] 

d(!1) 

(12a) 

(12b) 

[Kg(w, 0)] = !12[Mg(w, !1)] + i!1[G1/w, !1)] 

+ [Dg(w, 0)]. (12c) 

Modal Parameter Evaluation 

Once the global dynamic stiffness matrix [Dg] of 
the system is obtained, the natural frequencies 

are those values of!1 (for a given rotation speed 

w) for which 

[Dg(w, !1)]X = o. (13) 

There are many ways to solve this nonlinear 

eigenvalue problem. Because [Dg] is a very low 

dimension matrix, Eq. (13) can be solved by a 

straightforward procedure of calculating 

det[Dg(w, !1)] at many closely spaced !1 values 

within the frequency band of interest, taking the 

two values that bracket each sign change, and 

then iteratively calculating each 0 crossing Wn 

value between the bracketed values. 

1P 
.. _-+ ·+~H-+---+---" 
- 1m .=1 

FIGURE 3(a) Simply supported rotor with a disk. 

The modal mass for mode n may be obtained 

by (Richards and Leung, 1977): 

(14) 

The response to harmonic excitation at any fre
quency !1 can be easily obtained in this stage. In 

fact, [Dg(O)]-1 is the exact frequency response 

function (FRF) matrix for the given DOF. 

NUMERICAL EXAMPLES 

Example 1: Simply Supported Rotor 
with Disk 

The simply supported rotor with a disk subject to 

axial force shown in Fig. 3(a) is studied as the 

first example. The geometric parameters of the 

system are also given in the figure. The material 

of the rotor is steel with Poisson's ratio /.L = 0.3, 

Young's modulus E = 2.1 X 101 1 N/m and mass 
density p = 7800 kg/m3. The purpose is to model 

this rotor to 2DOF with the translational dis

placements X 2 and Y2 at the disk as the general

ized coordinates. 
The six basic elements (five shaft elements 

and one disk element) may be represented by two 

substructures as shown in Fig. 3(b). The transfer 

matrices [TIl, [T2] for each substructure are eas

ily obtained. Their corresponding dynamic stiff
ness matrices [D I ], [D2] are obtained by rearrang

ing the matrices [Til, [T2] according to Eq. (11). 

The global dynamic stiffness matrix [D] for the 

entire rotor system may be obtained by applying 

the standard assembly procedure of the finite ele

ment method. It is noted that the obtained unre-

Substructure 1 Substructure 2 

FIGURE 3(b) Substructures of the rotor shown in 

Fig. 3(a). 



strained global dynamic stiffness matrix is 12 x 

12 in our case. After introducing the boundary 

conditions at both ends, one finally obtains the 

dynamic equilibrium equation: 

MIx 
M ly 

F2x 
F 2y 

M2x 
M 2y 

M 3x 
M 3y 

(15) 

where [Dg] is the restrained global dynamic stiff

ness matrix. The unwanted DOF (ho 81y , 82x, 82y , 

83n 83y may be eliminated by solving the linear set 

of Eqs. (15) and letting their corresponding excit

ing moments MIx, M ly , M2x , M2y , M3x , M 3y be O. 

Finally, we obtain: 

( F2x) = [D2(w, fl)] (X2). (16) 
F 2y Y2 

It is important to note that the system shown in 

Fig. 3(a) is exactly reduced to 2DOF with dis

placements X2 and Y2 at the disk as generalized 
coordinates for a given frequency and rotation 

speed. It is also noted that the reduced dynamic 

stiffness matrix [D2(w, fl)] of the system is both 

frequency and rotation speed dependent due to 

the gyroscopic effect. The FRF matrix H(w, fl) 

= [D2(w, 0)]-1 completely determines the dy

namic behaviors of the system. The modal pa

rameters can be obtained with ease at this stage. 

30
1 I 

~25r j 
~ 1- § ~ ~ : : :::1 

i ::r~--=-=------:-=",-rpm,-,,-:-::-,l 
o 5000 10000 15000 

a) First mode 

~360t 11 

i340~~ 0 0 0 

~ 320r ~ 0 col 
- 0 

~3ool 0 

2801 rpm 1 
o 5000 10000 15000 

c) Third mode 

N 160i I 

5140~1 
~ ~ I 
i1201 1 

1001 rpm 1 

o 5000 10000 15000 
b) Second mode 

620
1 I 

~'600l I 
3: ",-t ~==!l=~~ _ ~ Q 0 ~ ~ gl 

i 5801 j 

Z I I 
560' rpm 1 

o 5000 10000 1 5000 
d) Fourth mode 

FIGURE 4 Campbell diagram of example 1 (P = 0). 

(-) FEM results, (000) TDM results. 
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Table 1. Influence of Axial Force on Natural 

Frequencies (Hz) of Example 1 (w = 0) 

Force (N) ill il2 il3 il4 

0 22.98 130.74 327.70 590.05 

400 22.40 129.96 326.86 589.08 

800 21.79 129.16 326.00 588.12 

1200 21.16 128.34 325.14 587.16 

1600 20.49 127.54 324.28 586.18 

2000 19.79 126.70 323.40 585.20 

2400 19.05 125.86 322.54 584.20 

2800 18.26 125.02 321.66 583.20 

3200 17.42 124.16 320.76 582.20 

3600 16.52 123.30 319.88 581.18 

To validate the correctness of the established 
model, Fig. 4 depicts the first four natural fre

quencies predicted by the model as a function of 
the rotation speed (referred as TDM). For com

parison, the finite element (Samcef Software, 20 

shaft elements) results (FEM) are also presented 

in the figure. The influence of the axial force on 

the natural frequencies is given in Table 1. It is 

seen that the natural frequencies decrease with 
the increase of the axial force. 

Example 2: Three-Disk and 
Two-Bearing Rotor 

A three-disk and two-bearing rotor system, fixed 

at one end (Fig. 5) is studied as the second exam

ple. The radius ofthe shaft is 0.025 m. The radius 

and thickness of the disks are 0.1 and 0.02 m, 
respectively. 

The material of the rotor and disks are steel 

with Poisson's ratio /.t = 0.3, Young's modulus 

E = 2.1 X 1011 N/m and mass density p = 7800 

kg/m3. The two bearings are assumed to be iden

tical and the stiffnesses are: 

Kxx = 1 X 106 N/m, Kyy = 3 X 106 N/m, 

Kxy = Kyx = O. 

.. ~ 

FIGURE 5 Three-disk and two-bearing rotor fixed at 

one end. 
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FIGURE 6 Substructures of the rotor shown in 

Fig. 5. 

The rotation speed of the rotor ranges from 0 to 

30,000 rpm. The objective is to reduce the system 

to 6DOF with the translational displacements at 

disk 1, disk 2, and disk 3 as its generalized coor

dinates. The 10 basic elements (five shaft ele
ments, two bearing elements, and three disk 

elements) may be represented by three substruc

tures as shown in Fig. 6. 

The dynamic stiffness matrix for each sub

structure may be obtained from the correspond

ing transfer matrix. The global dynamic stiffness 

matrix [D] for the entire rotor system may then 

be obtained by applying the standard assembly 

procedure of the FEM. It is noted that the ob
tained unrestrained global dynamic stiffness ma

trix is 16 x 16 in this case. After introducing the 

boundary conditions at both ends, one finally ob

tains the dynamic equilibrium equation: 

M 3x 

M 3y 

F4x 

F4y 

M 4x 

M 4y 

(17) 

where [Dg] is the restrained global dynamic stiff

ness matrix. 

The unwanted DOF, Bix , Biy , i = 2,3,4 may be 

removed by solving the linear set of Eqs. (17) and 

setting their corresponding exciting moments 

Mix, M iy , i = 2, 3, 4 to O. Finally, we obtain: 

F2x Xz 

Fzy Yz 

F3x 
= [D6(w, n)]6x6 

X3 
(18) 

F3y Y 3 

F4x X 4 
F4y Y 4 

Table 2. Eigenfrequencies (Hz) Obtained by 

Different Methods (w = 0) 

Mode No. 

FEM 

TDM 

53.71 

53.60 

83.96 

83.80 

167.51 

166.20 

173.11 

172.10 

So far, we have finally established a 6DOF model 

with the translational displacements at disk 1, 

disk 2, and disk 3 as its generalized coordinates. 

It is noted that the elements of matrix [D6] are 

both frequency and rotation speed dependent. 

The FRF matrix can be easily obtained by in

verting the dynamic stiffness matrix [D6] given in 

Eq. (18). The modal parameters can easily be 

obtained using the same procedure as the dy

namic stiffness matrix method (Leung, 1980; 

Leung, 1983) at this stage. 

To validate the correctness of the established 
model, Table 2 gives the natural frequencies pre

dicted by the transfer function matrix H(w, n) = 

[D6(w, ,0,)]-1. For comparison, the finite element 

(Samcef Software, 13 shaft elements) results are 

also listed. Figure 7 depicts the transfer function 

(at disk 3) predicted by the established model 

(TDM model). 

CONCLUSIONS 

Modeling of rotor-bearing systems by the FEM 
or the DEM usually results in large stiffness and 

mass matrices. In order to compare with the ex

perimental model, it is necessary to reduce the 

-1-:~ , ~ 
'" . 

~----i 
u 
=> 
~-15 
E 
« 

-20r 
-25 1 

, , ,Fre., Hz I 
50 100 150 200 

200 

t50~ n nn 
I 

IIII 

j g100 

& 50r 

I I ,Fre., Hz I 
0 

50 100 150 200 

FIGURE 7 Transfer function at disk 3 predicted by 

the TDM model. 



FEM or the DEM model to lower dimension in 

terms of selected DOF. In this article, an exact 

and direct modeling technique is presented in 

which the global dynamic stiffness matrix is ob

tained directly from the global transfer matrix 

whose dimension is independent of the number 

of elements or substructures. Using this method, 

the rotor-bearing systems can be modeled di

rectly with arbitrary selected DOF. Because the 

transfer matrix is exact, the global stiffness ma

trix is also exact. Hence, the results predicted by 

the model have a higher accuracy than the finite 

element results. 

The method presented is different from the 

Dokainish combination method. The first differ

ence is that an exact transfer matrix derived di

rectly from the governing equations is used; in 

Dokainish's method, the transfer matrix was de

rived from the element stiffness and mass matri

ces, which are not exact. The second difference, 
which is the most important difference, is that 

the Dokainish's method was actually an im

proved TMM because the eigenproperties were 

obtained from the global transfer matrix. Only 

eigenfrequencies, mode shapes, and harmonic 
responses are available in Dokainish's method. 

In the present method, the global transfer matrix 

is transformed to the global dynamic stiffness 
matrix in terms of which all the modal parame

ters such as eigenfreqencies, mode shapes, 

modal masses, modal stiffness, and transfer 

function can be obtained. Furthermore, any ro

tor-bearing system can be directly modeled with 

arbitrary selected DOF. Therefore, the presented 

method may be considered as an improved dy

namic stiffness matrix method. 

The authors would like to thank DBS company 

(Belgium) for the financial support of the project and 

for the permission to publish this article. 
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APPENDIX: Matrices [A] and [N] in Eq. (8) 

The nonzero elements of matrix [A] are: 

1 
All = 1; A 23 = 1; A27 = KGA; 

pil2 1 
A31 = KG; A35 = EI; A43 = b; 

1 pil2 1 
A6S = KGA; An = KG; A76 = EI; 

A - -2pwD AS4 = b; Ass = a; 
S3 - E 

with 

1 pil2 (1 1) pil2 pil2 
a = EI - KGA E - KG; b = KG - E; 

the other elements being equal to O. 

Matrix [N] is obtained as follows: 

The matrix [Hb] takes the form 

H2) 
-H2 

with the submatrices [HIl, [H2] 

CI C2 C3 C4 

AaC2 AaCI -AbC4 AbC3 

[HIl = 
A~CI A~C2 -A~C3 A~C4 

A~C2 A~CI AbC4 -AbC3 

C5 C6 C7 Cs 

AcC6 AcC5 -AdCS AdC7 

[H2] = 
A~C5 A~C6 -A~C7 A~Cs 

A~C6 A~C5 A~Cs -A~C7 

where Ci , i = 1, 8, are constants 

CI = cosh AaL, C2 = sinh AaL, 

C3 = cos AbL, C4 = sin AbL 

C5 = cosh AcL, C6 = sinh AcL, 

C7 = cos AdL, Cs = sin AdL 

and Aa, Ab, Aco Ad are the roots of Eq. (5). 

The matrix [Mb] is similarly given by: 

with the sub matrices [MIl, [M2] 

1 0 1 0 

0 Aa 0 Ab 
[MI] = 

A2 -A~ a 0 0 

0 A~ 0 -Ab 

1 0 1 0 

0 Ac 0 Ad 
[M2] = 

A~ -A~ 0 0 

0 A~ 0 -A~ 

As a by-product, the exact dynamic stiffness ma-

trix [D] for a rotating shaft subject to axial force 

can be obtained by rearranging the transfer ma-

trix [T] using Eq. (11) in the text. 
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