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Abstract
Energy trajectories, that is, integral curves of the Poynting (current) vector, are calculated for
scalar Bessel and Laguerre–Gauss beams carrying orbital angular momentum. The trajectories
for the exact waves are helices, winding on cylinders for Bessel beams and hyperboloidal
surfaces for Laguerre–Gauss beams. In the geometrical optics approximations, the trajectories
for both types of beam are overlapping families of straight skew rays lying on hyperboloidal
surfaces; the envelopes of the hyperboloids are the caustics: a cylinder for Bessel beams and
two hyperboloids for Laguerre–Gauss beams.
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1. Introduction

One of several ways to depict optical fields is by the trajectories
of energy flow, that is, the lines everywhere tangent to the
Poynting vector. Here we will describe light by a scalar wave
ψ(r), constructed for example from the vector potential [1, 2],
or representing a single field component, or simply regarded as
a physical model in which polarization effects are neglected.
Then the Poynting vector can be chosen parallel to the current,
that is, the expectation value of the local momentum operator,
namely

P (r) = Imψ∗ (r)∇ψ (r) = |ψ (r)|2 ∇ argψ (r) . (1.1)

The second equality expresses the fact that in vacuum P (r)

is orthogonal to the wavefronts (contour surfaces of phase
argψ). P (r) is an important ingredient in calculating the
orbital angular momentum of the field [3], and forces on small
particles in the field. In quantum physics, the trajectories
are the streamlines in the Madelung [4] hydrodynamic
interpretation, later regarded as paths of quantum particles in
the Bohm–de Broglie interpretation [5].

For optical beams, where there is a well-defined
propagation direction z, it is natural to represent the trajectories
using z as a parameter, and the field using cylindrical polar
coordinates {r, φ, z }. Then, writing P (r) in the form

P (r) = F (r)
{
vr (r)er + vφ (r) eφ + ez

}
, (1.2)

the trajectories are the integral curves of P , to be obtained by
solving the differential equations

dr (z)

dz
≡ r ′ (z) = vr (r (z)) ,

dφ (z)

dz
≡ φ′ (z) = vφ (r (z))

r (z)
.

(1.3)

Our aim here is to understand the energy trajectories for
Bessel and Laguerre–Gauss beams carrying orbital angular
momentum (‘twisted beams’), which are of current interest
theoretically and experimentally, building on and extending
previous studies [6, 7]. We emphasize a fundamental point,
central to the understanding of energy flow: the equation (1.1)
can be interpreted in two quite different ways, both of which
we will employ in the following.

In the first (sections 2 and 3), ψ(r) is the exact solution of
the relevant wave equation; then P (r) has the advantage that
it represents without approximation the flow described by the
wave equation.

In the second (sections 4 and 5), the lines of P (r)

represent the rays of geometrical optics, which although
approximate carry the intuitive appeal that their envelopes
are the caustic surfaces on which the field is most intense.
In this case, ψ(r) represents one of possibly several locally
plane waves that are superposed to create the total field.
When points in the field are reached by several geometrical
rays, the corresponding pattern of trajectories overlap, unlike
the exact Poynting trajectories of the total field, which are
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uniquely defined at each point. P (r) depends nonlinearly on
ψ(r), so the superposition of trajectories is different from the
trajectories of the superposition.

In vacuum or any homogeneous medium, the geometrical
rays are straight lines. This is an immediate consequence
of Snell’s law (or, more abstractly, Hamilton’s equations),
according to which rays bend only if there is a variation of
refractive index. The straightness is not immediately obvious
from the algebraic formulae describing the rays, but will be
confirmed by showing that they satisfy the following equations,
expressing the vanishing of the curvature |r′ × r′′|/|r′|:

rφ′′ + 2r ′φ′ = 0, r ′′ − rφ′2 = 0. (1.4)

By contrast, the trajectories of the exact Poynting vector are
usually curved.

For the beams we study here, it turns out, unexpectedly, to
be easier to calculate the exact Poynting trajectories than the
geometrical rays, which require knowledge of the asymptotics
of Bessel and Laguerre functions.

2. Bessel beams: exact Poynting flow lines

These beams are exact solutions of the Helmholtz equation,
defined [8, 9] by

ψl (r) = exp
{

i
(√

k2 − q2z + lφ
)}

Jl (qr) , (2.1)

in which l is the angular momentum quantum number, k the
free-space wavenumber and q the magnitude of the transverse
component of the wavevector of the plane waves comprising
the beam.

Since the Bessel function is real, only the first factor
contains the phase argψ which according to (1.1) generates
the Poynting vector, and (1.2) gives

vr = 0, vφ = l

r
√

k2 − q2
. (2.2)

The trajectories are determined by the differential equa-
tions (1.3), which can be trivially solved to give

r = constant, φ = φ0 + l

r 2
√

k2 − q2
z. (2.3)

This describes a two-parameter family of helices (figure 1)
filling space. Each helix can be defined by the point {r, φ0}
where it pierces the plane z = 0.The pitch of the helices with
radius r is

�z = 2πr 2
√

k2 − q2

l
, (2.4)

so the wider helices are more longitudinally stretched.

3. Laguerre–Gauss beams: exact Poynting flow lines

These beams are exact solutions of the paraxial wave equation,
defined [3] by

ψl,p (r) = exp {i (kz + lφ)} exp

{
− ρ2

2w (ζ )

}
ρ|l|

w (ζ )|l|+1
ρ|l|

×
(
w (−ζ )
w (ζ )

)p

L |l|
p

(
ρ2

1 + ζ 2

)
. (3.1)

-1
0

1

-1

0

1

0

2π

π

z

y x

Figure 1. Exact Poynting trajectories for Bessel beams. The
trajectories, which fill space, are helices wound on cylinders
corresponding to different radii r , and the helices on different
cylinders have different pitches�z, according to (2.4).

Here L |l|
p denotes the Laguerre polynomial [10], with indices

representing the angular momentum quantum number l and
radial node number p (that is, p + 1 radial bright rings), the
scaled coordinates are defined in terms of the waist radius w0

(1/e radius of the intensity |ψ|2) by

{x, y, z} ≡ {
ξw0, ηw0, kw2

0ζ
}
, ρ ≡

√
ξ 2 + η2, (3.2)

and
w(ζ ) = 1 + iζ. (3.3)

For convenience we will henceforth consider only positive
l, and so will omit the modulus signs. (The paraxial
approximation to Bessel beams, in which

√
k2 − q2 in (2.1)

is approximated by k − q2/2k can be obtained from (3.1) in
the limit p → ∞, using the identity (22.15.2) in [10].)

Since Ll
p is real, it does not contribute to the phase, which

is therefore given by

argψl,p = kz + lφ + ρ2ζ

2
(
1 + ζ 2

) + G (ζ ) . (3.4)

G(ζ ) denotes the Gouy phase, which enters through the factors
involving powers of w(ζ ) and does not affect the shape of
the trajectories apart from a slight longitudinal stretching; in
what follows, we will neglect this effect. Identification of the
Poynting components via (1.2) gives

vρ = ρζ

1 + ζ 2
, vφ = l

ρ
, (3.5)

and thence the differential equations (1.4) determining the
trajectories:

ρ ′ (ζ ) = ρ (ζ ) ζ

1 + ζ 2
, φ′ (ζ ) = l

ρ (ζ )2
. (3.6)
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Figure 2. Exact Poynting trajectories for Laguerre–Gauss beams. The trajectories, which fill space, wind on hyperboloidal surfaces
corresponding to different values of ρ2

0/l . (a): ρ2
0/l = 0.5; (b): ρ2

0/l = 1; (c) ρ2
0/l = 10. The total rotation angle of the trajectory,�φ

(equation (3.8)) is unrelated to the Gouy phase. The trajectories are all curved except when ρ2
0/l = 1 (as in (b)).

Equation (3.5) determines the local skew angle of the Poynting
vector, that has recently been measured directly [11].

The solutions are easily found, and give the trajectory
passing through the point ρ0, φ0 in the waist plane ζ = 0 as

ρ (ζ ) = ρ0

√
1 + ζ 2, φ (ζ ) = φ0 + l

ρ2
0

tan−1 ζ. (3.7)

These are curves wound on hyperboloids (figure 2); the
windings get slower as |ζ | increases, and the total angle turned
through between ζ = −∞ and +∞ is

�φ = πl

ρ2
0

. (3.8)

Note that this rotation does not involve the Gouy phase.
The trajectories are generally not straight, because one of

the curvature components in (1.4) is non-zero:

rφ′′ + 2r ′φ′ = 0, r ′′ − rφ′2 = 1 − (
l/ρ2

0

)2

(1 + ζ )3/2
. (3.9)

However, the hyperboloid with ρ0
√

l is exceptional: its
trajectories are straight lines. For the special beam with p = 0,
this was noted in [6] and interpreted in terms of skew rays (see
also figure 6 of [12]), which as we will see in sections 4 and 5
is in fact the correct geometrical-optics interpretation for all
beams. This insight corrected an earlier error in an important
paper [13], which had claimed that the energy trajectories are
continuously rotating helices. However, the lines calculated
in [6] for general Laguerre–Gauss beams, with p 	= 0, are
contours in which the direction of the Poynting vector is
associated with regions of large magnitude |ψ|, which are not
energy trajectories in the usual sense (1.3), that is, integral
curves of the Poynting field.

4. Bessel beams: geometrical-optics rays

In the geometrical-optics regime of large l, the Bessel function
Jl(qr) in (2.1) is exponentially small if qr < l. For

qr > l, there are radial oscillations, described by the Debye
approximations [10]

Jl (qr)

≈
√

2

π

cos
{√

q2r 2 − l2 − l tan−1
(√

q2r 2 − l2/ l
)

− 1
4π

}

(
q2r 2 − l2

)

(l � 1, qr > l) . (4.1)

The oscillations correspond to the interference of geometrical
rays, which we treat separately by regarding the cosine as the
sum of two complex exponentials (this is equivalent to the
decomposition into outgoing and ingoing Hankel functions:
Jl = (H (1)

l + H (2)
l )/2).

From (2.1), the total phase of each contribution is

argψl,± = z
√

k2 − q2 + lφ ± (√
q2r 2 − l2 −

× l tan−1
(√

q2r 2 − l2/ l
))
, (4.2)

so the Poynting components are

vr = ±
√

q2r 2 − l2

r
√

k2 − q2
, vφ = l

r
√

k2 − q2
, (4.3)

and the trajectories are the solutions of

r ′ (z) = ±
√

q2r (z)2 − l2

r (z)
√

k2 − q2
, φ′ (z) = l

r (z)
√

k2 − q2
.

(4.4)
It is convenient to specify the trajectories by the height z0

at their ‘turning radius’, where r ′(z0) = 0, that is r = l/q .
Thus ∫ r(z)

q/l

drr
√

q2r 2 − l2
= (z − z0)√

k2 − q2
, (4.5)

leading to the explicit solutions

r (z) = q
√

k2 − q2

√

(z − z0)
2 + l2

(
k2 − q2

)

q4

φ (z) = φ0 + tan−1

{
(z − z0) q2

l
√

k2 − q2

}

.

(4.6)
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Figure 3. Geometrical rays for Bessel beams, calculated from (4.8)
with ζ0 = +3 and ζ0 = −3 for a range of starting angles φ0. All rays
are straight, and turn by π between ζ = ±∞. The totality of rays for
all φ0, ζ0 fill space outside the caustic at ρ = 1,that is r = l/q.

With the dimensionless variables

r ≡ l

q
ρ, z ≡ l

√
k2 − q2

q2
ζ, (4.7)

the trajectories take the convenient form

ρ (ζ ) =
√
(ζ − ζ0)

2 + 1, φ = φ0 + tan−1 (ζ − ζ0) .

(4.8)
These expressions satisfy (1.4), confirming that the geometri-
cal trajectories are straight lines. For fixed ζ0, the trajectories
for different φ0 again form a set of skew rays lying on hyper-
boloidal surfaces (figure 3). The totality of these hyperboloids
fills the space outside the cylinder ρ = 1, that is r = l/q ,
which is the caustic (figure 4) where Jl(qr) is large for large
l. For l = 0, the caustic surface degenerates to the axis, which
becomes a focal line, through which pass the trajectories: lines,
no longer skew, with inclination angle arcsin(q/k).

5. Laguerre–Gauss beams: geometrical-optics rays

In geometrical optics, interpreted as the regime where waves
can be represented as the superposition of locally plane waves,
l and p are simultaneously large. To study this, we need some
facts about the function

gl,p(x) ≡ exp
(− 1

2 x
)

xl/2 Ll
p(x), (5.1)

involving the Laguerre polynomial Ll
p(x); derivations are

outlined in the appendix. g(x) oscillates in a certain range
x− < x < x+, and decays exponentially outside this range.
The limits are given by

x± = l + 2p + 1 ±
√
(l + 2p + 1)2 − (l − 1)2 ≈ ls±

( p

l

)
,

(5.2)
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Figure 4. Geometrical Bessel rays: radial coordinate ρ(ζ ) for
different ζ0, showing the caustic at ρ = 1.

0 50 100 150
x

Figure 5. Asymptotic behaviour of Laguerre functions. Thick curve:
gl,p(x) ≡ exp(− 1

2 x)xl/2 Ll
p(x) for l = 50, p = 10; thin curve:

asymptotic approximation (A.4)–(A.6) in oscillatory region; dashed
lines: the theoretical limits x− = 19.62 and x+ = 122.38.

in which the functions s±(u) are

s± (u) = 1 + 2u ± 2
√

u2 + u = 1

s∓ (u)
. (5.3)

Figure 5 illustrates this behaviour.
As with the Bessel beams, we can regard the oscillation

as the decomposition of the real Laguerre function into two
complex functions, that is

Ll
p (x) ≈ Xl,p (x)+

(
Xl,p (x)

)∗
, (5.4)

which are locally exponential in form. The rate of oscillation
(local radial wavenumber) is

d

dx
arg Xl,p(x) = −

√
(x+ − x) (x − x−)

2x
. (5.5)

Thus, introducing the physical dimensionless variables ρ and
ζ as in (3.1), the Poynting vector components are

vρ = 1

1 + ζ 2

⎛

⎝ρζ ±
√(
ρ2+ − ρ2

) (
ρ2 − ρ2−

)

ρ

⎞

⎠ ,

vφ = l

ρ
,

(5.6)

in which
ρ2

± = ls±
(
1 + ζ 2

)
. (5.7)
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Figure 6. Geometrical rays {ρ±(ζ ), φ±(ζ ) } for Laguerre–Gauss
beams, calculated from (5.9) and (5.10) with ζ0 = 1.5 and a range of
starting angles φ0, and x+/l = 4, x−/l = 0.25. All rays are straight,
and turn by π between ζ ± ∞. The totality of rays for all φ0, ζ0 fill
space between the two caustic surfaces shown in figure 7.

Thus, the equations determining the trajectories are

ρ ′ (ζ ) = 1

1 + ζ 2

×
⎛

⎝ρ (ζ ) ζ ±
√(
ρ2+ − ρ (ζ )2

) (
ρ (ζ )2 − ρ2−

)

ρ (ζ )

⎞

⎠ ,

φ′ = l

ρ (ζ )2
. (5.8)

Somewhat surprisingly, the graphs of ρ(ζ ) for different
trajectories are again hyperbolas. Considerable algebra
confirms the following expressions, conveniently specified by
the height ζ0 where the trajectory comes closest to the axis, and
corresponding to the two signs in (5.8):

ρ± (ζ ) =
√

l

A±
( p

l , ζ0
)

[
A±

( p

l
, ζ0

)2
(ζ − ζ0)

2 + 1

]

φ± (ζ ) = φ0 + tan−1
{

A±
( p

l
, ζ0

)
(ζ − ζ0)

}
,

(5.9)

in which

A± (u, ζ0) =
s+ + s− ±

√
(s+ − s−)2 − 4ζ 2

0

2
(
1 + ζ 2

0

)

=
1 + 2u ±

√
4u (1 + u)− ζ 2

0
(
1 + ζ 2

0

) . (5.10)

-4 -2 0 2 40

1

2

3

4

ρ

ζ
a

b

ζ

Figure 7. (a) Geometrical Laguerre–Gauss rays: radial coordinate
ρ±(ζ ) for different ζ0, showing the caustics at ρ± = x±

l

√
(1 + ζ 2).

(b) Caustic surfaces.

It is clear that all trajectories have closest approaches to the

axis in the range of heights |ζ0| < 2
√

p
l (1 + p

l ). Again, use

of (1.4) confirms that the rays are straight.
Figure 6 shows the + and − ray families for a typical ζ0.

Again they lie on hyperboloids, with the difference from the
Bessel beam that now there are two hyperboloids for each ζ0,
and the dimensions of the hyperboloids depend on ζ0. The
envelope of all the hyperboloids is a caustic surface with two
sheets (figure 7), both themselves hyperboloids, given by

ρcaustic,± =
√

ls±
(
1 + ζ 2

)
, (5.11)

corresponding to large values of the Laguerre polynomials at
the extremes (5.2) of the oscillatory range. The totality of all
the skew rays on all the hyperboloids fills the space between
the two caustic surfaces.

6. Concluding remarks

The results reported here show that the energy trajectories of
Bessel and Laguerre–Gauss beams can be calculated exactly,
and show somewhat richer behaviour than might have been
anticipated. Especially significant are the differences between
the Poynting vector lines of the exact beams (generally curved)
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Figure 8. Representations of the unequal superposition (6.1) of two plane waves with a = b = 1/2. (a) Intensity |ψ |2. (b) Thick curves:
Poynting trajectories Imψ∗∇ψ ; dashed curves: wavefronts argψ = constant. (c) Geometrical-optics rays: thick lines represent the
right-travelling (stronger) wave and the thin lines represent the left-travelling (weaker) wave.

and those of the component ray families in the geometrical-
optics approximation (overlapping families of straight skew
rays).

Nevertheless, the behaviour is not typical. The Bessel
functions and Laguerre polynomials are real and therefore have
zeros on nodal surfaces (hyperboloidal in form), in contrast
to typical complex wavefunctions, whose zeros are lines (of
phase singularity, also called wavefront dislocations or optical
vortices). Associated with this is the fact that the locally plane
waves that are superposed in the oscillatory regions of the
beams are equal in amplitude. Typically, the waves are of
unequal amplitude, and then the exact Poynting trajectories are
wavy. A simple—almost trivial—example is the superposition
of two plane waves equally inclined to the y axis:

ψ (x, y) = exp {i (y + ax)} + b exp {i (y − ax)} . (6.1)

The intensity

|ψ (x, y)| = 1 + b2 + 2b cos 2ax, (6.2)

possesses maxima (figure 8(a)) along lines parallel to the
common propagation direction y. This contrasts with the
Poynting trajectories, which when parametrized by the height
y0 where they intersect the y axis are given by

y − y0 = 1

a
(
1 − b2

)
(

(
1 + b2

)
x + b

a
sin 2ax

)
. (6.3)

These are wavy lines (figure 8(b)) slanted towards the direction
of the more intense plane wave component in (6.1). And of
course these in turn are very different from the superposition
of the two families of geometrical rays (families of parallel
straight lines, figure 8(c)) representing the two component
waves. The particular wave (6.1) has no vortices. When
vortices are present, trajectories generally spiral slowly into
and out of them [14]—another feature that does not occur for
the axial vortices in the beams considered here.

We expect other families of beams (for example, Hermite–
Gauss or Mathieu) to exhibit similar behaviour, that is,
curved Poynting trajectories for the exact waves and, in the
geometrical-optics approximation, skew families of straight
rays enveloping caustic surfaces.
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Appendix. Laguerre asymptotics

We include this section to present the most compact derivation
of results we need; for a rigorous treatment, and references to
the extensive mathematical literature on Laguerre polynomials,
see [15].

From the Rodrigues formula [10] for the Laguerre
polynomials, the function gl,p(x) in (5.1) can be written as a
pth derivative, which in turn can be expressed as a contour
integral:

gl,p (x) ≡ exp
(− 1

2 x
)

xl/2 Ll
p (x)

= exp
(

1
2 x

)
x−l/2

p!
dp

dx p

(
exp (−x) x p+l

)

= exp
(

1
2 x

)
x−l/2

2π i

∮
dz

(z − x)p+1
exp (−z) z p+l

= exp
(

1
2 x

)
x−l/2

2π i

∮
dz exp {F (z, x)} , (A.1)

where the contour is a loop surrounding z = x , and

F (z, x) ≡ −z + (p + l) log z − (p + 1) log (z − x) . (A.2)

In the geometrical-optics regime (large l and p), F is large
and the integrand is fast-varying, the contour can be deformed
so as to pass through saddle points, where the exponential is
locally stationary; the integral is dominated by contributions
from these points. There are two saddles, given by
∂F

∂z
= 0 ⇒ z = z± (x)

= 1
2

[
x + l − 1 ±

√
(x − l + 1)2 − 4 (p + 1) x

]
. (A.3)

Complex exponential contributions to gl,p(x) correspond to
complex saddles, in which the argument in the square root
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in (A.3) is negative. It is easy to confirm that this implies that
x must lie between the limits (5.2).

The function gl,p(x) is now given by the standard saddle-
point method [16, 17] (local Gaussian expansion of the
integrand) as

gl,p (x) ≈ − exp
(

1
2 x

)
x−l/2

×
√

2

π
Im

[
exp {F (z+ (x) , x)}

√−∂2 F (z = z+ (x) , x) /∂z2

]

(x− < x < x+) , (A.4)

or, more explicitly (after some algebra),

gl,p (x) ≈ −
√

2

π

(p + l)
1
2 (p+l)+ 1

4 exp
{− 1

2 l
}

p
1
2 p+ 1

4

[
(x+ − x) (x − x−)

]1/4
sinμ

(x− < x < x+) ,
(A.5)

where

μ = Im F (z+ (x) , x)− 1

2
arg

[
−∂

2 F (z = z+ (x) , x)

∂z2

]
.

(A.6)
Figure 5 shows how accurately these formulae describe the
Laguerre function in its oscillatory range.

The rate of oscillation (local wavenumber) is

d

dx
arg Xl,p (x) ≈ d

dx
Im F (z+ (x) , x)

= ∂

∂x
Im F (z+ (x) , x) = Im

(p + 1)

z+ (x)− x
, (A.7)

which with (A.3) leads to the formula (5.5) that we used to
obtain the Poynting vector components.

As the order p of the derivative in (A.1) increases, so does
the range over which the Laguerre function gl,p(x) oscillates
(cf (5.2)), leading in the limit to the radial oscillations of the
Bessel beams. This is an example of the universal phenomenon
that high derivatives of almost every smooth function are
locally sinusoidal; for a general theory, see [18].
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