Journal of Mathematical Modelling and Algorithms (2005) 4: 331-353 © Springer 2005
DOI: 10.1007/s10852-005-0855-4

Exact and Heuristic Algorithms for Dynamic
Tree Simplification

CARLOS CORREA!, IVAN MARSIC! and XIAODONG SUNZ*

1ngers University, Department of Electrical and Computer Engineering and the CAIP Center,
Piscataway, NJ 08854, USA. e-mail: {cdcorrea,marsic}@ece.rutgers.edu

2 Ask Jeeves, Inc., Piscataway, NJ 08854, USA. e-mail: sunxd@math.rutgers.edu

Abstract. The Tree Knapsack Problem (TKP) is a 0—1 integer programming problem where hier-
archy constraints are enforced. If a node is selected for packing into the knapsack, all the ancestor
nodes on the path from the root to the selected node are packed as well. One apparent application of
this problem is the simplification of computer graphics models. Real applications also use alternative
representations of the nodes or whole subtrees, called impostors, to provide simplified trees that
are visually acceptable. To account for this simplification, we introduce a generalized TKP, called
Exclusive Multiple Choice Tree Knapsack Problem (EMCTKP). We present a dynamic program-
ming algorithm to solve EMCTKP and a heuristic, called Lazy Iterative Arrangement, which reuses
previous EMCTKP solutions to solve new instances of the problem. We show that this algorithm
and heuristic reduce significantly the computation time of EMCTKP problems when changes in their
parameters have spatial and temporal coherence. We also compare our algorithm with commercial
integer programming solvers, and show that in our case the computation time grows linearly with the
size of the problem tree and the available resources, while for generic IP solvers it is unpredictable
and varies over a wide range of values.

Mathematics Subject Classifications (2000): 90-08, 90C10, 90C90.

Key words: structured data simplification, dynamic programming, virtual worlds.

1. Introduction

The tree knapsack problem (TKP) is a generalization of the 0—1 knapsack problem
(KP) with additional constraint of partial ordering represented by a rooted tree. If
a node is selected, then all the ancestor nodes on the path from the root to this
node must be selected as well. In this paper, we consider an extension of TKP
called exclusive multiple choice tree knapsack problem (EMCTKP). In EMCTKEP,
associated with each node there may be several simplifications of the subtree rooted
at the node, which we call impostors. When an impostor is selected, none of the
descendants of this node can be selected. We use EMCTKP to model a class of
optimization problems in virtual reality environments. The impostor constraint is
quite natural in this kind of problems and we believe EMCTKP may be useful for
optimization problems in other domains.

* Most of the work was done while at Rutgers University and Institute for Advanced Study.

332 CARLOS CORREA ET AL.

Since both EMCTKP and TKP include KP as a special case, they are clearly
NP-complete [3]. On the other hand, TKP can be solved using standard dynamic
programming (DP) procedure in O(n - R?), where n is the number of nodes and R
is the given capacity or resource. Johnson and Niemi [5] introduced a “left-right”
DP algorithm for TKP, which can find the optimal value C* with a running time
of O(n - C*). Cho and Shaw [1] improved on this approach and gave a better DP
algorithm with running time O(n - R). Shaw and Cho [9] also proposed a branch-
and-bound (B&B) procedure for the TKP and their experiments showed that it has
very good performance.

In this paper, we make two contributions to the computation of EMCTKP:
(1) we extend the DP algorithm of Cho and Shaw [1] to EMCTKP while keeping
the running time at O(n - R), where n is the number of nodes and impostors in
the tree; and, (2) we propose a heuristic called Lazy Iterative Arrangement (LIA)
which reduces the running time when the same EMCTKP with varying parame-
ters is computed repeatedly. Since TKP is a special case of EMCTKEP, our second
contribution also applies to TKP.

Funkhouser and Sequin [2] proposed a greedy algorithm, which is half-optimal
but only works for non-hierarchical scenes. For hierarchical structures such as
trees, no greedy algorithm can guarantee a near-optimal solution. Mason and
Blake [7] proved that half-optimality is feasible when the benefit measure has
diminishing returns.

Samphaiboon and Yamada [8] studied the Precedence-Constrained Knapsack
Problem (PCKP), which extends TKP by replacing the underlying rooted tree for
an acyclic graph. They presented an exact algorithm with some heuristics. Their
algorithm for PCKP in the worst case may take time exponential in 7, the number
of nodes, while our algorithm for EMCTKP takes time linear in n.

The paper is organized as follows. We define EMCTKP in Section 2, then
present our DP algorithm for EMCTKP in Section 3. In Section 4, we present the
Lazy Iterative Arrangement heuristic. Experimental results are given in Section 5.
We conclude the paper in Section 6.

2. Application Background and Definition of EMCTKP

An important application of optimal tree simplification is the transmission and ren-
dering of graphics scenes in environments that are constrained in system resources.
The graphics tree is called scene graph, where each node represents an individual
object or part of the scene. Semantics are embedded in the form of properties of
nodes, such as geometric shape, color, position, etc.

In order to describe the problem, it is necessary to define some concepts.

DEFINITION 1. An impostor of a node v; of a tree is a node that constitutes an
alternative representation of the subtree rooted at v;. The set of impostors of a node
v; is Impostors(v;). See Figure 1 for an illustration.

DYNAMIC TREE SIMPLIFICATION 333

A Impostor 1

cow A\ Impostor 2

head body legs tail

Model tree

Impostor 2
Figure 1. A three-dimensional model and two polygonal impostors.

v, Va

Vs

Original tree Tree simplification Tree simplification that
satisfies Scene
Completeness Condition

Figure 2. Examples of tree simplification.

DEFINITION 2. A simplified tree 7" = (V/,E’) of atree T = (V,E) is a
tree such that V' is: (1) closed under the predecessor [9], i.e., v; € V' implies
predecessor(v;) € V'; and, (2) any leaf node v/ € V' corresponds to a node v; € V
or an element in Impostors(v;). See Figure 2.

DEFINITION 3. A simplified tree T = (V’, E’) satisfies scene completeness

condition (SCC), if for any leaf node v; whose path from the root is vg, vy, ..., U
(vg is the root), either vy, vy, ..., vy € V' or there exists a node v; ancestor of vy,
such that vy, vy, ..., v, € V' where v/ € Impostors(v;).

Simplified trees are representatives of virtual worlds, where the visible ele-
ments, i.e., polygons, are stored in the leaves, while the interior nodes are used
to define coordinate frames and represent hierarchy of objects. We see in Figure 2
that the tree in the middle does not satisty SCC, since the node vs has no visual
representation. A possible representation for vs is either vs itself, vs, or any of the
impostors of its ancestors. The tree at the right does satisfy SCC.

The problem of determining the best possible simplification for a given tree can
be seen as optimization under constraints, where each node has a set of impostors,
and each node or impostor is assigned a benefit and resource cost value. The benefit
value b represents the contribution of a given node or impostor to the overall “fi-

334 CARLOS CORREA ET AL.

delity” of the simplification, whereas the resource cost value r represents the size
of data needed to represent the node.

As mentioned above, virtual environments are represented as directed trees. Let
parent(i) denote the parent node of node i. Each node is assigned a benefit b
and a resource cost r. The simplification problem can be represented as a 0-1
integer-programming problem [4], where the solution is a subtree, rooted in the
same root node as the original tree, with maximum total benefit. In case there
are no impostors, this leads to the following formulation of the Tree Knapsack
Problem (TKP):

max Z b; - x;
Subject to:

Zri -x; <R,
i

Xparent(i) Z Xi, (D
x;=0orl,

where the constraint (1) guarantees that the set of nodes V' of the simplified tree is
closed under predecessor. The solution of the problem is defined as follows: Node
v; belongs to the simplified tree if and only if x; = 1.

In the case where some nodes contain one or more impostors, additional con-
straints must be added to the problem. Without loss of generality, we assume that
each node has no more than one impostor. An input tree that contains nodes with
multiple impostors can be transformed into a tree whose nodes have at most one
impostor by adding new interior nodes to the scene graph for each additional im-
postor. The added nodes have no benefit and no cost, i.e., both are equal to zero.
Please note that the number of nodes in the new tree is at most the number of
nodes and impostors in the old tree. Other than this the problem is unaltered. This
transformation is illustrated in Figure 3. For the sake of simplicity, we will present
the formulation of the EMCTKP problem and our algorithms for trees with at most
one impostor at each node. However, our algorithms can be easily extended to
trees with at most one impostor at each node and, with the transformation, can be
extended to trees with arbitrary number of impostors at each node.

Let r; and b; be the cost and benefit of node v;, respectively, and r/ be the cost
of the impostor of node v;, and b; its benefit. Let R be the total available resources.
R, b;, b, r;, and r] are all positive integers. Let

= { 1 ifnodewv; € V/,
' 0 otherwise
and

o { 1 if the impostor of node v; € V’,
' 0 otherwise.

DYNAMIC TREE SIMPLIFICATION 335

Original tree Transformed tree

Figure 3. Transformation of tree with multiple impostors per node to tree with exactly one
impostor per node. Nodes are represented by circles and impostors by triangles. Nodes u
and u; are added to represent extra impostors. Since these nodes have no cost, the problem is
unaltered.

Then, we have the following optimization problem:

max{Zbi-xi+Zb§-y,~} (2)

Subject to:
doriexi+ Y rl-yi <R, 3)
xi+yi <1, 4)
Xparent(i) = Xi + Vi, (5)
x;,yi =0or 1. (6)

This problem is an extension of TKP with two choices at each node, where x; = 1
means that node v; is selected, and y; = 1 means that the impostor of node v; is
selected. Expression (2) is the benefit function to be maximized, and constraint (3)
is the constraint on resources. Constraint (4) is the exclusivity constraint, such that
the selection of a node and an impostor is mutually exclusive. Constraint (5) is the
closed under predecessor constraint, which this time also ensures that if either a
node or its impostor is selected, then its predecessor must be selected as well. We
call this problem Exclusive Multiple Choice Tree Knapsack Problem (EMCTKP).
Note that if the impostor of a given node is selected, none of its descendants can
be selected. This constraint can be defined as follows:

Xi + yparent(i) g 1. (7)

This constraint, however, does not need to be stated explicitly, since it can be
derived from the constraints (4), (5) and (6) as follows.

PROPOSITION 1. (4), (5) and (6) imply (7).
Proof. Assume that x; = yparenti) = 1 as opposed to (7). Then, from (4) we have
Xparent) = 0, and from (5) this implies x; = 0, which is a contradiction. O

336 CARLOS CORREA ET AL.

3. The Dynamic Programming Algorithm

As already mentioned, the above optimization problems are NP-complete. There
are practical algorithms that can solve TKP exactly in a reasonable amount of time,
for trees of size up to few hundreds of nodes [1, 9]. Greedy algorithms have been
considered as practical solutions for this kind of problems, because their compu-
tation time is in the order of O(n - logn). However, for Tree Knapsack Problems,
greedy algorithms are not guaranteed to provide near-optimal solutions and the
result can be arbitrarily bad.

For this reason, based on the algorithm for TKP in [1], we designed a dynamic
programming (DP) algorithm that solves EMCTKP in pseudo-polynomial time.
Inherent to DP algorithms is reusing the partial solutions for multiple instances of
constraints (in our case resources). We refer to this algorithm as DPR (Dynamic
Programming on Resources).

Let tree T = (V, E) be the one in the definition of EMCTKP. We assume
that the nodes are labeled in DFS (depth-first search) order starting from 0. For
k<nletW=W(k)=0,1,...,kbe the subset of V representing nodes labeled
(visited) up to the node k and Ty = (W, Ey) be the induced subtree of 7. For a
given resource r and a given node v € W, we define:

PW(v,r):maX{ Z b,--x,-—i— Z b:yl}

0<i<k 0<i<k
Subject to:

Xy +y =1,

Z ri- X + Z rieyi <

0<i<k 0<i<k
Xi + Vi < 17

for 0 < l,_] < k Xparent(i) P Xi + Yi,

xi,yi=0orl.

Then max { Py (0, R), 0} is the optimal value of EMCTKEP.

To find Py (0, R), we use DFS approach proposed by Johnson and Niemi [5]
and Cho and Shaw [1]. The algorithm finds the optimal value Py (0, R) in O(n - R)
time by applying the following recursive procedures (illustrated in Figure 4):

1. (Initialization)

by, ifro <r <R,

Pw)(0,r) = {(), otherwise.

2. (Forward move to expand the set of labeled nodes) For k # 0 and for each
r=0,1,..., R,

P - t k 9 - b) f . . < ,
Pwo(k, 1) = { wk—1 (parent(k), r — ry) + by, i Zjep.)ath[o,k] rp<r
0, otherwise.

DYNAMIC TREE SIMPLIFICATION 337

1. Initialization

P
roct |/ N[N VNN

1:
’°°*d — v R
/

2. For each vertex vin

/
2. /3 DFS order: Forward move >~ ———
: R
v(;

3. After traversing subtree

rooted in v: Backward move
d) \Mpamuw [TTT1]

[TTTTT]r"

—
<

Figure 4. Dynamic programming algorithm for exact EMCTKP.

3. (Backward move to revisit labeled nodes) Letk = Oand W = W (k—1)UT (k).
Foreachr =0,1,..., R,

Py (parent(k), r)
= max{ Py _1)(parent(k), r), Pw—1)(parent(k), r — r) + by, Pway(k, r)}.

For each node & and a given resource r, what is finally stored as P (k, r) will be
Py (k,r),where W = {0, 1, ...,k —1}UT (k) and T (k) is the subtree rooted at k.
We use an index table I and assign I (k, r) to indicate its role in the solution that
gives Py (0,r). I(k,r) =0means x; = y, = 0; I (k,r) = 1 means x; =1, y; =0;
and I (k,r) = 2 means x; = 0, y, = 1, respectively, in the optimal solution that
achieves Py (k,r) for W = {0, 1, ...,k — 1} U T (k). The algorithm then finds the
values of x;, yr(k = 0,1, ..., n) by tracing the index table / in a fashion similar
to the algorithm of Cho and Shaw.

3.1. PSEUDO-CODE OF THE DPR ALGORITHM

The following is the pseudo-code for the DPR algorithm. The procedure Opti-
mal_Value_ EMCTKP builds the P and [tables according to the recursive proce-
dures defined above. It differs from the algorithm of Cho and Shaw in the way the
tables are built while performing the backward_move procedure, which considers
three cases as described above: At a given node v we either include its impostor v/,

338 CARLOS CORREA ET AL.

the node itself, or do not include it at all. Note also the additional check at the end
of this procedure: It is possible that the impostor of the root node provides better
benefit for a given amount of resources, in which case it is selected.

The procedure Optimal_Solution_ EMCTKP traverses the table I to determine
the optimal solution, in a way similar to the algorithm of Cho and Shaw [1]. Our
algorithm differs in that we consider an additional case where I (k, r) = 2, which
represents the selection of an impostor that contracts the whole subtree below it.

ALGORITHM Optimal_Value_EMCTKP

Input: parent(i), b;, r;, b;, ri’, R,fori =0,1,2,...,n(nodes are labeled in depth-first-search order)
Output: P,(0,r)and I(i,r)foralli € Vandforallr =0,1,2,..., R
begin

%% comment: Initialization
Tmin ‘= min{r; | j € V}
for r :=rpjptorg — 1 do
PQO,r):=—o0; 1(0,7r):=0;
for r :=rgto R do
PO, r):=bg; 1(0,r) :=1;
%% comment: Main Loop

Ipath *= 105
for k:=1tondo
begin

Forward_Move(k)
if (k is a leaf node) then
vi=k;
do
Backward_Move(v);
v := parent(v);
while ((v has no successor i such thati > k) and (v # 0))
endif

end
%% comment: Multiple choice of the node 0
if (P(0,r() < bp)then P(0, 7)) =by; 1(0,7)) =2;

end

Procedure Forward_Move(u);
begin
Tpath *= Tpath + Tu;
for 7 := ryin 10 rpah — 1do P(u, r) := —o0;
for r := rpan to R do
begin
P(u,r) := P(parent(u), r —ry) + by;
end

end

DYNAMIC TREE SIMPLIFICATION 339

Procedure Backward_Move(u);
begin

Tpath ‘= Tpath — "u;

r[/)ath i= Tpath + 773

for r := rmy, to 7’ ldo P'(u,r) == —oc;

path —
for r ;= r;ath to R do
begin
P’(u, r) := P(parent(u), r —r}) + bj;
end
for r := rpyjp to R do
begin
if (P(parent(u),r) > P(u,r) and P(parent(u),r) > P’(u, r)) then
I(u,r) :=0;
elseif (P(u,r) > P'(u,r)) then
P (parent(u),r) = P(u,r)

I(u,r):=1,

else
P (parent(u),r) = P'(u,r)
I(u,r):=2;

endif

end

end

Algorithm Optimal_Solution_ EMCTKP
Input: /(i,r)foralli € Vandforallr =0,1,2,..., R
Output: x(i) for all i € V (value 0 means the vertex is not selected, value 1 means the vertex is
selected, value 2 means the imposter of the vertex is selected)
begin
fori :=1tondox(i) :=0;
label node 0;
i:=n;
r:=R;
tail := —1;
%% comment: Main Loop: keep deleting the “tail”’

while (i > Oand r > 0) do
begin
while (i is unlabeled) do
begin
if (1(i,r) =0)then
i=i—1
tail := —1;
else
if (tail=—1orI(i,r) = 2) then
tail := i;

340 CARLOS CORREA ET AL.

end if
label node i;
i := parent(i);
end if
end
if (tail = —1) then
tail :=i;

x(tail) :=1;
rI=T = Tail
else
if (I(tail,r) = 1) then
x(tail) := 1;
r= T Tl
else
x(tail) := 2;
ri= T
endif
endif

i :=tail — 1;
tail := —1;
end

end

3.2. ANALYSIS

For a tree with arbitrary number of impostors at each node, let n be the number
of nodes and impostors. We first transform the tree to one with at most n nodes
and then apply our algorithms to the new tree. The running time for the algorithm
Optimal_Value_ EMCTKP is O(n - R) since it traverses each link of the tree twice
(forward and backward moves) and each move on the link takes time O(R). The
running time for the algorithm Optimal_Solution_EMCTKP is O(n) since it fol-
lows the reverse or the DFS order and the time cost at each node is O(1). As for the
memory space cost, the tables at each node cost O(R) and the total cost of space is
O(n - R).

3.3. HANDLING THE SCENE COMPLETENESS CONDITION

PROPOSITION 2. A tree simplification problem with SCC can be reduced to a
TKP instance.

Proof. Let us consider the tree T as a problem tree for an EMCTKP problem.
Then, each node in 7" has exactly one impostor. Now, we build the tree 75 as a
problem tree for optimal simplification that must satisfy the scene completeness
condition. The idea of the transformation is to represent at each node the simplest
set of impostors that satisfy such condition, as follows (see Figure 5).

DYNAMIC TREE SIMPLIFICATION 341
(Ug) (be', 70)

, (by—bo+Zb,, ry—ry+Zr)
(VAN LN 7Y R > , for k in children of node 0

/
/
/

, (((by-bjszby, 1-r'+2ry)
CATAN 0 (b) @ for kin children of node i
CYINOES BN
(by 1) (By=b7’ ;=17
EMCTKP Problem with SCC TKP Instance

Figure 5. Transformation of an EMCTKP Problem with SCC to a TKP instance.

We begin by creating a root node u(, with the benefit and resource values (by,),
which is the simplest impostor that satisfies SCC, since it is the impostor for the
entire tree. The next node v, is obtained from the root node vy of T, such that it
represents the next complete set of impostors. That is, it replaces the impostor of
vp by the node vy and each of the impostors of its children, i.e., v, is defined such
that its benefit and resources values are (by — by + > by, ro — ry + >_r;), for all
children v; of root v, and is added as a child of uj,.

Then, for each node v; € T we do the same, maintaining the hierarchical
structure of the original tree, so that the node v; € T°° is defined as having the
benefit and resource values (b; — b} + > _ b, r; —r/ + Y _r,), for all children v, of
node v;. For the case of a leaf node v}, the benefit and resource values are defined
as (b] — b;, ry — r;)

We see that any subtree of 7°° satisfies the SCC, since every node has the
simplest complete set of impostors for its subtree, and the nodes in any path in-
crementally exchange the impostor of a lower resolution for a set of impostors of
higher resolution, i.e., when adding resource and benefit values, the values for the
impostors of internal nodes are cancelled out, and the total resources account for
the resources of internal nodes and for the resources of the impostors at the leaves
of the subtree.

Since we do not need to specify impostors for any node in 7°°, the subtree of
T*°¢ with optimal benefit can be obtained by solving TKP. O

We believe that in real applications, some simplifications might require SCC.
Our dynamic simplification, as shown next, also applies to such cases.

4. Dynamic Simplification

In virtual reality environments, the benefit or resource metrics of nodes in the tree
change due to the changing user interest or dynamic simulation and it is necessary
to compute the EMCTKP problem repeatedly with varying parameters. Hence, it
would be beneficial if some parts of the old solution could be reused. For our
algorithm it is possible to reuse parts of old solutions, based on the following
observation.

342 CARLOS CORREA ET AL.

———» DPR table can be reused
------- » DPR table cannot be reused

Figure 6. Dynamic simplification, where node B already has been updated. DPR table values
of the nodes traversed with the solid line are not affected by the update, whereas those in the
dashed line must be re-computed. The algorithm can skip the subtree below node A during the
computation of the new solution, and use the results obtained in the previous computation.

— Traversal order of DPRTT algorithm
Affected node
(O Modified node

Figure 7. DPRTT traversal. Note that the subtree rooted at node A is skipped during the
computation since it is not modified by the update on B. Conversely, the subtree rooted at C
needs to be traversed, although is not marked as “modified,” since the update on B affects the
computation of the solution for the branches to the right.

OBSERVATION 1. Let us assume that the DFS order always takes the left branch
first. The main problem with reusing solutions across the tree topology is that an
update on a given branch affects the stored solution of the branches to the right, so
it cannot be reused. Conversely, the solution to the left of this branch can be reused
completely, as illustrated in Figure 6.

In order to adapt to parameter changes in the tree, we extend the DPR algorithm
to reuse solutions also along the tree topology. This algorithm is referred to herein
as DPRTT (Dynamic Programming on Resources and Tree Topology). For this
algorithm, we assume that the values of tables P and I of the last computation
of DPR are kept in memory as Poq and /yg4, and nodes that have been modified
since the last computation of DPR are marked as “modified.” We also assume that
nodes in the path from a modified node to the root are marked as “affected,” since
they need to be traversed in order to reach the modified nodes. Then, the DPRTT
algorithm is built by adding functionality in the DPR algorithm as follows. When
the algorithm traverses a node which is not marked as “affected” or “modified,” it
can skip the traversal of the subtree below it and reuse the parts of the previous
tables. This is illustrated in Figure 7. The pseudocode for DPRTT is as follows:

ALGORITHM Optimal_Value_ EMCTKP_Dynamic

Input: parent(i), b;, r;, b;, rlf, R,fori =0,1,2,...,n(nodes are labeled in depth-first-search order)
Output: P,(0,r)and I(i,r)foralli € V andforallr =0,1,2,..., R
begin

%% comment: Initialization
Fmin = min{r; | j € V}

DYNAMIC TREE SIMPLIFICATION 343

for r := rpj, torg — 1 do
PO, r) = —o0; I1(0,r):=0;
for r:==rgto R — 1 do
PO,r):=bg; 1(0,r) =1,
%% comment: Main Loop
T'path ‘= 705
for k:=1tondo
begin
if k is marked as modified then
reuse_flag = false
endif

if k is not marked as modified or affected and reuse_flag = true then
copy row Pgyq(k) in P (k)
copy rows Iy14(j) in I(j) for all j descendants of k, including k
mark k as reused

else
Forward_Move(k);

endif
if (k is a leaf node Il k is marked as reused) then
vi=k;
do
Backward_Move(v);
v := parent(v);
while ((v has no successor i such thati > k) and (v # 0))

if k is marked reused then
k = k+ Descendants(k)

endif
endif
end
%% comment: Multiple choice of the node 0

if (P(0,r9() < bp() then P(0, r(’)) = b6; 1(0, r(’)) =2;

end

where Descendants(u) is a procedure that returns the number of nodes in the
subtree rooted at node u. This is used in the algorithm to avoid traversing those
subtrees whose solutions can be reused.

A key problem with this approach is that if updates occur repeatedly in the
leftmost branch of the tree, it is not possible to reuse any part of the tree. We can
overcome this issue by invoking the following observation.

OBSERVATION 2. The solutions obtained by DPR and DPRTT do not depend
on the DFS order in which the tree is traversed to find those solutions.

344 CARLOS CORREA ET AL.

Based on this observation, the algorithm can be improved as follows: After com-
puting the simplified tree, it is possible to rearrange the DFS order of the tree for
the next computation such that modified nodes appear on the rightmost branches. In
the following section we present an approach to perform such arrangement, which
we call Lazy Iterative Arrangement.

Note that the DPRTT algorithm and the arrangement heuristic have a larger
impact when updates have spatial and temporal coherence. Updates in benefit or
resources metric are said to exhibit spatial coherence if the updated nodes are rela-
tively close to each other, i.e., changes are likely to be localized in a subtree rather
than dispersed across the entire tree. Similarly, updates are said to have femporal
coherence if for a node that has been updated, it is likely that the same node will to
be updated soon again.

LAZY ITERATIVE ARRANGEMENT

In order to reduce the running time of our DPRTT algorithm we propose an algo-
rithm, called Iterative Arrangement, which rearranges the depth-first-search (DFS)
order of the tree. The goal of the algorithm is to move the modified branches of the
tree to the right-hand side of the tree. This way, the DPRTT algorithm can reuse
a large part of the previous solutions, since further updates are more likely to be
performed on those branches.

We use a flag “modified” to mark the nodes whose parameters were modified
since the last iteration of the algorithm, and a flag “affected” to mark the nodes on
the path between a “modified” node and the root. Since our algorithm can reuse
the result of the old solution on the unmarked nodes before hitting a node marked
“modified” in the DFS order, we use the following iterative algorithm to find a DFS
order that maximizes the reuse which reduces the running time.

ALGORITHM lterative_Arrangement
Input: A marked tree T

Output: A DFS order of the tree and the degree of reuse (the number of unmarked nodes with DFS
order lower than any node marked “modified”)

begin
v := RootOf(T);
For w, an unmarked child of v, assign the lowest DFS order available;
For w, a child of v marked “modified,” assign the highest DFS order available;
For w, a child of v marked “affected,” run Iterative Arrangement algorithm on Tree(w);
Order all “affected” children of v in a descendent order of their degree of reuse and assign lower
DFS order to the child with a higher degree of reuse.

return sum of the sizes of subtrees rooted at unmarked children plus the degree of reuse of the
“affected” child of the lowest rank

end

DYNAMIC TREE SIMPLIFICATION 345

(a) (b) (c)

Figure 8. Example of an iterative arrangement: (a) node Al is marked as “modified” and
nodes A and the root are marked as “affected,” while other nodes remain unmarked; (b) the
resulting tree after the iterative arrangement. Further updates on nodes below A1 will require
a low optimization cost; (c) here node A2 is marked as “modified.” In this case, the degree
of reuse of A2 may be less than the specified threshold, so we do nothing. This is the lazy
iterative arrangement.

Let n be the size of the tree. The cost of the algorithm is mainly due to the
sorting of degrees of reuse for the children of the internal nodes. So, running time
of the algorithm is O(}_, n, -logn,) where n, is the number of children of v. Since
>, 1y = n — 1, the running time of the algorithm is at most O(} _, n, - logn) =
O(n - logn).

In the last step of the iteration, we may assign the lowest DFS order to the
“affected” child that saves the largest computation time (highest degree of reuse)
and not care about the order of other “affected” children. The running time of the
algorithm is then reduced to O(n).

Different criteria may be used to set the “modified” flag on a node, such as the
recent history of modifications of the node. Since the profile of a past modification
may not always correctly predict future modifications, we suggest lazy arrange-
ments, i.e., we set a threshold of reuse and only perform Iterative_Arrangement if
the degree of reuse is greater than the threshold. An example of iterative arrange-
ment and lazy iterative arrangement is shown in Figure 8.

5. Experimental Results

We apply the above algorithms for simplification of complex 3D virtual scenes. In
this context, the benefit metric of a particular node corresponds to the fidelity of
the simplification, according to a set of (perceptual) criteria defined by the user.
Examples of such criteria are: size, in terms of dimensions in the virtual world;
accuracy of the representation, which measures how similar impostors are com-
pared to the original object; focus-of-attention, which assigns greater importance
to objects near the user’s view, and semantics, which accounts for the intrinsic
importance of some object types. The resource metric corresponds to the cost of
representing a particular scene node. In out test scenario, we measure resources as
the number of polygons.

Virtual reality scenes have an inherent spatial and temporal coherence. This
is because the tree topology is used to represent composition relationships, thus

346 CARLOS CORREA ET AL.

the elements in the same subtree are usually closer to each other than to elements
in a different subtree. In addition, the tree topology is often used to represent a
spatial subdivision of a 3D scene. This type of virtual worlds has a greater spatial
consistency.

We classified the virtual scenes according to their spatial organization into three
categories:

Quadtrees these are the scenes organized in a recursive spatial subdivision, such
that the virtual world is partitioned into quadrangular regions (quads) of the
same size, each of which is partitioned into smaller quads, and so on, down to
some predefined depth. The topology of this type of scenes is a tree of degree
4 and depth d.

Grids these are the scenes whose elements are arranged in a grid of size m x n.

Arbitrary these are the scenes whose elements are positioned arbitrarily in a virtual
region.

It can be seen that scenes in these categories range from uniformly high co-
herence (quadtrees) to occasionally high coherence (arbitrary). This gives us both
optimistic and pessimistic performance bounds of the algorithm, respectively.

For testing our algorithm, we created a number of scenes from each of these cat-
egories, varying the main parameter in each case: The depth for quadtrees, the di-
mensions for grids, and the number of elements in the case of arbitrary scenes. The
leaf nodes of the virtual scenes are the nodes that contain the graphical properties
information, while the internal nodes are used to represent hierarchical relation-
ships between the different objects. In our test scenes, leaf nodes were populated
randomly from a collection of predefined virtual objects, mostly buildings.

Table I shows the summary information for the test datasets. Note that cor-
responding scenes in each category have a similar distribution of resources and
benefit. This is because they represent to some extent the same distribution of
objects in the 3D environment, although arranged differently in hierarchical struc-
ture. Note also the differences in benefit values: For instance, benefit values in
city4_3 are in the range [0, 808] while most of the other scenes have values in
the range [0, 3000]. This occurs because of the focus-of-attention parameter in
the computation of benefit values. According to this parameter, objects which are
completely within the view extents are given a maximum importance (3000 in our
case), while objects partially in the view have a lower importance proportional
to the distance between the object’s center and the view’s center. In the case of
city4_3, it happens that no object is entirely covered by the user’s view. Benefit
and resource values b;, b;, r;, r are independent. Although for a set of impostors
of the same node it is true that increasing resources results in increasing benefit, this
does not necessarily extend to the entire tree. We see that the importance heuristic
may give more benefit to an object with few polygons in the middle of the area
of interest, while other objects not directly of interest might have a larger amount

DYNAMIC TREE SIMPLIFICATION

Table I. Statistic information for input data from the test scenes

Scene Max Min Mean StdDev
ri 5576 0 347.67 1061.56
quadtree_2 b; 3000 0 82.02 295.38
(depth = 2) rlf 1117 0 75.21 180.42
bl’. 2887 24 168.49 365.89
ri 5576 0 340.6746 1122.3762
quadtree_3 b; 808 0 40.059525 77.6373
(depth = 3) ri 1117 77.44265 197.38295
b, 686 24 85.575 73.766235
ri 5576 0 328.35883 1088.3132
quadtree_4 b; 3000 0 37.838596 86.366486
(depth = 4) rl 1117 2 74.00621 189.54845
b; 3000 24 81.03906 98.53059
Scene Max Min Mean StdDev
ri 5576 0 448.6526 1342.831
. bj 989 0 69.43221 169.8539
grid4 x 4 ,
r; 1117 2 99.81761 238.6829
bl/. 885 24 139.6101 179.5135
ri 5576 0 396.5945 1229.072
. bj 3000 0 48.83614 159.4594
grid 8 x 8 ,
r; 1117 2 85.91821 212.0276
b; 2887 24 101.7423 193.3379
ri 5576 0 353.2278 1165.436
. b; 3000 0 39.76489 90.61723
grid 16 x 16 ,
r; 1117 2 78.65595 202.9349
b; 2887 24 83.97665 100.9245
Scene Max Min Mean StdDev
ri 5576 0 287.07144 925.2833
) bj 100 0 99.20635 8.873285
arbitrary_16 ,
r; 1035 2 62.7193 152.72362
b; 100 24 76.62573 25.870586
ri 5576 0 422.0894 1297.554
. b; 3000 0 54.81702 209.4886
arbitrary_64 ,
r; 1117 2 94.37715 230.6186
b; 3000 24 113.1017 264.5567
ri 5576 0 350.44617 1129.7971
. b; 3000 0 41.30176 112.21889
arbitrary_256 ,
r; 1117 2 78.31136 197.21097
b; 3000 24 85.87992 125.77382

347

348 CARLOS CORREA ET AL.

Table II. Size of the test datasets

Scene n RTtoTAL
quadtree_2 127 44421

quadtree_3 503 171374
quadtree_4 2025 663944
grid_4 x 4 117 52866
grid_8 x 8 475 188477
grid_16 x 16 1913 674865
arbitrary_16 123 32604
arbitrary_64 469 198083
arbitrary_256 1913 675840

Table 111. Percentage of modified nodes during navigation

Scene % modified Scene % modified Scene % modified
nodes (mean) nodes (mean) nodes (mean)
quadiree_2 10.16051 grid_4x4 9.892528 arbitrary_16 11.6144
quadiree_3 3.976143 grid_8x8 3.789474 arbitrary_64 3.933534
quadtree_4 0.844047 grid_16x 16 0.852016 arbitrary_256 0.894085

of resources. The benefit indicates also the accuracy of a given impostor. For a
regularly shaped object, an impostor of considerably lower resources might still
very much resemble the original object, i.e., the accuracy of the representation is
high. Conversely, a reduction of an object of irregular shape might result in an
impostor of low quality, i.e., the benefit value drops dramatically.

Table II shows the relative sizes of the test datasets, in terms of number of nodes
n and the total amount of resources, i.e., the sum of r; for all nodes i in the problem
trees.

Changes in the benefit values are obtained by modifying the focus-of-attention
parameter described above. This parameter is defined as a point (x, y, z), which
is moved in a predefined path within the boundaries of the virtual scene. This
movement is intended to represent a typical user navigation around the virtual
scene. The mean number of modified nodes for the different test scenes is shown in
Table III as a percentage of the total number of nodes for each tree. Given that the
dynamic changes simulate typical user navigation, the number of modified nodes
is practically the same for all data sets, which can be seen from Tables II and III,
i.e., the simulation shows the result of a user navigating at roughly the same speed
for smaller and larger environments. Having the same navigation conditions helps
us to measure the impact of the dynamic algorithm with respect to the tree size.

DYNAMIC TREE SIMPLIFICATION 349

Table 1V. Computation time (msec) for DPRTT with lazy itera-
tive arrangement vs. DPR algorithms, for Quadtrees

d n R DPRTT/LIA DPR
1000 4.6 8.028571
5 127 5000 21.86667 39.60952
10000 42.4 79.02857
30000 112.93 242.97
1000 13.06132 31.23585
5000 59.69811 159.5047
3 503
10000 115.566 305.6321
50000 621.6132 1605.392
1000 35.58028 124.7041
5000 166.9289 625.7959
4 2025
10000 329.039 1234.33
50000 — —

*The problem could not be solved due to insufficient computer

memory.

Table V. Computation time (msec) for DPRTT with lazy iterative arrange-

ment vs. DPR algorithms, for Grids

Dimensions n R DPRTT/LIA DPR
1000 4.598039 7.960784
5000 21.16667 35.19608
4 x4 117
10000 42.7451 71.40196
30000 117.73 223.31
1000 15.42534 29.76471
5000 66.12669 146.3439
8x8 475
10000 136.1041 297.9321
50000 794.6652 1537.484
1000 46.21678 123.8438
5000 274.4802 587.0769
16 x 16 1913
10000 529.5851 1180.142
50000 — —

The algorithm was initially coded in the Java language and ran on a 2.2 GHz
Intel XEON P4, with 1 GB RAM. Table IV shows the results of the experiments
for Quadtrees with respect to the depth of the tree d. Table V shows the results
of the experiments for Grids with respect to the dimensions of the grid, and Ta-
ble VI shows the results of the experiments for Arbitrary scenes with respect to the

350

CARLOS CORREA ET AL.

Table VI. Computation time (msec) for DPRTT with lazy iterative arrangement

vs. DPR, for arbitrary scenes

Number of subscenes n R DPRTT/LIA DPR
1000 5.320755 7.518868
16 123 5000 24.32076 37.88679
10000 48.79245 76.33962
30000 135.42 242.91
1000 17.48039 29.41667
5000 75.51471 146.2206
64 469
10000 152.9216 288.0784
50000 786.2206 1474.103
1000 43.97436 116.9821
5000 258.5949 705.1564
256 1931
10000 527.0256 1175.956
50000 — —

number of subscenes (random virtual objects). We also show the resulting size of
the tree and different settings for R (1000, 5000, 10000 and 50000). Note that for
the smaller data sets, the maximum R is 30000, given that the limit of R = 50000
exceeds the total amount of resources required for the entire tree. The resulting size
of the tree is not that of a perfectly balanced quadtree or grid. This is because the
virtual objects used to populate the leaf nodes of the tree are themselves subtrees
of different complexity.

We also compared our algorithm with a generic integer-programming solver,
CPLEX 8.1.0 (http://www.cplex.com), on the same datasets as above. In order
to obtain comparable results, we re-wrote the algorithm in C++4-, given that we
found differences in performance that were unfavorable for the Java version. This
is presumably due to the memory management of the Java virtual machine and
the lack of optimizations that makes the C++ version faster. Table VII shows
the results for our dynamic algorithm, compared to CPLEX 8.1.0. In many cases,
CPLEX took very long time to compute the optimal solution, so a time limit of 5
seconds was introduced. (Observe, for instance, that the worst case is reported as
approximately 5 secs for some of the datasets; in reality, the algorithm takes longer
to compute the exact solution.) The results were obtained in a 2.1 GHz Pentium IV
with 512 MB RAM. The missing entries (—) show the cases where the problem
could not be solved due to insufficient computer memory.

From these tables, we make the following observations:

(i) DPRTT/LIA is consistently faster than DPR, even on arbitrary scene in-
stances. This is due to the inherent coherence of virtual worlds and user
navigation.

DYNAMIC TREE SIMPLIFICATION

Table VII. Comparison of our algorithm vs. CPLEX 8.1.0

351

DPRTT/LIA CPLEX
Scene R Best Average Worst Best Average Worst
1000 0 3.1555555 16 0 35.2 484
5000 0 17.333334 47 0 114.0889 1016
Quadtree_2
10000 15 37.488888 109 0 20.84444 47
20000 31 77.8 265 0 14.73333 47
1000 0 9.166667 32 16 1775.044 5031
5000 15 44.58889 188 31 165.7889 5031
Quadtree_3
10000 31 92.41111 438 31 1207.933 5047
20000 62 195.83333 1016 31 1367.189 5047
1000 0 25.51111 156 266 3731.244 5250
5000 46 113.69444 813 250 904.4334 2250*
Quadtree_4
10000 109 237.70555 1859 266 1546.35 5313
20000 — — — 282 556.5222 4219
1000 0 2.7777777 16 0 216.5111 1844
5000 0 17.355556 47 0 21.88889 63
Grid 4 x 4
10000 15 33.377777 94 15 22.2 47
20000 31 72.888885 218 0 22.91111 78
1000 0 10.8 32 15 763.6667 5047
5000 15 49.8 187 31 143.6333 3969
Grid8 x 8
10000 46 103.12222 391 31 630.2889 5047
20000 125 238.7111 890 47 1100.156 5047
1000 15 23.36111 125 141 1239.072 5438
5000 78 150.43889 656 250 519.4722 2250*
Grid 16 x 16
10000 187 318.56668 1593 266 329.6833 547
20000 — — — 281 334.6889 516
1000 0 3.7575758 16 54 828
. 5000 0 16.575758 47 15 21.57576 47
Arbitrary 16
10000 15 36.484848 110 148.8485 1469
20000 46 77.15151 235 0 15.30303 31
1000 0 11.534091 32 31 160.0227 5047
5000 15 49.875 172 31 510 5062
Arbitrary 64
10000 46 110.75 406 31 2006.523 5047
20000 109 247.01137 860 47 648.6023 5047
1000 15 24.660606 125 250 846.2727 2266™*
5000 93 171.67273 672 266 561.5819 2266*
Arbitrary 64
10000 172 371.81213 1657 281 504.0303 5282
20000 — — — 297 354.9826 438

*For these values, the time limit was set to 2 instead of 5 seconds.

352 CARLOS CORREA ET AL.

(ii)) DPRTT/LIA is faster on quadtrees than on grid scenes, as expected. This
is due to the quadtree topology, which provides a higher coherence than in grids.
In addition, as the depth of the quadtree grows, DPRTT/LIA improvement over
DPR grows faster compared to the case where the dimensions of the grid increase.
This favors the use of quadtrees or similar structures (such as octrees) for building
virtual worlds.

(iii)) Memory requirements are roughly the same. DPRTT/LIA only adds the re-
quirement of storing the tables of the previous computation, which are of size n - R.

(iv) For larger scenes it can become prohibitive to run DPRTT/LIA or DPR, due
to insufficient computer memory. In practical applications such as virtual world
simplification, this is usually done on the visible part of a scene, which is typically
a small part of the entire scene. The sizes and topologies of the test scenes are
entirely representative of real-world applications.

(v) CPU time for the DPR/LIA algorithm appears to grow linearly with R.
This is an indication of the result of applying iterative arrangement. The algorithm
reuses as much as it can from the previous solution, so on the average it behaves
as if the DPR algorithm was run on a tree of smaller size. Given that DPR is linear
with respect to R (while 7 is constant), then DPR/LIA is also expected to be linear,
but with a smaller slope.

(vi) For small amount of available resources, our algorithm consistently out-
performs generic integer-programming solvers. We also see that this difference is
noticeable for the larger datasets. Indeed, the key difference is the consistency of
the results of our algorithm, which increases linearly with R and n, compared to
CPLEX, where the variation in time is considerably larger, and in some cases, it
was not possible to obtain a provable optimal solution in the allotted time. Con-
sidering this, we can say that our algorithm performs better than generic integer-
programming solvers. This is expected, given that specialized solutions are likely
to perform better than generic solutions. However, we must consider the drawbacks
of our algorithm when dealing with larger datasets and limit in resources. First, it
appears from the results that while computation time grows almost linearly with R
for our algorithm, CPLEX is less sensitive to such changes, i.e., at some point,
CPLEX might outperform our algorithm in the best case. Second, our algorithm
might require a considerable amount of memory, and computations times might be
large due to virtual memory paging for the dynamic programming tables.

6. Conclusions

We have presented the EMCTKP problem as a generalization of the Tree Knapsack
Problem and a dynamic programming algorithm to solve it exactly, that runs in
O(n-R) time. We also showed that in some dynamic scenarios, spatial and temporal
coherence could be exploited to improve the computation time. We have developed
an algorithm and a heuristic, called Lazy Iterative Arrangement, which improves on
the dynamic programming algorithm by rearranging the order in which the solution

DYNAMIC TREE SIMPLIFICATION 353

is found in order to reuse past solutions. We have shown that the algorithm can be
used for trees with up to a few thousand nodes in real-time, in regular computing
environments. The test problems and the results are available online at:
http://www.calp.rutgers.edu/disciple/emctkp/
As part of the future work, we plan to explore other approaches, such as branch-
and-bound algorithms, in order to solve larger-size problems.

Acknowledgements

The authors gratefully acknowledge an anonymous reviewer’s suggestion for in-
clusion of Proposition 1 as well as its proof.

The research was supported by the NSF grant ANI-01-23910, US Army CE-
COM Contract No. DAAB(07-02-C-P301, and by the Rutgers Center for Advanced
Information Processing (CAIP) and its corporate affiliates. Xiaodong Sun was also
supported under the NSF grant CCR-99-87845 while at School of Mathematics,
Institute for Advanced Study, Princeton, NJ 08540.

References

1. Cho, G. and Shaw, D. X.: A depth-first dynamic programming algorithm for the tree knapsack
problem, INFORMS J. Computing 9(4) (1997), 431-438.

2. Funkhouser, T. and Sequin, C. H.: Adaptive display algorithm for interactive frame rates during
visualization of complex virtual environments, in Proceedings of the SIGGRAPH Computer
Graphics Annual Conference, ACM Press, New York, pp. 99-108.

3. Garey, M. R. and Johnson, D. S.: Computers and Intractability. A Guide to the Theory of NP-
Completeness, Freeman and Company, San Francisco, CA, 1979.

4. Ignizio, J. P. and Cavalier, T. M.: Linear Programming, Prentice-Hall, Englewood Cliffs, NJ,
1994.

5. Johnson, D. S. and Niemi, K. A.: On knapsacks, partitions, and a new dynamic programming
technique for trees, Math. Oper. Res. 8(1) (1983), 1-14.

6. Martello, S. and Toth, P.: Knapsack Problems: Algorithms and Computer Implementations,
Wiley, New York, 1990.

7. Mason, A. E. W. and Blake, E. H.: A graphical representation of the state spaces of hierarchical
level-of-detail scene descriptions, IEEE Trans. Visual. Computer Graph. 7(1) (2001), 70-75.

8. Samphaiboon, N. and Yamada, T.: Heuristic and exact algorithms for the precedence-
constrained knapsack problem, J. Optim. Theory Appl. 105(3) (2000), 659-676.

9. Shaw, D. X. and Cho, G.: The critical-item, upper bounds, and a branch-and-bound algorithm
for the tree knapsack problem, Networks 31(4) (1998), 205-216.

