
Citation: Li, L.; Shi, D.; Jin, S.; Yang,

S.; Zhou, C.; Lian, Y.; Liu, H. Exact

and Heuristic Multi-Robot Dubins

Coverage Path Planning for Known

Environments. Sensors 2023, 23, 2560.

https://doi.org/10.3390/s23052560

Academic Editors: Shuai Li, Dechao

Chen, Mohammed Aquil Mirza,

Vasilios N. Katsikis, Dunhui Xiao,

Predrag S. Stanimirovic and Sergio

Toral Marín

Received: 20 December 2022

Revised: 3 February 2023

Accepted: 20 February 2023

Published: 25 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Exact and Heuristic Multi-Robot Dubins Coverage Path
Planning for Known Environments
Lin Li 1 , Dianxi Shi 2,3, Songchang Jin 2,3,*, Shaowu Yang 1,*, Chenlei Zhou 3, Yaoning Lian 1 and Hengzhu Liu 1

1 College of Computer, National University of Defense Technology, Changsha 410003, China
2 Artificial Intelligence Research Center (AIRC), Defense Innovation Institute, Beijing 100073, China
3 Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300456, China
* Correspondence: jsc04@tsinghua.org.cn (S.J.); shaowu.yang@nudt.edu.cn (S.Y.)

Abstract: Coverage path planning (CPP) of multiple Dubins robots has been extensively applied
in aerial monitoring, marine exploration, and search and rescue. Existing multi-robot coverage
path planning (MCPP) research use exact or heuristic algorithms to address coverage applications.
However, several exact algorithms always provide precise area division rather than coverage paths,
and heuristic methods face the challenge of balancing accuracy and complexity. This paper focuses
on the Dubins MCPP problem of known environments. Firstly, we present an exact Dubins multi-
robot coverage path planning (EDM) algorithm based on mixed linear integer programming (MILP).
The EDM algorithm searches the entire solution space to obtain the shortest Dubins coverage path.
Secondly, a heuristic approximate credit-based Dubins multi-robot coverage path planning (CDM)
algorithm is presented, which utilizes the credit model to balance tasks among robots and a tree
partition strategy to reduce complexity. Comparison experiments with other exact and approximate
algorithms demonstrate that EDM provides the least coverage time in small scenes, and CDM
produces a shorter coverage time and less computation time in large scenes. Feasibility experiments
demonstrate the applicability of EDM and CDM to a high-fidelity fixed-wing unmanned aerial vehicle
(UAV) model.

Keywords: coverage path planning; Dubins robots; path planning

1. Introduction

As one sub-problem of robot path planning, coverage path planning (CPP) aims to
determine the optimal paths between the start and goal points to cover all regions while
avoiding obstacles and satisfying intrinsic robot limitations [1,2]. CPP is common in several
applications, including small-scale household tasks such as floor cleaning or lawn mowing
and large-scale operations such as search and rescue and environmental monitoring [3].
Due to the limited sensing range, calculating speed, and energy supply, many practical
coverage applications cannot be achieved by a single robot [4]. Thus, a series of multi-robot
CPP (MCPP) algorithms have been proposed to improve coverage efficiency and enhance
robustness. Meanwhile, MCPP faces the challenges of collaborative control, intelligent
decision-making, and logistical management [1,5].

Real-world MCPP applications, such as aerial monitoring [6], marine exploration [7],
and automatic farming [8,9], typically involve multiple aerial (fixed-wing aircraft), ground
(wheel robots), and autonomous underwater/surface vehicles. These vehicles are typically
governed by the Dubins vehicle model [10], which allows them to move at a fixed speed and
turn with a limited turning radius. As the foundation of many practical applications, MCPP
oriented towards Dubins robots (Dubins MCPP) has received growing attention in recent
years. Thus, this paper focuses on the Dubins MCPP problem of known environments.

MCPP problem has been proven to be NP-hard [11]. Various MCPP works have
been proposed to address the MCPP problem, and the related reviews can be found

Sensors 2023, 23, 2560. https://doi.org/10.3390/s23052560 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052560
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8645-0392
https://doi.org/10.3390/s23052560
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052560?type=check_update&version=2

Sensors 2023, 23, 2560 2 of 18

in [12–14]. Existing MCPP methods can be classified as exact or heuristic according to their
accuracy [15]. Exact methods can provide the optimal solution for small-scale coverage
applications. Heuristic methods are used to obtain a near optimal result for large-scale
coverage applications since they often involve a great number of tasks.

Existing MCPP methods perform well, but they suffer from three issues. The first
issue is that several exact methods always provide an accurate partition of the region.
However, the accurate partition is not equivalent to optimal coverage paths for the MCPP
problem. Second, heuristic methods always face the challenge of how to balance accuracy
and complexity. Traditional heuristic methods represent coverage tasks as graphs and
obtain an efficient result using graph-partition and tree-partition strategies. In the graph-
partition strategy, all vertexes and edges are considered to achieve near-optimal results.
However, its runtime increases since the search space increases exponentially with the
number of vertexes [15]. The tree-partition strategy compresses the search space of the
MCPP problem by pruning the edges of the graph, while the compressed search space
reduces the runtime, it decreases the accuracy of the solution. The third issue is that many
MCPP works have been proposed, but only a few studies have been conducted on the
Dubins robot. As a curvature-constrained robot, the Dubins robot cannot recede and can
only move at a fixed speed and with a bound curvature. Without consideration of robot
kinematics, MCPP algorithms probably generate piece-wise paths that are only comprised
of straight lines and sharp turns [16]. However, these paths are not feasible to follow for
Dubins robots.

This paper presents two algorithms to address the Dubins MCPP problem. First,
an exact Dubins MCPP (EDM) algorithm is proposed, formulating the Dubins MCPP
problem as an MILP to produce the optimal Dubins coverage paths. Second, we present
a heuristic approximate credit-based multi-robot Dubins MCPP (CDM) algorithm. CDM
divides the region into multiple partitions by a tree-partition strategy and balances coverage
tasks among partitions by the credit model [17]. The effectiveness of EDM and CDM was
validated in comparison and feasibility experiments. In summary, the contributions of this
paper are as follows:

• We present an EDM algorithm based on MILP, which provides the shortest Dubins
coverage path by searching the entire solution space.

• We present a CDM algorithm, which ensures the task balance among robots by the
credit model and reduces complexity by a tree-partition strategy.

• Extensive validations. (i) Comparison experiments with other exact and heuristic
MCPP methods show that EDM provides the minimum coverage time in small cover-
age scenes, and CDM generates a shorter coverage time and less computation time
in large coverage scenes. (ii) Feasibility experiments are conducted on a high-fidelity
UAV model to validate the applicability of EDM and CDM.

The remaining of this paper is organized as follows. In Section 2, the related works
are reviewed. Section 3 states the Dubins MCPP problem and presents a Dubins coverage
framework. Sections 4 and 5 describe EDM and CDM, including their ideas and implemen-
tation. The comparison and feasibility tests of EDM and CDM are presented in Section 6,
followed by the paper’s conclusion.

2. Related Work
2.1. Exact and Heuristic MCPP Methods

As a hot topic in robotic research fields, MCPP has received increasing attention in
recent years. The objective of MCPP is to find the shortest or fastest path to visit all points
of a region while considering different missions and constraints. The constraints of MCPP
include static factors (e.g., robot capability, region shapes, and obstacle locations) and
dynamic factors (e.g., group goals and collaboration relationships) [18]. Existing works
address the MCPP problem by using exact and heuristic algorithms. Exact algorithms
guarantee an optimum solution, while heuristic algorithms seek to yield a good, but not
necessarily optimal, solution. However, an exact algorithm takes much longer than a

Sensors 2023, 23, 2560 3 of 18

heuristic one to find an optimum solution to a difficult problem [19]. Thus, exact algorithms
are suitable for small-scale applications, whereas large-scale coverage applications often
use heuristics to achieve a suboptimal solution.

Exact MCPP algorithms use the MILP [20,21], branch and bound method [22], and dy-
namic programming method to obtain the optimum solution. Some exact algorithms
precisely divide the region into K partitions and apply a single-robot coverage algorithm to
each partition. For example, the work [20] transforms the MCPP problem into the MinMax
balanced and connected q-partition problem (BCPq) and presents an exact Milpflow al-
gorithm to handle it. The Milpflow algorithm provides a precise partition of the region
through a flow model and applies a single-robot CPP algorithm to each partition. However,
the optimial partition is not equivalent to the optimal coverage paths. Other exact works
build exact formations based on MILP to generate the shortest or fastest paths. For example,
the works [4,15] produces the fastest coverage paths by building exact formulations. How-
ever, both works calculate the coverage time of a given region based on the scanning area
rather than the coverage path. In fact, the coverage time of a given region depends on the
time to cover the scanning area and the time to perform turns. Since turns are often costly
for mobile robots, neglecting the cost of turns usually reduces the efficiency [23]. In order
to minimize the cost of turns, the work [24] divides the region into cells and represents cells
as a graph. The Dubins MCPP problem is formulated with the graph representation as a
generalized traversal salesman problem (TSP). The exact coverage path is then obtained by
applying the GTSP solver. Unfortunately, the work [24] is only applicable to a single robot.
Heuristic MCPP algorithms usually decompose the region into cells and represent them
in a graph. With the graph representation, graph-partition and tree-partition strategies
are utilized to divide the graph into multiple parts. Each part corresponds to one robot.
The graph-partition strategy takes all information of the graph into account to obtain a
(near-)optimal result. For example, to address the area patrolling problem of heterogeneous
robots, the work [25] utilizes the auction algorithm to assign appropriate tasks to robots.
Although the auction algorithm has the advantage of low complexity, its greedy strategy
leads to local-optimal allocation. The authors in [17] extend the traditional market-based
methods and propose a credit-based task allocation (CTA) algorithm. The CTA algorithm
balances the tasks among robots by a credit model and reduces complexity by transforming
a multi-objective optimization problem into a set of single-objective optimization problems.
However, the CTA algorithm is unsuitable for coverage applications relying on Morse or
BCD decomposition since it assumes that coverage tasks are uniform grids. In [3], two
heuristics algorithms are presented to address the MCPP problem for known environments.
The first algorithm calculates the Eulerian tour of visiting all tasks and produces k sub-tours
by a k-postman approximation algorithm. The second one uses a greedy approach that
divides the area into equal regions, covering each region with a single robot. Although the
graph-partition strategy performs well, it has a long runtime for graphs with a significant
number of vertexes and edges.

The tree-partition strategy reduces the runtime by deleting edges from the graph.
However, some optimality is sacrificed since the search space shrinks after edge deletion.
In [26], the authors proposed a spanning tree coverage (STC) algorithm for single robots.
The STC algorithm incrementally builds a virtual tree and navigates the robot around
the tree to achieve complete coverage. The work [27] extends the STC algorithm and
presents a multi-robot STC algorithm, which reduces coverage time by two times while
no repeated tasks are generated. Nevertheless, it cannot guarantee an optimal result with
the increase in robots. Literature [28] proposed a polynomial-time algorithm that assigns
tasks to k robots by finding a weighted tree of k (k = number of robots) covering all nodes.
The polynomial-time algorithm ensures that its coverage time is eight times the optimal
coverage time. However, it assumes that the trees can be overlapped. The genetic algorithm
was also used to solve the tree-partition problem due to its excellent performance. In the
genetic algorithm, each individual is composed of a forest of non-intersecting trees, and the
population evolves to find the (near-)optimum. For example, the work [20] presented a

Sensors 2023, 23, 2560 4 of 18

genetic algorithm based on tree partitioning and evolution. The genetic algorithm can
handle graphs with up to 3000 nodes. Ref. [29] presents an algorithm called mofint for
finding the least number of robots within a time limit. The mofint algorithm transforms
the time-limit version of MCPP into a bi-objective optimization problem and applies a
multi-objective genetic method. Although genetic algorithms perform well, they often
produce local optimal solutions due to their evolutionary operations.

2.2. Dubins Coverage

The exact and heuristic MCPP methods provide optimal or near-optimal paths that
visit all points of the region. However, due to their lack of consideration of robot kinematics,
several MCPP methods could not guarantee the path’s curvature continuity. Curvature dis-
continuities threaten robot safety and degrade the robots’ dead-reckoning
abilities [30,31]. Thus, the construction of feasible and smooth paths has received much
attention in robotic research fields [16].

The Dubins path [10] provides the shortest path for robots with a single forward
speed and a maximum turning radius in open areas. As Dubins paths can be expressed
analytically and are quickly computed, a series of Dubins coverage methods based on them
were presented. Dubins coverage has numerous practical applications, such as automated
agriculture [32], search and rescue, and seabed inspection. For example, the authors in [33]
presented a coverage algorithm for a fixed-wing unmanned aerial vehicle (UAV). The cov-
erage algorithm breaks the region into multiple subcells and produces the Eulerian circuit
with minimal path repetition. The effectiveness of the proposed algorithm [33] has been
validated in field trials. The authors in [24] modelled the Dubins coverage problem into
an generalized traversal salesman problem (GTSP). The coverage path with the lowest
non-working travel is obtained by transforming the GTSP into an asymmetry traversal
salesman problem (ATSP). By re-setting the path cost between two points separated by
obstacles, the work [34] extended [24] to non-convex environments. The work [35] proved
that the optimal Dubins coverage problem is NP-complete and presents a coverage algo-
rithm for a single Dubins robot. In [3], the authors presented two heuristics methods called
DCRC and DCAC for addressing the CPP problem with multiple Dubins vehicles. DCRC
generates an optimal Hamiltonian path and uses route clustering to divide the path into
K sub-paths. DCAC divides the area into multiple partitions and applies the single-robot
Dubins solver [35] to each sub-area. The simulation results in [3] show that DCRC has
better performance than DCAC.

3. System Overview

This section describes related definitions of the Dubins MCPP problem and presents a
Dubins coverage framework.

3.1. Problem Statement

We assume to have K homogeneous Dubins robots to perform the coverage task. All
robots constitute a robot set R = {r1, . . . , rK}. The Dubins robots in R are equipped with
the same task sensor for specific tasks (e.g., cleaning the floor or detecting objects). The task
sensor can cover a rectangular area of w1 in width. All robots start from the same starting
point ps and travel at a fixed speed s with a minimum turning radius r.

The mission environment is assumed to be known and has been represented as a
binary map. In this binary map, cells with values of 0 or 1 represent obstacles or allowed
areas, respectively. To avoid being restricted to one kind of robot model, classical Dubins
approaches [3,35] assume that obstacles are areas that are not necessarily covered but can be
crossed. Similarly, this paper assumes that the robot can cross the obstacle. The semi-BCD
decomposition [35] method is used to divide the region into N rectangular cells. All cells
form the set of cells C = {c1, . . . , cn, . . . , cN}, where cn represents the n-th cell in C. Each
cell has a width of w1, and its height depends on the boundary of the region and obstacles.
Figure 1 represents an example of area decomposition.

Sensors 2023, 23, 2560 5 of 18

Figure 1. Decomposing the mission environment into cells.

The objective of MDCPP is to produce a path for each robot so that every point
of the allowed areas is covered at least by one robot. Since all robots have the same
kinetic constraints, an efficient solution is to minimize robot path lengths while equally
distributing robot workloads. Hence, Dubins MCPP can be viewed as a MinMax problem,
i.e., to minimize the maximum cost of all robots.

3.2. System Overview

This paper presents a Dubins coverage framework to address the Dubins MCPP prob-
lem. As shown in Figure 2, the framework comprises coverage applications, Dubins MCPP
methods, and experimental validations. The component of the Dubins MCPP methods con-
sists of an EDM algorithm and a heuristic CDM algorithm. The EDM algorithm represents
coverage tasks as a graph and proposes an exact formation based on MILP. The MILP solver
is used to produce the optimal Dubins coverage path by thoroughly searching the solution
space. The CDM algorithm divides the region into K sub-areas through initial partition
and partition refinement modules. The single-robot Dubins solver [35] is then employed in
each sub-area. More details of EDM and CDM are presented in Sections 4 and 5.

Figure 2. An overview of the Dubins coverage framework.

4. Exact Dubin Multi-Robot CPP (EDM) Algorithm

Exact methods either provide an accurate partition or produce coverage paths without
considering the turning cost of the robot covering a given region, resulting in a non-optimal
coverage path. This paper presents an EDM algorithm to plan coverage paths. The EDM
algorithm consists of two steps: graph representation and build MILP. The former step is to
calculate the Dubins paths for covering coverage cells and turning from one cell to another.

Sensors 2023, 23, 2560 6 of 18

All Dubins paths will be represented as a connected graph. The latter step generates an
exact formulation based on MILP to obtain the shortest Dubins coverage path.

4.1. Graph Representation

Classical offline coverage methods decompose the region into cells and represent cells
into a graph [5]. With the graphical representation, the MCPP problem is transformed into
a TSP or Chinese Postman Problem to obtain the fastest or shortest path [3,24]. As most
offline MCPP methods do, the EDM algorithm divides the mission environment into a set
of cells (i.e., C). Each cell in C consists of two endpoints and a line segment connecting
them. As shown in Figure 3a, the robot can either enter the cell from the top endpoint
and cover it from the top down or enter the cell from the bottom endpoint and cover it
from the bottom up. N cells of C correspond to 2N endpoints, which constitute the set of
endpoints P = {p1, . . . , p2N}. Each pair of endpoints p2n+1 and p2n+2 indicate the upper
and lower endpoint of cn, 0 ≤ n ≤ N − 1, respectively. All endpoints in P are represented
as a connected graph G = (V, E), where V and E refer to vertex and edge sets, respectively.
V consists of 2N + 1 vertexes, where the first vertex v0 corresponds to the starting point ps,
and other vertexes vn, n = 1, ..., 2N represent the n-th endpoint pn in P. Each edge ei,j ∈ E
indicates the Dubins path between the vertex vi and vj. Different from the graph presented
in [3,5,24], E consists of the Dubins paths for the robot turning and covering the cell.

Figure 3. Graph representation. (a) Endpoints of each cell. (b) Coverage paths of each cell. (c) Graph.

The edge between vi and vj represents the Dubins path from the start pose vi : (xi, yi, θi)
to the target pose vj : (xj, yj, θj). The x/y coordinates (xi, yi) and (xj, yj) are fixed, but the
angle θi and θj depends on vi and vj’s relative positions. There are two cases for θi and θj.
In the first case, vi and vj belong to the same cell. Suppose that vi is the lower endpoint of
the cell. The robot enters the cell from vi and covers the entire cell from bottom to top. Thus,
θi and θj are set as π

2 ; alternatively, θi = θj =
3π
2 . The second case is that vi and vj belong to

different cells. θi will be set to 3π
2 if vi is the lower endpoint of the cell (i.e., the robot leaves

the cell from its lower endpoint); otherwise, θi =
π
2 . Similarly, θj will be set to π

2 if vj is the
lower endpoint of the cell (i.e., the robot enters the cell from its lower endpoint); otherwise,
θj =

3π
2 . Figure 4 shows an example of how to calculate the angle. After determining the

start and target pose, the Dubins path between vi and vj is calculated. The length of the
Dubins path is set as the weight of ei,j.

Sensors 2023, 23, 2560 7 of 18

Figure 4. The start pose vi : (xi, yi, θi) and target pose vj : (xj, yj, θj). (a) vi and vj belong to different
cells. (b) vi and vj belong to the same cell.

4.2. Build MILP

The optimal coverage aims to find K tours that start and end at the depot ps, so
every point of the allowed areas is visited, and the maximum cost of K tours is minimized.
Thus, EDM models the Dubins MCPP problem as an MILP with the MinMax objective of
minimizing the longest path cost among K robot paths. When t is defined as the cost of the
longest Dubins path. The objective is

min(t) (1)

s.t.,

t ≥
2N+1

∑
j=0

2N+1

∑
i=0

xi,j,k|ei,j|, k = 1, . . . , K (2)

K

∑
k=1

yi,k = 1, i = 1, . . . , 2N (3)

2N

∑
j=1

xi,j,k = yi,k, i = 1, . . . , 2N, i 6= j, k = 1, . . . , K (4)

2N

∑
j=1

xj,i,k = yi,k, i = 1, . . . , 2N, i 6= j, k = 1, . . . , K (5)

x2i+1,2i+2,k + x2i+2,2i+1,k = yi,k

i = 0, . . . , N − 1, k = 1, . . . , K
(6)

ui,k − uj,k + Mxi,j,k ≤ M− 1

i, j = 1, . . . , 2N, i 6= j, k = 1, . . . , K
(7)

xi,j,k ∈ {0, 1}, yi,k ∈ {0, 1}, ∀i, j, k (8)

where xi,j,k = 1 represents that the robot rk visits vertex j immediately after vertex i; oth-
erwise, xi,j,k = 0. yi,k = 1 indicates that the robot rk visits vertex i; otherwise, yi,k = 0.
Equation (3) states that each vertex should be visited exactly once. Equations (4) and (5) en-
sures that once a robot visits a vertex, it must also depart from the same vertex. Equation (6)
ensures that two endpoints of a cell should be traversed by sequence. Equation (7) is the
MTZ-based sub-tour elimination constraints [36]. The MILP is an extension of the asymme-
try multiple travelling salesman problem (MTSP).

Sensors 2023, 23, 2560 8 of 18

4.3. Pseudo-Code of the EDM Algorithm

Algorithm 1 shows the pseudo-code of the EDM algorithm. It inputs the region (A),
the robot is set (R) and the starting point (ps) and outputs K coverage paths {P1, . . . , PK}.
First, K coverage paths are initialized as empty (Line 1), and the region A has been divided
into a set of cells C (Line 2). The cell set C is represented as a graph G (Line 3), and the cost
matrix associated with G is calculated (Line 4). EDM models the Dubins MCPP problem
as an MILP (Line 5) and utilizes the MILP Solver [37] to obtain the traversal sequence
{T1, . . . , TK} (Line 6). Coverage paths are calculated according to {T1, . . . , TK} (Line 7).

Computational Complexity: Let M be the number of vertexes in G. The cost matrix
can be calculated in O(M2) times. The asymmetrical MTSP can be transformed into an
asymmetrical TSP, which tasks O(M3) times in the worst case [38]. Thus, the overall
complexity of EDM is O(M3).

Algorithm 1 EDM Algorithm
Input: A,R, ps
Output: P1, . . . , PK

1: Initialize: P1, . . . , PK ← ∅;
2: C ← Area_Decomposition(A);
3: G ← Graph_Representation(C, ps);
4: CostMatrix ← calculate the cost between points in G
5: Build_MILP(G); // Equations (1)–(7)
6: {T1, . . . , TK} ←MILP_Solver;
7: {P1, . . . , PK} ← Dubins_Solver({V1, . . . , VK});
8: return P1, . . . , PK

5. Heuristic Credit-Based Dubin Multi-Robot CPP(CDM) Algorithm

EDM algorithm provides an effective weapon to plan the exact coverage paths for
small-scale coverage applications. However, several coverage applications involve a large
number of coverage tasks and allow for near-optimal results. Therefore, this paper presents
a heuristic CDM algorithm consisting of three components: initial partition, partition
refinement, and path planning. The initial partition component utilizes the regional growth
strategy to divide the region into K sub-areas. The partition refinement component balances
K sub-areas by a tree-partition strategy, and the path planning component employs the
single-robot Dubins solver [35] to each sub-area.

5.1. Initial Partition

As mentioned in Section 3.1, the mission environment has been divided into a set of
cells C. The initial partition component represents C as a connected graph G1 = {V1, E1},
where the vertex represents the cell, and the edge represents the common border between
cells. Figure 5 shows an example of the graphical representation. The region growth
strategy based on the credit model [17] is used to divide the region (i.e., the graph G1) into
K partitions.

Figure 5. Graph representation. (a) The input map. (b) Coverage cells. (c) The connected graph.

Sensors 2023, 23, 2560 9 of 18

In the credit model, K partitions act as traders in the virtual economy. Coverage
cells are tradable commodities with measurable values. Additionally, a virtual bank is
introduced. Traders can open credit accounts with a balance equal to w(V1)

K . The virtual
bank maintains accounts and manages assets for traders. Each trader can borrow from the
bank (without interest) if their account balance reaches zero. When a trader buys a cell vt,
its account balance is reduced by |vt|, where |vt| represents the area of the cell vt. On the
other hand, if a trader sells a cell vt, the account balance increases by |vt|. Traders continue
to buy cells, and the corresponding account balance decreases.

The initial partition component uses the regional growth strategy to divide the region
into K partitions. First, cells in C are sorted in increasing order by the x-coordinate, followed
by the y-coordinate, resulting in a sequence of cells S. The K cells, distributed at equal
intervals in S, are set as the seeds of the K partitions. Second, every partition alternately
buys cells and grows around the seed as the number of bought cells increases. All partitions
become larger and larger until all cells in G1 have been purchased. In this case, G1 has
been divided into K partitions. Figure 6 shows an example of the region growth strategy.

Figure 6. An example of the initial partition for three robots. (a) The seeds of three partitions.
(b) Every partition grows around its seed. (c) The initial partition.

5.2. Partition Refinement

Due to complex obstacles, the initial K partitions may not be balanced. In order
to obtain a balanced result, the partition refinement component reallocates tasks among
partitions by way of task transactions. Each task transaction is performed in three steps.
The first step is to determine the two partitions for the task transaction. The k-th partition
(i.e., Vk) with the largest account balance is set as the buyer, i.e., the partition that receives
tasks. Let ADV be the set of partitions adjacent to Vk. The partition u ∈ ADV that has the
greatest difference with the account balance of Vk becomes the seller, i.e., the partition that
dispatches tasks. f ound(k) and f ound(u) represents the account balance of the seller and
buyer, respectively.

The second step is to decide which tasks the seller and buyer will trade. Suppose
that AC ∈ Vu is the cell set that shares a common border with Vk. The cell vm with the
biggest weight in AC is selected for the candidate trade task EV. There are two possible
cases, depending on the connection between vm and Vu. In the first case, vm is not the cut
point of Vu. The trade task EV is set as vm since both seller and buyer remain connected
after the task transaction. The second case is that vm is the cut point of Vu (i.e., removing
vm disconnects Vu). The seller Vu becomes disconnected if it sells vm to Vk. However,
disconnected partitions cause robot collisions and complicate robot control [29]. Thus,
the depth first search (DFS) method is utilized to find the Q sub-trees {Vu,1, . . . Vu,Q} in Vu
whose root nodes are vm. Vu,i and Vu,j, i 6= j, i, j = 1, . . . , Q will be disconnected if vm is
removed from Vu. In order to maintain its connectivity, the seller Vu needs to reserve one
sub-tree and set the other tasks as trade tasks. In order to determine which sub-tree the
seller retains, a transaction index is defined, which quantifies the balance between the buyer
and seller’s tasks. Suppose the seller reserves the q-th sub-tree Vu,q. The seller and buyer
will be updated to Vk′ = Vk ∪ (Vu −Vu,q) and Vu′ = Vu,q, respectively. The trade index δq of
the q-th sub-tree is set as max(abs(f ound(k′), f ound(u′))), where f ound(k′) and f ound(u′)
represents the account balance of Vk′ and Vu′ . Q sub-trees correspond to Q trade indexes

Sensors 2023, 23, 2560 10 of 18

{δ1, . . . , δQ}. The smaller the trade index, the more balanced the buyer and seller. Let δq1 be
the minimum of {δ1, . . . , δQ}, and δB be the trade index of Vk and Vu. If δq1 < δB, the seller
retains the Vu,q1 with the least transaction index. The remaining tasks Vu − Vu,q1 are set
as the trade tasks, i.e., EV = Vu −Vu,q1. Figure 7 shows an example of the tree-partition
strategy. Alternatively, δq1 > δB indicates that the tasks of the seller and buyer do not
become balanced after the task transaction. A new vm from AC is set as the candidate trade
task EV, and the tree-partition strategy is applied for the new vm. If all cells in AC can not
provide more balance partitions, a new task transaction is performed since Vu and Vk are a
pair of non-tradable partitions. With the tree-partition strategy, a set of tasks rather than a
single task are reallocated, while keeping the connectivity of partitions.

Figure 7. An example of the tree-partition strategy. (a) The graphs of the seller and buyer. (b) The
adjacent vertex vm. (c) Three sub-trees with the root vm in the seller. (d) The buyer and seller after the
task transaction.

In the third step, the buyer and seller trade tasks and update their account balances.
The buyer Vk purchases the task set EV, and its account balance becomes w(Vk)−w(EV) +
Ds,k, where w(EV) and Ds,k represent the sum of weights of EV and the shortest distance
between the starting point ps and Vk. Ds,k is calculated so the further-distance-travelling
robot is compensated by assigning fewer tasks instead of dividing the region into K equal
sections. Similarly, the seller Vu sells the task set EV and adjusts its account balance to
w(Vu) + w(EV) + Ds,u, where Ds,u represents the shortest distance between the starting
point ps and Vu.

With the completion of task transactions, the K partitions become more and more
balanced. As soon as the number of task transactions reaches the preset upper limit,
the partition refinement component ends and returns K partitions {V1, . . . , VK}.

5.3. Path Planning

After receiving K partitions from the partition refinement component, the path plan-
ning component applies the single-robot Dubins solver [35] to each partition. A set of K
Dubins coverage paths is generated with each one corresponding to one robot. The com-
plete coverage is achieved if each robot moves along the corresponding coverage path.
Figure 8 shows an example of the CDM algorithm.

Sensors 2023, 23, 2560 11 of 18

Figure 8. (a) Initial partition. (b) Partition refinement. (c) Path Planning.

5.4. Pseudo-Code of the CDM Algorithm

Algorithm 2 shows the pseudo-code of the CDM algorithm. It decomposes the region
A into a set of cells C and represents all cells in a graph G1 (Lines 2–3). The graph G is
divided into K partitions by the initial partition (Line 4). These K partitions are refined
by task transactions (Lines 5–23). For each task transaction, the buyer Vk and the seller Vu
are determined, followed by the set of adjacent cells AC between Vk and Vu (Lines 7–8).
The seller Vu is the partition that is adjacent to and can trade with Vk. For each cell in AC,
the tree-partition strategy calculates the corresponding trade tasks EV (Line 11). If EV 6= ∅,
Vk and Vu trade tasks and updates their account balances (Lines 13–14). The symbol succeed,
which indicates the success of the task transaction, is marked as true (Line 15). If succeed
remains f alse, Vk and Vu are marked as a pair of non-tradable partitions (Lines 19–21).
Upon the number of task transactions equalling MaxI, K partitions {P1, . . . , PK} is obtained.
Next, the single-robot Dubins solver [35] is used for each partition to generate coverage
paths {P1, . . . , PK} (Lines 24).

Algorithm 2 CDM Algorithm
Input: A,R, ps
Parameter: MaxI: The maximum number of task transactions
Output: P1, . . . , PK

1: Initialize: P1, . . . , PK ← ∅;
2: C ← Area_Decomposition(A);
3: G1← Graph_Representation(C, ps);
4: f ound, V1, . . . , VK ← initial_partition(G1, s);
5: count← 0;
6: while count < MaxI do
7: Vk, Vu ← determine the seller and the buyer;
8: AC ← calculate the set of adjacent cells between Vk and Vu;
9: succeed← f alse;

10: for each vm in AC do
11: EV ← tree_partition(Vk, Vu, vm);
12: if EV 6= ∅ then
13: Trade tasks EV;
14: Update f ound;
15: succeed← true;
16: break;
17: end if
18: end for
19: if succeed = f alse then
20: Mark Vk and Vu as a pair of non-tradable partitions.
21: end if
22: count ++;
23: end while
24: {P1, . . . , PK} ← Dubins_Solver({V1, . . . , VK});
25: return P1, . . . , PK;

Sensors 2023, 23, 2560 12 of 18

Computational Complexity: Let M be the number of cells in C. The initial partition
component takes O(M) times. The complexity of the partition refinement component is
O(M×MaxI) in the worst case, but the worst cases are scarce. The Dubins solver takes
O(M3) times to calculate the Dubins path [38]. Thus, the overall complexity of the CDM
algorithm is O(M3).

6. Experiments

The computational experiments were carried out on a PC with Intel(R) Core(TM) CPU
i5-8300H, 2.30 GHz processor, 16 G RAM, WIN 10. All experiments were performed on Du-
bins robots with kinematic constraints such as a forward speed of 1.0 m/s and a minimum
turning radius of 1 m. A task sensor with a detection range of 1 m was incorporated into
each robot. First, to demonstrate the superiority of the proposed algorithms, comparison
experiments with exact and heuristic algorithms were conducted on different size maps.
Second, simulation experiments based on a high-fidelity UAV model [39] were conducted
to verify the feasibility of EDM and CDM.

6.1. Comparison Experiments in Small Scenes

The first level of validation was performed via simulations on four small scenes with
size 10 m × 10 m × 10 m. Figure 9 demonstrates the point cloud maps of four scenes,
which contain several obstacles with irregular shapes and same heights. For each scene,
Dubins robots start and end at the same starting point, located in the bottom left corner
of the map. EDM and CDM were compared with the exact Milpflow algorithm [20] and
heuristic DCRC algorithm [3]. Milpflow provides a precise area-division result instead of
coverage paths. In order to achieve a fair comparison, the state-of-art Dubins solver [35]
is employed to plan Dubins path for Milpflow. DCRC generates an optimal Hamiltonian
path and divides the path into K sub-paths. Exact Mofint and EDM algorithms utilize the
Gurobi optimization tool [37] to obtain the optimal solution, and their optimization time is
uniformly set as 1200 s.

Figure 9. The four point-cloud maps where EDM and CDM were tested. Each environment has the
size 10 m × 10 m × 10 m.

A variety of experiments were performed using teams of two or three robots on
different maps. Figures 10 and 11 demonstrate snapshots of the coverage paths produced
by Milpflow [20], DCRC [3], EDM, and CDM, respectively. These snapshots show that
Milpflow and CDM produce relatively concentrated paths for every robot since they allocate
a set of connected coverage cells to every robot. In contrast to Milpflow and CDM, EDM
and DCRC generate a single-robot coverage path that is not limited in a particular area.

Figure 12 compares the coverage times of Milpflow [20], DCRC [3], EDM, and CDM,
respectively. The comparison results show that, compared with heuristic DCRC and
CDM, Milpflow and EDM provide fewer coverage times by thoroughly searching the
solution space. Furthermore, EDM produces the least coverage times in all scenes because
it generates the optimal Dubins coverage path rather than the area division provided
by Milpflow.

Sensors 2023, 23, 2560 13 of 18

Figure 10. Simulation instances with two robots. The first to fourth rows represent the snapshots of
the coverage paths provided by Milpflow [20], DCRC [3], EDM, and CDM, respectively.

Figure 11. Simulation instances with three robots. The first to fourth rows represent the snapshots of
the coverage paths provided by Milpflow [20], DCRC [3], EDM, and CDM, respectively.

Sensors 2023, 23, 2560 14 of 18

Figure 12. The comparison of coverage times of Milpflow [20], DCRC [3], EDM, and CDM. Fewer
coverage times are better. (a,b) shows comparison results of two and three robots, respectively.

6.2. Comparison Experiments in Large Scenes

In order to evaluate the performance of the proposed algorithm, a variant of the well-
known environments from [3] was used. As shown in Figure 13, the maps differ in terms
of sizes and shapes. A set of experiments were conducted with teams of {3, 6, 9, 12} robots.
Since Milpflow and EDM cannot provide efficient solutions within a limited time, this
subsection only evaluates the heuristic CDM and DCRC [3] algorithms. Two metrics were
used for performance evaluation as follows: (i) coverage time, and (ii) computation time.

Figure 13. Four point-cloud maps where CDM and DCRC were tested. (a) Multi-cell (34 m × 50 m
× 10 m); (b) Farm (25 × 38 m × 10 m); (c) Rural Quebec (25 m × 38 m × 10 m); (d) Cave (34 m ×
45 m × 10 m).

Figures 14 and 15 demonstrate snapshots of coverage paths generated by DCRC and
CDM for three and six robots, respectively. These snapshots show that the CDM algorithm
provides a set of connected cells for every robot, while a single robot’s coverage cells in
DCRC may be disconnected. Paths between disconnected cells probably revisit the covered
area, which increases the coverage time. Indeed, as illustrated in Figure 16, the CDM
algorithm provides fewer coverage times than DCRC in most experiments.

Figure 17 shows the computation times of CDM and DCRC with {3, 6, 9, 12} robots,
respectively. It is observed that DCRC provides a approximately equal computation time
in each scene, while the computation time of CDM decreases with the increase in robot
number. The difference in computation time between CDM and DCRC derives from the
search space. The larger the search space, the longer the computation time of the algorithm.
DCRC plans a single-robot coverage path in terms of the entire map, which corresponds to
a large search space. In contrast, CDM divides the map into K sub-areas and plans the path
for each sub-area. Compared with the entire map, sub-areas corresponds to a small search
space. With the increase in robot number, CDM’s computation times become smaller.

Sensors 2023, 23, 2560 15 of 18

Figure 14. Coverage paths of DCRC (first row) and CDM (second row) with three robots.

Figure 15. Coverage paths of DCRC (first row) and CDM (second row) with six robots.

Figure 16. The comparison of coverage times for four different environments. Less coverage
times are better. (a–d) show comparison results in multi-cell, farm, rual quebec, and cave scenes,
respectively.

Figure 17. The comparison of computation times for four different environments. Less computation
times are better. (a–d) show comparison results in multi-cell, farm, rual quebec, and cave scenes,
respectively.

6.3. Feasibility Experiments of EDM and CDM

We validate EDM and CDM algorithms with a high-fidelity fixed-wing UAV model [39]
in Simulink. A waypoint follower is integrated into the fixed-wing UAV model, which

Sensors 2023, 23, 2560 16 of 18

calculates the desired heading based on the current pose, look-ahead distance, and coverage
paths. Experiments were conducted on UAVs with kinematic constraints, such as a 0.5 m
turning radius and 1 m/s speed. Each UAV was set at a different flight height to ensure
its safety. Figures 18 and 19 demonstrate snapshots of the simulated UAV paths for EDM
and CDM, respectively. The snapshots show that EDM and CDM are applicable to fixed-
wing UAVs.

Figure 18. UAV simulated paths of EDM with three robots.

Figure 19. UAV simulated paths of CDM with three robots.

7. Conclusions

This paper presents an EDM algorithm and a heuristic CDM algorithm to address
the Dubins MCPP problem. EDM formulates the Dubins MCPP problem into an MILP
to produce the shortest Dubins coverage paths. CDM balances the coverage tasks among
robots by a credit model and reduces the complexity of the Dubins MCPP problem by a
tree-partition strategy providing an approximate optimal solution. It is shown that both
EDM and CDM can provide smooth and continuous Dubins coverage paths. Comparison
experiments with other exact or heuristic algorithms demonstrate that EDM produces
the fastest Dubins coverage path in small-scale scenes, and CDM produces less coverage
times and shorter computation times than other heuristic algorithms in large-scale scenes.
Feasibility experiments show that the results from the simulations and the analyses per-
formed on those results hold for high-fidelity Dubins robotic systems. Future research
areas include: (i) extending online coverage to unknown environments, (ii) applying to real
Dubins robots.

Author Contributions: Conceptualization, S.J., S.Y., C.Z. and H.L.; Formal analysis, L.L., D.S., S.J.
and H.L.; Investigation, L.L.; Methodology, L.L., D.S., S.J., S.Y., C.Z. and H.L.; Project administration,
D.S. and S.Y.; Software, L.L. and Y.L.; Validation, L.L., C.Z. and Y.L.; Writing—original draft, L.L.;
Writing—review & editing, L.L., D.S. and S.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Science and Technology Innovation 2030 Major Project
under Grant No.2020AAA0104802. The work was also supported by the National Natural Science
Foundation of China (Grant No. 91948303-1).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable
suggestions and providing many possible directions for the future work.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 2560 17 of 18

References
1. Chen, J.; Ling, F.; Zhang, Y.; You, T.; Liu, Y.; Du, X. Coverage path planning of heterogeneous unmanned aerial vehicles based on

ant colony system. Swarm Evol. Comput. 2022, 69, 101005. [CrossRef]
2. Fevgas, G.; Lagkas, T.; Argyriou, V.; Sarigiannidis, P. Coverage path planning methods focusing on energy efficient and

cooperative strategies for unmanned aerial vehicles. Sensors 2022, 22, 1235. [CrossRef]
3. Karapetyan, N.; Moulton, J.; Lewis, J.S.; Li, A.Q.; O’Kane, J.M.; Rekleitis, I. Multi-robot dubins coverage with autonomous surface

vehicles. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018; pp. 2373–2379.

4. Chen, J.; Du, C.; Zhang, Y.; Han, P.; Wei, W. A clustering-based coverage path planning method for autonomous heterogeneous
UAVs. IEEE Trans. Intell. Transp. Syst. 2022, 23, 25546–25556. [CrossRef]

5. Karapetyan, N.; Benson, K.; McKinney, C.; Taslakian, P.; Rekleitis, I. Efficient multi-robot coverage of a known environment. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 1846–1852.

6. Coombes, M.; Chen, W.H.; Liu, C. Flight testing Boustrophedon coverage path planning for fixed wing UAVs in wind. In
Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019;
pp. 711–717.

7. Wilson, J.P.; Mittal, K.; Gupta, S. Novel motion models for time-optimal risk-aware motion planning for variable-speed AUVs. In
Proceedings of the OCEANS 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 27–31 October 2019; pp. 1–5.

8. Maini, P.; Gonultas, B.M.; Isler, V. Online coverage planning for an autonomous weed mowing robot with curvature constraints.
IEEE Robot. Autom. Lett. 2022, 7, 5445–5452. [CrossRef]

9. Deng, D.; Jing, W.; Fu, Y.; Huang, Z.; Liu, J.; Shimada, K. Constrained heterogeneous vehicle path planning for large-area
coverage. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China,
3–8 November 2019; pp. 4113–4120.

10. Dubins, L.E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal
positions and tangents. Am. J. Math. 1957, 79, 497–516. [CrossRef]

11. Rekleitis, I.; New, A.P.; Rankin, E.S.; Choset, H. Efficient boustrophedon multi-robot coverage: An algorithmic approach. Ann.
Math. Artif. Intell. 2008, 52, 109–142. [CrossRef]

12. Tan, C.S.; Mohd-Mokhtar, R.; Arshad, M.R. A comprehensive review of coverage path planning in robotics using classical and
heuristic algorithms. IEEE Access 2021, 9, 119310–119342. [CrossRef]

13. Cabreira, T.M.; Brisolara, L.B.; Ferreira, P.R., Jr. Survey on coverage path planning with unmanned aerial vehicles. Drones 2019,
3, 4. [CrossRef]

14. Aggarwal, S.; Kumar, N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Comput.
Commun. 2020, 149, 270–299. [CrossRef]

15. Yu, X.; Jin, S.; Shi, D.; Li, L.; Kang, Y.; Zou, J. Balanced multi-region coverage path planning for unmanned aerial vehicles. In
Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14
October 2020; pp. 3499–3506.

16. Khan, A.; Noreen, I.; Habib, Z. On Complete Coverage Path Planning Algorithms for Non-holonomic Mobile Robots: Survey and
Challenges. J. Inf. Sci. Eng. 2017, 33, 101–121.

17. Li, L.; Shi, D.; Jin, S.; Kang, Y.; Xue, C.; Zhou, X.; Liu, H.; Yu, X. Complete coverage problem of multiple robots with different
velocities. Int. J. Adv. Robot. Syst. 2022, 19, 17298806221091685. [CrossRef]

18. Chen, J.; Zhang, Y.; Wu, L.; You, T.; Ning, X. An adaptive clustering-based algorithm for automatic path planning of heterogeneous
UAVs. IEEE Trans. Intell. Transp. Syst. 2021, 23, 16842–16853. [CrossRef]

19. Rafael Marti, G.R. (Ed.) Exact and Heuristic Methods in Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 2022.
20. Zhou, X.; Wang, H.; Ding, B.; Hu, T.; Shang, S. Balanced connected task allocations for multi-robot systems: An exact flow-based

integer program and an approximate tree-based genetic algorithm. Expert Syst. Appl. 2019, 116, 10–20. [CrossRef]
21. Matić, D. A mixed integer linear programming model and variable neighborhood search for maximally balanced connected

partition problem. Appl. Math. Comput. 2014, 237, 85–97. [CrossRef]
22. Sundar, K.; Rathinam, S. Algorithms for heterogeneous, multiple depot, multiple unmanned vehicle path planning problems. J.

Intell. Robot. Syst. 2017, 88, 513–526. [CrossRef]
23. Vandermeulen, I.; Groß, R.; Kolling, A. Turn-minimizing multirobot coverage. In Proceedings of the 2019 International Conference

on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 1014–1020.
24. Yu, X.; Roppel, T.A.; Hung, J.Y. An optimization approach for planning robotic field coverage. In Proceedings of the IECON

2015-41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 4032–4039.
25. ElGibreen, H.; Youcef-Toumi, K. Dynamic task allocation in an uncertain environment with heterogeneous multi-agents. Auton.

Robot. 2019, 43, 1639–1664. [CrossRef]
26. Gabriely, Y.; Rimon, E. Spanning-tree based coverage of continuous areas by a mobile robot. Ann. Math. Artif. Intell. 2001,

31, 77–98. [CrossRef]
27. Hazon, N.; Kaminka, G.A. Redundancy, efficiency and robustness in multi-robot coverage. In Proceedings of the 2005 IEEE

International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 735–741.

http://doi.org/10.1016/j.swevo.2021.101005
http://dx.doi.org/10.3390/s22031235
http://dx.doi.org/10.1109/TITS.2021.3066240
http://dx.doi.org/10.1109/LRA.2022.3154006
http://dx.doi.org/10.2307/2372560
http://dx.doi.org/10.1007/s10472-009-9120-2
http://dx.doi.org/10.1109/ACCESS.2021.3108177
http://dx.doi.org/10.3390/drones3010004
http://dx.doi.org/10.1016/j.comcom.2019.10.014
http://dx.doi.org/10.1177/17298806221091685
http://dx.doi.org/10.1109/TITS.2021.3131473
http://dx.doi.org/10.1016/j.eswa.2018.09.001
http://dx.doi.org/10.1016/j.amc.2014.03.098
http://dx.doi.org/10.1007/s10846-016-0458-5
http://dx.doi.org/10.1007/s10514-018-09820-5
http://dx.doi.org/10.1023/A:1016610507833

Sensors 2023, 23, 2560 18 of 18

28. Zheng, X.; Jain, S.; Koenig, S.; Kempe, D. Multi-robot forest coverage. In Proceedings of the 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 3852–3857.

29. Zhou, X.; Wang, H.; Ding, B. How Many Robots are Enough: A Multi-Objective Genetic Algorithm for the Single-Objective Time-
Limited Complete Coverage Problem. In Proceedings of the IEEE 2018 International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, 21–25 May 2018; pp. 2380–2387.

30. Wang, X.; Jiang, P.; Li, D.; Sun, T. Curvature continuous and bounded path planning for fixed-wing UAVs. Sensors 2017, 17, 2155.
[CrossRef] [PubMed]

31. Šelek, A.; Seder, M.; Brezak, M.; Petrović, I. Smooth Complete Coverage Trajectory Planning Algorithm for a Nonholonomic
Robot. Sensors 2022, 22, 9269. [CrossRef]

32. Duckett, T.; Pearson, S.; Blackmore, S.; Grieve, B.; Chen, W.H.; Cielniak, G.; Cleaversmith, J.; Dai, J.; Davis, S.; Fox, C.; et al.
Agricultural robotics: The future of robotic agriculture. arXiv 2018, arXiv:1806.06762.

33. Xu, A.; Viriyasuthee, C.; Rekleitis, I. Optimal complete terrain coverage using an unmanned aerial vehicle. In Proceedings of the
2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2513–2519.

34. Yu, X. Optimization Approaches for a Dubins Vehicle in Coverage Planning Problem and Traveling Salesman Problems. Ph.D.
Thesis, AUBURN Univerisity, Auburn, AL, USA, 2015.

35. Lewis, J.S.; Edwards, W.; Benson, K.; Rekleitis, I.; O’Kane, J.M. Semi-boustrophedon coverage with a dubins vehicle. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 5630–5637.

36. Miller, C.E.; Tucker, A.W.; Zemlin, R.A. Integer programming formulation of traveling salesman problems. J. ACM (JACM) 1960,
7, 326–329. [CrossRef]

37. Bixby, B. The gurobi optimizer. Transp. Res. Part B 2007, 41, 159–178.
38. Frieze, A.M.; Galbiati, G.; Maffioli, F. On the worst-case performance of some algorithms for the asymmetric traveling salesman

problem. Networks 1982, 12, 23–39. [CrossRef]
39. Romero, P. Simulink Drone Reference Application. 2022. Available online: https://github.com/mathworks/simulinkDrone\

ReferenceApp/releases/tag/v2.1 (accessed on 19 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s17092155
http://www.ncbi.nlm.nih.gov/pubmed/28925960
http://dx.doi.org/10.3390/s22239269
http://dx.doi.org/10.1145/321043.321046
http://dx.doi.org/10.1002/net.3230120103
https://github.com/mathworks/simulinkDrone\ReferenceApp/releases/tag/v2.1
https://github.com/mathworks/simulinkDrone\ReferenceApp/releases/tag/v2.1

	Introduction
	Related Work
	Exact and Heuristic MCPP Methods
	Dubins Coverage

	System Overview
	Problem Statement
	System Overview

	Exact Dubin Multi-Robot CPP (EDM) Algorithm
	Graph Representation
	Build MILP
	Pseudo-Code of the EDM Algorithm

	Heuristic Credit-Based Dubin Multi-Robot CPP(CDM) Algorithm
	Initial Partition
	Partition Refinement
	Path Planning
	Pseudo-Code of the CDM Algorithm

	Experiments
	Comparison Experiments in Small Scenes
	Comparison Experiments in Large Scenes
	Feasibility Experiments of EDM and CDM

	Conclusions
	References

