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The paper studies the solution of stochastic optimization problems in which approximations to the

gradient and Hessian are obtained through subsampling. We first consider Newton-like methods that

employ these approximations and discuss how to coordinate the accuracy in the gradient and Hessian to

yield a superlinear rate of convergence in expectation. The second part of the paper analyzes an inexact

Newton method that solves linear systems approximately using the conjugate gradient (CG) method,

and that samples the Hessian and not the gradient (the gradient is assumed to be exact). We provide a

complexity analysis for this method based on the properties of the CG iteration and the quality of the

Hessian approximation, and compare it with a method that employs a stochastic gradient iteration instead

of the CG method. We report preliminary numerical results that illustrate the performance of inexact

subsampled Newton methods on machine learning applications based on logistic regression.

Keywords: machine learning; subsampling; stochastic optimization.

1. Introduction

In this paper, we study subsampled Newton methods for stochastic optimization. These methods

employ approximate gradients and Hessians, through sampling, in order to achieve efficiency and

scalability. Additional economy of computation is obtained by solving linear systems inexactly at every

iteration, i.e., by implementing inexact Newton methods. We study the convergence properties of (exact)

Newton methods that approximate both the Hessian and gradient, as well as the complexity of inexact

Newton methods that subsample only the Hessian and use the conjugate gradient (CG) method to solve

linear systems.

The optimization problem of interest arises in machine learning applications, but with appropriate

modifications is relevant to other stochastic optimization settings including simulation optimization

(Amaran et al., 2014; Fu et al., 2015). We state the problem as

min
w∈Rd

F(w) =
∫

f (w; x, y) dP(x, y), (1.1)

© The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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546 R. BOLLAPRAGADA ET AL.

where f is the composition of a prediction function (parametrized by a vector w ∈ R
d) and a smooth

loss function, and (x, y) are the input–output pairs with joint probability distribution P(x, y). We call F

the expected risk.

In practice, one does not have complete information about P(x, y), and therefore one works with

data {(xi, yi)} drawn from the distribution P. One may view an optimization algorithm as being applied

directly to the expected risk (1.1), or given N data points, as being applied to the empirical risk

R(w) = 1

N

N
∑

i=1

f (w; xi, yi).

To simplify the notation, we define Fi(w) = f (w; xi, yi), and thus we write

R(w) = 1

N

N
∑

i=1

Fi(w) (1.2)

in the familiar finite-sum form arising in many applications beyond machine learning (Bertsekas, 1995).

In this paper, we consider both objective functions, F and R.

The iteration of a subsampled Newton method for minimizing F is given by

wk+1 = wk + αkpk, (1.3)

where pk is the solution of the Newton equations

∇2FSk
(wk)pk = −∇FXk

(wk). (1.4)

Here, the subsampled gradient and Hessian are defined as

∇FXk
(wk) = 1

|Xk|
∑

i∈Xk

∇Fi(wk), ∇2FSk
(wk) = 1

|Sk|
∑

i∈Sk

∇2Fi(wk), (1.5)

where the sets Xk, Sk ⊂ {1, 2, . . .} index sample points (xi, yi) drawn at random from the distribution P.

We refer to Xk and Sk as the gradient and Hessian samples—even though they only refer to indices of

the samples. The choice of the sequences {Xk} and {Sk} gives rise to distinct algorithms, and our goal is

to identify the most promising instances, in theory and in practice.

In the first part of the paper, we consider Newton methods in which the linear system (1.4) is

solved exactly, and we identify conditions on {Sk} and {Xk} under which linear or superlinear rates

of convergence are achieved. Exact Newton methods are practical when the number of variables d is

not too large, or when the structure of the problem allows a direct factorization of the Hessian ∇2FSk
in

time linear in the number of variables d.

For most large-scale applications, however, forming the Hessian ∇2FSk
(wk) and solving the linear

system (1.4) accurately are prohibitively expensive, and one has to compute an approximate solution in

O(d) time using an iterative linear solver that only requires Hessian-vector products (and not the Hessian

itself). Methods based on this strategy are sometimes called inexact Hessian-free Newton methods. In the

second part of the paper, we study how to balance the accuracy of this linear solver with the sampling
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EXACT AND INEXACT SUBSAMPLED NEWTON METHODS FOR OPTIMIZATION 547

technique used for the Hessian so as to obtain an efficient algorithm. In doing so, we pay particular

attention to the properties of two iterative linear solvers for (1.4), namely the CG method and a stochastic

gradient iteration (SGI).

It is generally accepted that in the context of deterministic optimization and when the matrix in (1.4)

is the exact Hessian, the CG method is the iterative solver of choice due to its notable convergence

properties. However, subsampled Newton methods provide a different setting where other iterative

methods could be more effective. For example, solving (1.4) using an SGI has the potential advantage

that the sample Sk in (1.4) can be changed at every iteration, in contrast with the Newton-CG method

where it is essential to fix the sample Sk throughout the CG iteration.

It is then natural to ask: which of the two methods, Newton-CG or Newton-SGI, is more efficient, and

how should this be measured? Following Agarwal et al. (2016), we phrase this question by asking how

much computational effort does each method require in order to yield a given local rate of convergence—

specifically, a linear rate with convergence constant of 1/2.

1.1 Related work

Subsampled gradient and Newton methods have recently received much attention. Friedlander &

Schmidt (2012) and Byrd et al. (2012) analyze the rate at which Xk should increase so that the

subsampled gradient method (with fixed steplength) converges linearly to the solution of strongly convex

problems. Byrd et al. (2012) also provide work-complexity bounds for their method and report results

of experiments with a subsampled Newton-CG method, whereas Friedlander & Schmidt (2012) study

the numerical performance of L-BFGS using gradient sampling techniques. Martens (2010) proposes a

subsampled Gauss–Newton method for training deep neural networks, and focuses on the choice of the

regularization parameter. None of these papers provide a convergence analysis for subsampled Newton

methods.

Pasupathy et al. (2015) consider sampling rates in a more general setting. Given a deterministic

algorithm—that could have linear, superlinear or quadratic convergence—they analyze the stochastic

analogue that subsamples the gradient, and identify optimal sampling rates for several families of

algorithms. Erdogdu & Montanari (2015) study a Newton-like method, where the Hessian approxi-

mation is obtained by first subsampling the true Hessian and then computing a truncated eigenvalue

decomposition. Their method employs a full gradient and is designed for problems, where d is not so

large that the cost of iteration, namely O(Nd + |S|d2), is affordable.

Roosta–Khorasani & Mahoney (2016a, 2016b) derive global and local convergence rates for

subsampled Newton methods with various sampling rates used for gradient and Hessian approximations.

Our convergence results are similar to theirs, except that they employ matrix concentration inequalities

(Tropp & Wright, 2010) and state progress at each iteration in probability—whereas we do so in

expectation. The results in Roosta–Khorasani & Mahoney (2016) go beyond other studies in the

literature in that they assume the objective function is strongly convex, but the individual component

functions are only weakly convex, and show how to ensure that the subsampled matrices are invertible

(in probability). Xu et al. (2016) study the effect of nonuniform sampling. They also compare the

complexity of Newton-CG and Newton-SGI by estimating the amount of work required to achieve a

given rate of linear convergence, as is done in this paper. However, their analysis establishes convergence

rates in probability, for one iteration, whereas we prove convergence in expectation for the sequence of

iterates.

Pilanci & Wainwright (2015) propose a Newton sketch method that approximates the Hessian via

random projection matrices while employing the full gradient of the objective. The best complexity

results are obtained when the projections are performed using the randomized Hadamard transform.
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548 R. BOLLAPRAGADA ET AL.

This method requires access to the square root of the true Hessian, which, for generalized linear models,

entails access to the entire dataset at each iteration.

Agarwal et al. (2016) study a Newton method that aims to compute unbiased estimators of the

inverse Hessian and that achieves a linear time complexity in the number of variables. Although they

present the method as one that computes a power expansion of the Hessian inverse, they show that it can

also be interpreted as a subsampled Newton method where the step computation is performed inexactly

using an SGI.

Sampling-based Newton methods have been used in many applications such as imaging problems

(Herrmann & Li, 2012; Calatroni et al., 2017), and in training deep and recurrent neural networks

(Martens & Sutskever, 2012).

1.2 Notation

We denote the variables of the optimization problem by w ∈ R
d, and a minimizer of the objective F as

w∗. Throughout the paper, we use ‖·‖ to represent the ℓ2 vector norm or its induced matrix norm. The

notation A � B means that B − A is a symmetric and positive semidefinite matrix.

2. Subsampled Newton methods

The problem under consideration in this section is the minimization of expected risk (1.1). The general

form of an (exact) subsampled Newton method for this problem is given by

wk+1 = wk − αk∇2F−1
Sk

(wk)∇FXk
(wk), (2.1)

where ∇2FSk
(wk) and ∇FXk

(wk) are defined in (1.5). We assume that the sets {Xk}, {Sk} ⊂ {1, 2, . . .}
are chosen independently (with or without replacement).

The steplength αk in (2.1) is chosen to be a constant or computed by a backtracking line search;

we do not consider the case of diminishing steplengths, αk → 0, which leads to a sublinear rate of

convergence. It is therefore clear that, in order to obtain convergence to the solution, the sample size

Xk must increase, and in order to obtain a rate of convergence that is faster than linear, the Hessian

sample Sk must also increase. We now investigate the rules for controlling those samples. The main set

of assumptions made in this paper is as follows.

Assumption 2.1

A1 (Bounded Eigenvalues of Hessians) The function F is twice continuously differentiable and

any subsampled Hessian is positive definite with eigenvalues lying in a positive interval (that

depends on the sample size). That is, for any integer β and any set S ⊂ {1, 2, . . .} with |S| = β,

there exist positive constants μβ , Lβ such that

μβ I � ∇2FS(w) � Lβ I, ∀w ∈ R
d. (2.2)

Moreover, there exist constants μ̄, L̄ such that

0 < μ̄ ≤ μβ and Lβ ≤ L̄ < ∞, for all β ∈ N. (2.3)
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EXACT AND INEXACT SUBSAMPLED NEWTON METHODS FOR OPTIMIZATION 549

The smallest and largest eigenvalues corresponding to the objective F are denoted by μ, L (with

0 < μ, L < ∞), i.e.,

μI � ∇2F(w) � LI, ∀w ∈ R
d. (2.4)

A2 (Bounded Variance of Sample Gradients) The trace of the covariance matrix of the individual

sample gradients is uniformly bounded, i.e., there exists a constant v such that

tr
(

Cov
(

∇Fi(w)
))

≤ v2, ∀w ∈ R
d. (2.5)

A3 (Lipschitz Continuity of Hessian) The Hessian of the objective function F is Lipschitz

continuous, i.e., there is a constant M > 0 such that

‖∇2F(w) − ∇2F(z)‖ ≤ M‖w − z‖, ∀w, z ∈ R
d. (2.6)

A4 (Bounded Variance of Hessian Components) There is a constant σ such that, for all compo-

nent Hessians, we have

‖E[(∇2Fi(w) − ∇2F(w))2]‖ ≤ σ 2, ∀w ∈ R
d. (2.7)

We let w∗ denote the unique minimizer of F. In practice, most problems are regularized and therefore

assumption 2.1(A1) is satisfied. Concerning A2 and A4, variances are always bounded for a finite sum

problem, and it is standard to assume so for the expected risk problem. Assumption 2.1(A3) is used only

to establish superlinear convergence and it is natural in that context.

2.1 Global linear convergence

We now show that for the Newton method (2.1) to enjoy an R-linear rate of convergence the gradient

sample size must be increased at a geometric rate, i.e., |Xk| = ηk for some η > 1. On the other hand,

the subsampled Hessian need not be accurate, and thus it suffices to keep samples Sk of constant size,

|Sk| = β ≥ 1. The following result, in which the steplength αk in (2.1) is constant, is a simple extension

of well-known results (see, e.g., Byrd et al., 2012; Friedlander & Schmidt, 2012; Pasupathy et al., 2015),

but we include the proof for the sake of completeness. We assume that the set Xk is drawn uniformly at

random so that at every iteration E[∇FXk
(wk)] = ∇F(wk). We also assume that the sets Xk and Sk are

chosen independently of each other.

Theorem 2.2 Suppose that Assumptions 2.1(A1)–(A2) hold. Let {wk} be the iterates generated by

iteration (2.1) with any w0, where |Xk| = ηk for some η > 1, and |Sk| = β ≥ 1 is constant. Then, if

the steplength satisfies αk = α = μβ

L
, we have that

E[F(wk) − F(w∗)] ≤ Cρ̂k, (2.8)

where

C = max

{

F(w0) − F(w∗),
v2Lβ

μμβ

}

and ρ̂ = max

{

1 −
μμβ

2LLβ

,
1

η

}

. (2.9)
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550 R. BOLLAPRAGADA ET AL.

Proof. Let Ek denote the conditional expectation at iteration k for all possible sets Xk. Then for any

given Sk,

Ek

[

F(wk+1)
]

≤ F(wk) − α∇F(wk)
T∇2F−1

Sk
(wk)Ek[∇FXk

(wk)] + Lα2

2
Ek[‖∇2F−1

Sk
(wk)∇FXk

(wk)‖2]

= F(wk) − α∇F(wk)
T∇2F−1

Sk
(wk)∇F(wk) + Lα2

2
‖Ek[∇2F−1

Sk
(wk)∇FXk

(wk)]‖2

+ Lα2

2
Ek[‖∇2F−1

Sk
(wk)∇FXk

(wk) − Ek[∇2F−1
Sk

(wk)∇FXk
(wk)]‖2]

= F(wk) − α∇F(wk)
T

(

∇2F−1
Sk

(wk) − Lα

2
∇2F−2

Sk
(wk)

)

∇F(wk)

+ Lα2

2
Ek[‖∇2F−1

Sk
(wk)∇FXk

(wk) − ∇2F−1
Sk

(wk)∇F(wk)‖2]

≤ F(wk) − α∇F(wk)
T∇2F

−1/2
Sk

(wk)

(

I − Lα

2
∇2F−1

Sk
(wk)

)

∇2F
−1/2
Sk

(wk)∇F(wk)

+ Lα2

2μ2
β

Ek[‖∇FXk
(wk) − ∇F(wk)‖2].

Now, {∇2F−1
Sk

} is a sequence of random variables, but we can bound its eigenvalues from above and

below. Therefore, we can use these eigenvalue bounds as follows:

Ek

[

F(wk+1)
]

≤ F(wk) − α

(

1 − Lα

2μβ

)

(1/Lβ)‖∇F(wk)‖2 + Lα2

2μ2
β

Ek[‖∇FXk
(wk) − ∇F(wk)‖2]

≤ F(wk) −
μβ

2LLβ

‖∇F(wk)‖2 + 1

2L
Ek[‖∇FXk

(wk) − ∇F(wk)‖2]

≤ F(wk) −
μμβ

LLβ

(F(wk) − F(w∗)) + 1

2L
Ek[‖∇F(wk) − ∇FXk

(wk)‖2],

where the last inequality follows from the fact that, for any μ −strongly convex function, ‖∇F(wk)‖2 ≥
2μ(F(wk) − F(w∗)). Therefore, we get

Ek

[

F(wk+1) − F(w∗)
]

≤
(

1 −
μμβ

LLβ

)

(F(wk) − F(w∗)) + 1

2L
Ek[‖∇F(wk) − ∇FXk

(wk)‖2]. (2.10)
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EXACT AND INEXACT SUBSAMPLED NEWTON METHODS FOR OPTIMIZATION 551

Now, by Assumption 2.1(A2) we have that

Ek[‖∇F(wk) − ∇FXk
(wk)‖2] = Ek

[

tr
(
(

∇F(wk) − ∇FXk
(wk)

) (

∇F(wk) − ∇FXk
(wk)

)T
)]

= tr
(

Cov
(

∇FXk
(wk)

))

= tr

⎛

⎝Cov

⎛

⎝
1

|Xk|
∑

i∈Xk

∇Fi(wk)

⎞

⎠

⎞

⎠

≤ 1

|Xk|
tr(Cov(∇Fi(wk)))

≤ v2

|Xk|
. (2.11)

Substituting this inequality in (2.10), we obtain

Ek

[

F(wk+1) − F(w∗)
]

≤
(

1 −
μμβ

LLβ

)

(F(wk) − F(w∗)) + v2

2L|Xk|
. (2.12)

We use induction for the rest of the proof, and to this end we recall the definitions of C and ρ̂. Since

E[F(w0) − F(w∗)] ≤ C, inequality (2.8) holds for k = 0. Now, suppose that (2.8) holds for some k.

Combining (2.12), the condition |Xk| = ηk, and the definition of ρ̂, we have

E[F(wk+1) − F(w∗)] ≤
(

1 −
μμβ

LLβ

)

Cρ̂k + v2

2L|Xk|

= Cρ̂k

(

1 −
μμβ

LLβ

+ v2

2LC(ρ̂η)k

)

≤ Cρ̂k

(

1 −
μμβ

LLβ

+ v2

2LC

)

≤ Cρ̂k

(

1 −
μμβ

LLβ

+
μμβ

2LLβ

)

= Cρ̂k

(

1 −
μμβ

2LLβ

)

≤ Cρ̂k+1.

�

If one is willing to increase the Hessian sample size as the iterations progress, then one can achieve

a faster rate of convergence, as discussed next.
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552 R. BOLLAPRAGADA ET AL.

2.2 Local superlinear convergence

We now discuss how to design the subsampled Newton method (using a unit stepsize) so as to obtain

superlinear convergence in a neighborhood of the solution w∗. This question is most interesting when

the objective function is given by the expectation (1.1) and the indices i are chosen from an infinite

set according to a probability distribution P. We will show that the sample size used for gradient

estimation should increase at a rate that is faster than geometric, i.e., |Xk| ≥ ηk
k , where {ηk} > 1 is

an increasing sequence, whereas sample size used for Hessian estimation should increase at any rate

such that |Sk|≥|Sk−1| and lim
k→∞

|Sk| = ∞.

We begin with the following result that identifies three quantities that drive the iteration. Here Ek

denotes the conditional expectation at iteration k for all possible sets Xk and Sk.

Lemma 2.3 Let {wk} be the iterates generated by algorithm (2.1) with αk = 1, and suppose that

Assumptions 2.1(A1)–(A3) hold. Then for each k,

Ek[‖wk+1 − w∗‖] ≤ 1

μ|Sk|

[

M

2
‖wk − w∗‖2 + Ek

[∥
∥
∥

(

∇2FSk
(wk) − ∇2F(wk)

)

(wk − w∗)
∥
∥
∥

]

+ v
√

|Xk|

]

.

(2.13)

Proof. We have that the expected distance to the solution after the kth step is given by

Ek[‖wk+1 − w∗‖] = Ek[‖wk − w∗ − ∇2F−1
Sk

(wk)∇FXk
(wk)‖] (2.14)

= Ek

[∥
∥
∥∇2F−1

Sk
(wk)

(

∇2FSk
(wk)(wk − w∗) − ∇F(wk) − ∇FXk

(wk) + ∇F(wk)

)∥
∥
∥

]

≤ 1

μ|Sk|
Ek

[∥
∥
∥

(

∇2FSk
(wk)−∇2F(wk)

)

(wk − w∗) + ∇2F(wk)(wk − w∗)−∇F(wk)

∥
∥
∥

]

+ 1

μ|Sk|
Ek

[∥
∥∇FXk

(wk) − ∇F(wk)
∥
∥
]

.

Therefore,

Ek[‖wk+1 − w∗‖] ≤ 1

μ|Sk|
‖∇2F(wk)(wk − w∗) − ∇F(wk)‖

︸ ︷︷ ︸

Term 1

+ 1

μ|Sk|
Ek

[∥
∥
∥

(

∇2FSk
(wk) − ∇2F(wk)

)

(wk − w∗)
∥
∥
∥

]

︸ ︷︷ ︸

Term 2

+ 1

μ|Sk|
Ek[‖∇FXk

(wk) − ∇F(wk)‖]

︸ ︷︷ ︸

Term 3

. (2.15)
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EXACT AND INEXACT SUBSAMPLED NEWTON METHODS FOR OPTIMIZATION 553

For Term 1, we have by Lipschitz continuity of the Hessian (2.6),

1

μ|Sk|
‖∇2F(wk)(wk − w∗) − ∇F(wk)‖ ≤ 1

μ|Sk|
‖wk−w∗‖

∥
∥
∥
∥

∫ 1

t=0

[∇2F(wk)−∇2F(wk + t(w∗−wk))] dt

∥
∥
∥
∥

≤ 1

μ|Sk|
‖wk − w∗‖

∫ 1

t=0

‖∇2F(wk)−∇2F(wk + t(w∗ − wk))‖ dt

≤ 1

μ|Sk|
‖wk − w∗‖2

∫ 1

t=0

Mt dt

= M

2μ|Sk|
‖wk − w∗‖2.

Term 3 represents the error in the gradient approximation. By Jensen’s inequality we have that,

(

Ek[‖∇F(wk) − ∇FXk
(wk)‖]

)2 ≤ Ek[‖∇F(wk) − ∇FXk
(wk)‖2].

We have shown in (2.11) that Ek[‖∇FXk
(wk) − ∇F(wk)‖2] ≤ v2/|Xk|, which concludes the proof. �

Let us now consider Term 2 in (2.13), which represents the error due to Hessian subsampling. In

order to prove convergence, we need to bound this term as a function of the Hessian sample size |Sk|.

The following lemma shows that this error is inversely related to the square root of the sample size.

Lemma 2.4 Suppose that Assumptions 2.1(A1) and (A4) hold. Then

Ek

[∥
∥
∥

(

∇2FSk
(wk) − ∇2F(wk)

)

(wk − w∗)
∥
∥
∥

]

≤ σ
√

|Sk|
‖wk − w∗‖, (2.16)

where σ is defined in Assumption 2.1(A4).

Proof. Let us define ZS = ∇2FS(w)(w − w∗) and Z = ∇2F(w)(w − w∗), so that

∥
∥
∥

(

∇2FS(w) − ∇2F(w)

)

(w − w∗)
∥
∥
∥ = ‖ZS − Z‖.

(For convenience we drop the iteration index k in this proof.) We also write ZS = 1
|S|

∑

Zi, where Zi =
∇2Fi(w)(w − w∗), and note that each Zi is independent. By Jensen’s inequality we have,

(E[‖ZS − Z‖])2 ≤ E[‖ZS − Z‖2]

= E

[

tr
(

(ZS − Z)(ZS − Z)T
)]

= tr(Cov(ZS))

= tr

(

Cov

(

1

|S|
∑

i∈S

Zi

))

≤ 1

|S| tr(Cov(Zi))

= 1

|S| tr
(

Cov(∇2Fi(w)(w − w∗))
)

.
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554 R. BOLLAPRAGADA ET AL.

Now, we have by (2.7) and (2.4)

tr
(

Cov(∇2Fi(w)(w − w∗))
)

= (w − w∗)T
E[(∇2Fi(w) − ∇2F(w))2](w − w∗)

≤ σ 2‖w − w∗‖2.

�

We note that in the literature on subsampled Newton methods (Erdogdu & Montanari, 2015;

Roosta–Khorasani & Mahoney, 2016b) it is common to use matrix concentration inequalities to measure

the accuracy of Hessian approximations. In Lemma 2.4, we measure instead the error along the vector

wk − w∗, which gives a more precise estimate.

Combining Lemma 2.3 and Lemma 2.4, and recalling (2.3), we obtain the following linear-quadratic

bound

Ek[‖wk+1 − w∗‖] ≤ M

2μ̄
‖wk − w∗‖2 + σ‖wk − w∗‖

μ̄
√

|Sk|
+ v

μ̄
√

|Xk|
. (2.17)

It is clear that in order to achieve a superlinear convergence rate, it is not sufficient to increase the sample

size |Xk| at a geometric rate, because that would decrease the last term in (2.17) at a linear rate; thus

|Xk| must be increased at a rate that is faster than geometric. From the middle term we see that sample

size |Sk| should also increase, and can do so at any rate, provided |Sk| → ∞. To bound the first term,

we introduce the following assumption on the second moments of the distance of iterates to the optimum.

Assumption 2.5

B1 (Bounded Moments of Iterates) There is a constant γ > 0 such that for any iterate wk

generated by algorithm (2.1) we have

E[||wk − w∗||2] ≤ γ (E[||wk − w∗||])2. (2.18)

This assumption seems, at a first glance, to be very restrictive. But we note that it is imposed on

non-negative numbers, and that it is less restrictive than assuming that the iterates are bounded (for all

possible choices of the random variables); see e.g., Babanezhad et al. (2015) and the references therein.

For a general stochastic optimization problem, this assumption that the iterates are bounded implies that

B1 holds.

We now show local superlinear convergence when a unit steplength is employed. Superlinear

convergence can only be established if the steplength is 1 (or converges to 1). The analysis here applies

both to the case where steplength of 1 is used from a sufficiently close starting point, and to the case

where some test such as sufficient decrease is used to decide when to start using unit steplength after

using a strategy such as the one described above.

Theorem 2.6 (Superlinear convergence) Let {wk} be the iterates generated by algorithm 2.1 with

stepsize αk = α = 1. Suppose that Assumptions 2.1(A1)–(A4) and B1 hold and that for all k:

(i) |Xk| ≥ |X0| ηk
k , with |X0| ≥

(
6vγ M

μ̄2

)2
, ηk > ηk−1, ηk → ∞ and η1 > 1.

(ii) |Sk| > |Sk−1|, with lim
k→∞

|Sk| = ∞, and |S0| ≥
(

4σ
μ̄

)2
.
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EXACT AND INEXACT SUBSAMPLED NEWTON METHODS FOR OPTIMIZATION 555

Then, if the starting point satisfies

‖w0 − w∗‖ ≤ μ̄

3γ M
,

we have that E[‖wk − w∗‖] → 0 at an R-superlinear rate, i.e., there is a positive sequence {τ k} such that

E[‖wk − w∗‖] ≤ τk and τk+1/τk → 0.

Proof. We establish the result by showing that, for all k,

E[‖wk − w∗‖] ≤ μ̄

3γ M
τk, (2.19)

where

τk+1 = max
{

τkρk, η
−(k+1)/4
k+1

}

, τ0 = 1, ρk = τk

6
+ 1

4

√

|S0|
|Sk|

+ 1

2η
k/4
k

. (2.20)

We use induction to show (2.19). Note that the base case, k = 0, is trivially satisfied. Let us assume that

the result is true for iteration k, so that

3γ M

μ̄
E[‖wk − w∗‖] ≤ τk.

Let us now consider iteration k + 1. Using (2.17), the bounds for the sample sizes given in conditions

(i)–(ii), (2.20) and (2.18), we get

E
[

Ek

[

‖wk+1 − w∗‖
]]

≤ E

[

M

2μ̄
‖wk − w∗‖2 + σ‖wk − w∗‖

μ̄
√

|Sk|
+ v

μ̄
√

|Xk|

]

≤ γ M

2μ̄
(E[‖wk − w∗‖])2 + σE[‖wk − w∗‖]

μ̄
√

|Sk|
+ v

μ̄
√

|Xk|

≤ μ̄

3γ M
τk

(τk

6

)

+ μ̄

3γ M
τk

(

1

4

√

|S0|
|Sk|

)

+ μ̄

3γ M

⎛

⎝
1

2

√

ηk
k

⎞

⎠

= μ̄

3γ M
τk

⎡

⎣
τk

6
+ 1

4

√

|S0|
|Sk|

+ 1

2τk

√

ηk
k

⎤

⎦

≤ μ̄

3γ M
τk

[

τk

6
+ 1

4

√

|S0|
|Sk|

+ 1

2η
k/4
k

]

= μ̄

3γ M
τkρk ≤ μ̄

3γ M
τk+1,

which proves (2.19).
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556 R. BOLLAPRAGADA ET AL.

To prove R-superlinear convergence, we show that the sequence τ k converges superlinearly to 0.

First, we use induction to show that τ k < 1. For the base case k = 1 we have,

ρ0 = τ0

6
+ 1

4
+ 1

2
= 1

6
+ 1

4
+ 1

2
= 11

12
< 1,

τ1 = max
{

τ0ρ0, η
(−1/4)

1

}

= max
{

ρ0, η
−1/4
1

}

< 1.

Now, let us assume that τ k < 1 for some k > 1. By the fact that {|Sk|} and {ηk} are increasing sequences,

we obtain

ρk = τk

6
+ 1

4

√

|S0|
|Sk|

+ 1

2η
k/4
k

≤ 1

6
+ 1

4
+ 1

2
= 11

12
< 1, (2.21)

τk+1 = max
{

τkρk, η
−(k+1)/4
k+1

}

≤ max
{

ρk, η
−(k+1)/4
1

}

< 1,

which proves that τ k < 1 for all k > 1.

Moreover, since ρk ≤ 11/12, we see from the first definition in (2.20) (and the fact that ηk → ∞)

that the sequence {τ k} converges to zero. This implies by the second definition in (2.20) that {ρk} → 0.

Using these observations, we conclude that

lim
k→∞

τk+1

τk

= lim
k→∞

max
{

τkρk, η
−(k+1)/4
k+1

}

τk

= lim
k→∞

max

{

ρk,
η

−(k+1)/4
k+1

τk

}

≤ lim
k→∞

max

{

ρk,

(
ηk

ηk+1

)k/4
1

η
1/4
k+1

}

≤ lim
k→∞

max

{

ρk,
1

η
1/4
k+1

}

= 0.

�

The constants 6 and 4 in assumptions (i)–(ii) of this theorem were chosen for the sake of simplicity,

to avoid introducing general parameters, and other values could be chosen.

Let us compare this result with those established in the literature. We established superlinear

convergence in expectation. In contrast the results in the study by Roosta–Khorasani & Mahoney

(2016b) show a rate of decrease in the error at a given iteration with certain probability 1 − δ.

Concatenating such statements does not give convergence guarantees of the overall sequence with

high probability. We could ask whether the approach described in the studies by Erdogdu & Montanari

(2015), Roosta–Khorasani & Mahoney (2016b) and Xu et al. (2016), together with Assumption 2.5(B1),

could be used to prove convergence in expectation. This is not the case because one cannot guarantee

that the Hessian approximation is invertible, and hence one would still need additional assumptions
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EXACT AND INEXACT SUBSAMPLED NEWTON METHODS FOR OPTIMIZATION 557

to prove convergence in expectation. In contrast, our approach can be used to prove convergence in

probability because of the assumptions that variances are bounded allows one to use the Chebyshev

inequality to derive a probability bound, and then derive a convergence result in probability.

Pasupathy et al. (2015) use a different approach to show that the entire sequence of iterates converges

in expectation. They assume that the ‘deterministic analog’ has a global superlinear rate of convergence,

a rather strong assumption. In conclusion, all the superlinear results just mentioned are useful and shed

light into the properties of subsampled Newton methods, but none of them seem to be definitive.

3. Inexact Newton-CG method

We now consider inexact subsampled Newton methods in which the Newton equations (1.4) are solved

approximately. A natural question that arises in this context is the relationship between the accuracy in

the solution of (1.4), the size of the sample Sk and the rate of convergence of the method. Additional

insights are obtained by analyzing the properties of specific iterative solvers for the system (1.4), and we

focus here on the CG method. We provide a complexity analysis for an inexact subsampled Newton-CG

method, and in Section 4, compare it with competing approaches.

In this section, we assume that the Hessian is subsampled, but the gradient is not. Since computing

the full (exact) gradient is more realistic when the objective function is given by the finite sum (1.2), we

assume throughout this section that the objective is R. The iteration therefore has the form

wk+1 = wk + pr
k (3.1)

where pr
k is the approximate solution obtained after applying r steps of the CG method to the d × d

linear system

∇2RSk
(wk)p = −∇R(wk), with ∇2RSk

(wk) = 1

|Sk|
∑

i∈Sk

∇2Fi(wk). (3.2)

We assume that the number r of CG steps performed at every iteration is constant, as this facilitates our

complexity analysis which is phrased in terms of |Sk| and r. (Later on, we consider an alternative setting

where the accuracy in the linear system solve is controlled by a residual test.) Methods in which the

Hessian is subsampled, but the gradient is not are sometimes called semistochastic, and several variants

have been studied in the studies by Agarwal et al. (2016), Byrd et al. (2011), Pilanci & Wainwright

(2015) and Roosta–Khorasani & Mahoney (2016b).

A sharp analysis of the Newton-CG method (3.1)–(3.2) is difficult to perform because

the convergence rate of the CG method varies at every iteration depending on the spectrum

{λ1 ≤ λ2 ≤ . . . ≤ λd} of the positive definite matrix ∇2RSk
(wk). For example, after computing r

steps of the CG method applied to the linear system in (3.2), the iterate pr satisfies

||pr − p∗||2A ≤
(

λd−r − λ1

λd−r + λ1

)2

‖p0 − p∗||2A, with A = ∇2RSk
(wk). (3.3)

Here p∗ denotes the exact solution and ‖x‖2
A

def= xTAx. In addition, one can show that CG will terminate

in t iterations, where t denotes the number of distinct eigenvalues of ∇2RSk
(wk), and also show that the

method does not approach the solution at a steady rate.
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558 R. BOLLAPRAGADA ET AL.

Since an analysis based on the precise bound (3.3) is complex, we make use of the worst case

behavior of CG (Golub & Van Loan, 1989) which is given by

‖pr − p∗‖A ≤ 2

(√
κ(A) − 1√
κ(A) + 1

)r

‖p0 − p∗‖A, (3.4)

where κ(A) denotes the condition number of A. Using this bound, we can establish the following linear-

quadratic bound. Here the sample Sk is allowed to vary at each iteration but its size, |Sk|, is assumed

constant.

Lemma 3.1 Let {wk} be the iterates generated by the inexact Newton method (3.1)–(3.2), where

|Sk| = β and the direction pr
k is the result of performing r < d CG iterations on the system (3.2). Suppose

Assumptions 2.1(A1), (A3) and (A4) hold. Then,

Ek[‖wk+1 − w∗‖] ≤ C1‖wk − w∗‖2 +
(

C2√
β

+ C3θ
r

)

‖wk − w∗‖, (3.5)

where

C1 = M

2μβ

, C2 = σ

μβ

, C3 = 2L

μβ

√

δ(β), θ =
(√

δ(β) − 1√
δ(β) + 1

)

, δ(β) =
Lβ

μβ

. (3.6)

Proof. We have that

Ek[‖wk+1 − w∗‖] = Ek[‖wk − w∗ + pr
k‖]

≤ Ek[‖wk − w∗ − ∇2R−1
Sk

(wk)∇R(wk)‖]
︸ ︷︷ ︸

Term 4

+Ek[‖pr
k + ∇2R−1

Sk
(wk)∇R(wk)‖]

︸ ︷︷ ︸

Term 5

. (3.7)

Term 4 was analyzed in the previous section where the objective function is F, i.e., where the iteration

is defined by (2.1) so that (2.14) holds. In our setting, we have that Term 3 in (2.15) is zero (since the

gradient is not sampled) and hence, from (2.13),

Ek[‖wk−w∗−∇2R−1
Sk

(wk)∇R(wk)‖]≤ M

2μβ

‖wk−w∗‖2+ 1

μβ

Ek

[∥
∥
∥

(

∇2RSk
(wk)−∇2R(wk)

)

(wk−w∗)
∥
∥
∥

]

.

(3.8)

Recalling Lemma 2.4 (with R replacing F) and the definitions (3.6), we have

Ek[‖wk − w∗ − ∇2R−1
Sk

(wk)∇R(wk)‖] ≤ C1‖wk − w∗‖2 + C2√
β

‖wk − w∗‖. (3.9)
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Now, we analyze Term 5, which is the residual in the CG solution after r iterations. Assuming for

simplicity that the initial CG iterate is p0
k = 0, we obtain from (3.4)

‖pr
k + ∇2R−1

Sk
(wk)∇R(wk)‖A ≤ 2

(√
κ(A) − 1√
κ(A) + 1

)r

‖∇2R−1
Sk

(wk)∇R(wk)‖A,

where A = ∇2RSk
(wk). To express this in terms of unweighted norms, note that if ‖a‖2

A ≤ ‖b‖2
A, then

λ1‖a‖2 ≤ aTAa ≤ bTAb ≤ λd‖b‖2 �⇒ ‖a‖ ≤
√

κ(A)‖b‖.

Therefore, from Assumption 2.1(A1)

Ek[‖pr
k + ∇2R−1

Sk
(wk)∇R(wk)‖] ≤ 2

√

κ(A)

(√
κ(A) − 1√
κ(A) + 1

)r

Ek[‖∇2R−1
Sk

(wk)∇R(wk)‖]

≤ 2
√

κ(A)

(√
κ(A) − 1√
κ(A) + 1

)r

‖∇R(wk)‖Ek[‖∇2R−1
Sk

(wk)‖]

≤ 2L

μβ

√

κ(A)

(√
κ(A) − 1√
κ(A) + 1

)r

‖wk − w∗‖

= C3θ
r‖wk − w∗‖, (3.10)

where the last step follows from the fact that, by the definition of A, we have μβ ≤ λ1 ≤ · · · ≤ λd ≤ Lβ ,

and hence κ(A) ≤ Lβ /μβ = δ(β). �

We now use Lemma 3.1 to determine the number of Hessian samples |S| and the number of CG

iterations r that guarantee a given rate of convergence. Specifically, we require a linear rate with constant

1/2, in a neighborhood of the solution. This will allow us to compare our results with those in the study

by Agarwal et al. (2016). We recall that C1 is defined in (3.6) and γ in (2.18).

Theorem 3.2 Suppose that Assumptions 2.1(A1), (A3), (A4) and 2.5(B1) hold. Let {wk} be the iterates

generated by inexact Newton-CG method (3.1)–(3.2), with

|Sk| = β ≥ 64σ 2

μ̄2 , (3.11)

and suppose that the number of CG steps performed at every iteration satisfies

r ≥ log

(

16L

μβ

√

δ(β)

)

1

log
(√

δ(β)+1√
δ(β)−1

) .

Then, if ||w0 − w∗|| ≤ min{ 1
4C1

, 1
4γ C1

}, we have

E[||wk+1 − w∗||] ≤ 1
2
E[||wk − w∗||]. (3.12)
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560 R. BOLLAPRAGADA ET AL.

Proof. By the definition of C2 given in (3.6) and (3.11), we have that C2/
√

β ≤ 1/8. Now,

C3θ
r = 2L

μβ

√

δ(β)

(√
δ(β) − 1√
δ(β) + 1

)r

≤ 2L

μβ

√

δ(β)

(√
δ(β) − 1√
δ(β) + 1

)

⎛

⎝

log

(

16L
μβ

√
δ(β)

)

log

(√
δ(β)+1√
δ(β)−1

)

⎞

⎠

= 2L

μβ

√

δ(β)
1

16L
μβ

√
δ(β)

= 1

8
.

We use induction to prove (3.12). For the base case we have from Lemma 3.1,

E[‖w1 − w∗‖] ≤ C1‖w0 − w∗‖‖w0 − w∗‖ +
(

C2√
β

+ C3θ
r

)

‖w0 − w∗‖

≤ 1
4
‖w0 − w∗‖ + 1

4
‖w0 − w∗‖

= 1
2
‖w0 − w∗‖.

Now suppose that (3.12) is true for kth iteration. Then,

E
[

Ek

[

‖wk+1 − w∗‖
]]

≤ C1E[‖wk − w∗‖2] +
(

C2√
β

+ C3θ
r

)

E[‖wk − w∗‖]

≤ γ C1E[‖wk − w∗‖]E[‖wk − w∗‖] +
(

C2√
β

+ C3θ
r

)

E[‖wk − w∗‖]

≤ 1
4
E[‖wk − w∗‖] + 1

4
E[‖wk − w∗‖]

= 1
2
E[‖wk − w∗‖].

�

We note that condition (3.11) may require a value of β greater than N. In this case the proof of

Theorem 3.2 is clearly still valid if we sample with replacement, but this is a wasteful strategy since it

achieves the bound |Sk| > N by repeating samples. If we wish to sample without replacement in this

case, we can set β = N. Then our Hessian approximation is exact and the C2 term is zero, so the proof

still goes through and Theorem 3.2 holds.

This result was established using the worst case complexity bound of the CG method. We know,

however, that CG converges to the solution in at most d steps. Hence, the bound on the maximum

number of iterations needed to obtain a linear rate of convergence with constant 1/2 is

r = min

⎧

⎨

⎩
d,

log
(

16L
√

δ(β)/μβ

)

log
(√

δ(β)+1√
δ(β)−1

)

⎫

⎬

⎭
. (3.13)
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EXACT AND INEXACT SUBSAMPLED NEWTON METHODS FOR OPTIMIZATION 561

This bound is still rather pessimistic in practice since most problems do not give rise to the worst case

behavior of the method.

Convergence rate controlled by residual test. In many practical implementations of inexact New-

ton methods, the CG iteration is stopped based on the norm of the residual in the solution of the linear

system (1.4), rather than on a prescribed maximum number r of CG iterations (Dembo et al., 1982). For

the system (3.2), this residual-based termination test is given by

‖∇2RSk
(wk)p

r
k + ∇R(wk)‖ ≤ ζ‖∇R(wk)‖, (3.14)

where ζ < 1 is a control parameter. Lemma 3.1 still applies in this setting, but with a different constant

C3θ
r. Specifically, Term 5 in (3.7) is modified as follows:

Ek[‖pr
k + ∇2R−1

Sk
(wk)∇R(wk)‖] ≤ Ek[‖∇2R−1

Sk
(wk)‖‖∇2RSk

(wk)p
r
k − ∇R(wk)‖]

≤ ζ

μβ

‖∇R(wk)‖

≤ Lζ

μβ

‖wk − w∗‖.

Hence, comparing with (3.10), we now have that C3θ
r = L

μβ
ζ . To obtain linear convergence with

constant 1/2, we must impose a bound on the parameter ζ , so as to match the analysis in Theorem 3.2,

where we required that C3θ
r ≤ 1

8
. This condition is satisfied if

ζ ≤
μβ

8L
.

Thus, the parameter ζ must be inversely proportional to a quantity related to the condition number of

the Hessian.

We conclude this section by remarking that the results presented in this section may not reflect the

full power of the subsampled Newton-CG method since we assumed the worst case behavior of CG, and

as noted in (3.3), the per-iteration progress can be much faster than in the worst case.

4. Comparison with other methods

We now ask whether the CG method is, in fact, an efficient linear solver when employed in the inexact

subsampled Newton-CG method (3.1)–(3.2), or whether some other iterative linear solver could be

preferable. Specifically, we compare CG with a semi-stochastic gradient iteration that is described

below; we denote the variant of (3.1)–(3.2) that uses the SGI iteration to solve linear systems as

the Newton-SGI method. Following Agarwal et al. (2016), we measure efficiency by estimating the

total number of Hessian-vector products required to achieve a local linear rate of convergence with

convergence constant 1/2 (the other costs of the algorithms are identical).

To present the complexity results of this section we introduce the following definitions of condition

numbers:

κ̂ = L̄

μ
, κ̂max = L̄

μ̄
and κ = L

μ
.
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562 R. BOLLAPRAGADA ET AL.

Newton-CG method. Since each CG iteration requires 1 Hessian-vector product, every iteration of the

inexact subsampled Newton-CG method requires β × r Hessian-vector products, where β = |Sk| and r

are the number of CG iterations performed.

By the definitions in Assumption 2.1, we have that σ 2 is bounded by a multiple of L̄2. Therefore,

recalling the definition (3.6) we have that the sample size stipulated in Theorem 3.2 and (3.6) satisfies

β = O(C2
2) = O(σ 2/μ̄2) = O((κ̂max)2).

Now, from (3.13) the number of CG iterations satisfies the bound

r = O

⎛

⎝min

⎧

⎨

⎩
d,

log((L/μβ)
√

δ(β))

log
(√

δ(β)+1√
δ(β)−1

)

⎫

⎬

⎭

⎞

⎠

= O

(

min

{

d,
√

κ̂max log(κ̂max)

})

,

where the last equality is by the fact that δ(β) ≤ κ̂max and L ≤ L̄. Therefore, the number of Hessian-

vector products required by the Newton-CG method to yield a linear convergence rate with constant of

1/2 is

O(βr) = O

(

(κ̂max)2 min

{

d,
√

κ̂max log(κ̂max)

})

. (4.1)

Newton-SGI method. To motivate this method, we first note that a step of the classical Newton method

is given by the minimizer of the quadratic model

Q(p) = R(wk) + ∇R(wk)
Tp + 1

2
pT∇2R(wk)p. (4.2)

We could instead minimize Q using the gradient method,

pt+1 = pt − ∇Q(pt) = (I − ∇2R(wk))pt − ∇R(wk),

but the cost of the Hessian-vector product in this iteration is expensive. Therefore, one can consider the

semi-stochastic gradient iteration

pt+1 = (I − ∇2Ri(wk))pt − ∇R(wk), (4.3)

where the index i is chosen at random from {1, . . ., N}. We define the Newton-SGI method by wk+1 =
wk + pr, where pr is the iterate obtained after applying r iterations of (4.3).

Agarwal et al. (2016) analyze a method they call LiSSA that is related to this Newton-SGI method.

Although they present their method as one based on a power expansion of the inverse Hessian, they note

in (Agarwal et al., 2016, Section 4.2) that, if the outer loop in their method is disabled (by setting S1 =
1), then their method is equivalent to our Newton-SGI method. They provide a complexity bound for the

more general version of the method in which they compute S2 iterations of (4.3), repeat this S1 times,

and then calculate the average of all the solutions to define the new iterate. They provide a bound, in
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EXACT AND INEXACT SUBSAMPLED NEWTON METHODS FOR OPTIMIZATION 563

probability, for one step of their overall method, whereas our bounds for Newton-CG are in expectation.

In spite of these differences, it is interesting to compare the complexity of the two methods.

The number of Hessian-vector products for LiSSA (which is given O(S1S2) in their notation) is

O((κ̂max)2κ̂ log(κ̂) log(d)). (4.4)

When comparing this estimate with (4.1) we observe that the Newton-CG bounds depend on the

square root of a condition number, whereas Newton-SGI depends on the condition number itself.

Furthermore, Newton-CG also has an improvement of log(d) because our proof techniques avoid the

use of matrix concentration bounds.

We note in passing that certain implicit assumptions are made about the algorithms discussed

above when the objective is given by the finite sum R. In subsampled Newton methods, it is assumed

that the number of subsamples is less than the number of examples n. This implies that for all

these methods one makes the implicit assumption that n > κ2. We should also note that in all

the stochastic second order methods, the number of samples required by the theory is κ2, but in

practice a small number of samples suffice to give good performance. This suggests that the theory

could be improved and that techniques other than concentration bounds might help in achieving this.

Work complexity to obtain an ǫ-accurate solution. Table 1 compares a variety of methods in terms

of the total number of gradient and Hessian-vector products required to obtain an ǫ-accurate solution.

The results need to be interpreted with caution as the convergence rate of the underlying methods differs

in nature, as we explain below. Therefore, Table 1 should be regarded mainly as summary of results in

the literature and not as a simple way to rank methods. In stating these results, we assume that the cost

of a Hessian-vector product is same as the cost of a gradient evaluation, which is realistic in many (but

not all) applications.

Table 1 Time complexity to obtain an ǫ-accurate solution. Comparison of the Newton-CG

(Inexact) method analyzed in this paper with other well-known methods. The third column reports

orders of magnitude

Method Convergence Time to reach ǫ-accurate solution Reference

SG Global dωκ2

ǫ
Bottou & Le Cun (2005)

DSS Global dvκ
μǫ

Byrd et al. (2012)

GD Global ndκ log( 1
ǫ
) Nocedal & Wright (1999)

Newton Local nd2 log log( 1
ǫ
) Nocedal & Wright (1999)

Newton-CG (Exact) Local (n + (κ̂max)2d)d log( 1
ǫ
) [This paper]

Newton-CG (Inexact) Local (n + (κ̂max)2
√

κ̂max)d log( 1
ǫ
) [This paper]

LiSSA Local (n + (κ̂max)2κ̂)d log( 1
ǫ
) Agarwal et al. (2016)

In Table 1, SG is the classical stochastic gradient method with diminishing step sizes. The

complexity results of SG do not depend on n but depend on κ2, and are inversely proportional to ǫ

due to its sub-linear rate of convergence. The constant ω is the trace of the inverse Hessian times a

covariance matrix; see Bottou et al. (2008). DSS is subsampled gradient method, where the Hessian is

the identity (i.e., no Hessian subsampling is performed) and the gradient sample size |Xk| increases at
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564 R. BOLLAPRAGADA ET AL.

a geometric rate. The complexity bounds for this method are also independent of n, and depend on κ

rather than κ2 as in SG.

GD and Newton are the classical deterministic gradient descent and Newton methods. Newton-CG

(Exact and Inexact) are the subsampled Newton methods discussed in this paper. In these methods,

(κ̂max)2 samples are used for Hessian sampling, and the number of inner CG iterations is of order

O(d) for the exact method, and O(
√

κ̂max) for the inexact method. LiSSA is the method proposed in

Agarwal et al. (2016), wherein the inner solver is a semi-stochastic gradient iteration; i.e., it is similar to

our Newton-SGI method, but we quote the complexity results from Agarwal et al. (2016). The bounds

for LiSSA differ from those of Newton-CG in a square root of a condition number.

A note of caution: Table 1 lists methods with different types of convergence results. For GD and

Newton, convergence is deterministic; for SG, DSS and Newton-CG (Exact & Inexact), convergence

is in expectation; and for LiSSA the error (for a given iteration) is in probability. The definition of an

ǫ-accurate solution also varies. For all the first order methods (SG, DSS, GD) it represents accuracy in

function values; for all the second-order methods (Newton, Newton-CG, LiSSA) it represents accuracy

in the iterates (‖w − w∗‖). Although for a strongly convex function, these two measures are related,

they involve a different constant in the complexity estimates.

5. Numerical experiments

We conducted numerical experiments to illustrate the performance of the inexact subsampled Newton

methods discussed in Section 3. We consider binary classification problems, where the training objective

function is given by the logistic loss with ℓ2 regularization:

R(w) = 1

N

N
∑

i=1

log(1 + exp(−yiwTxi)) + λ

2
‖w‖2. (5.1)

The regularization parameter is chosen as λ = 1
N

. The iterative linear solvers, CG and SGI, require

Hessian-vector products, which are easily computed.

Table 2 summarizes the datasets used for the experiments. Some of these datasets divide the data

into training and testing sets; for the rest, we randomly divide the data so that the training set constitutes

70% of the total. In Table 2, N denotes the total number of examples in a dataset, including training and

testing points.

The following methods were tested in our experiments.

GD. The gradient descent method wk+1 = wk − αk∇R(wk).

Newton. The exact Newton method wk+1 = wk + αkpk, where pk is the solution of the system

∇2R(wk)pk = −∇R(wk) computed to high accuracy by the CG method.

Newton-CG. The inexact subsampled Newton-CG method wk+1 = wk + αkpr
k, where pr

k is an

inexact solution of the linear system

∇2RSk
(wk)pk = −∇R(wk) (5.2)
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EXACT AND INEXACT SUBSAMPLED NEWTON METHODS FOR OPTIMIZATION 565

Table 2 A description of binary datasets used in the experiments

Data set Data points N Variables d Reference

MNIST 70000 784 LeCun et al. (2010)
Covertype 581012 54 Blackard & Dean (1999)
Mushroom 8124 112 Lichman (2013)
Synthetic 10000 50 Mukherjee et al. (2013)
CINA 16033 132 CINA (2008)
Gisette 7000 5000 Guyon et al. (2004)

computed using the CG method. The set Sk varies at each iteration, but its cardinality |Sk|

is constant.

Newton-SGI. The inexact subsampled Newton-SGI method wk+1 = wk + αkpk, where pk is an

inexact solution of (5.2) computed by the SGI (4.3).

All these methods implement an Armijo back tracking line search to determine the steplength αk, employ

the full gradient ∇R(w) and differ in their use of second-order information. In the Newton-CG method,

the CG iteration is terminated when one of the following two conditions is satisfied:

‖∇2RSk
(wk)p

j
k + ∇R(wk)‖ ≤ ζ‖∇R(wk)‖ or j = maxcg, (5.3)

where j indices the CG iterations. The parameters in these tests were set as ζ = 0.01 and maxcg = 10,

which are common values in practice. These parameter values were chosen beforehand and were not

tuned to our test set.

In all the figures below, training error is defined as R(w) − R(w∗), where R is defined in terms of

the data points given by the training set; testing error is defined as R(w), without the regularization term

(and using the data points from the test set).

We begin by reporting results on the Synthetic dataset, as they are representative of what we

have observed in our experiments. Results on the other datasets are given in the appendix. In Fig. 1,

we compare GD, Newton and three variants of the Newton-CG method with sample sizes |Sk| given as

5%, 10% and 50% of the training data. We generate two plots: (a) Training error vs. iterations, and (b)

Training error vs. number of effective gradient evaluations, by which we mean that each Hessian-vector

product is equated with a gradient and function evaluation. Figure 2 we plot testing error vs. time. Note

that the dominant computations in these experiments are gradient evaluations, Hessian-vector products

and function evaluations in the line search.

Results comparing GD, Newton and Newton-CG on the rest of the test problems are given in the

appendix.

In the second set of experiments, reported in Figs 3 and 4, we compare Newton-CG and Newton-

SGI, again on the Synthetic dataset. We note that Newton-SGI is similar to the method denoted as

LiSSA in Agarwal et al. (2016). That method contains an outer iteration that averages iterates, but in

the tests reported in Agarwal et al. (2016), the outer loop was disabled (by setting their parameter S1 to

1), giving rise to the Newton-SGI iteration. To guarantee convergence of the SGI iteration (4.3) (which

uses a unit steplength) one must ensure that the spectral norm of the Hessian for each data point is

strictly less than 1; we enforced this by rescaling the data. To determine the number of inner iterations
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566 R. BOLLAPRAGADA ET AL.

Fig. 1. Synthetic Dataset: Performance of the inexact subsampled Newton method (Newton-CG), using three values of the

sample size, and of the GD and Newton methods. Left: Training Error vs. Iterations; Right: Training Error vs. Effective Gradient

Evaluations.

in SGI, we proceeded as follows. First, we chose one sample size β = |S| for the Newton-CG method,

as well as the maximum number maxcg of CG iterations. Then, we set the number of SGI iterations

to be It = β × maxcg, so that the per iteration number of Hessian-vector products in the two methods

is similar. We observe from Fig. 3 that Newton-CG and Newton-SGI perform similarly in terms of

effective gradient evaluations, but note from Fig. 4 the Newton-SGI has higher computing times due to

Fig. 2. Synthetic Dataset: Comparison of the five methods in Fig. 1, this time plotting Testing Error vs. CPU Time.
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EXACT AND INEXACT SUBSAMPLED NEWTON METHODS FOR OPTIMIZATION 567

Fig. 3. Synthetic Dataset (scaled): Comparison of Newton-CG and Newton-SGI. Left: Training Error vs. Iterations; Right:

Training Error vs. Effective Gradient Evaluations. HereIt denotes the number of iterations of the SGI algorithm (4.3) performed

at every iteration of Newton-SGI.

the additional communication cost involved in individual Hessian-vector products. Similar results can

be observed for the test problems in the appendix.

In the third set of experiments, reported in Figs 5 and 6, we compare the Newton-CG and Newton-

SGI methods on the datasets without scaling, i.e., the spectral norm of the Hessians is now allowed to be

Fig. 4. Synthetic Dataset (scaled): Comparison of Newton-CG with Newton-SGI, this time plotting Testing Error vs. Time.
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568 R. BOLLAPRAGADA ET AL.

Fig. 5. Synthetic Dataset (unscaled): Comparison of Newton-CG with Newton-SGI. Left: Training Error vs. Iterations; Right:

Training Error vs. Effective Gradient Evaluations. The parameter αsgi refers to the steplength in (5.4).

greater than 1. To ensure convergence, we modify the SGI iteration (4.3) by incorporating a step-length

parameter αsgi, yielding the following iteration:

pt+1 = pt − αsgi∇Qi(pt) = (I − αsgi∇2Fi(wk))pt − αsgi∇R(wk). (5.4)

Fig. 6. Synthetic Dataset (unscaled): Comparison of Newton-CG with Newton-SGI, this time plotting Testing Error vs. Time.
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The steplength parameter αsgi was chosen as the value in {2−20, . . . , 23} that gives best overall

performance.

Results comparing Newton-CG and Newton-SGI on the rest of the test datasets are given in the

appendix. Overall, the numerical experiments reported in this paper suggest that the inexact subsampled

Newton methods are quite effective in practice, and that there does not seem to be a concrete benefit of

using the SGI iteration over the CG method.

6. Final remarks

Subsampled Newton methods (Martens, 2010; Byrd et al., 2011; Byrd & Chin, 2012; Erdogdu &

Montanari, 2015; Agarwal et al., 2016; Roosta–Khorasani & Mahoney, 2016a, 2016b; Xu et al., 2016)

are attractive in large-scale applications due to their ability to incorporate some second-order information

at low cost. They are more stable than first-order methods and can yield a faster rate of convergence.

In this paper, we established conditions under which a method that subsamples the gradient and the

Hessian enjoys a superlinear rate of convergence in expectation. To achieve this, the sample size used

to estimate the gradient is increased at a rate that is faster than geometric, while the sample size for the

Hessian approximation can increase at any rate.

The paper also studies the convergence properties of an inexact subsampled Newton method in

which the step computation is performed by means of the CG method. As in Agarwal et al. (2016),

Erdogdu & Montanari (2015), Pilanci & Wainwright (2015), Roosta–Khorasani & Mahoney (2016a,

2016b) and Xu et al. (2016) this method employs the full gradient and approximates the Hessian by

subsampling. We give bounds on the total amount of work needed to achieve a given linear rate of

convergence, and compare these bounds with those given in Agarwal et al. (2016) for an inexact Newton

method that solves linear systems using an SGI. Computational work is measured by the number of

evaluations of individual gradients and Hessian vector products.

Recent results on subsampled Newton methods (Erdogdu & Montanari, 2015; Roosta–Khorasani

& Mahoney, 2016b; Xu et al. 2016) establish a rate of decrease at every iteration, in probability. The

results of this paper are stronger in that we establish convergence in expectation, but we note that in

order to do so we introduced assumption (2.18). Recent work on subsampled Newton methods focuses

on the effect of nonuniform subsampling Xu et al. (2016), but in this paper we consider only uniform

sampling.

The numerical results presented in this paper, although preliminary, make a good case for the value

of subsampled Newton methods, and suggest that a more detailed and comprehensive investigation is

worthwhile. We leave that study as a subject for future research.
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Appendix

Additional numerical results

Numerical results on the rest of the datasets listed in Table 2 are presented here.

Note: The MNIST Dataset has been used for binary classification of digits into even and odd.

We only report results for the scaled covertype dataset, which is a very difficult problem when the

data are unscaled. We were unable to tune the inner steplength in Newton-SGI to obtain reasonable

performance for the unscaled dataset. (We suspect that the SGI iteration eventually converges, but

extremely slowly.)

Fig. A1. Cina Dataset: Performance of the inexact subsampled Newton method (Newton-CG), using three values of the sample

size, and of the GD and Newton methods. Left: Training Error vs. Iterations; middle: Training Error vs. Effective Gradient

Evaluations; right: Testing Objective vs Time.
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Fig. A2. Cina Dataset (scaled): Comparison of Newton-CG with Newton-SGI. Left: Training Error vs Iterations; middle: Train-

ing Error vs. Effective Gradient Evaluations; right: Testing Error vs. Time. The number of SGI iterations is determined through

It = |S|r.

Fig. A3. Cina Dataset (unscaled): Comparison of Newton-CG with Newton-SGI. Left: Training Error vs. Iterations; middle:

Training Error vs. Effective Gradient Evaluations; right: Testing Objective vs. Time.
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Fig. A4. Mushrooms Dataset: Performance of the inexact subsampled Newton method (Newton-CG), using three values of

the sample size, against two other methods. Left: Training Error vs. Iterations; middle: Training Error vs. Effective Gradient

Evaluations; right: Testing Objective vs. Time.

Fig. A5. Mushrooms Dataset (scaled): Comparison of Newton-CG with Newton-SGI. Left: Training Error vs. Iterations; middle:

Training Error vs. Effective Gradient Evaluations; right: Testing Error vs. Time.
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Fig. A6. Mushrooms Dataset (unscaled): Comparison of Newton-CG with Newton-SGI. Left: Training Error vs. Iterations;

middle: Training Error vs. Effective Gradient Evaluations; right: Testing Objective vs. Time.

Fig. A7. MNIST Dataset: Performance of the inexact subsampled Newton method (Newton-CG), using three values of the sample

size, and of the GD and Newton methods. Left: Training Error vs. Iterations; middle: Training Error vs. Effective Gradient

Evaluations; right: Testing Objective vs. Time.
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Fig. A8. MNIST Dataset (scaled): Comparison of Newton-CG with Newton-SGI. Left: Training Error vs. Iterations; middle:

Training Error vs. Effective Gradient Evaluations; right: Testing Error vs. Time.

Fig. A9. MNIST Dataset (unscaled): Comparison of Newton-CG with Newton-SGI. Left: Training Error vs. Iterations; middle:

Training Error vs. Effective Gradient Evaluations; right: Testing Objective vs. Time.
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Fig. A10. Gisette Dataset: Performance of the inexact subsampled Newton method (Newton-CG), using three values of the

sample size, and of the GD and Newton methods. Left: Training Error vs. Iterations; middle: Training Error vs. Effective Gradient

Evaluations; right: Testing Objective vs. Time.

Fig. A11. Gisette Dataset (scaled): Comparison of Newton-CG with Newton-SGI. Left: Training Error vs. Iterations; middle:

Training Error vs. Effective Gradient Evaluations; right: Testing Error vs. Time.
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Fig. A12. Gisette Dataset (unscaled): Comparison of Newton-CG with Newton-SGI. Left: Training Error vs. Iterations; middle:

Training Error vs. Effective Gradient Evaluations; right: Testing Objective vs. Time.

Fig. A13. Covertype Dataset: Performance of the inexact subsampled Newton method (Newton-CG), using three values of the

sample size, and of the GD and Newton methods. Left: Training Error vs. Iterations; middle: Training Error vs. Effective Gradient

Evaluations; right: Testing Objective vs. Time.
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Fig. A14. Covertype Dataset (scaled): Comparison of Newton-CG with Newton-SGI. Left: Training Error vs. Iterations; middle:

Training Error vs. Effective Gradient Evaluations; right: Testing Error vs. Time.
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