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Abstract. We consider the NP-hard problem of finding a spanning tree with a maximum
number of internal vertices. This problem is a generalization of the famous Hamiltonian
Path problem. Our dynamic-programming algorithms for general and degree-bounded
graphs have running times of the form O∗(cn) with c ≤ 2. For graphs with bounded degree,
c < 2. The main result, however, is a branching algorithm for graphs with maximum degree
three. It only needs polynomial space and has a running time of O(1.8669n) when analyzed
with respect to the number of vertices. We also show that its running time is 2.1364knO(1)

when the goal is to find a spanning tree with at least k internal vertices. Both running
time bounds are obtained via a Measure & Conquer analysis, the latter one being a novel
use of this kind of analysis for parameterized algorithms.

1 Introduction

Motivation. We investigate the following problem:

Max Internal Spanning Tree (MIST)
Given: A graph G = (V,E) with n vertices and m edges.
Task: Find a spanning tree of G with a maximum number of internal vertices.

MIST is a generalization of the famous and well-studied Hamiltonian Path problem. Here,
one is asked to find a path in a graph such that every vertex is visited exactly once. Clearly,
such a path, if it exists, is also a spanning tree, namely one with a maximum number of inter-
nal vertices. Whereas the running time barrier of 2n has not been broken for general graphs,
Hamiltonian Path has faster algorithms for graphs of bounded degree. It is natural to ask if
for the generalization, MIST, this can also be obtained.

A second issue is whether we can find an algorithm for MIST with a running time of the
form O∗(cn) at all. 1 The very näıve approach gives only an upper bound of O∗(2m). A possible
application is the following scenario. Suppose you have a set of cities which should be connected
with water pipes. The cities and all possible connections between them can be represented by a
graph G. It suffices to compute a spanning tree T for G. In T we may have high degree vertices
that have to be implemented by branching pipes. These branching pipes cause turbulences and
therefore pressure may drop. To minimize the number of branching pipes one can equivalently

⋆ This work was partially supported by a PPP grant between DAAD (Germany) and NFR (Norway).
A preliminary version of this paper appeared in the proceedings of WG 2009 [7].

1 Throughout the paper, we write f(n) = O∗(g(n)) if f(n) ≤ p(n) · g(n) for some polynomial p(n).
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compute a spanning tree with the smallest number of leaves, leading to MIST. Vertices repre-
senting branching pipes should not be of arbitrarily high degree, motivating the investigation of
MIST on degree-restricted graphs.2

Previous Work. It is well-known that the more restricted problem, Hamiltonian Path, can
be solved in O(2nn2) steps and exponential space. This result has independently been obtained
by R. Bellman [1], and M. Held and R. M. Karp [11]. The Traveling Salesman problem
(TSP) is very closely related to Hamiltonian Path. Basically, the same algorithm solves this
problem, but there has not been any improvement on the running time since 1962. The space
requirements have, however, been improved and now there are O∗(2n) algorithms needing only
polynomial space: In 1977, S. Kohn et al. [15] gave an algorithm based on generating functions
with a running time of O(2nn3) and space requirements of O(n2) and in 1982 R. M. Karp [13]
came up with an algorithm which improved storage requirements to O(n) and preserved this
running time by an inclusion-exclusion approach.

D. Eppstein [6] studied TSP on cubic graphs. He achieved a running time of O(1.260n) using
polynomial space. K. Iwama and T. Nakashima [12] improved this to O(1.251n). A. Björklund
et al. [4] considered TSP with respect to degree-bounded graphs. Their algorithm is a variant of
the classical 2n-algorithm and the space requirements are therefore exponential. Nevertheless,
they showed that for a graph with maximum degree d, there is a O∗((2 − ǫd)

n)-algorithm. In
particular for d = 4, there is an O(1.8557n)- and for d = 5 a O(1.9320n)-algorithm. Using an
inclusion-exclusion approach, J. Nederlof [17] developed (independently and in parallel to the
present paper and its conference version predecessor) an algorithm solving MIST on general
graphs in time O∗(2n) and polynomial-space. Based on a separation property, Fomin et al. [10]
recently used a divide & conquer approach to solve a generalization of MIST in O(2n+o(n))
time.

MIST was also studied with respect to parameterized complexity. The (standard) parame-
terized version of the problem is parameterized by k, and asks whether G has a spanning tree
with at least k internal vertices. E. Prieto and C. Sloper [19] proved a O(k3)-vertex kernel for the
problem showing FPT -membership. The same authors [20] improved the kernel size to O(k2)
and F.V. Fomin et al. [9] to 3k. Parameterized algorithms for MIST have been studied in [5, 9,
20]. E. Prieto and C. Sloper [20] gave the first FPT algorithm, with running time 24k log k ·nO(1).
This result was improved by N. Cohen et al. [5], who solve a more general directed version
of the problem in time 49.4k · nO(1). The currently fastest algorithm for MIST has running
time 8k · nO(1) [9] and the currently fastest algorithm for the directed version has running time
16k+o(k) + nO(1) [10].

G. Salamon [22] studied the problem considering approximation. He achieved a 7
4 -approxima-

tion on graphs without pendant vertices. A 2(∆−3)-approximation for the node-weighted version
was a by-product. These results was further improved by M. Knauer and J. Spoerhase: In [14]
they showed that a version of Salamon’s algorithm leads to a 5

3 -approximation on general graphs
and proved a ratio of 3 + ǫ for the node-weighted version. Cubic and claw-free graphs were
considered by G. Salamon and G. Wiener [21]. They introduced algorithms with approximation
ratios 6

5 and 3
2 , respectively. Further variants of our problem are discussed in a survey [23], where

more pointers to the literature can be found.

2 This motivation can be derived from documents like http://www.adpf.ae/images/Page-A.pdf:
“Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence
caused by abrupt changes in direction, and friction within the pipe and fittings.” In the literature of
water management etc., these types of pressure losses are usually qualified as minor, but this is only
meant in comparison with the major loss due to the lengths of the pipes. When the locations are
fixed, these lengths cannot be influenced any longer, so that the optimization of minor losses becomes
a crucial factor. Also confer to textbooks like [16].
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Our Results. Two algorithms are presented:

(a) A dynamic-programming algorithm, combined with a fast subset convolution evaluation,
solving MIST in time O∗(2n). We extend this algorithm and show that for any degree-
bounded graph a running time of O∗((2− ǫ)n) with ǫ > 0 can be achieved.

(b) A branching algorithm solving the problem for maximum degree 3 graphs in timeO(1.8669n).
The space requirements are only polynomial in this case. For that algorithm, we provide a
graph family proving a lower bound on the running time as well.

(c) We also analyze the same branching algorithm from a parameterized point of view, achieving
a running time of 2.1364knO(1) to find a spanning tree with at least k internal vertices (if
the graph admits such a spanning tree). The latter analysis is novel in a sense that we use
a potential function analysis —Measure & Conquer — in a way that, to our knowledge,
is much less restrictive than any previous analysis for parameterized algorithms that were
based on the potential function method.

Notions and Definitions. We consider only simple undirected graphs G = (V,E). The neigh-
borhood of a vertex v ∈ V in G is NG(v) := {u | {u, v} ∈ E} and its degree is dG(v) := |NG(v)|.
The closed neighborhood of v is NG[v] := NG(v) ∪ {v} and for a set V ′ ⊆ V we let NG(V

′) :=
(
⋃

u∈V ′ NG(u)
)

\ V ′. We omit the subscripts of NG(·), dG(·), and NG[·] when the graph is clear
from the context. For a subset of edges E′ ⊆ E we also write NE′(·), dE′(·), and NE′ [·] instead
of N(V,E′)(·), d(V,E′)(·), and N(V,E′)[·]. A subcubic graph has maximum degree at most three.
In a tree T , vertices of degree 1 are called leaves and vertices of degree at least 2 are called
internal vertices. Let internal(T ) denote the set of internal vertices and leaves(T ) the set of
leaves of T . An i-vertex u is a vertex with dT (u) = i with respect to some subtree T of G. The
tree-degree of some u ∈ V (T ) is dT (u). We also speak of the T -degree dT (v) when we refer to a
specific subtree. A Hamiltonian path is a sequence of pairwise distinct vertices v1, . . . , vn from
V such that {vi, vi+1} ∈ E for 1 ≤ i ≤ n − 1. A triangle in a graph is a subgraph of the form
({a, b, c}, {{a, b}, {b, c}, {a, c}}). A spanning tree of G is a subtree of G on |V | vertices. We also
introduce the notion of constrained spanning tree: given a graph G = (V,E), a vertex v and a
spanning tree T of G, we say that T is a (vL)-constrained spanning tree (shortly, (vL)-cst) if v is
a leaf in T . The notion of (vI)-constrained spanning tree, denoted (vI)-cst, is defined similarly
by requiring that v is an internal node in the spanning tree. A (vL)-cst ((vI)-cst) T of G with
a minimum number of leaves (or a maximum number of internal vertices) is a spanning tree of
G which has a minimum number of leaves subject to the constraint that v is a leaf (an internal
vertex) in T . For convenience, given a tree T we denote by ℓ(T ) the number of leaves in T . Given
a set S, we denote by S1 ⊎ S2 = S a partition of S into two subsets S1 and S2.

2 The Problem on General Graphs

To decide the existence of a Hamiltonian path, Held and Karp used a dynamic programming
recurrence [11]. This well-known technique is a very natural approach to attack the Maximum
Internal Spanning Tree problem. In this section, we start by giving a Dynamic Programming
based algorithm to compute a spanning tree with a maximum number of internal nodes in O∗(3n)
time and O∗(2n) space. Our approach is different from the one given in [8] which requires O∗(3n)
space. In Subsection 2.2 we show how to speed up the running time to O∗(2n) by using a fast
evaluation algorithm for the subset convolution from [3]. We present the results for degree-
bounded graphs in Subsection 2.3.

2.1 A dynamic programming approach

For the sake of simplicity, rather than computing a MIST of a given graph G = (V,E), our
algorithm computes the minimum number of leaves in a spanning tree of G. By standard back-



4

tracking techniques, it is easy to modify the algorithm so that it indeed returns a spanning tree
with this number of leaves.

For every subset S ⊆ V on at least two vertices and any vertex v ∈ S we define OptL[S, v]
(respectively OptI [S, v]) as the minimum number of leaves in a spanning tree of G[S] in which
v is a leaf (respectively, in which v is an internal node), if one exists. In other words, OptL[S, v]
(respectively, OptI [S, v]) is the minimum number of leaves in any (vL)-cst (respectively, in any
(vI)-cst) of G[S], if such a spanning tree exists. If there is no such spanning tree then the value
of OptL[S, v] (respectively, of OptI [S, v]) is set to ∞.

For the base case, consider any 2-vertex set S = {u, v} ⊆ V . Clearly, if u and v are adjacent,
then OptL[S, u] = OptL[S, v] = 2 and OptI [S, u] = OptI [S, v] = ∞. Otherwise, OptL[S, u] =
OptL[S, v] = OptI [S, u] = OptI [S, v] = ∞ since G[{u, v}] is disconnected and has no spanning
tree.

Then the algorithm considers the subsets S ⊆ V with |S| ≥ 3 by increasing cardinality. For
any v ∈ S, the values of OptL[S, v] and OptI [S, v] are computed using the following dynamic
programming recurrences.

– If G[S] is connected, then

OptL[S, v] = min
u∈N(v)∩S

{

OptL[S \ {v}, u],OptI [S \ {v}, u] + 1
}

OptI [S, v] = min
(S1−v)⊎(S2−v)=S−v

v∈S1,v∈S2

|S1|,|S2|≥2











OptI [S1, v] + OptI [S2, v],

OptI [S1, v] + OptL[S2, v]− 1,

OptL[S1, v] + OptL[S2, v]− 2

– Otherwise, OptL[S, v] = ∞ and OptI [S, v] = ∞.

Consider a vertex u ∈ V . Clearly, any optimum solution T of the MIST problem is either a
(uL)-cst or a (uI)-cst with a minimum number of leaves. Thus, to obtain the minimum number
of leaves in any spanning tree of a given graph G = (V,E), it is sufficient to compute the value
of OptL[V, v] and OptI [V, v] for some vertex v ∈ V . It remains to show that the formulae used
by the dynamic programming approach are correct.

Lemma 1. Let G = (V,E) be a connected graph and let v ∈ V such that G has a (vL)-cst.
There is a (vL)-cst T+ of G with a minimum number of leaves such that T = T+ \ {v} is a
spanning tree of G−v with a minimum number of leaves. In addition, denoting by u the neighbor
of v in T , if T is a (uL)-cst then ℓ(T+) = ℓ(T ) and if T is a (uI)-cst then ℓ(T+) = ℓ(T ) + 1.

Proof. For the sake of contradiction, suppose that for every (vL)-cst of G with a minimum
number of leaves, the removal of v gives a spanning tree of G−v which does not have a minimum
number of leaves. Let T ′ be a (vL)-cst of G with a minimum number of leaves, and suppose there
exists a spanning tree T1 of G − v such that ℓ(T1) < ℓ(T ′ − v). Let u be the neighbor of v in
T ′. Construct the (vL)-cst T ∗ of G obtained from T1 by adding the edge {u, v}. Now, T ∗ is a
(vL)-cst of G with a minimum number of leaves because ℓ(T ∗) ≤ ℓ(T1) + 1 ≤ ℓ(T ′), and T ∗ − v
is a spanning tree of G− v with a minimum number of leaves, a contradiction.

Additionally, if u is a leaf (resp. an internal node) of T , by adding v and the edge {u, v} to
T , we obtain the tree T+ and the relation ℓ(T+) = ℓ(T ) holds since u becomes internal in T+

and v is a leaf of T+ (resp. ℓ(T+) = ℓ(T ) + 1 since u is internal in T and in T+). ⊓⊔
Lemma 2. Let G = (V,E) be a connected graph and let v ∈ V such that G has a (vI)-cst. There
exists a (vI)-cst tree T+ with a minimum number of leaves and a partition (V1 − v) ⊎ (V2 − v)
of V − v where v ∈ V1, V2 such that T1 = T+[V1] and T2 = T+[V2] are spanning trees of G[V1]
and G[V2] with a minimum number of leaves. In addition, if v is a leaf in both T1 and T2, then
ℓ(T+) = ℓ(T1)+ℓ(T2)−2, if v is a leaf in precisely one of T1 and T2, then ℓ(T+) = ℓ(T1)+ℓ(T2)−1,
and if v is internal in both T1 and T2, then ℓ(T+) = ℓ(T1) + ℓ(T2).
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Proof. For the sake of contradiction, suppose that for every (vI)-cst T of G with a minimum
number of leaves, T [V1] is not a spanning tree with a minimum number of leaves of G[V1] or
T [V2] is not a spanning tree with a minimum number of leaves of G[V2], where V1− v and V2− v
are vertex sets of one or more connected components of T−v that partition V −v and v ∈ V1, V2.
Let T ′ be a (vI)-cst of G with a minimum number of leaves, and suppose there exists a spanning
tree T1 of G[V1] such that ℓ(T1) < ℓ(T ′[V1]), where V1 contains v and the vertex set of one or
more (but not all) connected components of T ′ − v. Let V2 = (V \ V1) ∪ {v}. Construct the
(vI)-cst T ∗ of G obtained by setting T ∗ = T1 ∪ T ′[V2]. We have ℓ(T ∗) ≤ ℓ(T ′) and T ∗ is such
that T ∗[V1] has a minimum number of leaves. By using the same argument for V2, we obtain a
contradiction.

In addition, by identifying the vertex v in both trees T1 and T2 and merging the two trees
at node v we obtain the tree T+. This spanning tree T+ has ℓ(T+) = ℓ(T2) + ℓ(T2) − i leaves
where i ∈ {0, 1, 2} is the number of trees among T1 and T2 in which v is a leaf (since v becomes
an internal node in T+). ⊓⊔

We are now ready to establish the running time of our algorithm.

Theorem 1. The given algorithm correctly computes a spanning tree with a minimum number
of leaves in time O∗(3n) and space O∗(2n).

Proof. By Lemmata 1 and 2, the dynamic programming recurrences are correct. To obtain a
spanning tree of a given graph G = (V,E) with a minimum number of leaves, it is sufficient to
pick an arbitrary vertex v of V and to return the tree with fewer leaves among a (vI)-cst and a
(vL)-cst of G with a minimum number of leaves. Thus the value min{OptL[V, v],OptI [V, v]} is
the minimum number of leaves of any spanning tree of G.

The running time of the algorithm is O∗(3n) as the algorithm goes through all partitions of
V into V \ S, S1 − v, S2 − v, {v}. It is easy to see that the needed space is O∗(2n). ⊓⊔

2.2 Speed-up by subset convolution

Motivated by Held’s and Karp’s algorithm for Hamiltonian Path [11], the problem of solving the
MIST problem in time O∗(2n) is an intriguing question. This question was settled by Nederlof
in [17] who provides an Inclusion-Exclusion based algorithm working in O∗(2n) time. In this
section we also provide an O∗(2n) time algorithm using fast subset convolution. Whereas the
approach of Nederlof needs only polynomial space, subset convolution takes exponential space.
However, our approach extends to degree-bounded graphs for which a faster running time is
obtained in Subsection 2.3. Neither the approach of Nederlof [17] nor the approach of Fomin et
al. [10] seem to be able to beat a running time of O∗(2n) for degree-bounded graphs.

In [3], Björklund et al. give a fast algorithm for the subset convolution problem. Given two
functions f and g, their subset convolution f ∗ g is defined for all S ⊆ V by (f ∗ g)(S) =
∑

T⊆S f(T )g(S \ T ). They show that via Möbius transform and inversion, the subset con-
volution can be computed in O∗(2n) time, improving on the trivial O∗(3n)-time algorithm.
They exemplify the technique by speeding-up the Dreyfus-Wagner Steiner tree algorithm to
O∗(2kn2M + nm logM) where k is the number of terminals and M the maximum weight over
all edges.

Let us explain how subset convolution can be used to speed-up the evaluation of the recursion
of the previous section. We apply the fast subset convolution over the min-sum semiring:

(f ∗ g)(S) = min
T⊆S

{f(T ) + g(S \ T )}.

As Björklund et al. noticed, for such recurrences the computation has to be done in a level-wise
manner. In our case, the computation of OptI [S, v] requires the values of the already computed
OptI [X, v] for all sets X ⊂ S of size at least 2 containing v.
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At each level l, 3 ≤ l ≤ n, assume that OptL[X,x] and OptI [X,x] have already been computed
for all X ⊆ V with 2 ≤ |X| ≤ l−1 and x ∈ X. At level l, we compute the values of OptI [X,x] and
the values of OptL[X,x] for all X ⊆ V and x ∈ X with |X| = l. Recall that the computation of
OptL[X,x] and OptI [X,x] for all |X| ≤ 2 is easy and can be done in O(n2) time (see Section 2.1).

Assume that X ⊆ V , |X| = ℓ ≥ 3, x ∈ X, and that all values of OptL and OptI have already
been computed for all previous levels. Note that, for each X and x, the values of OptL[X,x] can
be computed in polynomial time using the recurrence of the previous subsection. To compute
OptI [X,x] we define the functions fx(Y, l) and gx(Y, l) for all subsets Y of X.

fx(Y, l) =

{

OptL[Y ∪ {x}, x] if 1 ≤ |Y | ≤ l − 2, and

∞ otherwise.

gx(Y, l) =

{

OptI [Y ∪ {x}, x] if 1 ≤ |Y | ≤ l − 2, and

∞ otherwise.

Then we define the three functions:

hII
x (X, l) = (gx ∗ gx)(X − x, l),

hIL
x (X, l) = (fx ∗ gx)(X − x, l),

hLL
x (X, l) = (fx ∗ fx)(X − x, l).

These functions can be evaluated for each level l via subset convolution over the min-sum
semiring in total time O∗(2n) (see Theorem 3 in [3]). Note that these functions were derived from
the recurrence established in Subsection 2.1 to compute OptI [X,x]. In particular, to compute
OptI [X,x] we need to look at each partition (X1−x)⊎(X2−x) = (X−x) such that x ∈ X1∩X2

and |X1|, |X2| ≥ 2. Thus at level l, only the values of fx(Y, l) and gx(Y, l) with |Y | < l − 1 are
of interest (and the ones with |Y | = l− 1 are set to ∞). Finally the value of OptI [X,x] is set to
min{hII

x (X, l), hIL
x (X, l)− 1, hLL

x (X, l)− 2}.
Theorem 2. The algorithm computes a spanning tree with a minimum number of leaves in time
and space O∗(2n).

2.3 A consequence for graphs of bounded degree

In this section, we extend the presented results to degree-bounded graphs. In [4], Björklund et
al. show that the number of connected vertex sets is smaller than 2n in graphs with bounded
degree.

Lemma 3 (Lemma 3 in [4]). An n-vertex graph with maximum vertex degree ∆ has at most
βn
∆ + n connected vertex sets with β∆ = (2∆+1 − 1)1/(∆+1).

By combining this lemma and the fast subset convolution of [3], one can show that it is
sufficient to go only through the O∗(βn

∆) connected subsets X for evaluating the convolution.
Björklund et al. showed this already for the Travelling Salesman Problem. Indeed, one can
observe that any subset X ⊆ V such that G[X] is not connected would introduce some (useless)
∞ terms (either with a positive or a negative sign).

This final observation implies the following result on graphs of bounded degree.

Theorem 3. For any graph with maximum degree ∆, a spanning tree with a minimum number
of leaves can be computed in time O∗(βn

∆) with β∆ = (2∆+1 − 1)1/(∆+1) and exponential-space.

Some concrete figures for the corresponding bases of the exponential functions are listed in
Table 1.
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∆ 3 4 5 6

running times O(1.9680n) O(1.9874n) O(1.9948n) O(1.9978n)

Table 1. Running time of the algorithm according to the maximum degree ∆.

3 Subcubic Maximum Internal Spanning Tree

In this section, we focus on graphs with maximum degree at most three. We start with some
interesting observations and then we present the reduction rules used by our algorithm. Then the
algorithm is described and its running time is established. Namely, we establish an O(1.8669n)-
time algorithm and provide a lower bound on its worst-case running time. Finally a parameter-
ized algorithm is given and we establish an O(2.1364knO(1)) running time thanks to a Measure
& Conquer approach.

3.1 Observations

Let tTi denote the number of vertices u such that dT (u) = i for a spanning tree T . Then the
following proposition can be proved by induction on nT := |V (T )|.
Proposition 1. In any spanning tree T , 2 +

∑

i≥3(i− 2) · tTi = tT1 .

Due to Proposition 1, MIST on subcubic graphs boils down to finding a spanning tree T such
that tT2 is maximum. Every internal vertex of higher degree would also introduce additional
leaves.

Lemma 4. [19] An optimal solution To to Max Internal Spanning Tree is a Hamiltonian
path or the leaves of To are independent.

The proof of Lemma 4 shows that if To is not a Hamiltonian path and there are two adjacent
leaves, then the number of internal vertices can be increased. In the rest of the paper we assume
that To is not a Hamiltonian path due to the next lemma.

Lemma 5. Hamiltonian Path can be solved in time O(1.251n) on subcubic graphs.

Proof. LetG = (V,E) be a subcubic graph. Run the algorithm of [12] to find a Hamiltonian cycle.
If it succeeds G clearly also has a Hamiltonian path. If it does not succeed we have to investigate
whether G has a Hamiltonian path whose end points are not adjacent. Let u, v ∈ V (G) be
two non-adjacent vertices. To check whether G has a Hamiltonian path uPv, we check whether
G′ = (V,E′), with E′ := E ∪ {{u, v}} has a Hamiltonian cycle. If G′ has maximum degree at
most 3, then run the algorithm of [12]. Otherwise, choose a vertex of degree 4, say u, and two
neighbors x, z of u distinct from v. As {u, v} belongs to every existent Hamiltonian cycle of G′

(otherwise G has a Hamiltonian cycle as well), every Hamiltonian cycle of G′ avoids {u, x} or
{u, z}. Recursively check whether (V,E′ \{{u, x}}) or (V,E′ \{{u, z}}) has a Hamiltonian cycle.
This recursion has depth at most 2 since G′ has at most 2 vertices of degree 4. The Hamiltonian
Cycle algorithm of [12] is executed at most 4(n(n− 1)/2−m) times. This algorithms runs in
O∗(2(31/96)n) ⊆ O∗(1.2509n) steps. ⊓⊔
At this point we prove an auxiliary lemma used for the analysis of the forthcoming algorithm.

Lemma 6. Let G = (V,E) be a graph and let T be a spanning tree and u, v ∈ V (T ) two adjacent
vertices with dT (u) = dT (v) = 3 such that {u, v} is not a bridge in G. Then there is a spanning
tree T ′ ⊃ (T \ {{u, v}}) with |internal(T ′)| ≥ |internal(T )| and dT ′(u) = dT ′(v) = 2.

Proof. By removing {u, v}, T is separated into two parts T1 and T2. The vertices u and v become
2-vertices. As {u, v} is not a bridge, there is another edge e ∈ E \ T connecting T1 and T2. By
adding e we lose at most two 2-vertices. Then let T ′ := (T \ {{u, v}}) ∪ {e} and it follows that
|internal(T ′)| ≥ |internal(T )|. ⊓⊔
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u v z

x

(a)

u v z

x

(b)

u v w

(c)

Fig. 1. Local configurations to which the reduction rules Attach and Special apply, respectively. The
following drawing conventions apply to all figures of this article. Light gray edges may be not present.
Dashed edges are in F , solid edges are in E \ F and double edges (solid and dashed) are in E (possibly
in F , but not necessarily). Edges incident to oblongs are pt-edges and the oblong represents the vertex
of degree one in this case. In Fig. 1(a), vx might be a pt-edge, an edge in E \ F , or a non-edge.

3.2 Reduction Rules

Let E′ ⊆ E. Then, ∂E′ := {{u, v} ∈ E \ E′ | u ∈ V (E′)} are the edges outside E′ that have
a common end point with an edge in E′ and ∂V E

′ := V (∂E′) ∩ V (E′) are the vertices that
have at least one incident edge in E′ and another incident edge not in E′. In the course of the
algorithm we will maintain an acyclic subset of edges F which will be part of the final solution.
The following invariant will always be true: G[F ] consists of a tree T and a set P of pending
tree edges (pt-edges). Here a pt-edge {u, v} ∈ F is an edge with one end point u of degree 1 and
the other end point v 6∈ V (T ), see Figure 1(b) where {x, v} is a pt-edge. G[T ∪ P ] will always
consist of 1 + |P | components. Occasionally, double edges (i.e., two edges connecting the same
pair of vertices) will appear during the execution of the algorithm. However, they are instantly
removed by a reduction rule (rule DoubleEdge below), so that we may otherwise assume that
G is a simple graph.

Next we present a sequence of reduction rules. Note that the order in which they are applied is
crucial. We assume that before a rule is applied the preceding ones were carried out exhaustively.

Bridge: If there is a bridge e ∈ ∂E(T ), then add e to F .

DoubleEdge: If there is a double edge delete one of them which is not in F .

Cycle: Delete any edge e ∈ E such that T ∪ {e} has a cycle.

Deg1: Let u ∈ V \ V (F ) with d(u) = 1. Then add its incident edge to F .

Pending: If there is a vertex v that is incident to dG(v)− 1 pt-edges, then remove its incident
pt-edges.

ConsDeg2: If there are edges {v, w}, {w, z} ∈ E \T such that dG(w) = dG(z) = 2, then delete
{v, w}, {w, z} from G and add the edge {v, z} to G.

Deg2: If there is an edge {u, v} ∈ ∂E(T ) such that u ∈ V (T ) and dG(u) = 2, then add {u, v}
to F .

Attach: If there are edges {u, v}, {v, z} ∈ ∂E(T ) such that u, z ∈ V (T ), dT (u) = 2, 1 ≤
dT (z) ≤ 2, then delete {u, v}; see Fig. 1(a).

Attach2: If there is a vertex u ∈ ∂V E(T ) with dT (u) = 2 and {u, v} ∈ E \ T such that v is
incident to a pt-edge, then delete {u, v}; see Fig. 1(b).

Special: If there are two edges {u, v}, {v, w} ∈ E \ F with dT (u) ≥ 1, dG(v) = 2, and w is
incident to a pt-edge, then add {u, v} to F ; see Fig. 1(c).

We mention that ConsDeg2 is the only redution rule which can create double edges. In this
case DoubleEdge will delete one of them which is not in F . It will be assured by the reduction
rules and the forthcoming algorithm that at most one can be part of F .

Lemma 7. The reduction rules stated above are sound.
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Proof. Let To ⊃ F be a spanning tree ofG with a maximum number of internal vertices. The first
four rules are correct for the purpose of connectedness and acyclicity of the evolving spanning
tree.

Pending is correct as the other edge incident to v (which will be added to P by a subsequent
Deg1 rule) is a bridge and needs to be in any spanning tree.

ConsDeg2 Let G′ be the graph after the reduction rule was applied. We implicitly assume
that we can add {w, z} to To ⊃ F which is an optimal solution for G. If {w, z} /∈ To

then {v, w} ∈ To. Then we can simply exchange the two edges giving a solution T̃o with

{w, z} ∈ T̃o and tTo

2 ≤ tT̃o

2 . By contracting the edge {w, z} we receive a solution T ′
o such that

|internal(T ′
o)| = |internal(To)| − 1.

Now suppose T ′
o is a spanning tree for G′. If {v, z} ∈ T ′

o then let To = T ′
o \ {{v, z}} ∪

{{v, w}, {w, z}}. To is a spanning tree for G and we have |internal(To)| = |internal(T ′
o)|+1.

If {v, z} 6∈ T ′
o then by connectivity dT ′

o

(z) = 1. Let To = T ′
o ∪ {{v, w}} the |internal(To)| =

|internal(T ′
o)|+ 1.

Deg2 Since the preceding reduction rules do not apply, we have dG(v) = 3. Assume u is a leaf
in To. There is exactly one incident edge, say {v, z}, z 6= u, that is not pending such that it
is contained in the single cycle in G[T ∪ {{u, v}}]. Define another spanning tree T ′

o ⊃ F by
setting T ′

o = (To∪{{u, v}})\{v, z}. Since |internal(To)| ≤ |internal(T ′
o)|, T ′

o is also optimal.

Attach If {u, v} ∈ To then {v, z} 6∈ To due to the acyclicity of To and as To is connected. Then
by exchanging {u, v} and {v, z} we obtain a solution T ′

o with at least as many 2-vertices.

Attach2 Suppose {u, v} ∈ To. Let {v, p} be the pt-edge and {v, z} the third edge incident to
v (that must exist and is not pending, since Pending did not apply). Since Bridge did
not apply, {u, v} is not a bridge. Firstly, suppose {v, z} ∈ To. Due to Lemma 6, there is
also an optimal solution T ′

o ⊃ F with {u, v} /∈ T ′
o. Secondly, assume {v, z} /∈ To. Then

T ′ = (To \ {{u, v}}) ∪ {{v, z}} is also optimal as u has become a 2-vertex.

Special Suppose {u, v} 6∈ To. Then {v, w}, {w, z} ∈ To where {w, z} is the third edge incident
to w. Let T ′

o := (To \{{v, w}})∪{{u, v}}. In T ′
o, w is a 2-vertex and hence T ′

o is also optimal.
⊓⊔

3.3 The Algorithm

The algorithm we describe here is recursive. It constructs a set F of edges which are selected to
be in every spanning tree considered in the current recursive step. The algorithm chooses edges
and considers all relevant choices for adding them to F or removing them from G. It selects
these edges based on priorities chosen to optimize the running time analysis. Moreover, the set
F of edges will always be the union of a tree T and a set of edges P that are not incident to
the tree and have one end point of degree 1 in G (pt-edges). We do not explicitly write in the
algorithm that edges move from P to T whenever an edge is added to F that is incident to both
an edge of T and an edge of P . To maintain the connectivity of T , the algorithm explores edges
in the set ∂E(T ) to grow T .

If |V | > 2 every spanning tree T must have a vertex v with dT (v) ≥ 2. Thus initially the
algorithm creates an instance for every vertex v and every possibility that dT (v) ≥ 2. Due to the
degree constraint there are no more than 4n instances. After this initial phase, the algorithm
proceeds as as follows.

1. Carry out each reduction rule exhaustively in the given order (until no rule applies).
2. If ∂E(T ) = ∅ and V 6= V (T ), then G is not connected and does not admit a spanning tree.

Ignore this branch.
3. If ∂E(T ) = ∅ and V = V (T ), then return T .
4. Select {a, b} ∈ ∂E(T ) with a ∈ V (T ) according to the following priorities (if such an edge

exists):
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a) there is an edge {b, c} ∈ ∂E(T ),
b) dG(b) = 2,
c) b is incident to a pt-edge, or
d) dT (a) = 1.
Recursively solve the two instances where {a, b} is added to F or removed from G respec-
tively, and return the spanning tree with most internal vertices.

5. Otherwise, select {a, b} ∈ ∂E(T ) with a ∈ V (T ). Let c, x be the other two neighbors of b.
Recursively solve three instances where
(i) {a, b} is removed from G,
(ii) {a, b} and {b, c} are added to F and {b, x} is removed from G, and
(iii) {a, b} and {b, x} are added to F and {b, c} is removed from G.
Return the spanning tree with most internal vertices.

3.4 An Exact Analysis of the Algorithm

By a Measure & Conquer analysis taking into account the degrees of the vertices, their number
of incident edges that are in F , and to some extent the degrees of their neighbors, we obtain the
following result.

Theorem 4. MIST can be solved in time O(1.8669n) on subcubic graphs.

Let D2 := {v ∈ V | dG(v) = 2, dF (v) = 0}, Dℓ
3 := {v ∈ V | dG(v) = 3, dF (v) = ℓ} and

D2∗
3 := {v ∈ D2

3 | NG(v) \ NF (v) = {u} and dG(u) = 2}. Then the measure we use for our
running time bound is

µ(G) = ω2 · |D2|+ |D0
3|+ ω1

3 · |D1
3|+ ω2

3 · |D2
3 \D2∗

3 |+ ω2∗
3 · |D2∗

3 |

with the weights ω2 = 0.3193, ω1
3 = 0.6234, ω2

3 = 0.3094 and ω2∗
3 = 0.4144.

Let ∆0
3 := ∆0∗

3 := 1 − ω1
3 , ∆1

3 := ω1
3 − ω2

3 , ∆1∗
3 := ω1

3 − ω2∗
3 , ∆2

3 := ω2
3 , ∆2∗

3 := ω2∗
3

and ∆2 = 1 − ω2. We define ∆̃i
3 := min{∆i

3, ∆
i∗
3 } for 1 ≤ i ≤ 2, ∆ℓ

m = min0≤j≤ℓ{∆j
3}, and

∆̃ℓ
m = min0≤j≤ℓ{∆̃j

3}.
The proof of the theorem uses the following result.

Lemma 8. None of the reduction rules increase µ for the given weights.

Proof. Bridge, Deg1, Deg2 and Special add edges to F . Due to the definitions of Dℓ
3 and D2∗

3

and the choice of the weights it can be seen that the addition of an edge to F can only decrease
µ. It is also easy to see that the deletion of edges {u, v} with dT (u) ≥ 1 is safe with respect
to u: the weight of u can only decrease due to this. Nevertheless, the rules which delete edges
might cause that a v ∈ D2

3 \D2∗
3 will be in D2∗

3 afterwards. Thus, we have to prove that in this
case the overall reduction is enough. A vertex v ∈ D2

3 \D2∗
3 moves to D2∗

3 through the deletion
of an edge {x, y} if x (or y) has degree 3, x /∈ ∂V (T ) and {v, x} ∈ E \ F . If x were in ∂V (T ),
the reduction rule Cycle would remove the edge {v, x} and the weight of v would drop to 0.
Thus, only the appearance of a degree-2 vertex x with x /∈ ∂V (T ) may cause a vertex to move
from D2

3 \D2∗
3 to D2∗

3 . The next reduction rule which may create vertices of degree 2 is Attach
when d(v) = 3 (where v is as in the rule definition). If dT (z) = 2, then z moves from D2

3 \D2∗
3

to D2∗
3 through the deletion of the edge {u, v}. However, the total reduction of µ through the

application of this reduction rule is at least ω2
3 +∆2 − (ω2∗

3 − ω2
3) > 0. It can be checked that

no other reduction rule creates degree-2 vertices not already contained in ∂V (T ). ⊓⊔
Proof. (of Theorem 4) As the algorithm deletes edges or moves edges from E \ F to F , cases
1–3 do not contribute to the exponential function in the running time of the algorithm. It
remains to analyze cases 4 and 5, which we do now. Note that after applying the reduction rules
exhaustively, we have that for all v ∈ ∂V E(T ), dG(v) = 3 (Deg2) and for all u ∈ V , dP (u) ≤ 1
(Pending).
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4.(a) Obviously, {a, b}, {b, c} ∈ E \T , and there is a vertex d such that {c, d} ∈ T ; see Figure 2(a).
We have dT (a) = dT (c) = 1 due to the reduction rule Attach. We consider three cases.
dG(b) = 2. When {a, b} is added to F , Cycle deletes {b, c}. We get an amount of ω2 + ω1

3 ,
as b drops out of D2 and c out of D1

3 (Deg2). Also a will be removed from D1
3 and

added to D2
3 which amounts to a reduction of at least ∆̃1

3. When {a, b} is deleted, {b, c}
is added to T (Bridge). By a symmetric argument we get a reduction of ω2 + ω1

3 + ∆̃1
3

as well. In total this yields a (ω2 + ω1
3 + ∆̃1

3, ω2 + ω1
3 + ∆̃1

3)-branch.

dG(b) = 3 and there is one pt-edge incident to b. Adding {a, b} to F decreases the measure
by ∆̃1

3 (from a) and 2ω1
3 (deleting {b, c}, then Deg2 on c). By Deleting {a, b} we decrease

µ by 2ω1
3 and by ∆̃1

3 (from c). This amounts to a (2ω1
3 + ∆̃1

3, 2ω
1
3 + ∆̃1

3)-branch.

dG(b) = 3 and no pt-edge is incident to b. Let {b, z} be the third edge incident to b. In
the first branch the measure drops by at least ω1

3 + ∆̃1
3 from c and a (Deg2), 1 from

b (Deg2). In the second branch we get ω1
3 + ∆2. Observe that we also get an amount

of at least ∆̃1
m from q ∈ NT (a) \ {b} if dG(q) = 3. If dG(q) = 2 we get ω2. It results a

(ω1
3 + ∆̃1

3 + 1, ω1
3 +∆2 +min{ω2, ∆̃

1
m})-branch.

Note that from this point on, for all u, v ∈ V (T ) there is no z ∈ V \V (T ) with {u, z}, {z, v} ∈
E \ T .

4.(b) As the previous case does not apply, the other neighbor c of b has dT (c) = 0, and dG(c) ≥ 2
(Pending). Additionally, observe that dG(c) = 3 due to ConsDeg2 and that dP (c) = 0
due to Special, see Figure 2(b). We consider two subcases.
dT (a) = 1. When we add {a, b} to F , then {b, c} is also added due to Deg2. The reduction

is at least ∆̃1
3 from a, ω2 from b and ∆0

3 from c. When {a, b} is deleted, {b, c} becomes
a pt-edge. There is {a, z} ∈ E \ T with z 6= b, which is subject to a Deg2 reduction
rule. We get at least ω1

3 from a, ω2 from b, ∆0
3 from c and min{ω2, ∆̃

1
m} from z. This is

a (∆̃1
3 +∆0

3 + ω2, ω
1
3 +∆0

3 + ω2 +min{ω2, ∆̃
1
m})-branch.

dT (a) = 2. Similarly, we obtain a (∆2∗
3 + ω2 +∆0

3, ∆
2∗
3 + ω2 +∆0

3)-branch.

4.(c) In this case, dG(b) = 3 and there is one pt-edge attached to b, see Figure 2(c). Note that
dT (a) = 2 can be ruled out due to Attach2. Thus, dT (a) = 1. Let z 6= b be such that
{a, z} ∈ E \ T . Due to the priorities, dG(z) = 3. We distinguish between the cases where c,
the other neighbor of b, is incident to a pt-edge or not.
dP (c) = 0. First suppose dG(c) = 3. Adding {a, b} to F allows a reduction of 2∆1

3 (due to
case 4.(b) we can exclude ∆1∗

3 ). Deleting {a, b} implies that we get a reduction from a
and b of 2ω1

3 (Deg2 and Pending). As {a, z} is added to F we reduce µ(G) by at least
∆̃1

m as the state of z changes. Now due to Pending and Deg1 we include {b, c} and get
∆0

3 from c. We have at least a (2∆1
3, 2ω

1
3 + ∆̃1

m +∆0
3)-branch.

If dG(c) = 2 we consider the two cases for z also. These are dP (z) = 1 and dP (z) = 0.
The first entails (ω1

3+∆1∗
3 , 2ω1

3+∆̃1
3+ω2+∆̃2

m). Note that when we add {a, b} we trigger
Attach2 and by deleting {a, b} all edges incident to c become bridges. The second is a
(∆1

3 +∆1∗
3 , 2ω1

3 +∆0
3 + ω2 + ∆̃2

m)-branch.

dP (c) = 1. Let d 6= b be the other neighbor of c that does not have degree 1. When {a, b} is
added to F , {b, c} is deleted by Attach2 and {c, d} becomes a pt-edge (Pending and
Deg1). The changes on a incur a measure decrease of ∆1∗

3 and those on b, c a measure
decrease of 2ω1

3 . When {a, b} is deleted, {a, z} is added to F (Deg2) and {c, d} becomes
a pt-edge by two applications of the Pending and Deg1 rules. Thus, the decrease of
the measure is at least 3ω1

3 in this branch. In total, we have a (∆1∗
3 + 2ω1

3 , 3ω
1
3)-branch

here.

4.(d) Now, dG(b) = 3, b is not incident to a pt-edge, and dT (a) = 1. See Figure 2(c). There is
also some {a, z} ∈ E \ T such that z 6= b. Note that dT (z) = 0, dG(z) = 3 and dP (z) = 0.
Otherwise, either Cycle or cases 4.(b) or 4.(c) would have been triggered. From the addition
of {a, b} to F we get ∆1

3 +∆0
3 and from its deletion ω1

3 (from a via Deg2), ∆2 (from b) and
at least ∆0

3 from z and thus, a (∆1
3 +∆0

3, ω
1
3 +∆2 +∆0

3)-branch.
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Fig. 2. Local configurations corresponding to the different cases of the algorithm where a branching
occurs.

5. See Figure 2(d). The algorithm branches in the following way: 1) Delete {a, b}, 2) add
{a, b}, {b, c}, and delete {b, x}, 3) add {a, b}, {b, x} and delete {b, c}. Observe that these
cases are sufficient to preserve an optimal solution. Due to Deg2, we can disregard the case
when b is a leaf. Due to Lemma 6 we also disregard the case when b is a 3-vertex as {a, b}
is not a bridge. Thus by branching in this manner we find at least one optimal solution.

The reduction in the first branch is at least ω2
3 +∆2. We get an additional amount of ω2 if

d(x) = 2 or d(c) = 2 from ConsDeg2. In the second branch we have to consider also the
vertices c and x. We distinguish between three situations for h ∈ {c, x} α) dG(h) = 2, β)
dG(h) = 3, dP (h) = 0 and γ) dG(h) = 3, dP (h) = 1. We will only analyze branch 2) as 3)
is symmetric. We first get a reduction of ω2

3 + 1 from a and b. We reduce µ due to deleting
{b, x} by: α) ω2 + ∆̃2

m by Pending, β) ∆2, γ) ω
1
3 + ∆̃2

m by Pending and Deg1. Next we
examine the amount by which µ will be decreased by adding {b, c} to F . We distinguish
between the cases α, β and γ: α) ω2 + ∆̃2

m, β) ∆0
3, γ) ∆̃

1
3.

For h ∈ {c, x} and W ∈ {α, β, γ} let 1hW be the indicator function which is set to one if we
have situation W at vertex h. Otherwise, it is zero. Now the branching tuple can be stated
the following way :
(ω2

3 +∆2 + (1xα + 1cα) · ω2,
ω2
3 + 1 + 1xα · (ω2 + ∆̃2

m) + 1xβ ·∆2 + 1xγ · (ω1
3 + ∆̃2

m) + 1cα · (ω2 + ∆̃2
m) + 1cβ ·∆0

3 + 1cγ · ∆̃1
3),

ω2
3 + 1 + 1cα · (ω2 + ∆̃2

m) + 1cβ ·∆2 + 1cγ · (ω1
3 + ∆̃2

m) + 1xα · (ω2 + ∆̃2
m) + 1xβ ·∆0

3 + 1xγ · ∆̃1
3)

The amount of (1xα + 1cα) · ω2 comes from possible applications of ConsDeg2.

Observe that every instance created by branching is smaller than the original instance in
terms of µ. Together with Lemma 8 we see that every step of the algorithm only decreases µ.
Now if we evaluate the upper bound for every given branching tuple for the given weights we
can conclude that MIST can be solved in time O∗(1.8669n) on subcubic graphs. ⊓⊔

Lower Bound. To complete the running time analysis — with respect to the number of ver-
tices — of this algorithm, we provide a lower bound here, i.e., we exhibit an infinite family of
graphs for which the algorithm requires Ω(c) steps, where c = 4

√
2 > 1.1892 and n is the number

of vertices in the input graph.

Theorem 5. There is an infinite family of graphs such that our algorithm for MIST needs
Ω( 4

√
2
n
) time.

Proof. Instead of giving a formal description of the graph family, consider Fig. 3.
Assume that the bold edges are already in F . Then the dark gray vertices are in ∂V (T )

and all non-bold edges connecting two black vertices have been removed from the graph. Step
4.(d) of the algorithm selects an edge connecting one of the dark gray vertices with one of the
light gray vertices; w.l.o.g., the algorithm selects the edge {a, b}. In the branch where {a, b} is
added to F , reduction rules Cycle and Deg2 remove {d, b} and {a, e} from the graph and add
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a b c

d e f

Fig. 3. Graph used to lower bound the running time of our MIST algorithm.

{{d, e}, {b, c}, {e, f}} to F . In the branch where {a, b} is removed from G, reduction rules Cycle
and Deg2 remove {d, e} from the graph and add {{a, e}, {d, b}, {b, c}, {e, f}} to F . In either
branch, 4 more vertices have become internal, the number of leaves has remained unchanged,
and we arrive at a situation that is basically the same as the one we started with, so that the
argument repeats. Hence, when we start with a graph with n = 4h+ 4 vertices, then there will
be a branching scenario that creates a binary search tree of height h. ⊓⊔

3.5 A Parameterized Analysis of the Algorithm

In this section, we are going to provide another analysis of our algorithm, this time from the
viewpoint of parameterized complexity, where the parameter k is a lower bound on the size of
the sought solution, i.e., we look for a spanning tree with at least k internal nodes. Notice that

also the worst-case example from Theorem 5 carries over, but the according estimate of Ω( 4
√
2
k
)

is less interesting.
Let us first investigate the possibility of running our algorithm on a linear vertex kernel, which

offers the simplest way of using Measure & Conquer in parameterized algorithms. For general
graphs, the smallest known kernel has at most 3k vertices [9]. This can be easily improved to 2k
for subcubic graphs.

Lemma 9. MIST on subcubic graphs has a 2k-kernel.

Proof. Compute an arbitrary spanning tree T . If it has at least k internal vertices, answer
Yes (in other words, output a small trivial Yes-instance). Otherwise, tT3 + tT2 < k. Then, by
Proposition 1, tT1 < k + 2. Thus, |V | ≤ 2k. ⊓⊔

Applying the algorithm of Theorem 4 on this kernel for subcubic graphs shows the following
result.

Corollary 1. Deciding whether a subcubic graph has a spanning tree with at least k internal
vertices can be done in time 3.4854knO(1).

However, we can achieve a faster parameterized running time by applying a Measure & Conquer
analysis which is customized to the parameter k. We would like to put forward that our use
of the technique of Measure & Conquer for a parameterized algorithm analysis goes beyond
previous work as our measure is not restricted to differ from the parameter k by just a constant,
a strategy exhibited by Wahlström in his thesis [24]. We first demonstrate our idea with a simple
analysis.

Theorem 6. Deciding whether a subcubic graph has a spanning tree with at least k internal
vertices can be done in time 2.7321knO(1).

Proof. Note that the assumption that G has no Hamiltonian path can still be made due to
the 2k-kernel of Lemma 9: the running time of the Hamiltonian path algorithm of Lemma 5 is



14

1.2512knO(1) = 1.5651knO(1). The running time analysis of our algorithm relies on the following
measure:

κ := κ(G,F, k) := k − ω · |X| − |Y | − k̃,

where X := {v ∈ V | dG(v) = 3, dT (v) = 2}, Y := {v ∈ V | dG(v) = dT (v) ≥ 2} and
0 ≤ ω ≤ 1. Let U := V \ (X ∪ Y ) and note that k in the definition of κ never changes in any
recursive call of the algorithm, so neither through branching nor through the reduction rules.
The variable k̃ counts how many times the reduction rules ConsDeg2 and Pending have been
applied upon reaching the current search tree node. Note that by an ConsDeg2 the number of
internal vertices goes up by one. If Pending is applied a vertex v ∈ Y will be moved to U in
the evolving instance G′ even though v will be internal in the original instance G. This would
increase κ if k̃ would not balance this. Note that a vertex which has already been decided to
be internal, but that still has an incident edge in E \ T , contributes a weight of 1 − ω to the
measure. Or equivalently, such a vertex has been only counted by ω. Consider the algorithm
described earlier, with the only modification that that the algorithm keeps track of κ and that
the algorithm stops and answers Yes whenever κ ≤ 0. None of the reduction and branching rules
increases κ. The explicit proof for this will skipped as it is subsumed by Lemma 11 which deals
with a refined measure. We have that 0 ≤ κ ≤ k at any time of the execution of the algorithm.
In step 4, whenever the algorithm branches on an edge {a, b} such that dT (a) = 1 (w.l.o.g., we
assume that a ∈ V (T )), the measure decreases by at least ω in one branch, and by at least 1
in the other branch. To see this, it suffices to look at vertex a. Due to Deg2, dG(a) = 3. When
{a, b} is added to F , vertex a moves from the set U to the set X. When {a, b} is removed from
G, a subsequent application of the Deg2 rule adds the other edge incident to a to F , and thus,
a moves from U to Y .

Still in step 4, let us consider the case where dT (a) = 2. Then condition (b) (dG(b) = 2) of
step 4 must hold, due to the preference of the reduction and branching rules: condition (a) is
excluded due to reduction rule Attach, (c) is excluded due to Attach2 and (d) is excluded due
to its condition that dT (a) = 1. When {a, b} is added to F , the other edge incident to b is also
added to F by a subsequent Deg2 rule. Thus, a moves from X to Y and b from U to Y for a
measure decrease of (1− ω) + 1 = 2− ω. When {a, b} is removed from G, a moves from X to Y
for a measure decrease of 1− ω. Thus, we have a (2− ω, 1− ω)-branch.

In step 5, dT (a) = 2, dG(b) = 3, and dF (b) = 0. Vertex a moves from X to Y in each branch
and b moves from U to Y in the two latter branches. In total we have a (1 − ω, 2 − ω, 2 − ω)-
branch. By setting ω = 0.45346 and evaluating the branching factors, the proof follows. ⊓⊔

This analysis can be improved by also measuring vertices of degree 2 and vertices incident
to pt-edges differently.

Theorem 7. Deciding whether a subcubic graph has a spanning tree with at least k internal
vertices can be done in time 2.1364knO(1).

The proof of this theorem follows the same lines as the previous one, except that we consider
a more detailed measure:

κ := κ(G,F, k) := k − ω1 · |X| − |Y | − ω2|Z| − ω3|W | − k̃, where

– X := {v ∈ V | dG(v) = 3, dT (v) = 2} is the set of vertices of degree 3 that are incident to
exactly 2 edges of T ,

– Y := {v ∈ V | dG(v) = dT (v) ≥ 2} is the set of vertices of degree at least 2 that are incident
to only edges of T ,

– W := {v ∈ V \ (X ∪ Y ) | dG(v) ≥ 2, ∃u ∈ N(v) st. dG(u) = dF (u) = 1} is the set of vertices
of degree at least 2 that have an incident pt-edge, and

– Z := {v ∈ V \W | dG(v) = 2, N [v]∩ (X ∪ Y ) = ∅} is the set of degree 2 vertices that do not
have a vertex of X ∪ Y in their closed neighborhood, and are not incident to a pt-edge.
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We immediately set ω1 := 0.5485, ω2 := 0.4189 and ω3 := 0.7712. Let U := V \ (X ∪Y ∪Z ∪W ).
We first have to show that the algorithm can be stopped whenever the measure drops to 0 or
less.

Lemma 10. Let G = (V,E) be a connected graph, k be an integer and F ⊆ E be a set of edges
that can be partitioned into a tree T and a set of pending tree edges P . If none of the reduction
rules applies to this instance and κ(G,F, k) ≤ 0, then G has a spanning tree T ∗ ⊇ F with at
least k internal nodes.

Proof. Since the vertices in X ∪Y are internal in any spanning tree containing F , it is sufficient
to show that there exists a spanning tree T ∗ ⊇ F that has at least ω2|Z|+ ω3|W | more internal
vertices than T .

The spanning tree T ∗ is constructed as follows. Greedily add a subset of edges A ⊆ E \F to
F to obtain a spanning tree T ′ of G. While there exists v ∈ Z with neighbors u1 and u2 such
that dT ′(v) = dT ′(u1) = 1 and dT ′(u2) = 3, set A := (A \ {v, u2}) ∪ {u1, v}. This procedure
finishes in polynomial time as the number of internal vertices increases each time such a vertex
is found. Call the resulting spanning tree T ∗.

By connectivity of a spanning tree, we have:

Fact 1 If v ∈ W , then v is internal in T ∗.

Note that F ⊆ T ∗ as no vertex of Z is incident to an edge of F . By the construction of T ∗, we
have the following.

Fact 2 If u, v are two adjacent vertices in G but not in T ∗, such that v ∈ Z and u, v are leaves
in T ∗, then v’s other neighbor has T ∗-degree 2.

Let Zℓ ⊆ Z be the subset of vertices of Z that are leaves in T ∗ and let Zi := Z \ Zℓ. As
F ⊆ T ∗ and by Fact 1, all vertices of X ∪Y ∪W ∪Zi are internal in T ∗. Let P denote the subset
of vertices of N(Zℓ) that are internal in T ∗. As P might intersect with W and for u, v ∈ Zℓ,
N(u) and N(v) might intersect (but u 6∈ N(v) because of ConsDeg2), we assign an initial
potential of 1 to vertices of P . By definition, P ∩ (X ∪ Y ) = ∅. Thus the number of internal
vertices in T ∗ is at least |X| + |Y | + |Zi| + |P ∪W |. To finish the proof of the claim, we show
that |P ∪W | ≥ ω2|Zl|+ ω3|W |.

Decrease the potential of each vertex in P ∩W by ω3. Then, for each vertex v ∈ Zℓ, decrease
the potential of each vertex in Pv = N(v) ∩ P by ω2/|Pv|. We show that the potential of each
vertex in P remains positive. Let u ∈ P and v1 ∈ Zℓ be a neighbor of u. Note that dT∗(v1) = 1.
We distinguish two cases based on u’s tree-degree in T ∗.

dT∗(u) = 2
u ∈ W : Then by connectivity {u, v1} 6∈ T ∗ and u is incident to only one vertex out of

Zℓ, namely v1. Again by connectivity h ∈ N(v1) \ {u} is an internal vertex. Thus, the
potential is 1− ω3 − ω2/2 ≥ 0.

u 6∈ W : u is incident to at most 2 vertices of Zℓ (by connectivity of T ∗), its potential
remains thus positive as 1− 2ω2 ≥ 0.

dT∗(u) = 3
u ∈ W : Because u ∈ W is incident to a pt-edge, it has one neighbor in Zℓ (connectivity of

T ∗), which has only internal neighbors (by Fact 2). The potential of u is thus 1− ω3 −
ω2/2 ≥ 0.

u 6∈ W : u has at most two neighbors in Zℓ, and both of them have only inner neighbors
due to Fact 2. As 1− 2ω2/2 ≥ 0, u’s potential remains positive. ⊓⊔

We also show that reducing an instance does not increase its measure.

Lemma 11. Let (G′, F ′, k) be an instance resulting from the exhaustive application of the re-
duction rules to an instance (G,F, k). Then, κ(G′, F ′, k) ≤ κ(G,F, k).
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Proof. Cycle: If the reduction rule Cycle is applied to (G,F, k), then an edge in ∂E(T ) is
removed from the graph. Then, the parameter k stays the same, and either each vertex
remains in the same set among X,Y, Z,W,U , or one or two vertices move from X to Y ,
which we denote shortly by the status change of a vertex u: {X} → {Y } (ω1− 1). The value
of this status change (denoted in parenthesis) is (−1)−(−ω1) ≤ 0. As the value of the status
change is non-positive, it does not increase the measure.

DoubleEdge: Suppose between u and v is a double edge. Then as mentioned before at most
one of them belongs to T . The possible transitions for u (and v) are {X} → {Y }(ω1 − 1) if
dT (u) = 2 and dG(u) = 3, {U} → {U} (0) if dT (u) = 1 and dG(u) = 3, {Z} → {U} (ω2) if
dG(u) = 2 and dT (u) = 0. Now in the last case, which has a positive status change value, we
must have dG(v) = 3 and dT (v) = 0 or dG(v) = 3 and dT (v) = 1. Thus, in the first case the
combined status change is {Z,U} → {U,Z} (0). In the second case immediately afterwards
Bridge will be applied and the status change is {Z,U} → {U, Y } (ω2 − 1).

Bridge: If Bridge is applied, then let e = {u, v} with u ∈ ∂V E(T ). Vertex u is either in U
or in X, and v ∈ U ∪ Z ∪W . If v ∈ U , then v ∈ U after the application of Bridge, as v is
not incident to an edge of T (otherwise, reduction rule Cycle would have applied). In this
case, it is sufficient to check how the status of u can change, which is {U} → {Y } (−1) if u
has degree 2, {U} → {X} (−ω1) if dG(u) = 3 and dT (u) = 1, and {X} → {Y } (ω1 − 1) if
dG(u) = 3 and dT (u) = 2. If v ∈ Z, then v moves to U as u necessarily ends up in X ∪ Y .
The possible status changes are {U,Z} → {Y, U} (ω2 − 1) if dG(u) = 2, {U,Z} → {X,U}
(ω2 − ω1), if dG(u) = 3 and dT (u) = 1, and {X,Z} → {Y, U} (ω1 + ω2 − 1) if dG(u) = 3
and dT (u) = 2. If v ∈ W , v ends up in X or Y , depending on whether it is incident to
one or two pt-edges. The possible status changes are then {U,W} → {Y,X} (ω3 − 1− ω1),
{U,W} → {Y, Y } (ω3− 2), {U,W} → {X,X} (ω3− 2 ·ω1), {U,W} → {X,Y } (ω3−ω1− 1),
{X,W} → {Y,X} (ω3 − 1), and {X,W} → {Y, Y } (ω1 + ω3 − 2).

Deg1: If Deg1 applies, the possible status changes are {U} → {W} (−ω3) and {Z} → {W}
(ω2 − ω3). Note that Bridge is applied before.

Pending: In Pending, the status change {W} → {U} (ω3) has positive value, but the measure
κ still decreases as k̃ also increases by 1.

ConsDeg2: Similarly, in ConsDeg2, a vertex in Z ∪ U disappears, but k̃ increases by 1.
Deg2: In Deg2, the possible status changes are {U} → {Y } (−1), {U,Z} → {Y, U} (ω2 − 1),

and {U,W} → {Y,X} (ω3 − 1− ω1).
Attach: In Attach, u moves from X to Y . Thus the status change for u is {X} → {Y } (ω1−1).

Taking into account the status of v ∈ NV \T (u) another status change is {X,U} → {Y, Z}
(ω1− 1−ω2) in case dG(v) = 3 and dF (v) = 0. Observe that v ∈ Z is not possible as u ∈ X.

Attach2: The only status change happens for u: {X} → {Y } (ω1 − 1).
Special: In Special, the possible status changes are {U,Z} → {X,U} (ω2 − ω1) and {X} →

{Y } (ω1 − 1). ⊓⊔

Proof. (of Theorem 7) Table 2 outlines how vertices a, b, and their neighbors move between U ,
X, Y , Z, and W in the branches where an edge is added to F or deleted from G in the different
cases of the algorithm. For each case, the scenario giving the worst branching tuple is described.

The tight branching numbers are found for cases 4.(b) with dT (a) = 2, 4.(c), 4.(d), and 5.
with all of b’s neighbors having degree 3. The respective branching numbers are (2−ω1−ω2, 1−
ω1 − ω2 + ω3), (2ω1 − ω3, 2), (ω1, 1 + ω2), and (1− ω1 + ω2, 2− ω1 + ω2, 2− ω1 + ω2). They all
yield the same basis 2.1364 of the exponential term in the running time estimate. ⊓⊔

4 Conclusion & Future Research

We have shown that Max Internal Spanning Tree can be solved in time O∗(2n) or even
better if the input graph has bounded degree. In a preliminary version of this paper we asked
whether MIST can be solved in time O∗(2n) and also expressed our interest in polynomial
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add delete branching tuple

Case 4.(a), dG(b) = 2

a b c

a : U → X a : U → Y
b : Z → U b : Z → U (1 + ω1 − ω2, 1 + ω1 − ω2)
c : U → Y c : U → X

Case 4.(a), dG(b) = 3, b is incident to a pt-edge

a b c

a : U → X a : U → Y
b : W → Y b : W → Y (2 + ω1 − ω3, 2 + ω1 − ω3)
c : U → Y c : U → X

Case 4.(a), dG(b) = 3, b is not incident to a pt-edge

a b c

a : U → X a : U → Y
(2 + ω1, 1 + ω2)b : U → Y b : U → Z

c : U → Y

Case 4.(b), dT (a) = 1

a b c

a : U → X a : U → Y
(1 + ω1 − ω2, 1 + ω3 − ω2)b : Z → Y b : Z → U

c : U → W

Case 4.(b), dT (a) = 2

a b c

a : X → Y a : X → Y
(2− ω1 − ω2, 1− ω1 − ω2 + ω3)b : Z → Y b : Z → U

c : U → W

Case 4.(c)

a b c

a : U → X a : U → Y
(2ω1 − ω3, 2)b : W → X b : W → Y

c : U → W

Case 4.(d)

a b c

a : U → X a : U → Y
(ω1, 1 + ω2)b : U → Z

Case 5, dG(x) = dG(c) = 3 and there is a q ∈ (X ∩ (N(x) ∪N(c)), w.l.o.g., q ∈ N(c)

a b c

x a : X → Y a : X → Y
(2− ω1, 3− 2ω1, 1− ω1 + ω2)b : U → Y b : U → Z

(2nd branch)
q : X → Y

Case 5, dG(x) = dG(c) = 3

a b c

x a : X → Y a : X → Y
(2− ω1 + ω2, 2− ω1 + ω2, 1− ω1 + ω2)b : U → Y b : U → Z

c/x : U → Z
There are 3 branches; 2 of them are symmetric.

Case 5, dG(x) = 2 or dG(c) = 2, w.l.o.g., dG(c) = 2

a b c

x a : X → Y a : X → Y
(2− ω1, 2− ω1, 2− ω1)b : U → Y b : U → Z

When {a, b} is deleted, ConsDeg2 additionally increases k̃ by 1
and removes a vertex of Z.

Table 2. Analysis of the branching for the running time of Theorem 7
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space algorithms for MIST. These questions have been settled very recently by Nederlof [17] by
providing an O∗(2n) polynomial-space algorithm for MIST which is based on the principle of
Inclusion-Exclusion and on a new concept called “branching walks”.

We focused on algorithms for MIST that work for the degree-bounded case, in particular, for
subcubic graphs. The main novelty is a Measure & Conquer approach to analyze our algorithm
from a parameterized perspective (parameterizing by the solution size). We are not aware of
many examples where this was successfully done without cashing the obtained gain at an early
stage, see M. Wahlström [24]. More examples in this direction would be interesting to see.3

Further improvements on the running times of our algorithms pose another natural challenge.
A related problem worth investigating is the generalization to directed graphs: Find a directed

tree, which consist of directed paths form the root to the leaves with as few leaves as possible.
Which results can be carried over to the directed case?

Acknowledgment We thank Alexey A. Stepanov for useful discussions in the initial phase of
this paper.
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