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Abstract. By partitioning the total stresses in a damaged composite into either mechanical and residual
stresses or into initial and perturbation stresses, it was possible to derive several exact results for the energy
release rate due to crack growth. These general results automatically include the effects of residual stresses,
traction-loaded cracks, and imperfect interfaces. The exact energy release rate results were expressed in terms
of exact solutions to reduced composite stress analysis problems. By considering the common situation where
the initial stresses are known exactly, but the perturbation stresses are only known approximately, it was
possible to derive rigorous upper and lower bounds to the energy release rate for crack growth. Some of the
new fracture mechanics equations were applied to crack closure calculations, to fiber fracture and interfacial
debonding in the fragmentation test, and to microcracking in composite laminates.

1. Introduction

Composite materials, especially composites reinforced with aligned, high-modulus fibers, are often very close
to being linear elastic up to failure. For this reason, many composite fracture models for composites have
been developed using linear-elastic fracture mechanics [1, 2]. There is microscopy evidence of large amounts
of matrix deformation on fracture surfaces [3], but the fact that this deformation does not lead to non-linear,
load-deformation curves suggests it is not a major factor in the global energy released during crack growth.
The matrix deformation may play a role in toughness [3], but it should be possible to calculate the energy
release rate due to crack growth by ignoring such deformation and then assuming that cracks propagate
when that energy release rate exceeds the fracture toughness of the composite. The required energy release
rate can be calculated from a global energy balance using

G = −dΠ
dA

=
d(W − U)

dA
(1)

where Π is thermoelastic potential energy, W is external work, U is thermoelastic internal energy, and dA
is an increment in total crack area. [4]. The required terms can be calculated using linear thermoelasticity
methods.

The goal of this paper is to apply (1) to general composite fracture problems when the composite is
assumed to be a linear elastic material. Despite the simplification of linear elasticity, there are several added
complexities in heterogeneous composites materials that make fracture mechanics of composite materials
more difficult that the corresponding analysis for homogeneous materials. First, because composites are
comprised of materials with disparate thermal expansion coefficients, the phases will inevitably be subjected
to residual stresses [5]. These residual stresses can contribute to energy release rate and should be part
of every composite fracture model [6]. Second, the heterogeneity of composites sometimes causes cracks
to divert in directions that would not be observed in homogeneous materials. If such structure-controlled
crack growth results in crack surfaces that contact each other, there may be crack surface tractions. When
traction-loaded crack surfaces slide relative to each other during crack growth, that sliding can affect the
energy release rate. Third, there will always be interfaces between phases. If these interfaces are not perfect,
they may slide relative to each other during crack growth [7]. Like sliding traction-loaded cracks, sliding
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imperfect interfaces can affect the energy release rate. The main results of this paper are to apply (1) to
general composite fracture problems and derive several new and exact results for energy release rate. All
new results include the effects of residual stresses, traction-loaded crack surfaces, and imperfect interfaces.

The fracture mechanics results for composites are derived in the section on Fracture Mechanics The-
orems. The basic method was to partition the total stresses into residual and mechanical stresses or into
initial and perturbation stresses. Then, by various applications of virtual work theorems and the diver-
gence theorem it was possible to express (1) in several alternate forms that are more convenient for analysis
of particular composite fracture problems. A total-stress form was derived by recombining either of the
partitioned-stress results. All new equations are exact but were expressed in terms of exact solutions to
composite stress analysis problems that typically will not have exact solutions. A previous paper [6] derived
related exact expressions but only considered residual and mechanical stress partitioning and traction-free
cracks; this paper extends that work to include traction-loaded cracks and imperfect interfaces and to ad-
ditionally consider initial and perturbation stress partitioning. By partitioning the total stresses into exact
initial stresses and approximate perturbation stresses, it was possible to recast the exact results as rigorous
bounds to the energy release rate rate for crack growth. It is shown how these bounds can be applied to finite
fracture mechanics analysis of composite fracture events. A previous paper [8] derived a rigorous upper
bound to the finite energy release rate when there are traction-free cracks; this paper extends that work to
include both upper and lower bounds, to derive bounds for both infinitesimal and finite fracture events, and
to include the effects of traction-loaded cracks and imperfect interfaces. Section 3 shows how the new results
can be applied to crack closure calculations, to fiber fracture and interfacial debonding in the fragmentation
test, and to microcracking in composite laminates.

2. Fracture Mechanics Theorems

Consider an arbitrary composite subjected to a uniform temperature change of ∆T = T and to any mixed
traction and displacement boundary conditions as illustrated in Fig. 1. Let the boundary be S = ST ∪ Su,
where ST is that part of the surface subjected to traction boundary conditions and Su is that part of the
surface subjected to displacement boundary conditions. Let σ , with associated tractions on the boundary
of ~T = σn̂ where n̂ is a unit normal to the surface, and ε, with associated displacements ~u , be the exact
solution to the linear thermoelasticity problem

σn̂ = ~T 0 on ST

~u = ~u 0 on Su

σ = C(ε −αT ) and ε = Sσ +αT

(2)

where, in addition, σ satisfies equilibrium and ε and ~u satisfy strain-displacement relations. The terms
C, S, and α are the stiffness, compliance, and thermal expansion tensors; in composites these material
properties will depend on position. For arbitrary problems, the traction ~T 0, and displacement, ~u 0, boundary
conditions may also depend on position. Note also that tractions and displacements may be applied over
the same portions of the surface provided they are applied along orthogonal directions.

Let the interior of the composite contain cracks and interfaces and denote the total surface area of cracks
and interfaces as Sc. Across any crack or interface, static equilibrium requires that stresses be continuous, but
displacements may be discontinuous. When cracks open, the surfaces will be traction free which corresponds
to continuous zero stresses. The displacements, however, may be discontinuous as the two surfaces displace
independently. When cracks close there may be contact compressive or shear stresses. These stress will
be continuous but displacements may be discontinuous as the crack surfaces slide relative to each other.
Interfaces may be perfect or imperfect . At perfect interfaces, stresses and displacement are continuous.
Imperfect interfaces can be modeled by requiring continuous stresses, but allowing displacements to be
discontinuous [7]. Thus opened cracks, closed cracks, perfect interfaces, and imperfect interfaces can all be
included in the single interior surface Sc with continuous stresses but possibly discontinuous displacements.
An additional boundary condition on Sc is

~T = ~Tc on Sc (3)
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Figure 1. An arbitrary multiphase material subjected to traction and displacement boundary conditions and con-
taining cracks and interfaces.

where ~Tc includes traction loads on any cracks or tractions induced at sliding interfaces. In general, ~Tc may
depend on position.

The goal of this section is derive exact and variational theorems for the energy release rate due to an
increase in total crack area for the arbitrary composite in Fig. 1. An increase in crack area corresponds to
an increase in the internal area Sc.

2.1. Mechanical and residual stresses

The full thermal elasticity problem can be treated as a superposition of two problems. First, let σm and
εm, with tractions ~T m and displacements ~um, be the exact solution to the isothermal (T = 0) elasticity
problem:

σmn̂ = ~T 0 on ST , ~um = ~u 0 on Su, σm = Cεm, and εm = Sσm (4)

Second, let σr and εr, with tractions ~T r and displacements ~u r, be the exact solution to the thermal elasticity
problem:

σrn̂ = 0 on ST , ~u r = 0 on Su, σr = C(εr −αT ), and εr = Sσr +αT (5)

A superposition of the above two solutions, σ = σm + σr and ε = εm + εr, exactly solves the complete
thermal elasticity problem in (2) and (3) provided

~T m + ~T r = ~Tc on Sc (6)

σm and εm are the mechanical stresses and strains while σr and εr are the residual thermal stresses and
strains.

By substituting the partitioned stresses into (1) and making use of virtual work and divergence theorems
(the details are in the Appendix), it is possible to derive the first energy release rate theorem:

G = Gmech +
V T

2

(
2
d 〈σm ·α〉

dA
+
d 〈σr ·α〉

dA

)
+

d

dA

(∫
Sc

~T r · ~umdS +
1
2

∫
Sc

~T r · ~u rdS
)

(7)

where Gmech is the mechanical energy release rate or the energy release when T = 0:

Gmech =
d

dA

(
1
2

∫
ST

~T 0 · ~umdS − 1
2

∫
Su

~T m · ~u 0dS +
1
2

∫
Sc

~T m · ~umdS
)

(8)

and angle brackets indicates a volume-averaged quantity:

〈f(x, y, z)〉 =
1
V

∫
V

f(x, y, z)dV (9)
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Equation (7) is exact. The first term is the traditional energy release rate. The subsequent terms are required
in many composite fracture problems to account for effects of residual stresses, traction-loaded cracks, and
imperfect interfaces. A similar analysis for traction-free cracks and perfect interfaces is given in Ref. 6.
The new terms above involving integrals over Sc extend those results to include traction-loaded cracks and
imperfect interfaces.

In Ref. 6, it was argued that during pure mode I crack growth (or similarly during pure mode II or mode
III crack growth) the mode I energy release rate must scale with mode I stress intensity factor squared, K2

I .
Furthermore, for linear elastic materials in which all applied tractions and displacements are scaled by a
factor P and the temperature difference T is scaled by a factor T ∗, KI must scale by a linear combination
of P and T ∗. Thus

GI ∝ K2
I = (c1P + c2T

∗)2 (10)

Comparing (10) to (7) similarly scaled by P and T ∗, we can prove that

V T

2
d 〈σm ·α〉

dA
+

1
2
d

dA

∫
Sc

~T r · ~umdS

Gmech
=

V T

2
d 〈σr ·α〉

dA
+

1
2
d

dA

∫
Sc

~T r · ~u rdS

V T

2
d 〈σm ·α〉

dA
+

1
2
d

dA

∫
Sc

~T r · ~umdS
(11)

Substitution into (7) gives the pure mode I energy release rate of

GI
Gmech

=

1 +

V T

2
d 〈σm ·α〉

dA
+

1
2
d

dA

∫
Sc

~T r · ~umdS

Gmech


2

(12)

This result extends the analogous result in Ref. 6 to include traction-loaded cracks and imperfect interfaces.

2.2. Total stresses

Sometimes it is simpler to have an energy release rate result in terms of total stresses instead of partitioned
stresses. By comparing the two virtual work results in the Appendix in (87) and (88) we quickly derive∫

V

σm ·αTdV =
∫
ST

~T 0 · ~u rdS −
∫
Su

~T r · ~u 0dS +
∫
Sc

~T m · ~u rdS −
∫
Sc

~T r · ~umdS (13)

Substituting half of (13) for half of the 〈σm ·α〉 term in (7) leads to an second energy release rate theorem,
now in terms of total stresses (σ), tractions (~T ), and displacements (~u ):

G =
1
2
d

dA

(∫
ST

~T 0 · ~u dS −
∫
Su

~T · ~u 0dS +
∫
Sc

~T · ~u dS +
∫
V

σ ·αTdV
)

(14)

For the special case of traction-only boundary conditions, (14) followed by use of the divergence theorem
leads to

G =
1
2
d

dA

(∫
S+Sc

~T 0 · ~u dS +
∫
V

σ ·αTdV
)

=
d

dA

∫
V

(1
2
σSσ + σ ·αT

)
dV (15)

This result is identical to the thermoelastic fracture mechanics result derived by Hashin [8]. In other words,
(14) extends Hashin’s analysis (i.e. (15)) to include mixed boundary conditions. Note also that the integrand
in (15) is minus the Gibb’s free energy, F (written as F here to avoid confusion with energy release rate
G), less entropy or heat capacity terms [9–11]. Because the constant heat-capacity terms drop out when
evaluating the derivative with respect to crack area for an elastic material, (15) shows that energy release rate
is equal to a Gibb’s free energy derivative, G = −dF/dA, when there are traction-only boundary conditions.
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2.3. Initial and Perturbation Stresses

To derive some alternative fracture mechanics theorems, including results that help derive a variational
fracture mechanics theorem, we consider a different stress partitioning scheme. The full thermal elasticity
problem can alternatively be partitioned into initial and perturbation stresses. First, let σ0 and ε0, with
tractions ~T 0 and displacements ~u 0, be the exact solution to the thermal elasticity problem:

σ0n̂ = ~T 0 on ST , ~u = ~u 0 on Su, σ0 = C
(
ε0 −αT

)
, and ε0 = Sσ0 +αT (16)

for any composite which may have cracks and imperfect interfaces on an initial surface S0
c . Now let S0

c expand
into a larger crack and imperfect surface area, Sc, and, let σp and εp, with tractions ~T p and displacements
~u p, be the exact solution to the isothermal (T = 0) elasticity problem:

~T p = 0 on ST , ~u p = 0 on Su, ~T p = ~Tc − ~T 0
c on Sc, σp = Cεp and εp = Sσp (17)

where ~T 0
c is the initial stress state traction at the locations of the cracks and interfaces on Sc. Note that ~T p

may be nonzero on Su and ~u p may be nonzero on ST and Sc. A superposition of the above two solutions,
σ = σ0 +σp and ε = ε0 + εp, exactly solves the complete thermal elasticity problem in (2) and (3). σ0 and
ε0 are the initial stresses and strains; σp and εp are the perturbation stresses and strains or the change in
stresses and strains due to growth of traction-loaded cracks and sliding of imperfect interfaces.

By substituting initial and perturbation stresses into (1) and making use of virtual work and divergence
theorems (the details are in the Appendix), it is possible to derive a third energy release rate theorem
expressed three different ways:

G =
d

dA

(∫
Sc

~T p · ~u 0dS +
1
2

∫
Sc

~T p · ~u pdS
)

=
d

dA

(∫
Sc

~T p · ~u 0dS +
1
2

∫
V

σpSσpdV

)
=

d

dA

(∫
Sc

~T p · ~u 0dS +
1
2

∫
V

εpCεpdV

)
(18)

In many problems it may be convenient to take the initial state as the undamaged composite with perfect
interfaces and the perturbation stresses as the change in stresses due to introduction of cracks and imperfect
interfaces. In an undamaged composite ~u 0 must be continuous across all cracks and interfaces. Because
the area Sc has two sides and the traction vector ~T p changes sign from one side to the other, when ~u 0 is
continuous, the first integral in each form of (18) vanishes giving the special case result of

G =
d

dA

(
1
2

∫
Sc

~T p · ~u pdS
)

=
d

dA

(
1
2

∫
V

σpSσpdV

)
dV =

d

dA

(
1
2

∫
V

εpCεpdV

)
dV (19)

In other words, the total energy release rate including residual stresses, traction-loaded cracks, and imperfect
interfaces, can be evaluated by finding the change in perturbation stress energy due to formation of damage.
Notice that the perturbation stress analysis is an isothermal (T = 0) stress analysis. Thus the effect of
thermal stresses on the energy release rate can be evaluated here completely by a thermoelasticity analysis
of the undamaged composite only; there is never a need to conduct a thermoelasticity analysis of a cracked
body.

If we partition the total stresses in (14) into initial and perturbation stresses and delete derivatives of
the constant initial stresses, we get

G =
1
2
d

dA

(∫
ST

~T 0 · ~u pdS −
∫
Su

~T p · ~u 0dS +
∫
Sc

~Tc · ~u 0dS +
∫
Sc

~Tc · ~u pdS +
∫
V

σp ·αTdV
)

(20)

This result appears different than (18), but can be shown to be identical. Equating the two virtual work
results between initial and perturbation stresses in the Appendix in (93) and (95), gives∫

V

σp ·αTdV =
∫
Su

~T p · ~u 0dS +
∫
Sc

~T p · ~u 0dS −
∫
ST

~T 0 · ~u pdS −
∫
Sc

~T 0
c · ~u pdS (21)

Substitution of (21) into (20) and subtracting zero in the form

1
2
d

dA

(∫
Sc

~T 0
c · ~u 0

)
= 0 (22)

leads to a result that is identical to (18).
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2.4. Generalized “Levin” relations

In a pioneering composite mechanics paper, Levin considered an undamaged composite with traction loading
and perfect interfaces [12]. By partitioning the stresses into mechanical and residual stresses and making
use of two applications of virtual work, he derived (in the nomenclature of this paper):∫

V

σm ·αTdV =
∫
ST

~T 0 · ~u rdS (23)

Levin’s result is a special case of (13); in other words, (13) generalizes Levin’s equation to account for
mixed boundary conditions, traction-loaded cracks, and imperfect interfaces. Similarly, (21) was derived
by two applications of virtual work between partitioned initial and perturbation stresses; it can therefore
be considered as a new, generalized, Levin-type relation. In Ref. 12, Levin derived a powerful application
of (23) for determining the effective thermal expansion coefficients of a composite from a solution for the
mechanical-only stresses in that composite. Here (13) had an important use in deriving the total stress result
in (14) from the partitioned mechanical and residual stress result in (7). Similarly, (21) was needed to show
the identity between the total stress result in (14) and the perturbation stress result in (18).

2.5. Variational theorems

All results in the previous sections are exact, but they are written in terms of exact solutions to composite
stresses and strains. In general, such exact solutions will not be known. In this section, we again partition
the stresses into initial and perturbation stresses. We assume that the initial stresses are known exactly. We
assume that the perturbation stresses and strains result from the formation of a new finite amount a fracture
area, ∆A, and that the perturbation stress state is only known approximately. The goal is to find rigorous
upper and lower bounds to the total energy release rate, ∆G, due to the fracture event of forming the finite
amount of crack area.

First consider an approximate perturbation solution written in terms of an admissible stress state, σpa. To
be an valid admissible stress state, σpa must satisfy equilibrium and tractions associated with σpa must give
the proper boundary conditions on both ST and Sc. The thermoelastic complementary energy associated
with this approximate stress state is [13]

Γa =
1
2

∫
V

(σ0 + σpa)S(σ0 + σpa)dV +
∫
V

(σ0 + σpa) ·αTdV −
∫
Su

(
~T 0 + ~T p

a

)
· ~u 0dS (24)

Substituting the virtual work result in the Appendix in (95) (which is valid for any admissible stress state),
the approximate complementary energy of the composite reduces to

Γa = Γ0 +
∫
Sc

~T p
a · ~u 0dS +

1
2

∫
V

σpaSσ
p
adV (25)

where
Γ0 =

1
2

∫
V

σ0Sσ0dV +
∫
V

σ0 ·αTdV −
∫
Su

~T 0 · ~u 0dS (26)

is the exact complementary energy of the initial stresses. By the principle of minimum complementary
energy, this approximate result must be greater than the true complementary energy. Defining the true
complementary energy from the exact perturbation stresses, σp, and tractions, ~T p, we have

Γ0 +
∫
Sc

~T p · ~u 0dS +
1
2

∫
V

σpSσpdV ≤ Γ0 +
∫
Sc

~T p
a · ~u 0dS +

1
2

∫
V

σpaSσ
p
adV (27)

By a discrete evaluation of the derivative in (18) for the formation of finite fracture area ∆A causing the
stresses to change from σ0 to σ0 + σp followed by a comparison to (27), the energy release rate for the
process is seen to be bounded from above by:

∆G ≤ 1
∆A

(∫
Sc

~T p
a · ~u 0dS +

1
2

∫
V

σpaSσ
p
adV

)
(28)
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If the initial stresses correspond to an undamaged composite with continuous ~u 0 on Sc, the first term vanishes
and the upper bound to ∆G is given simply by the stress energy of any admissible perturbation stress state.
Hashin previously considered an undamaged initial state, traction-free crack surfaces, and mechanical-only
stresses and derived a result identical to (25) [14] but did not have the Sc integral because of the undamaged
initial state. Hashin later added residual stresses and derived an upper bound result equivalent to (28) but
again lacking the Sc integral [8]. Although Hashin’s two analyses used more restrictive assumptions then
used here, both his results are all seen to be correct in general for any undamaged initial state, even when
there are mixed boundary conditions, traction-loaded cracks, and imperfect interfaces. The new integral
over Sc in (28) extends Hashin’s results to the case where the initial stress state is for a damaged composite.

For a lower bound to ∆G, we consider approximate solutions based on admissible strain states, εpa, and
the approximate change in potential energy. To be a valid admissible strain state, εpa must be derived from
an assumed displacement field, ~u pa , which gives the proper boundary conditions on Su. If the exact, initial
stresses have a potential energy Π0, the introduction of new damage will cause the potential energy to
decrease by an amount ∆Π = −∆G∆A. For any admissible strain state, the approximate potential energy
must be greater than the true potential energy. Thus trivially, an approximate change in potential energy,
∆Πa, provides a lower bound to ∆G:

∆G ≥ −∆Πa

∆A
(29)

The only work that remains is to express ∆Πa in a convenient form using the admissible strain state.
The thermoelastic potential energy associated with an approximate, admissible strain state is not given

by (98) in the Appendix because that result used (96) which is not valid for general admissible strain states.
All other steps used to derive (98), however, are valid for any admissible strain state. Thus, if we eliminate
the final use of (96) and use the crack surface boundary conditions, the approximate thermoelastic potential
energy can be written as

Πa = Π0 −
∫
Sc

(
~Tc − ~T 0

c

)
· ~u 0dS −

∫
Sc

(
~Tc − ~T 0

c

)
· ~u pa dS +

1
2

∫
V

εpaCε
p
adV (30)

The lower bound to ∆G becomes

∆G ≥ 1
∆A

(∫
Sc

(
~Tc − ~T 0

c

)
· ~u 0dS +

∫
Sc

(
~Tc − ~T 0

c

)
· ~u pa dS −

1
2

∫
V

εpaCε
p
adV

)
(31)

Again, the first integral vanishes if the initial strain state corresponds to an undamaged composite with ~u 0

continuous on Sc.
We can define the approximate changes in complementary and potential energy due to any admissible

stress or strain states, respectively as

∆Γa =
1
2

∫
V

σpaSσ
p
adV +

∫
Sc

~T p
a · ~u 0dS (32)

∆Πa =
1
2

∫
V

εpaCε
p
adV −

∫
Sc

(
~Tc − ~T 0

c

)
· ~u 0dS −

∫
Sc

(
~Tc − ~T 0

c

)
· ~u pa dS (33)

By (28) and (31), the rigorous bounds on the energy release rate due the formation of a finite amount of
fracture area are

−∆Πa

∆A
≤ ∆G ≤ ∆Γa

∆A
(34)

The most common application of these rigorous bounds to composite energy release rate will probably
be for the initiation of damage. It will often be possible to derive exact (or essentially exact) results for
the stresses in the undamaged composites. The bounds on energy release rate can then be derived from
any approximate solutions for the stresses in the cracked composite. In many composite failure analyses,
however, the concern is not just with the initiation of damage, but also with the subsequent propagation
of damage. If we introduce fracture area as a variable, the total energy release rate due to a fracture event
extending damage area from A1 to A2 can be written exactly in terms of energy release rates for forming
fracture area A1 or A2 from the initial undamaged composite:

∆G(A1 → A2) =
A2∆G(0→ A2)−A1∆G(0→ A1)

A2 −A1
(35)
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By making use of the rigorous bounds on ∆G for damage initiation, it is possible to rigorously bound the
damage propagation energy release rate by

−∆Πa(0→ A2) + ∆Γa(0→ A1)
A2 −A1

≤ ∆G(A1 → A2) ≤ ∆Γa(0→ A2) + ∆Πa(0→ A1)
A2 −A1

(36)

Unless the rigorous bounds for damage initiation (from (34)) are very tight, the rigorous bounds for
damage propagation (from (36)) are likely to be far apart. Perhaps the rigorous propagation bounds are
too pessimistic. Because the admissible stress or strain states each provide approximate solutions, we could
continue and define approximate energy release rates derived from each approximate solution using

∆G1(A1 → A2) =
∆Γa(0→ A2)−∆Γa(0→ A1)

A2 −A1
(37)

∆G2(A1 → A2) = −∆Πa(0→ A2)−∆Πa(0→ A1)
A2 −A1

(38)

∆G1(A1 → A2) and ∆G2(A1 → A2) will, in general, be much closer to each other than the bounds in (36).
Perhaps, therefore, in practice, they will provide tighter, albeit non-rigorous, bounds to ∆G(A1 → A2). An
example of using such practical bounds to analyze composite microcracking will be given in the Section 3.

2.6. Finite fracture mechanics

The previous section dealt with a finite amount of fracture growth — ∆A. Traditional fracture mechanics,
however, deals with an infinitesimal amount of crack propagation. Such mathematical results can be derived
from finite fracture results by taking the limit as ∆A → 0, but that limit may not always be appropriate.
Many composite failures do not proceed by infinitesimal crack growth, but rather proceed by discrete fracture
events [8]. Two examples are fiber fracture events [15] and matrix microcracking events [2]. Associated with
any fracture event is a finite amount of new fracture area, ∆A. One could claim that fracture mechanics can
not handle fracture events, or one could propose that the fracture event occurs when the total energy release
rate for that fracture event, ∆G, exceeds the material toughness for that event. The method of predicting
fracture events based on event energy release rate has been used for many composite failure problems such as
edge delamination [16], matrix microcracking [2], fiber breakage and interfacial debonding [17], and cracking
of coatings [18–20]. Hashin has recently proposed calling this approach to fracture mechanics finite fracture
mechanics [8]. The results in the previous section provide variational analysis tools for evaluating energy
release rate for fracture events. Two examples in the following section give applications of finite fracture
mechanics to predicting composite failure.

3. Examples

The five key energy release rate results are in (7), (14), (18), (34), and (36). Some applications using the
mechanical and residual stress partitioning of (7) are given in Ref. 6. An analysis using the total stress
form of (14) including a traction-loaded crack is given in Ref. 21. This section will give some examples of
partitioning into initial and perturbation stresses and using (18), (34), and (36).

3.1. Crack closure in finite element analysis

Consider a small amount of crack growth caused by opening the grid between two elements causing new
crack surface area ∆A. The initial stresses are taken to be the stresses before the new crack area forms;
the perturbation stresses are the change in stresses caused by the new crack growth or by opening the area
between two elements. Evaluation of the derivative in (18) by taking the limit as ∆A→ 0 results in

G = lim
∆A→0

1
∆A

(∫
Sc

~T p · ~u 0dS +
1
2

∫
Sc

~T p · ~u pdS
)

(39)

Notice that these integrals extend over the entire crack and interface surfaces in Sc. Most crack closure
methods only consider the work required to close the new crack area and thus only integrate over the area
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S = ∆A local to the crack tip [22]. The result in (39) shows that such crack closure calculations are invalid
when there are variable tractions along crack surfaces or slippage at imperfect interfaces. A good example
of variable crack surface tractions is friction modeled by having the crack surface shear stress, τ , being
related to the crack surface normal stress, σn, through a friction law τ = µσn where µ is the coefficient of
friction. When a friction-loaded crack is extended by a finite amount ∆A, σn may change along the entire
crack surface and thus the crack closure integral must consider all of Sc and not just the new crack area of
S = ∆A.

The condition for local crack-tip crack-closure calculations to be valid are that ~T p must be zero except on
the area S = ∆A. These conditions are satisfied when all interfaces are perfect and when all crack surfaces
are traction free. Under such conditions, (39) reduces to

G = lim
∆A→0

1
2∆A

∫
S=∆A

(
−~T 0

c · ~u p
)
dS (40)

which reduces to a standard crack closure integral when account is made for integration over both surfaces of
the new crack area [22]. Local crack closure is also valid in the presence of crack surface tractions, provided
there is no change in crack surface tractions along the original crack surfaces. For this situation, ~T p will be
zero every place except on S = ∆A near the crack tip. Such tractions are included in (40) be replacing −~T 0

c

with ~Tc − ~T 0
c where ~Tc is the constant crack surface traction.

3.2. Fragmentation test

In the fragmentation test [15], a single fiber is embedded in a large amount of matrix and the specimen is
loaded in tension until the fiber fragments. On continued loading the fiber continues to fragment eventually
forming a roughly periodic array of fiber fragments. To analyze a fragmentation specimen, we consider a unit
cell of damage or a single fiber fragment as illustrated in Fig. 2. The fiber fragment is of length l and radius
rf ; the matrix is assumed to be infinite. The stresses are partitioned into initial and perturbation stresses.
The initial stresses can easily be found by an exact analysis to two concentric cylinders with a perfect
interface (Fig. 2B); such a solution is given in Ref. 23. The boundary conditions for normalized perturbation
stresses are zero displacement on the matrix ends and −1 compression on the fiber ends (Fig. 2C). The full
perturbation stresses are obtained by multiplying the normalized result by ψ∞ where ψ∞ is the initial axial
stress in the fiber and is given in Ref. 23; superscript p in this section indicates normalized perturbation
stresses and displacements.

We can analyze the fragmentation specimen using (18). The crack and interface surfaces, Sc, include the
two fiber breaks and the matrix and fiber surfaces along the interface at r = rf . The fiber fracture surfaces
are traction free; thus on the two fiber ends

(~Tc − ~T 0
c ) · ψ∞~u p = ∓ψ2

∞w
p
f (±l/2, r) (41)

On the fiber/matrix interfacial surfaces:

Fiber Surface : (~Tc − ~T 0
c ) · ψ∞~u p = ψ2

∞

[
τprz(z, rf )wpf (z, rf ) + (σprr(z, rf )− σ∗)upf (z, rf )

]
(42)

Matrix Surface : (~Tc − ~T 0
c ) · ψ∞~u p = −ψ2

∞ [τprz(z, rf )wpm(z, rf ) + (σprr(z, rf )− σ∗)upm(z, rf )] (43)

where wpf (z, r) and wpm(z, r) are the perturbation axial displacements of the fiber and matrix, upf (z, r) and
upm(z, r) are the perturbation radial displacements of the fiber and matrix, τprz(z, rf ) and σprr(z, rf ) are the
perturbation interfacial stresses, and ψ∞σ∗ is the interfacial radial stress in the initial stresses [23]. Notice
that τprθ is zero due to axisymmetry and thus there is no term from the hoop displacements. Substitution of
the Sc conditions into (18) and assuming symmetry about z = 0 gives

G = −πψ2
∞

d

dA

[
r2
f

〈
wpf (l/2)

〉
+ rf

∫ l/2

−l/2
τprz(z, rf )[wp]dz

]
(44)

Here
〈
wpf (l/2)

〉
is the average axial perturbation displacement on the fiber end and [wp] = wpm(z, rf ) −

wpf (z, rf ) is the axial displacement discontinuity at the fiber/matrix interface. There is also a term involving
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Figure 2. The analysis of a single fiber fragment (A) can be partitioned into the initial stresses (B) and the pertur-
bation stresses (C). The initial stresses are the stresses for an infinitely long, unbroken fiber in an infinite matrix
under an applied stress of σ0 and temperature differential of T . The perturbation stresses are the stresses for a
fiber fragment loaded by compression stress of ψ∞ while the matrix ends are maintained at zero displacement. The
notation “con.” means a constant that is independent of r.

radial displacement discontinuity, [up], but because the radial stresses are predominantly compressive, it
has been argued that the radial displacement discontinuity is zero even in the presence of an imperfect
interface [17, 23]; it was assumed to be zero for the derivation of (44).

Two previous papers [17, 23] considered the energetics of the fragmentation specimen. After conversion
of the dimensionless results in those papers to the dimensioned results used here, there is found to be a
difference between (44) and the previous results. The difference is a change of sign on the second term in
(44) or the integral along the interface. The previous papers argued that because of the infinite matrix, there
is no external work and G reduces to G = −dU/dA. That argument was wrong. When there are traction-
loaded cracks or imperfect interfaces, there is the potential for external work along Sc. The general theory
in this paper includes all external work and thus (44) corrects the errors in Refs. 17 and 23. Fortunately,
the correction only affects the magnitude of some previous results and does not alter any conclusions.
Additionally, for the case of perfect interfaces and traction-free cracks, the second term in (44) vanishes and
the results in Refs. 17 and 23 are correct.

3.3. Fiber breakage with an imperfect interface

Hashin has proposed a simple imperfect interface model where the displacement discontinuity is linearly
related to the associated stress at the interface [7] which for the fragmentation test reduces to

[wp] =
τprz(rf )
Ds

(45)

where Ds is a property of the interface or interphase. Ds → ∞ corresponds to a perfect interface; any
other Ds describes an imperfect interface with Ds → 0 corresponding to a traction-free debonded interface.
Substitution in (44) and evaluating the discrete derivative for the fiber fragment of length l breaking into
two fragments of length l/2 with dA = πr2

f , the total energy release rate for fiber fracture is

∆Gf = ψ2
∞
(
2H(l/2)−H(l)

)
(46)

where after defining a new interface parameter ds = rfDs

H(l) = −
〈
wpf (l/2)

〉
− 1
ds

∫ l/2

−l/2
(τprz(rf ))2

dz (47)
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Figure 3. Energy release rate for a fiber fracture event as a function of the crack density of fiber breaks for various
values of the interface parameter, ds. These calculations were for a glass fiber (Ef = 72 GPa, vf = 0.20, and
rf = 7.5 µm ) in a polymeric matrix (Em = 1.68 GPa, vm = 0.355) and an applied axial load adjusted to have
ψ∞ = 1.

Sample calculations for ∆Gf as a function of fragment length (1/crack density) for glass fibers in a
polymeric matrix and various values of the interface parameter are given in Fig. 3. The required perturbation
terms wpf (l/2) and τprz(rf ) for these calculations were found using the Bessel-Fourier stress function analysis
derived in Ref. 23. This plot corrects the similar plot in Fig. 2 of Ref. 17 for the sign error in the imperfect
interface term in H(l). The corrected sign error causes the changes for a specific ds vs. ds = ∞ to now be
smaller; all trends of the curves, however, are the same and the results with a perfect interface (ds =∞) are
identical. A detailed discussion of ∆Gf is given in Ref. 17. In brief, the energy release rate for the first fiber
breaks (at low crack density) gets higher as the interface gets more imperfect. An imperfect interface allows
interfacial slip after the fiber break which releases more energy than when slip is prevented by a perfect
interface.

3.4. Fiber/matrix debonding with friction

For a debonding analysis, debond zones of length ld/2 are added to each end of the fragment (see Fig. 2).
When there are friction effects, the debonds will be loaded by shear traction. By Coulomb friction, the friction
shear-stress should be τrz(z, rf ) = ±µσrr(z, rf ) where µ is the coefficient of friction of the fiber/matrix
interface and the sign is adjusted depending on the sliding direction. In an exact friction model, one must
account for variations in σrr(z, rf ) along the debond; for a simpler model, we assume the friction stresses
are constant and given by τf = ±µ 〈σrr(rf )〉 where 〈σrr(rf )〉 is the average interfacial normal stress in the
debond zone. The average normal stress must be linearly related to the applied load (ψ∞). Thus we can
write the frictional stresses as τf = ±ψfψ∞ where ψf is an effective coefficient of friction. The correct signs
for τf are to be negative in the debond zone at z = −l/2 and positive in the debond zone at z = l/2. Finally,
because the above fragmentation analysis used normalized perturbation stresses, the normalized shear stress
in the debond zone of this friction model are τprz(z, rf ) = ±ψf .

For simplicity, we assume symmetric debonding damage and a perfect interface in the bonded zone.
Generalizations to unsymmetric damage and imperfect interfaces are not difficult. Substitution into (44)
then gives

G = −πr2
fψ

2
∞

d

dA

[〈
wpf (l/2)

〉
+
ψf ld
rf

〈
[wp(ld)]

〉]
(48)
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z
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l – ld
2
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2

wf (z,rf)
p

wm(z,rf)
p

Figure 4. The expected form of the interfacial axial displacement in the fiber and matrix for the perturbation stress
analysis of a single fiber fragment and z > 0. Note that the fiber and matrix interfacial displacements are equal in
the central intact zone, but are discontinuous in the debond zone.

where 〈[wp(ld)]〉 is the average axial displacement discontinuity along the debond:〈
[wp(ld)]

〉
=

2
ld

∫ l/2

(l−ld)/2

[wp]dz (49)

This result is exact for debonds with a constant friction stress. Next we consider some accurate assumptions
without actually undertaking stress analysis of the fragmentation specimen.

The exact result depends on 〈[wp(ld)]〉 which requires a 3D axisymmetric analysis and accurate evaluation
of the fiber and matrix displacements at the interface. A schematic view of the exact displacements for
z > 0 is given in Fig. 4. To approximate the displacement discontinuity in the debond zone, we assume
the fiber interfacial displacement is approximately equal to the average axial fiber displacement and we
write the matrix axial displacement as a monotonic extrapolation between its boundary condition at l/2
(wpm(l/2, rf ) = 0) and its continuity condition at the debond tip (wpm((l − ld)/2, rf ) = wpf ((l − ld)/2, rf ).
The interfacial displacements then become

wpf (z, rf ) ≈
〈
wpf (z)

〉
and wpm(z, rf ) = m(z)wpf ((l − ld)/2, rf ) ≈ m(z)

〈
wpf ((l − ld)/2)

〉
(50)

where the matrix extrapolation function, m(z), monotonically increases from m(l/2) = 0 to m((l−ld)/2) = 1.
Substitution into (48) leads to

G = πr2
fψ

2
∞

d

dA

{
−F (l/2) +

2ψf
rf

∫ l/2

(l−ld)/2

F (z)dz −
(

1− Mψf ld
rf

)〈
wpf ((l − ld/2)

〉}
(51)

where

M = 1− 2
ld

∫ l/2

(l−ld)/2

m(z)dz and F (z) =
〈
wpf (z)

〉
−
〈
wpf ((l − ld)/2)

〉
=
∫ z

(l−ld)/2

〈
εpzz,f (z)

〉
dz (52)

The constant M depends on the selected extrapolation function but it must be between 0 and 1. Here M
will be assumed to be in the middle or M = 1/2; this assumption corresponds to a linear extrapolation of
the matrix displacement.

The function F (z) only depends on the average axial fiber displacements in the debond zone. By an
exact equilibrium analysis, the average axial fiber stress in the debond zone must satisfy

d
〈
σpzz,f (z)

〉
dz

= −2τprz(z, rf )
rf

= −2ψf
rf

(53)

Integration with boundary condition
〈
σpzz,f (l/2)

〉
= −1 gives

〈
σpzz,f (z)

〉
=

2ψf
rf

(
l

2
− z
)
− 1 (54)
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If the constant interfacial shear stress is due to friction, then the perturbation axial fiber stress must remain
negative in the debond zone otherwise the stress transferred into the fiber would exceed the far-field fiber
stress. From this requirement and (54), the analysis in this section is limited to friction or debond lengths
sufficiently low that ψ∞ld/rf < 1. We next assume that the average axial displacement in the fiber can be
calculated from the axial stress alone; in other words, we ignore transverse stresses and assume

〈
εpzz,f

〉
=

〈
σpzz,f

〉
EA

−
νA

〈
σprr,f

〉
EA

−
νA

〈
σpθθ,f

〉
EA

≈

〈
σpzz,f

〉
EA

(55)

where EA and νA are the axial modulus and Poison’s ratio of the fiber.
Substituting the debond zone strain into the definition for F (z) and substituting the result into (51)

together with M = 1/2 leads to the final approximate result:

G = πr2
fψ

2
∞

d

dA

[
ld

2EA

(
1− ψf ld

rf
+
ψ2
f l

2
d

3r2
f

)
−
(

1− ψf ld
2rf

)〈
wpf ((l − ld)/2)

〉]
(56)

To reiterate, the only approximations used to derive the constant friction stress result in (56) are that the
interfacial axial fiber displacement is approximately equal to the average axial fiber displacement, that the
matrix axial interfacial displacement varies linearly with z, and that transverse stresses can be ignored when
calculating the debond zone axial strain. All these assumptions were checked by some sample finite element
calculations and they all appear to be excellent assumptions. We claim, therefore, that (56) is a very accurate
result. It has reduced the complete analysis of the fiber fracture and debonding problem to the determination
of the average axial fiber displacement at the debond tip

〈
wpf ((l − ld)/2)

〉
.

One could continue and substitute analytical results for
〈
wpf ((l − ld)/2)

〉
and quickly derive energy release

rates for various failure modes involving fiber breakage and friction-loaded debonding. Additional progress
can be made, still without any specific stress analysis, by considering the limiting case as l →∞; this limit
corresponds to non-interacting fiber breaks or fragmentation results at low crack density. In the limit l→∞,
all perturbation displacements become independent of l and only depend on distance from the fiber break.
Furthermore, liml→∞

〈
wpf ((l − ld)/2)

〉
, or the displacement at the tip of a long intact zone, is the equal to

the displacement and the end of a long fiber with no debonds, but scaled by the amount of stress transferred
to the end of the intact zone through the debond zone. From the stress at the debond tip in (54), we can
write

lim
l→∞

〈
wpf ((l − ld)/2)

〉
=
(

1− ψf ld
rf

)
lim
l→∞

〈
wpf (l/2)

〉
(57)

where
〈
wpf (l/2)

〉
is evaluated for a fiber with no debonds. Taking the limit of (46) gives

∆Gf∞ = lim
l→∞

∆Gf = ψ2
∞ lim
l→∞

[〈
wpf (l/2)

〉
− 2

〈
wpf (l/4)

〉]
= −ψ2

∞ lim
l→∞

〈
wpf (l/2)

〉
(58)

where subscript ∞ on any G implies the limit of long fragment lengths. Substituting (57) and (58) into (56)
gives

G∞ = πr2
fψ

2
∞

d

dA

[
ld

2EA

(
1− ψf ld

rf
+
ψ2
f l

2
d

3r2
f

)
+
(

1− ψf ld
2rf

)(
1− ψf ld

rf

)
∆Gf∞
ψ2
∞

]
(59)

If the total debond length surrounding the isolated fiber breaks grows by an amount dld, then dA =
2πrfdld and the energy release rate for debond growth from an isolated fiber break in the presence of friction
is

Gd∞ =
rfψ

2
∞

4EA

(
1− ψf ld

rf

)2

− ψf∆Gf∞
4

(
3− 2ψf ld

rf

)
(60)

In the absence of friction ψf → 0, Gd∞ reduces to the Outwater and Murphy [24] result of Gd∞ =
rfψ

2
∞/(4EA). For debonding from isolated fiber breaks, the entire problem has been reduced to finding

∆Gf∞. A Bessel-Fourier stress function result for ∆Gf∞ is shown in Fig. 3 by taking the limiting value
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of the ds = ∞ curve at low crack density. A recent examination of the Bessel-Fourier analysis in Ref. 23
suggests it may not be accurate for ∆Gf∞. A refined Bessel-Fourier analysis [17, 25] or refined elasticity
models [26] can give improved results. ∆Gf∞ could alternatively be calculated using finite element analysis,
but even that method has numerical difficulties dealing with infinitely long fibers in an infinite matrix and
with handling the boundary conditions of a cracked fiber with a high modulus embedded in a matrix with
a low modulus. Because evaluation of ∆Gf∞ also solves the problem of finding Gd∞, it can be claimed as a
fundamental problem in analysis of composite failure. Additional theoretical work is required before ∆Gf∞
can be calculated with confidence.

3.5. Finite fracture mechanics of fiber fracture and debonding

Experimental observations on fragmentation specimens for which debonds can be observed by microscopy
indicates that fiber breaks are usually accompanied by a certain amount of instantaneous debonding [27–
29]. Thus, the fundamental fracture event in the fragmentation test is a fiber break with simultaneous
debonding of length ld (or length ld/2 on either side of the fiber break). A finite fracture mechanics analysis
of simultaneous fiber breakage and debonding can be derived by asserting that fiber breaks and debonds
occur when the total energy released is equal to the total energy required. Using the long-fragment limit
results in the previous section, the energy balance becomes

πr2
f∆Gf∞ +

∫ ld

0

2πrfGd∞(x)dx = πr2
fΓf + 2πrf ldΓd (61)

The left side is the energy released by the fiber fracture and debonding fracture event; the right side is the
energy required for the event where Γf is the fiber fracture toughness and Γd is the debonding fracture
toughness. Substituting into (60) and solving for Γd leads to

Γd =
rfψ

2
∞

4EA

(
1− ψf ld

rf
+
ψ2
f l

2
d

3r2
f

)
+
rf∆Gf∞

2ld

(
1− ψf ld

2rf

)(
1− ψf ld

rf

)
− Γfrf

2ld
(62)

Equation (62) can be used to analyze fragmentation experiments and deduce an interfacial fracture
toughness [29]. The key experiment is to measure instantaneous debond length at a fiber break as a function
of the strain (or equivalently ψ∞) at which the fiber break occurred [27–29]. With known values of ψf and
Γf and some theory for ∆Gf∞, such experimental results can be used to calculate Γd from each data point.
Alternatively, substituting (58) and solving for ψ2

∞ gives:

ψ2
∞ =

2ldΓd
rf

+ Γf

ld
2EA

(
1− ψf ld

rf
+
ψ2
f l

2
d

3r2
f

)
− lim
l→∞

〈
wpf (l/2)

〉(
1− ψf ld

2rf

)(
1− ψf ld

rf

) (63)

This prediction for applied stress (ψ∞) as a function of debond length (ld) can be fit to experimental results
to determine Γd. Some example predictions are given in Fig. 5 for two values of interfacial toughness and
three values of the effective friction coefficient. The predicted debond growth increases monotonically with
applied strain. Recall, however, that these predictions assume isolated fiber breaks. When the fiber breaks
begin to interact, the amount of debond growth will peak and then decrease at higher strain [17, 30]. The
prediction curves shift to the right if either the friction or the interfacial toughness increases. When analyzing
experimental data without any knowledge of friction, it will not possible to tell whether the data should be
fit with high friction and low toughness or with low friction and high toughness. In other words, the only way
to get the correct result for Γd is to have independent results to determine the level of friction stresses. With
no knowledge of friction, the best fit Γd will decrease as the assumed ψf increases. An analysis that ignores
friction will thus give an upper bound to the true interfacial toughness [17]. Some comparisons between
debonding experiments and the above type of finite fracture mechanics model are given in Refs. 27–29; these
papers either ignored friction [27, 28] or included friction [29]; each calculated ∆Gf∞ using the shear-lag

analysis result of liml→∞
〈
wpf (l/2)

〉
= −rf/(βEA) where β is the dimensionless shear-lag parameter [30, 31].
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Figure 5. Finite fracture mechanics prediction for the extent of debonding near isolated fiber breaks as a function
of the strain required to break the fiber. The interfacial toughness was assumed to be either Γd = 200 J/m2 or
50 J/m2; for each toughness, the friction was set to ψf = 0.0, 0.05, or 0.1. The fiber and matrix properties are given
in the caption to Fig. 3. The fiber toughness was assumed to be Γf = 10 J/m2. The ∆Gf∞ was found using the
Bessel-Fourier analysis of Fig. 3.

3.6. Laminate microcracking

When cross-ply laminates ([0n/90m]s) are loaded in tension parallel to the 0◦ plies, the 90◦ plies develop
transverse cracks or matrix microcracks (see review article Ref. 2). On continued loading, the 90◦ plies crack
into a roughly periodic array of microcracks. For analysis of a microcracked specimen, we consider a unit cell
of damage or a single microcrack as illustrated in Fig. 6. Previous work has derived approximate 2D, plane-
stress solutions to the stresses in the x− z plane of a microcracked laminate based either on an admissible
stress state [14, 32, 33] or an admissible strain state [34]. In this section, these previous solutions will be
outlined and modified slightly to be more consistent about boundary conditions and to use the methods in
this paper. The slightly modified results will then be used to discuss upper and lower bounds to the finite
energy release rate due to formation of microcracks.

3.6.1. Upper bound energy release rate
To derive an upper bound energy release rate solution we consider an approximate solution based on an
admissible stress state. For a constant applied axial strain of ε0 and a plane-stress analysis in the x − z
plane, the initial thermoelastic stresses are easily seen to be

σ0
xx,1 = E(1)

xx (ε0 − α(1)
xxT ) τ0

xz,1 = 0 σ0
zz,1 = 0

σ0
xx,2 = E(2)

xx (ε0 − α(2)
xxT ) τ0

xz,2 = 0 σ0
zz,2 = 0

(64)

where the subscript 1 or 2 on the stresses and superscripts (1) or (2) on the thermomechanical properties
indicate terms for the 90◦ and 0◦ plies, respectively. Following Hashin [14], perturbation stresses were derived
by using one assumption that the axial stresses in each ply group are independent of the z coordinate. From
the equations of stress equilibrium, the resulting perturbation stresses become

σpxx,1 = −ψ(x) τpxz,1 = zψ′(x) σpzz,1 =
1
2

(ht1 − z2)ψ′′(x)

σpxx,2 =
ψ(x)
λ

+ σex τpxz,2 = (h− z)ψ
′(x)
λ

σpzz,2 =
1
2

(h− z)2ψ
′′(x)
λ

(65)
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Figure 6. A unit cell of damage for a [0n/90m]s laminate with a periodic array of microcracks spaced by distance 2a.
This figure is an edge view or x–z plane view. The laminate width direction is in the y direction. The axial load is
applied in the x direction.

where ψ(x) is an unknown function of x and h, t1, and λ are defined in Fig. 6. These perturbation stresses
are identical to Hashin [14] except for the addition of σex in σpxx,2. Hashin considered traction boundary
conditions for which the total axial perturbation stress (t1σ

p
xx,1 + t2σ

p
xx,2) must be zero. Here, the analysis is

modified to consider displacement boundary conditions; the term σex is the excess perturbation stress that
appears in the 0◦ plies after formation of the microcrack. The net perturbation axial stress is now a constant
(t1σ

p
xx,1 + t2σ

p
xx,2 = t2σex) instead of zero as in the traction loading analysis.

The unknown function ψ(x) can be found by minimizing the stress energy associated with the perturbation
stresses which is equivalent to minimizing the total complementary energy (see (25)). The analysis procedure
is identical to the one in Ref. 14. When the solution of ψ(x) is substituted back into the perturbation stress
energy, the total complementary energy for the microcrack unit cell reduces to

Γa = Γ0 +Wt21

 2ρλ

C1E
(1)
xx E

(2)
xx

σ2
ex + 2C3χL(ρ)

((
σ0
xx,1

)2
+

σex

C1E
(2)
xx

)2
 (66)

where W is laminate width in the y direction, ρ = a/t1 is the axial ratio of the microcracking interval,
χL(ρ) is an excess energy function (defined first by Hashin [14] and later in Ref. 32 for all possible values of
laminate properties), C3 is a constant that depends on laminate properties (see Ref. 35), and

C1 =
(1 + λ)E0

λE
(1)
xx E

(2)
xx

(67)

where E0 = (t1E
(1)
xx + t2E

(2)
xx )/h is the rule-of mixtures modulus of the laminate. Equation (66) is identical

to Hashin’s [14] result except for the new term involving σex. Minimizing Γa with respect to σex, the final
approximate complementary energy for displacement boundary conditions becomes

Γa = Γ0 +
2Wt21C3

(
σ0
xx,1

)2
χL(ρ)

1 +
E(1)
xx

2

E0

C3

1 + λ

χL(ρ)
ρ

(68)
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If the exact complementary energy is written in terms of the exact , effective axial modulus of a cracked
composite with n microcrack intervals of possibly variable aspect ratios, ρi, the total complementary energy
in the absence of residual stresses (σ0

xx,1 = E
(1)
xx ε0) can be written as

Γ = −1
2
E∗Aε

2
0

n∑
i=1

4Wt21(1 + λ)ρi (69)

Combining this result with Γ ≤ Γa, the definition of C1, and

Γ0 = −1
2
E0ε

2
0

n∑
i=1

4Wt21(1 + λ)ρi (70)

we can derive a lower bound to the effective axial modulus of

E∗A ≥
〈
ρELA(ρ)

〉
〈ρ〉 where

E0

ELA(ρ)
= 1 +

E
(1)
xx

2

E0

C3

1 + λ

χL(ρ)
ρ

(71)

and 〈·〉 is an average over the n microcrack intervals. Here ELA(ρ) is defined as the lower bound modulus for
a laminate with exactly periodic microcrack intervals of aspect ratio ρ. In contrast, Hashin’s lower bound
modulus [14] can be expressed

E∗A ≥
〈ρ〉〈

ρ/ELA(ρ)
〉 (72)

These two lower bounds are the same for periodic cracks, but differ for variably spaced microcracks. The
difference arises from the current constant strain analysis vs. Hashin’s constant stress analysis.

Substituting (71) into (68) the total change in complementary energy associated with n microcracks of
possibly variable aspect ratios, ρi, is

∆Γa(0→ n) = 2Wt21
(
σ0
xx,1

)2(
C3

n∑
i=1

ELA(ρi)
E0

χL(ρi)

)
(73)

The total fracture area associated with n microcracks is A = 2nt1W . Thus, a rigorous upper bound for the
energy release rate due to the formation of n microcracks is

∆Gm(0→ n) ≤ ∆Γa(0→ n)
2nt1W

= t1
(
σ0
xx,1

)2〈
C3
ELA(ρ)
E0

χL(ρ)
〉

(74)

For evaluation of the practical energy release rate bounds for formation of a single microcrack in the
middle of an existing microcrack interval of aspect ratio ρ, substitution into (37) leads to

∆Gm1(n→ n+ 1) = C3t1
(
σ0
xx,1

)2(
2
ELA(ρ/2)
E0

χL(ρ/2)− ELA(ρ)
E0

χL(ρ)
)

(75)

This result is similar to previous energy release rate results derived using assumed stress states [2, 32, 35].
It differs, however, in the new factors of ELA(ρ)/E0. Although such factors are always less than one, this
new energy release rate is not an improved upper bound to energy release. Instead, these factors are a
consequence of now analyzing fixed-displacement boundary conditions while all previous analyses were for
fixed-load boundary conditions. In fracture mechanics with an infinitesimal amount of crack growth, the
final energy release rate is independent of whether the analysis was done for fixed-displacement of fixed-
load boundary conditions. For finite fracture mechanics analyses, however, the energy release rate depends
on boundary conditions. The dependence illustrated in Fig. 7 which plots loading and unloading load-
displacement curves for a finite amount of fracture growth. The total energy released is the area between the
loading and unloading curves [4]. For fixed-load boundary conditions, the total energy released is equal to
the area of the ABC triangle; for fixed-displacement boundary conditions, the total energy released is lower
and equal to the shaded area of the ABD triangle. Deriving the slopes of the initial loading curve from E0
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Figure 7. Load-displacement curve for a finite increase in crack area. The area of the ABC triangle is the total
energy released by crack growth under load control. The shaded area of the ABD triangle is the total energy released
by crack growth under displacement control.

and of the unloading curve from E∗A, it is easy to show the the ratio of the ABD to ABC triangular areas is
E∗A/E0. Thus, the new factors of ELA(ρ)/E0 are simply a consequence of now analyzing fixed-displacement
boundary conditions. When analyzing real experiments using finite fracture mechanics, it is important to
use the correct result for the specific experimental conditions. Most laminate experiments are done using
displacement-control experiments and thus the new results derived here are the appropriate ones for finite
fracture mechanics analysis of microcracking.

3.6.2. Lower bound energy release rate
To derive an lower bound energy release rate solution we consider an approximate solution based on an
admissible strain state. For a constant applied axial strain of ε0 and a plane-stress analysis in the x − z
plane, the initial displacements are easily seen to be

u0
1 = ε0x w0

1 = −ε0ν
(1)
xz z

u0
2 = ε0x w0

2 = −ε0

(
ν(1)
xz t1 + ν(2)

xz ε0(z − t1)
) (76)

where u and w are x and z direction displacements, respectively. Following Ref. 34, the perturbation
displacements are assumed to be

up1 = t1ψ1(x)φ(z) + a1x wp1 = zt1ψ2(x)

up2 = t1ψ1(x) + a1x wp2 = t1ψ2(x) + a2(z − t1)
(77)

where ψ1(x) and ψ2(x) are two unknown functions of x, φ(z) is an unknown function of z that describes
the crack opening displacement, and a1 and a2 are unknown constants. The boundary conditions on ψ1(x),
ψ2(x), and φ(z) are ψ1(±a) = ∓a1ρ, ψ2(±a) = a3 where a3 is another unknown constant, φ(t1) = 1, and
φ′(0) = 0 [34].

With a given φ(z), it is possible to minimize the total potential energy to find ψ1(x), ψ2(x), a1, a2, and
a3. Although Ref. 34 analyzed total displacements and strains and minimized total thermoelastic potential
energy, the methods in Ref. 34 can also be used to minimize ∆Πa = Πa −Π0 (see (30)). The final result for
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total thermoelastic potential energy is identical to Ref. 34 but the analysis is simpler because it can ignore
thermal stress terms, i.e., the perturbation stresses and strains have T = 0. The total potential energy can
be written as

Πa = Π0 − 2Wt21
(
σ0
xx,1

)2 χε(ρ)
E0

(78)

where χε(ρ) is an energy function defined in Ref. 34 and denoted there as χU (ρ). If we define the exact
potential energy in terms of the exact , effective axial modulus of a cracked composite with n microcrack
intervals of possibly variable aspect ratios, ρi, the total potential energy in the absence of residual stresses
(σ0
xx,1 = E

(1)
xx ε0) can be written as

Π =
1
2
E∗Aε

2
0

n∑
i=1

4Wt21(1 + λ)ρ (79)

Combining this result with Π ≤ Πa and

Π0 =
1
2
E0ε

2
0

n∑
i=1

4Wt21(1 + λ)ρ (80)

we can derive an upper bound to the effective axial modulus of

E∗A ≤
〈
ρEUA (ρ)

〉
〈ρ〉 where

E0

EUA (ρ)
= 1 +

E
(1)
xx

2

E0

C3

1 + λ

χU (ρ)
ρ

(81)

and χU (ρ) = χε(ρ)/(C3E
U
A (ρ)) has been to defined for better comparison between the upper and lower bound

results. Here EUA (ρ) is defined as the upper bound modulus for a laminate with exactly periodic microcrack
intervals of aspect ratio ρ. This upper bound modulus is identical to the upper bound in Ref. 34 (but note
that χU (ρ) in Ref. 34 is χε(ρ) here).

Combining (78) with (74) and substituting into (34) the rigorous bounds to the energy release rate due
to formation of n microcracks are

t1
(
σ0
xx,1

)2〈
C3
EUA (ρi)
E0

χU (ρi)
〉
≤ ∆Gm(0→ n) ≤ t1

(
σ0
xx,1

)2〈
C3
ELA(ρi)
E0

χL(ρi)
〉

(82)

For evaluation of the practical energy release rate bounds for formation of a single microcrack in the middle
of an existing microcrack interval of aspect ratio ρ, substitution into (38) leads to

∆Gm2(n→ n+ 1) = C3t1
(
σ0
xx,1

)2(
2
EUA (ρ/2)
E0

χU (ρ/2)− EUA (ρ)
E0

χU (ρ)
)

(83)

This result is similar to the previous energy release rate result derived using an assumed strain state [34].
It differs, however, by factors EUA (ρ)/E0 because this current analysis if for fixed-displacement boundary
conditions while the analysis in Ref. 34 found energy release rate by substituting the effective modulus into
a finite energy release rate expression for fixed-load boundary conditions [6, 34].

3.6.3. Sample microcracking calculations
A sample plot of the rigorous bounds ∆Gm(0→ n) for a [0/902]s E-glass/epoxy laminate is given in Fig. 8.
This plot is the total energy released per unit area as a function of crack density for loading conditions
giving unit stress in the 90◦plies (σ0

xx,1 = 1 MPa). The curves labeled displacement control are the bounds
derived in this paper and given in (82). The rigorous bounds for load-control experiments are also plotted;
these bounds are derived from the results in Ref. 34. The upper and lower bounds are fairly far apart at
low crack density, but get closer at high crack density. The displacement-control upper bound drops much
more rapidly than the load-control upper bound. The displacement control bounds get fairly close for crack
densities greater the about 1 mm−1.

The more commonly required energy release rate for analyzing microcracking experiments [2] is the energy
release rate for the formation of the next microcrack:∆Gm(n→ n+ 1). Figure 9 gives a sample calculation
of ∆Gm(n→ n+ 1) for [0/902]s E-glass/epoxy laminate as a function of crack density for loading conditions
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Figure 8. Rigorous bounds on total energy release rate due to formation of all microcracks under displacement
control or load control conditions. The calculations are for a [0/902]s E-glass/epoxy laminate. The assumed laminate
properties are in Ref. 33. The calculation is for σ0

xx,1 = 1 MPa.

giving σ0
xx,1 = 1 MPa. These sample calculations include the rigorous upper and lower bounds (see (36))

and the practical bounds defined in (75) and (83). The symbols give some finite element calculations of
the energy release rate. The rigorous upper and lower bounds bound the numerical FEA results but are
fairly far apart. The rigorous lower bound becomes negative at high crack density; a tighter lower bound
can replace this negative result by the trivial lower bound of zero. The practical bounds (∆Gm1 and ∆Gm2)
always bound the numerical results, but the sense of which practical bound is an upper bound and which
is a lower bound switches at a crack density of about 0.6 mm−1. Previous variational mechanics analysis
of experimental results have been based on the practical ∆Gm1 bound [2, 35]. Figure 9 shows that this
bound is accurate for all crack densities and very accurate for crack densities greater than about 0.6 mm−1.
This improved accuracy at high crack densities may explain, in part, why experimental results typically fit
theoretical predictions better at higher crack densities than at lower crack densities [2, 35]. Finally, these
practical, displacement-control bonds are tighter to the numerical results than the corresponding practical,
load-control bonds plotted in Ref. 34.

4. Conclusions

The key results of this paper are to express global energy analysis of composite fracture in several alternate
forms. All of these forms are mathematically identical, but specific forms will be more convenient than other
forms for specific composite fracture problems. Equation (7) gives G in terms of mechanical and residual
stresses. Equation (12) gives a special case to (7) for mode I crack growth. Equation (18) gives G in terms
of initial and perturbation stresses. Equation (14) combines mechanical and residual stresses or initial and
perturbation stresses to give G in terms of total stresses. Equations (34) and (36) give variational bounds to
∆G. Each of these results includes residual stresses, traction-loaded cracks, and imperfect interfaces. Most of
the equations simplify further when all cracks are traction free and there is no sliding at imperfect interfaces
(see, for example, Ref. 6 and (19) and (40)). Even further simplifications are possible when residual stresses
are ignored. Because residual stresses are inevitable in composites, however, it is never acceptable to ignore
residual stresses. Fortunately, some results in this paper make it possible to account for the effect of residual
stresses without ever undertaking thermoelasticity analysis of damaged composites (see (19)).
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Figure 9. Rigorous (upper and lower bounds) and practical bounds (∆Gm1 and ∆Gm2) for the energy release rate
∆Gm(n→ n+1) or the energy released due to the formation of the next microcrack. The calculations are for a [0/902]s
E-glass/epoxy laminate. The assumed laminate properties are in Ref. 33. The calculation is for σ0

xx,1 = 1 MPa. The
symbols are finite element analysis calculations for ∆Gm(n→ n+ 1).

Appendix

A.1. Mechanical and residual stresses

The energy release rate in (1) requires calculation of internal energy and external work. When the stresses
are partitioned into mechanical and residual stresses, the internal energy is:

U =
1
2

∫
V

σ · (ε −αT )dV =
1
2

∫
V

σmSσmdV +
∫
V

σmSσrdV +
1
2

∫
V

σrSσrdV (84)

Using the divergence theorem and accounting for all surfaces, the mechanical stress term in (84) may be
written in terms of mechanical surface tractions, ~T m, and displacements, ~um, as

1
2

∫
V

σmSσmdV =
1
2

∫
ST

~T 0 · ~umdS +
1
2

∫
Su

~T m · ~u 0dS +
1
2

∫
Sc

~T m · ~umdS (85)

The inclusion of the integral over Sc in (85) and in subsequent equations accounts for both traction loaded
cracks and imperfect interfaces.

The cross term between mechanical and residual stresses in (84), can be analyzed two separate ways by
two applications of virtual work. First, the displacements caused by the residual thermal stresses can be
considered as virtual displacements to the mechanical strains. By virtual work including surfaces Sc:∫

V

σm · εrdV =
∫
ST

~T 0 · ~u rdS +
∫
Sc

~T m · ~u rdS (86)

Substituting, εr = Sσr +αT gives:∫
V

σmSσrdV =
∫
ST

~T 0 · ~u rdS +
∫
Sc

~T m · ~u rdS −
∫
V

σm ·αTdV (87)

Second, the residual tractions, ~T r, can be considered as virtual forces on the mechanical stresses. Thus,
again by virtual work including surfaces Sc:∫

V

εm · σrdV =
∫
V

σmSσrdV =
∫
Su

~T r · ~u 0dS +
∫
Sc

~T r · ~umdS (88)



264 John A. Nairn

The residual stress term in (84) can be written as

1
2

∫
V

σrSσrdV =
1
2

∫
V

(σr · εr − σr ·αT )dV =
1
2

(∫
S

~T r · ~u rdS −
∫
V

σr ·αTdV
)

(89)

where S includes all boundary, crack, and interface surfaces. Only the crack and interface surfaces give a
non-zero contribution to the surface integral. Thus:

1
2

∫
V

σrSσrdV =
1
2

∫
Sc

~T r · ~u rdS − 1
2

∫
V

σr ·αTdV (90)

The total external work needs to consider both mechanical and residual displacements on the boundary
and both mechanical and residual displacements and tractions on the cracks and interfaces. The work can
be written as

W =
∫
ST

~T 0 · (~um + ~u r)dS +
∫
Sc

(
~T m + ~T r

)
· (~um + ~u r)dS (91)

Combining (85), (87), (90), and (91) to get potential energy and substitution in (1) leads to the energy
release rate theorem given in (7).

A.2 Initial and perturbation stresses

When the stresses are partitioned into initial and perturbation stresses, the internal energy can be expressed
as:

U =
1
2

∫
V

σ · (ε −αT )dV =
1
2

∫
V

σ0Sσ0dV +
∫
V

σ0SσpdV +
1
2

∫
V

σpSσpdV (92)

The cross term between initial and perturbation stresses in (92), can be analyzed two separate ways by two
applications of virtual work. First, the displacements caused by the perturbation stresses can be considered
as virtual displacements to the initial strains. By virtual work accounting for the thermal strains in the
initial stresses and including surfaces Sc:∫

V

C(ε0 −αT ) · εpdV =
∫
V

σ0Sσp =
∫
ST

~T 0 · ~u pdS +
∫
Sc

~T 0
c · ~u pdS (93)

Second, the perturbation tractions, ~T p, can be considered as virtual forces on the initial stresses. Thus,
again by virtual work including surfaces Sc:∫

V

ε0 · σpdV =
∫
Su

~T p · ~u 0dS +
∫
Sc

~T p · ~u 0dS (94)

Substituting ε0 = Sσ0 +αT into the first integral leads to∫
V

σ0SσpdV =
∫
Su

~T p · ~u 0dS +
∫
Sc

~T p · ~u 0dS −
∫
V

σp ·αTdV (95)

The perturbation stress term in (92) can be written, using the divergence theorem, as a surface integral

1
2

∫
V

σpSσpdV =
1
2

∫
S

~T p · ~u pdS =
1
2

∫
Sc

~T p · ~u pdS (96)

As in the residual stress term (see (90)), only the crack and interface surfaces give a non-zero contribution
to the surface integral.

The total external work needs to consider both initial and perturbation displacements on the boundary
and both initial and perturbation tractions on the cracks and interfaces. The work reduces to

W =
∫
ST

~T 0 · (~u 0 + ~u p)dS +
∫
Sc

~Tc · (~u 0 + ~u p)dS (97)
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Combining (92), (93), (96), and (97), the potential energy can be written as

Π = Π0 −
∫
Sc

~T p · ~u 0dS − 1
2

∫
Sc

~T p · ~u pdS (98)

where
Π0 =

1
2

∫
V

σ0Sσ0dV −
∫
ST

~T 0 · ~u 0dS −
∫
Sc

~T 0
c · ~u 0dS (99)

is the potential energy of the initial stress state. Substitution of (98) into (1) and use of (96) and Hooke’s
law for the perturbation stresses leads to the results in (18).
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