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We present exact solutions of the gravitational field equations in the generalized Randall-Sundrum model for
an anisotropic brane with Bianchi type | and V geometry, with perfect fluid and scalar fields as matter sources.
Under the assumption of a conformally flat bulkkith a vanishing Weyl tensorfor a cosmological fluid
obeying a linear barotropic equation of state the general solution of the field equations can be expressed in an
exact parametric form for both Bianchi type | and V space-times. In the limiting case of a stiff cosmological
fluid with pressure equal to the energy density, for a Bianchi type | universe the solution of the field equations
is obtained in an exact analytic form. Several classes of scalar field models of evolution on the brane are also
considered, corresponding to different choices of the scalar field potential. For all models the behavior of the
observationally important parameters such as shear, anisotropy, and the deceleration parameter is considered in
detail.
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[. INTRODUCTION time-dependent solutions and their cosmological properties
have been extensively studied in papers, too many to cite
In two recent papers Randall and Sundriiip2] have them all[4—11] (for a recent review of dynamics and geom-

shown that a scenario with an infinite fifth dimension in theetry of brane universes see R¢L2]). In one of the first

presence of a brane can generate a theory of gravity whicbosmological applications of this scenario it was pointed out

mimics purely four-dimensional gravity, both with respect to that a model with a noncompact fifth dimension is potentially

the classical gravitational potential and with respect to graviviable, while the scenario which might solve the hierarchy

tational radiation. The gravitational self-couplings are notproblem predicts a contracting universe, leading to a variety
significantly modified in this model. This result has beenof cosmological probleml3]. By adding cosmological con-

obtained from the study of a single 3-brane embedded in fivétants to the brane and bulk, the problem of the correct be-
dimensions, with the 5D metric given byds?  havior of the Hubble parameter on the brane has been solved

=e "0y dx*dx"+dy? which can produce a large hierar- by Cline, Grojean, and Servaht4]. As a result one also

chy between the scale of particle physics and gravity due t§Ptains normal expansion during nucleosynthesis, but faster
the appearance of the warp factor. Even if the fifth dimensior{han normal expansion in the very early universe. The cre-
is uncompactified, standard 4D gravity is reproduced on th&tion of a spherically symmetric brane-world in AdS bulk
brane. In contrast with the compactified case, this followsas been considered, from a quantum cosmological point of
because the near-brane geometry traps the massless gravit¥igW. with the use of the Wheeler-deWitt equation, by An-
Hence this model allows the presence of large or even infichordoqui, Nuez, and Olseii15]. .
nite noncompact extra dimensions. Our brane is identified to 1he effective gravitational field equations on the brane
a domain wall in a 5-dimensional anti—de Sitter space-timeWorld, in which all the matter forces except gravity are con-
The Randall-Sundrum model was inspired by superstrindz'ned on the 3-brane in a 5-dimensional space-time with
theory. The ten-dimension&lg X Eg Heterotic string theory, Z2-Symmetry have been obtained, by using an elegant geo-
which contains the standard model of elementary particlegnetric approach, by Shiromizu, Maeda, and Sa$#6i17.
could be a promising candidate for the description of the real "€ correct signature for gravity is provided by the brane
universe. This theory is connected with an elevenWith positive tension. If the bulk space-time is exactly
dimensional theory, M theory, compactified on the orbifold anti—de Slttgr, generically the matter on the b_rane is required
R10x SY/Z, [3]. In this model we have two separated ten-t0 be spatially homogeneous. The electric part of the
dimensional manifolds. 5-dimensional Weyl tensdg,; gives the leading order cor-
The static Randall-Sundrum solution has been extended f§ctions to the conventional Einstein equations on the brane.
The four-dimensional field equations for the induced metric
and scalar field on the world-volume of a 3-brane in the

*Email address: cmchen@phys.ntu.edu.tw five-dimensional bulk with Einstein gravity plus a self-
"Email address: tcharko@hkusua.hku.hk interacting scalar field have been derived by Maeda and
*Email address: mkmak@vtc.edu.hk Wands[18]. The effective four-dimensional Einstein equa-
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tions include terms due to scalar fields and gravitationahiques, of the qualitative behavior of the Bianchi type | and
waves in the bulk. V cosmological models in the Randall-Sundrum brane world
From a general theoretical point of view brane cosmologi-scenario, with matter on the brane obeying a barotropic
cal models are two-measure theories, since they have twequation of stat@=(y—1)p, has been performed by Cam-
independent Lagrangians, one associated to the brane, tpes and Sopuertf26]. In particular, they constructed the
other associated to the bulk. Another two measure theory hastate spaces for these models and discussed what new critical
been proposed by Guendelmft®], in which the energy- points appear, the occurrence of bifurcations and the dynam-
momentum tensor is also a nonlinear function of the generalcs of the anisotropy. Expanding Bianchi type | and V brane-
relativistic energy-momentum tensor. Because of scale inworlds always isotropize, although there could be intermedi-
variance, the true vacuum state has zero energy densitjte stages in which the anisotropy grows. Near the big-bang
when the theory is analyzed in the conformal Einstein frameihe anisotropy dominates far<1, in opposition to the gen-
Field theory models, constructed in a gravitational theoryery) rejativistic situation when it dominates fpr<2. Frolov
where a measure of integratidn in the action is not neces- [27] has shown that the geometrical construction of the Ran-
sary\—g, but is determined dynamically through additional gali and Sundrum brane world can be carried out, without the
degrees of freedom, have been presented in[R6f. In this  assumption of spatial isotropy, by means of an homogeneous
type of theory it is possible to combine the solution of theand anisotropic Kasner type solution of the Einstein-AdS
cosmological constant problem with the possibility of infla- equations in the bulk. The brane equations of motion in this
tion and spontaneously broken gauge unified theories. Thgnisotropic space-time are solved by a static brane configu-
models with global scale invariance allow for nontrivial sca-ration, with the geometry of the 3-brane given by the 4D
lar field potentials and masses for particles, so that the scalgasner solution. The set of sufficient conditions, which must
symmetry must be broken. The conserved quantities havge satisfied by the brane matter and bulk metric so that a
been obtained by Guendelm4®l], who showed that the homogeneous and anisotropic brane asymptotically evolves
infrared behavior of the conserved currents is singular, s¢y 3 de Sitter space-time in the presence of a positive cosmo-
there are no conserved charges associated with scale SYymni&gical constant have been derived in R&8]. In the pres-
try (which implies that in some high field region the poten-ence of a nonlocal energy density and/or a strong anisotropic
tials become flat For closed strings and branéscluding stress(i.e., a magnetic fielg a Bianchi type | brane, even
the supersymmetric casthe modified measure formulation initially expanding, is unstable and may collapse.
is possible and _does not require _the introductio_n o_f aparticu- |t js the purpose of this paper to investigate some classes
lar scale(the string or brane tensipfrom the beginning, but  of exact solutions of the gravitational field equations in the
rather these appear as integration constg2ts brane world model for the anisotropic Bianchi type | and V
The linearized perturbation equations in the generalizegyeometries, for a conformally flat bulkith vanishing Weyl
Randall-Sundrum model have been obtained, by using thnsoy. For a perfect cosmological fluid obeying a linear
covariant nonlinear dynamical equations for the gravitationaharotropic equation of state, the general solution of the field
and matter fields on the brane, by Maartg23]. The nonlo-  equations can be obtained in an exact parametric form, for
cal energy density determines the tidal acceleration in th%rbitraryy or in an exact analytic form for a stiff fluid. The
off-brane direction and can oppose singularity formation vigjinclusion of the quadratic terms in the energy-momentum
the generalized Raychaudhuri equation. Isotropy of the COSensor of the perfect cosmological fluids leads to major
mic microwave background may no longer guarantee &hanges in the early dynamics of the anisotropic universe, as
Friedmann-Robertson-Walker geometry. Vorticity on thecompared to the standard general relativistic case. We also
brane decays as in general relativity, but nonlocal bulk eftonsider the dynamics of the scalar fields on the brane for
fects can source the gravitomagnetic field, so that vector pefitferent scalar field potentials of physical interest. The be-
turbations can also be generated in the absence of vorticityhayior of the observationally important physical quantities
The behavior of an anisotropic Bianchi type | brane-worldsch as anisotropy, shear, and deceleration parameters is con-
in the presence of inflationary scalar fields has been considsigered in detail for all these models.
ered by Maartens, Sahni, and Sdi2#]. According to their The present paper is organized as follows. The field equa-
results the magnitude of the anisotropy parameter of th@ons on the brane are written down in Sec. II. In Sec. Il we
brane does not affect inflation, a large initial anisotropy in'present the general solution of the field equations for the
troducing more damping into the scalar field equation of moBjanchj type | geometry with a perfect cosmological fluid.
tion. Inflation at high energies proceeds at a higher rate thagojution of the scalar fields in the brane-world is consid-
the corresponding rate in general relativity. By numericalereq in Sec. IV. Bianchi type V space-times are investigated

integration of field equations it is also found that anisotropyijn sec. V. In Sec. VI we discuss and conclude our results.
always disappears within a fixed interval of time, no matter

what its initial value. The shear dynamics in Bianchi type |

cosmological model on a brane with a perfect fluid has been

studied in Ref[25]. For 1< y<?2 the shear has a maximum

at some moment during a transition period from nonstandard

to standard cosmology, when the matter energy density is In the 5D space-time the brane-world is located as

comparable to the brane tension. Y(X"Y=0, whereX', 1=0,1,2,3,4 are 5-dimensional coordi-
A systematic analysis, using dynamical systems technates. The effective action in five dimensiong i8]

II. BRANE GEOMETRY, FIELD EQUATIONS,
AND CONSEQUENCES
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wheree?(x) are one-forms inverse to the spatial vector triad
+ f d4X\/—_g efa(x), which have the same commutato@?,., a,b,c
V=0 =1,2,3 as the structure constants of the group of isometries
1 and commute with the unit normal vectey to the surfaces
X ( — KE—)\+ Lmatter> , ) of homogeneity, that ise,=€e}d/dx' andey=d/ 3t obey the
5 commutation relationge, ,e,]=C%pe., [€9,€4]=0.
In order to simplify the calculations we only consider ge-
with ki=87Gs the 5-dimensional gravitational coupling ometries so thaf(t) can be taken to be a diagonal matrix.

constant and wherex*, ©=0,1,2,3 are the induced We denote bya;(t), i=1,2,3 the components of the metric
4-dimensional brane world coordinaté; is the 5D intrin-  tensor on the anisotropic brane.

sic curvature in the bulk an = is the intrinsic curvature on We define the following variables:
either side of the brane.

On the 5-dimensional space-tim¢he bulk), with the
negative vacuum energis as only source of the gravita- V:.Hl a; (volume scale factoy @)
tional field the Einstein field equations are given by

1
5= | ¢\~ g5| = RsAs

3

a
Gi3=k2T)3, Ti3=—Asg;;+ 8(Y)[—\g,y+ T, @ H; :;' =1,2,3directional Hubble parameters 8
1
In this space-time a brane is a fixed point of fiesymme- >
try. In the following capital Latin indices run in the range H=3 21 H; (mean Hubble parameter 9
0, ... ,4while Greek indices take the values.0. ,3.
Assuming a metric of the forms*=(nyn;+9,))dx'dx’,  AH,=H,—H, i=1,2,3. (10)

with n,dx'=dy the unit normal to they=const hypersur-

faces andy,; the induced metric oy = const hypersurfaces, From Eqs.(7), (8), and(9) we obtainH = V/3V.
the effective four-dimensional gravitational equations on the The physical quantities of observational interest in cos-

brane take the forml6,17 mology are the expansion scalérthe mean anisotropy pa-
) 4 rameterA, the shear scalar? and the deceleration parameter
Guv=~AGu KT, +ksSy,—Eps, (3 g, all are defined according to
where 0=3H, (17
S 1TT T”‘T ! 3TT -~ T2 L [AH
;Lv_l_z - Z I + 4g,u11( aB” )! § izl (T) , (12)
@
1 1(3 3
and  A=k3(As+k2\?%/6)/2,k3=kiN/6, and E == oo :_( 2 H2—3H2| = ZAH?,
=C,a38N"'NB. CA;5 is the 5-dimensional Weyl tensor in the 2 2\i= 2
bulk and\ is the vacuum energy on the brarig,, is the (13
matter energy-momentum tensor on the brane with compo- q
nentsT®=—p, TH=T2%,=T3%=p, andT=T* , is the trace 4= gH" 1 1= H 2(H+H?). (14)

of the energy-momentum tensor. In this paper we restrict our
analysis to a conformally flat bulk geometry wi@),;5=0.
The Einstein equation in the bulk implies the conservation o
the energy momentum tensor of the matter on the brane

f The sign of the deceleration parameter indicates whether
the model inflates or not. The positive signg€torresponds
to “standard” decelerating models whereas the negative sign

TM”;V|X=o:0- (5) indicates inflation.
In the following we investigate the Bianchi type uni- lll. EVOLUTION OF PERFECT COSMOLOGICAL FLUIDS
verses that are obtained from space-time geometries that ad- ON BIANCHI TYPE | BRANE UNIVERSES

o o e, The ine lement of  Bianchi ype | spacedime, wic

3 P yp P eneralizes the flat Robertson-Walker metric to the aniso-
cosmological models are spatlally homogeneous. There | opic case, is given by
only one essential dynamical coordinate, the timand the '
gravitational field equations reduce to ordinary differential d?= —dt2+a?(t)dx2+al(t)dy?+ad(t)d2.  (15)
equations. The metric on the brane is given in the general
case by We assume that the thermodynamic presgunéthe cosmo-

) a - _ logical fluid obeys a linear barotropic equation of state
ds®=—dt*+ yap(t) el (x)dX e (x)dX, 6)  =(y—1)p,y=const and & y<2.
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Using the variableg7)—(9) the gravitational field equa- ) ) s 1.,, ) s -1

tions and the Bianchi identity on the brane take the form A=3K? 3AV“+3kjpoV _7+Zk5p0V “'+C| , (26
3
. 3y-2 3y—-1 2
2_A— 2 4 2 Ke

3H+ 2, HP=A— —5—kip— —5—ksp?, (16) o=V, 27
1d =2, y-1, , 2 2 2—y 4 2\;2-2y
va(VHi):A— Tk4p— Tksp , 1=1,2,3, (17 q=2— 36A V< +18(2— y)kipoV +3(1—y)kspgV

12AV2+12K3pV2 ™ 7+ kep2V2 27+ 4C
(28)
p+3yHp=0. 18
preYRp (18 whereK?=37_K?. .
Thus, the time evolution of the energy density of the mat- With the use of Eqs('19), (2.1)’ and(24), from Eq.(16) '.t
ter is given by follows that the arbitrary integration constants;, i
=1,2,3 andC must satisfy the consistency condition

p=poV~ ", po=const-0. (19 5
K?==C. 29
By summing Eqs(17) we find 3 29
1d -2, y-1, At densities significantly greater than the nuclear ppe
vaiVH) =A-——kip— Tkspz- (200 e.g.,p>p,, we havep— p, with the speed of sounci tend-

ing to the speed of lightg,—c. A typical approach to the
Subtracting Eq(20) back to Eqs(17) we obtain nuclear equation_ o_f state in the_very high-density regime is to
construct a relativistic Lagrangian that allows “bare” nucle-
K. ons to interact attractively via scalar meson exchange and
Hi=H-+ V' i=1,2,3, (21)  repulsively via the exchange of a more massive vector me-
son. But at the highest densities the vector meson exchange
dominates and one still has= p. Therefore the equation of
. . _ 4 state most appropriate to describe the high density regime of
con5|§tency conditior®;_,K;=0. By using the evolutl(_)n the early universe is the stiff Zeldovich one, with=2. For
equation of the matter energy density HG0), the basic , it cosmological fluid, the dynamics of the matter on the
equation describing the dynamics of the anisotropic branggne is mainly determined by the correction terms from
world for a conformally flat bulk can be written as S,.,, quadratic in the matter variables and due to the form of
the Gauss-Codazzi equations.

with K;, i=1,2,3 constants of integration satisfying the
3

V=3AV— 3(y=2) K2poVL 7~ )Zlkg‘ngl*ZV, With y=2 Eq.(23) becomes
2 t—t v.av (30
—ty= ,
and has the general solution VBAV +aVi+ B

N SR —172 where a=3k3po+C and 8= 1kip3. The time dependence
t—to:f SAVT+3kapoVT T+ 7 kspoVT 7+ C | dV, of the volume scale factor of the Bianchi type | universe in
(23) the high-energy limit is therefore given by

whereC is a constant of integration.

Therefore for a Bianchi type | induced brane geometry the V(t)=
general solution of the gravitational field equations can be
expressed in the following exact parametric form, with (3D

= :
0 taken as parameter For t=ts=ty+In(2y3BA +«a)/2y3A the volume scale
factor is zeroV(tg) =0. By reparametrizing the initial value

12
3A +3k3poV 7+ %kgpgv*ZM cv2> , (24)  of the cosmological time according to

o= VBA(t-to) \/(ez\/ﬁ(t—to)_ @)2—12A 8.

6:

exp(—2\3Aty) = a+2\3AL, (32)

the evolution of the high-density brane universe starts from

1 1 t=0 from a singular stat¥,=V(t=0)=0.

+ KEp2VA-274 C\2 dv|, i=1,2,3, (25 The time evolution of the expansion, scale factors, anisot-
4 ropy, shear, and deceleration parameter are given by

aj= aOiv1’3exp[ K, f ( 3AVA+3KipVAT7
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4 ﬁ(t to) 2+ 12AIB
6(t) = \3A IO a7 1205 (33

a;(t)=ag e VAR 0[(23M(10) — 4)2— 127 B]¥0exy 2K F (e (1-1)], =123, (34)
A(t)_ 12K282v“ﬁ(t—to)[(eZ\fﬁ(t—to)_ a)2_ 12A,B] (35)
= (e4\337(t—t0)_ a2+ 12AB)2 ’
2 6K2A82 V3A(t—tg)
( )_( 2\3A(t— to)_a)Z 12AB (36)
43X (t—tg) 2_ _ 9a2V3A(t—tg)
q(t)=12€2"cﬁ(t_t0) a€ O+ (a—12AB)(a—2e o)) 1 37
[e4\«“ﬁ(t7t0)_ a?+ 12/\3]2 !
|

where ag; , i=%,2,3 2are arbit[alr/)zl constants of integration  As suggested by particle physics models, scalar _fieﬂzds,

an(ljflf[IgX):f[(Xl —a) I_ 12AtB]t _ dX-A o th u with energy density and pressure given fy,=¢%/2

e cosmological constant is zer e evolution U(4) andp,= 22— U (), respectively, wher& () is

of the brane universe in the extreme limit of high densities i '%he Se

lar fiel ial I f |
described by alar field potential, are supposed to play a fundamenta

role in the evolution of the early universe. For a Bianchi type
I brane-universe filled with a scalar field the gravitational

V(t)=\/i_\/a2(T0)2—,8, 39) field equations take the form
(% 3 2
3H+ 2, HI=K{[U(¢) - ¢%]- k“{% +U(¢>)
@?(t—to)
)=———— (39
a“(t—tg)°— B +Z ——u ” (44)
ai(t):aOi[az(t_to)z_,B]l/G[C_Y(t—to) 1d , JE _
a2(t_t0)2_B]Ki/v’a' i=1,2,3, (40) vd—(VH) k U(¢) —_U ((f)) , 1=1,23.
(45
A(t)= 3_K2 a*(t—19)*— (41) The scalar field also obeys the following evolution equa-
@ (t—ty)? tion:
. . dU(¢)
2 +3H¢+ =0. (46)
T — @ P gy

2L a*(t=to)*= B’ . .
Depending on the functional form of the potentld( ¢),
several cosmological scenarios of scalar field evolution on
q(t) =2+ 3B 43) the bran(_a can be obtained. _ .
a?(t—tg)?’ As a first example we consider that the scalar field poten-
tial is a constantlJ (¢)= A =const>0. The potential acts as
a cosmological constant. Hence Egb) gives ¢=2¢0/V,
IV. SCALAR FIELD EVOLUTION ON THE ANISOTROPIC with ¢o>0 a constant of integration. Adding Eqé5) we

BIANCHI TYPE | BRANE find the basic equation describing the dynamics of the con-

In the previous sections we have considered the evolutio§t@nt potential scalar field on the brane:
of ordinary matter, obeying a barotropic equation of state, on
the branelike universe. In this case the gravitational field _ 7‘_

. . : V=2\V : (47)

equations can be solved exactly, with the general solution &
represented in an exact parametric form for arbitrargnd
in an exact analytic form in the extreme limit of high densi- where we denotedl =3k2A + kA 2/4 and\ o=ki¢¢>0.
ties, corresponding to=2. The general solution of Ec{47) is given by
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1 - — - are given byp,=1v,$%2 and p,=(2—1y,) $*/2, respec-

V()= meﬂ (1@ Rt - C)2—aneh, (489 tively. The evolution equation for the scalar field gives
=2¢,V V7. The evolution equation for the volume scale
factor becomes

with C a constant of integration. This solution is similar to . 5 2 1- 20y 4,4 14ty

the solution corresponding to the stiff matter cosmological V=6K;do(v4— DV ?=Ksdoyp(2— v4)V ’,

fluid and all the other physical quantities can be obtained (49

from Egs. (33)—(37) by means of the formal substitutions

3A—\,a—C, and B—\y. Therefore, by choosing the

value oft, such that expt2y\ty)=C+ V4\o\, then the

brane Universe evolves frort=0 with a singular initial t—to:f [6kﬁ¢§y¢vz‘2’7¢+ k‘5‘¢éyfﬁvz‘4’7¢+0]‘1’2dv,

state.

As a second example of scalar field evolution on the brane (50

we consider a scalar field with potential energy proportionalyith t, and C arbitrary constants of integration. The time

to the kinetic one, so that(¢)=(y,— 1)£¢>2/2,y¢=const variation of the physically important parameters is given in a
>1 [29]. The energy density and pressure of the scalar fielgharametric form, withv taken as parameter, by

and has the general solution

0=1\/6kidgysV s +kedgysV Ye+CV 2, (51)
aj=a;oV"? exp[ K, f (6KG oy sV~ 210+ kedgys VA Hre+CV2) “ VAV, (52
3K?2
A=—7s / 4,4 2 / ' (53)
6kZpGy V2~ Z o+ KsdoyVe e+ C
K2
02=7V72, (54)

L 18Ga(7e— VPP e+ BKedgye(ve—2) Ve

-2 , (55)
q BKZ P2y V2 Dot Kegly2VE et C

d— Pph=2dq f [6K; 5y 4V2 270+ Kagpgys V2 76+ Cl YA~ dV, (56)

with a;p, i=1,2,3 and¢| constants of integration. In this the moduli with form fields on the internal spaces. Exponen-
model the scalar field satisfies an equation of state of th#al potentials can also arise due to nonperturbative effects
form p,=(2/y4—1)pg. such as gaugino condensation.

The cosmological behavior of universes filled with a sca-  For the flat isotropic Friedmann-Robertson-Walker geom-
lar field, ¢, as well as a Liouville type exponential potential €ry @ particular solution of the field equations with
U(¢p)=Ae % A k=const-0, has been extensively inves- = dlnt, has been 'obtamed by Barrc[m]. In _the frameyvork
tigated in the physical literature for both homogeneous an&' Ige'nera; rﬁlatlwty there is no anisotropic Bianchi type |
inhomogeneous scalar fielgsr a discussion of the physical S° ution of this type. . _
relevance of the exponential potential see K&, and ref- We try to generalize this solution for the case of the scalar

. L . fields confined on the brane. By assuming that the constants
erences there)n The exponential type potential arises in the

four-dimensional effective Kaluza-Klein type theories from k_and 0 satisfy the conditiork5=2_, itis easy to chec_k by
o . . . ) direct calculations that the following expressions satisfy the

compactification of the higher-dimensional supergravity Olfiald equationg44)—(46):

superstring theories. In string or Kaluza-Klein theories the

moduli fields associated with the geometry of the extra di-

mensions may have effective exponential potentials due to V(t)=V,t?, H(t)= Et‘l

the curvature of the internal spaces or to the interaction of o 3’
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a;(t)=a;gt?exp — Kivglt‘l), i=1,2,3, (57) In the case of this simple model the scalar field potential
can also be given, in the isotropic case, as a function of the
3 oy L oo 4 1 volume scale factorJ~V~1. It is interesting to find the
A= 7KV %, o%(O)=5KV 7, q(t) =3, general solution of the field equations for this choic&Jdbr
the anisotropic brane, without imposing any supplementary
(58) - . .
restrictions on the physical variables. For the sake of gener-

2 2 ality we consider a more general problem, with a general
d(t)= Int, U(t)=—2t‘2. (59 functional dependence of the scalar field potential on the
\/§k4 3k, volume scale factoU=U(V). With this assumption the

Klein-Gordon equation for the scalar fie{d6) can be inte-

The scalar field and the potential are determined by th%rated to give

four-dimensional coupling constant, With(\=2/3k§, k

=3k, and §=2/\/3k,. The integrations constants;, i 2 du
. . . 2 _ 2

=1,2,3 satisfy the consistency conditioBa ,K;=0. ¢ _VZ(B fV dVdV>

However, if we substitute above results to E44), then

we will find a constraint on the constants of integratiéh  gng

= —8kaV3/27k;. From the expression d¢f? we can see that _

for the general relativistic cas&g=0, only isotropic solu- ¢? 1

tions can exist, nameljK?=33 ,K?=0, leading toK; p¢:7+UZW[B+Y(V)]' (61

=0Vi and to a zero pressure scalar fief)=0. For the

brane world model, the constraint condition #f indicates where B is a constant of integration andY(V)

that the scalar field driven brane universe with exponentia=2[VU(V)dV. The general solution of the gravitational

type potential and with a simple logarithmic time depen-field equations on the brane can be expressed again in an

(60

dence of the scalar field cannot exist, in general. exact parametric form, wit as parameter:
4 —1/2
3 2 2 Ks -2 2
t—t0=f EK +3k4[B+Y(V)]+ZV [B+Y(V)] dv, (62
_ o [Pray-2 2y/-2 Ks —4 2
6=\ 5KV 23KV B+ Y(V) ]+ 2V B+ Y(V) )%, (63)
3 k4 —-1/2
ai=ai0V1/3exp{ Ki”§K2v2+3k§vz[B+Y(V)]+ ZS[B-FY(V)]Z} dv], i=1,2,3, (64)
3K?
A= 7 , (65)
3 ) ks
§K2+3k4[B+Y(V)]+ZV‘Z[B+Y(V)]2
K2
ol=—, 66
2 (66)

- 18K3VY' (V) +3keV B+ Y(V)]Y' (V) —3keV B+ Y(V)]?
6K2+ 12k B+ Y(V)]+keV B+ Y(V)]?

q=2 ) (67)

V2B+2Y(V)—VY'(V)dV

(68)

¢_¢0_J 3 kg )
\/EK2V2+3k§[B+Y(V)]V2+Z[B+Y(V)]2
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with tg,a;9, 1=1,2,3 and¢, constants of integration and 1 d , y=2 , v1.,, .
Y,(V)ZdY(V)/dV va(VHi)—zal :A_Tk4 —?k5 , 1=1,2,3,
Suppose that the scalar field potential is given, as a func- (76)

tion of the volume scale factor, by the simple relation

=ug/V, with uy>0 a constant. Then, by denoting

=3kjup/2 and 7= (3K2+ 2kgu3)/12k3u, and taking the in- 2H,—Hy—Hs=0, 77
tegration constanB=0, the general solution of the gravita-

tional field equations for the scalar field confined on the an-

isotropic brane take the form b+37HP:0- (79)

20(t—t) 69) From Eq.(77) we obtaina,a;=a3, leading tovV=a3. The
w(t—tg)2— 7 distribution of the matter energy density on the brane is
given again byp=poV~". Adding Egs.(76) we obtain

V() =w(t—ty)?—7, 6(t)=

ai()=ai [] [Vo(t—to)+ej7] siKi207 =123, 1d y 1
=12 = (VHy=A+av B2, Y2y 2 (7
(70 V dt 2 12 57
A 3K?2 20 K2 - Subtracting Eq(79) from Eqgs.(76) leads again to
T a0(t—tp)?’ T 2e(t-tg) 77
K.
Hi=H+{, 1=123, (80)
(t)= 1 N 37
a 2 2w(t—tg)? _ _ _ . L
(72 with K;, i=1,2,3 constants of integration satisfying the
consistency conditioz?_;K;=0.
2 © Substitution of the Hubble parametdts, i=1,2,3 into
¢(t)=\/§k sinh™* ;(t—to)z—l : Eq. (77) gives X, =K,+Kj and, consequently, we obtain
4
Ki=0, Ky=—-Kj. 81
Ult)=——2 U(¢)=@sinh—z( ﬁk“qs) 73 R -
w(t—t0)2—7'7 T 2 (3

The general dynamics of the Bianchi type V space-time is
described by the equation

where we have also takepp,=0 and denoted;=+1, &,

=—1. . 3(y—2 -1
V=6V3+3AV- (72 )kipovlﬂ— r= 7 Kepgvi 2,
(82
V. PERFECT FLUID BIANCHI TYPE V BRANE
COSMOLOGIES
) ] . ) with the general solution
The line element of a Bianchi type V space-time, repre-
senting the anisotropic generalization of the open—1
Robertson-Walker geometry, is given by
t—to= f (9v4’3+3Av2+3kfuoov27
ds?=—dt?+a3(t)dx?+ad(t)e >* dy>+aj5(t)e > dZ. 1 —12
(74 + Zkg‘png*Zuc dv, (83
The effective Einstein field equations on the brane are
given by whereC is a constant of integration.
Therefore for a Bianchi type V induced brane geometry
3 the general solution of the gravitational field equations can
3y-2 37—1kg p? (75) be expressed in the following exact parametric form, with

Kip—

3H+ >, H?=A—
=1

2 12 V=0 taken as parameter:
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1 1/2
a=<9v—2/3+ 3A+3k2poV 7+ Zkg‘pgv—27+ cv-Z) , (84)
1 —-1/2
ai:aOiV”?’ex;{Ki f (9v1°’3+ 3AVA+3Kk3pV4 7+ Zkgpgv“*zu cvz) dv}, i=1,2,3, (85
1 -1
A= 3K2( OVA3+3AV2+3k3poV2 T+ Zkgp§v2*27+ c| , (86)
K2
0'2:7V_2, (87)
TV 36A V2 +18(2— y)kipoV2 Y+ 3(1— y)kepgVZ 2
g=2— > 72 (898
36VH3+ 12AV2+ 12k5pV2 ™ Y+ KepgV2 27+ 4C
[
whereK?= E?ZlKiz. parameter of the Bianchi type | space-time is represented, for

Substitution of the Hubble parameter and of the densitydifferent values ofy, in Fig. 1. At high densities the brane
into Eq.(75) gives the second consistency condition satisfiedJniverse starts its evolution from an isotropic state, with
by the constant;, i=2,3: A(tp) =0. The anisotropy increases and reaches a maximum
value after a finite time intervdl,,,, and fort>t,., the
mean anisotropy is a monotonically decreasing function,
tending to zero in the large time limit. This behavior is in
sharp contrast to the usual general relativistic evolution, il-
Hence we can express the integration const&t,; as lustrated by the casg=1 in Fig. 1 (for this choice the

2 2
K 3c. (89

functions of the constart: quadratic contribution to the energy-momentum tensor van-
ishes, in which the Universe is born in a state of maximum
C C anisotropy. In the initial stage the evolution is noninflation-

K=\ 3 Ke=+V\3 (90)  ary, but in the large time limit the brane universe ends in an

inflationary stage. In Fig. 2 we present the dynamics of the

In the limit of high matter densitiesy=2) the general so- deceleration parameter for different valuesyofin the limit
lution of the gravitational field equations for a Bianchi type Of smallt (and smallV, alsg, and withC=0, from Eq.(23)
V geometry cannot be expressed in an exact ana'ytic form_We Obtaan'vtl/V (th|S result is valid for both Bianchi type |
and V geometrigs Therefore in the early stages of evolution
of the Universe the mean anisotropy variesfast®~ 2.
Near the singular point the scale factors behaveags
In the present paper we have considered some classes oft Y3 exd v/(1+ y)Ki’tl*l’“/]. The deceleration parameter is
exact solutions of the gravitational field equations on the
brane world in the framework of the Randall-Sundrum sce-
nario. The Randall-Sundrum mechanism was originally mo- 0.
tivated as a possible mechanism for evading Kaluza-Klein
compactification by localizing gravity in the presence of an 0.
uncompactified extra dimension. In this model, the
5-dimensional bulk space-time is assumed to be vacuum ex- 0.
cept for the presence of a cosmological constant. Matter
fields on the brane are regarded as responsible for the dy- 0.
namics of the brane. The quadratic terms in the energy-
momentum tensor, due to the form of the Gauss-Codazzi
equations, may be important in the very early stages of the
Universe, leading to major changes in the dynamics of

the Universe. FIG. 1. Variation as a function of time of the anisotropy param-

For a perfect linear barotropic cosmological fluid confinedeter of the Bianchi type | brane universe with confined perfect cos-
on the brane, the early cosmological evolution in anisotropignological fluid for y=2 (solid curve, y=4/3 (dotted curvg and
Bianchi type | and V geometries is fundamentally changedy=1 (dashed curve The constants have been normalized accord-
by the inclusion of the terms proportional to the square of théng to the conditons &=1, 3k3po=1,kep3/4=1,C=1,
energy density. The time variation of the mean anisotropyandK?=2/3.

VI. DISCUSSIONS AND FINAL REMARKS

N3N
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given byq=3y—1. Figures 3 and 4 present the time evolu-
tion of the mean anisotropy and deceleration parameter for

the brane with Bianchi type V geometry, the general features 0.
of the cosmological dynamics being similar to the Bianchi
type | case.

The general evolution of scalars fields confined on the
anisotropic brane is also modified by the presence of the
guadratic terms in the energy-momentum tensor. For a con-
stant potential scalar field, the solution of the gravitational
field equations is very similar to the stiff cosmological fluid
case, with the cosmic evolution starting from an isotropic 0 0.2 0.4 0.6 0.8 1 1.2 1.4
state, with zero anisotropy and with a maximum anisotropic t
phase reached after a finite timg,,. The dynamics of the
scalar field satisfying the equation of stape,=(2/v,

FIG. 3. Variation as a function of time of the anisotropy param-
eter of the Bianchi type V brane universe with confined perfect
~1py, v4>1, depends on the values gf,. For 1<y, cosmological fluid fory=2 (solid curve, y=4/3 (dotted curveg

<3/2, the Umve_rse_ 1S bom In an isotropic State’_ bUI and y=1 (dashed curve The constants have been normalized ac-
>3/2 the behavior is similar to the general relativistic CaS€rording to the conditions &=1 3K2po=1,klp2/4=1,C=1

with an infinite initial anisotropy, which rapidly decays to gnqk2=2/3.
zero. For smally, the evolution is noninflationary. In the

I|m|t of Iar'ge 7y the sqalar field behaves as a cosmologlcal-l-he time variations of the anisotropy and deceleration pa-
flu_|d obeying an equation of state of the_ fopm = “Ps- N ameters are represented, for different valuey pf in Figs.
this case and for large times the behavior of the Universe I8 and 6.
described by Scalar fields with potentials of the formU(¢)
=U, sint?(a¢),Uy,B,a=const, have been recently consid-
ered in quintessence models as tracker solutions of the gravi-
tational field equations, which can drive the Universe in its
present nondecelerating phd$2]. For such a type of po-

H K, tential we have obtained the general solution of the field
a;=4a,g eXF(

1

V:VOGXqut), H_ 3H0,

?Ot— We‘HOt , 1=1,23, (91)  equations in the case of the anisotropic brane world@&or
0’0 = —2. The asymptotic behavior of the potential corresponds
to an inverse power-law-like form for smaky, U(¢)
K? ~¢ 2 and to an exponential one for large values of the
A= V2H2 exp—2Hol), q=—1, ¢=2¢t, scalar fieldU () ~e ™ 3%4%_|n this model the Universe starts
oHG RO ! : ; .
from a state with infinite anisotropy and ends in an isotropic
phase, but the evolution is generally noninflationary, vgth
pg=2h5y 4= const, (92 >0 for all times.
It is interesting to note that in two measure gravitational

whereHy= ¢ /6k42y¢+ k2[5¢0272¢>' In the large time limit the theories with scale invariance a dilaton field with exponential
Universe ends in an isotropic de Sitter inflationary phasetyPe potentials has to be also introduced, leading to non-

2.5 2

2 1.5
1.5

o 1 o 1

0.5 0.5
0

-0.5 0
-1

0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
t t

FIG. 2. Variation as a function of the time of the deceleration FIG. 4. Variation as a function of the time of the deceleration
parameterq of the Bianchi type | brane geometry, with perfect parameterg of the Bianchi type V brane geometry, with perfect
cosmological fluid confined on the brane, fpe=2 (solid curve, cosmological fluid confined on the brane, fee=2 (solid curve,
v=4/3 (dotted curvg and fory=1 (dashed cunje The constants y=4/3 (dotted curvg and fory=1 (dashed curye The constants
have been normalized according to the conditiods=3L, 3k2p, have been normalized according to the conditioms=3L, 3k3p,
=1,kip34=1, andC=1. =1,kip3l4=1, andC=1.
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1.4 3

1.2 2.5
1

0.8 2‘1

L o' 1.5} .

0.6 [N

0.4 1 L

0.2 0.5 \\\
O Tt

0 0.250.50.75 1 1.251.51.75
t

0
0 0.250.50.75 1 1.251.51.75
t

FIG. 5. Variation as a function of time of the anisotropy param-

. . - . ) . FIG. 6. Variation as a function of time of the deceleration pa-
eter of the Bianchi type | brane universe with confined scalar fields . . : . )
- . - - . rameterq of the Bianchi type | brane universe with confined scalar
obeying the equation of stafg,=(2/y,—1)p,, for y,=1.5(solid

curve, y,=2 (dotted curvg andy,=5 (dashed curve The con- fields obeying the equation of stapg,=(2/y,—1)p, for v,=1.5

stants have been normalized according to the conditid(ﬁsbﬁ (solid curve, ,=2 (dotted curvg andy,=5 (_dashed curv)eThe__
4,4 2 constants have been normalized according to the conditions
=1,ks¢y=1,C=1, andK=1.

6kips=1,kipg=1, andC=1.

trivial mass generation. Interpolating models for natural tran- . ) .

sition from inflation to a slowly accelerated universe at late 8Xact analytic solutions cannot be generally obtained for sca-
times appear naturall{22]. For cosmological models with- lar field models in Bianchi type V space-times, but the gen-
out the cosmological constant problem and theories of exeral physical b_ehz_iwor of scalar fields in both geometries has
tended objectgstrings, braneswithout a fundamental scale the same qualitative features.

see Guendelmaf83,34.

We have not presented the solutions corresponding to sca-
lar fields confined to the Bianchi type V brane world. Their
mathematical form is very similar to the Bianchi type | case, The work of C.M.C. is supported by the Taiwan CosPA
with one correction term, proportional ¥*° added to the project and, in part, by the Center of Theoretical Physics at
parametric time equation. Due to the presence of this termi\TU and National Center for Theoretical Science.
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