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Exact anisotropic brane cosmologies
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We present exact solutions of the gravitational field equations in the generalized Randall-Sundrum model for
an anisotropic brane with Bianchi type I and V geometry, with perfect fluid and scalar fields as matter sources.
Under the assumption of a conformally flat bulk~with a vanishing Weyl tensor! for a cosmological fluid
obeying a linear barotropic equation of state the general solution of the field equations can be expressed in an
exact parametric form for both Bianchi type I and V space-times. In the limiting case of a stiff cosmological
fluid with pressure equal to the energy density, for a Bianchi type I universe the solution of the field equations
is obtained in an exact analytic form. Several classes of scalar field models of evolution on the brane are also
considered, corresponding to different choices of the scalar field potential. For all models the behavior of the
observationally important parameters such as shear, anisotropy, and the deceleration parameter is considered in
detail.
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I. INTRODUCTION

In two recent papers Randall and Sundrum@1,2# have
shown that a scenario with an infinite fifth dimension in t
presence of a brane can generate a theory of gravity w
mimics purely four-dimensional gravity, both with respect
the classical gravitational potential and with respect to gra
tational radiation. The gravitational self-couplings are n
significantly modified in this model. This result has be
obtained from the study of a single 3-brane embedded in
dimensions, with the 5D metric given byds2

5e2 f (y)hmndxmdxn1dy2, which can produce a large hiera
chy between the scale of particle physics and gravity du
the appearance of the warp factor. Even if the fifth dimens
is uncompactified, standard 4D gravity is reproduced on
brane. In contrast with the compactified case, this follo
because the near-brane geometry traps the massless gra
Hence this model allows the presence of large or even
nite noncompact extra dimensions. Our brane is identifie
a domain wall in a 5-dimensional anti–de Sitter space-tim

The Randall-Sundrum model was inspired by superstr
theory. The ten-dimensionalE83E8 Heterotic string theory,
which contains the standard model of elementary partic
could be a promising candidate for the description of the r
universe. This theory is connected with an eleve
dimensional theory, M theory, compactified on the orbifo
R103S1/Z2 @3#. In this model we have two separated te
dimensional manifolds.

The static Randall-Sundrum solution has been extende
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time-dependent solutions and their cosmological proper
have been extensively studied in papers, too many to
them all@4–11# ~for a recent review of dynamics and geom
etry of brane universes see Ref.@12#!. In one of the first
cosmological applications of this scenario it was pointed
that a model with a noncompact fifth dimension is potentia
viable, while the scenario which might solve the hierarc
problem predicts a contracting universe, leading to a var
of cosmological problems@13#. By adding cosmological con
stants to the brane and bulk, the problem of the correct
havior of the Hubble parameter on the brane has been so
by Cline, Grojean, and Servant@14#. As a result one also
obtains normal expansion during nucleosynthesis, but fa
than normal expansion in the very early universe. The c
ation of a spherically symmetric brane-world in AdS bu
has been considered, from a quantum cosmological poin
view, with the use of the Wheeler-deWitt equation, by A
chordoqui, Nun˜ez, and Olsen@15#.

The effective gravitational field equations on the bra
world, in which all the matter forces except gravity are co
fined on the 3-brane in a 5-dimensional space-time w
Z2-symmetry have been obtained, by using an elegant g
metric approach, by Shiromizu, Maeda, and Sasaki@16,17#.
The correct signature for gravity is provided by the bra
with positive tension. If the bulk space-time is exact
anti–de Sitter, generically the matter on the brane is requ
to be spatially homogeneous. The electric part of
5-dimensional Weyl tensorEIJ gives the leading order cor
rections to the conventional Einstein equations on the bra
The four-dimensional field equations for the induced me
and scalar field on the world-volume of a 3-brane in t
five-dimensional bulk with Einstein gravity plus a sel
interacting scalar field have been derived by Maeda
Wands@18#. The effective four-dimensional Einstein equ
©2001 The American Physical Society13-1
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tions include terms due to scalar fields and gravitatio
waves in the bulk.

From a general theoretical point of view brane cosmolo
cal models are two-measure theories, since they have
independent Lagrangians, one associated to the brane
other associated to the bulk. Another two measure theory
been proposed by Guendelman@19#, in which the energy-
momentum tensor is also a nonlinear function of the gene
relativistic energy-momentum tensor. Because of scale
variance, the true vacuum state has zero energy den
when the theory is analyzed in the conformal Einstein fram
Field theory models, constructed in a gravitational the
where a measure of integrationF in the action is not neces
saryA2g, but is determined dynamically through addition
degrees of freedom, have been presented in Ref.@20#. In this
type of theory it is possible to combine the solution of t
cosmological constant problem with the possibility of infl
tion and spontaneously broken gauge unified theories.
models with global scale invariance allow for nontrivial sc
lar field potentials and masses for particles, so that the s
symmetry must be broken. The conserved quantities h
been obtained by Guendelman@21#, who showed that the
infrared behavior of the conserved currents is singular,
there are no conserved charges associated with scale sym
try ~which implies that in some high field region the pote
tials become flat!. For closed strings and branes~including
the supersymmetric case! the modified measure formulatio
is possible and does not require the introduction of a part
lar scale~the string or brane tension! from the beginning, but
rather these appear as integration constants@22#.

The linearized perturbation equations in the generali
Randall-Sundrum model have been obtained, by using
covariant nonlinear dynamical equations for the gravitatio
and matter fields on the brane, by Maartens@23#. The nonlo-
cal energy density determines the tidal acceleration in
off-brane direction and can oppose singularity formation
the generalized Raychaudhuri equation. Isotropy of the c
mic microwave background may no longer guarantee
Friedmann-Robertson-Walker geometry. Vorticity on t
brane decays as in general relativity, but nonlocal bulk
fects can source the gravitomagnetic field, so that vector
turbations can also be generated in the absence of vorti

The behavior of an anisotropic Bianchi type I brane-wo
in the presence of inflationary scalar fields has been con
ered by Maartens, Sahni, and Saini@24#. According to their
results the magnitude of the anisotropy parameter of
brane does not affect inflation, a large initial anisotropy
troducing more damping into the scalar field equation of m
tion. Inflation at high energies proceeds at a higher rate t
the corresponding rate in general relativity. By numeri
integration of field equations it is also found that anisotro
always disappears within a fixed interval of time, no mat
what its initial value. The shear dynamics in Bianchi type
cosmological model on a brane with a perfect fluid has b
studied in Ref.@25#. For 1,g,2 the shear has a maximum
at some moment during a transition period from nonstand
to standard cosmology, when the matter energy densit
comparable to the brane tension.

A systematic analysis, using dynamical systems te
04401
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niques, of the qualitative behavior of the Bianchi type I a
V cosmological models in the Randall-Sundrum brane wo
scenario, with matter on the brane obeying a barotro
equation of statep5(g21)r, has been performed by Cam
pos and Sopuerta@26#. In particular, they constructed th
state spaces for these models and discussed what new cr
points appear, the occurrence of bifurcations and the dyn
ics of the anisotropy. Expanding Bianchi type I and V bran
worlds always isotropize, although there could be interme
ate stages in which the anisotropy grows. Near the big-b
the anisotropy dominates forg<1, in opposition to the gen-
eral relativistic situation when it dominates forg,2. Frolov
@27# has shown that the geometrical construction of the R
dall and Sundrum brane world can be carried out, without
assumption of spatial isotropy, by means of an homogene
and anisotropic Kasner type solution of the Einstein-A
equations in the bulk. The brane equations of motion in t
anisotropic space-time are solved by a static brane confi
ration, with the geometry of the 3-brane given by the 4
Kasner solution. The set of sufficient conditions, which m
be satisfied by the brane matter and bulk metric so tha
homogeneous and anisotropic brane asymptotically evo
to a de Sitter space-time in the presence of a positive cos
logical constant have been derived in Ref.@28#. In the pres-
ence of a nonlocal energy density and/or a strong anisotr
stress~i.e., a magnetic field!, a Bianchi type I brane, even
initially expanding, is unstable and may collapse.

It is the purpose of this paper to investigate some clas
of exact solutions of the gravitational field equations in t
brane world model for the anisotropic Bianchi type I and
geometries, for a conformally flat bulk~with vanishing Weyl
tensor!. For a perfect cosmological fluid obeying a line
barotropic equation of state, the general solution of the fi
equations can be obtained in an exact parametric form,
arbitraryg or in an exact analytic form for a stiff fluid. The
inclusion of the quadratic terms in the energy-moment
tensor of the perfect cosmological fluids leads to ma
changes in the early dynamics of the anisotropic universe
compared to the standard general relativistic case. We
consider the dynamics of the scalar fields on the brane
different scalar field potentials of physical interest. The b
havior of the observationally important physical quantiti
such as anisotropy, shear, and deceleration parameters is
sidered in detail for all these models.

The present paper is organized as follows. The field eq
tions on the brane are written down in Sec. II. In Sec. III w
present the general solution of the field equations for
Bianchi type I geometry with a perfect cosmological flui
Evolution of the scalar fields in the brane-world is cons
ered in Sec. IV. Bianchi type V space-times are investiga
in Sec. V. In Sec. VI we discuss and conclude our result

II. BRANE GEOMETRY, FIELD EQUATIONS,
AND CONSEQUENCES

In the 5D space-time the brane-world is located
Y(XI)50, whereXI , I 50,1,2,3,4 are 5-dimensional coord
nates. The effective action in five dimensions is@18#
3-2
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S5E d5XA2g5S 1

2k5
2

R52L5D 1E
Y50

d4xA2g

3S 1

k5
2

K62l1LmatterD , ~1!

with k5
258pG5 the 5-dimensional gravitational couplin

constant and wherexm, m50,1,2,3 are the induced
4-dimensional brane world coordinates.R5 is the 5D intrin-
sic curvature in the bulk andK6 is the intrinsic curvature on
either side of the brane.

On the 5-dimensional space-time~the bulk!, with the
negative vacuum energyL5 as only source of the gravita
tional field the Einstein field equations are given by

GIJ5k5
2TIJ , TIJ52L5gIJ1d~Y!@2lgIJ1TIJ

matter#.
~2!

In this space-time a brane is a fixed point of theZ2 symme-
try. In the following capital Latin indices run in the rang
0, . . . ,4while Greek indices take the values 0, . . . ,3.

Assuming a metric of the formds25(nInJ1gIJ)dxIdxJ,
with nIdxI5dx the unit normal to thex5const hypersur-
faces andgIJ the induced metric onx5const hypersurfaces
the effective four-dimensional gravitational equations on
brane take the form@16,17#

Gmn52Lgmn1k4
2Tmn1k5

4Smn2Emn , ~3!

where

Smn5
1

12
TTmn2

1

4
Tm

aTna1
1

24
gmn~3TabTab2T2!,

~4!

and L5k5
2(L51k5

2l2/6)/2,k4
25k5

4l/6, and E IJ

5CIAJBnAnB. CIAJB is the 5-dimensional Weyl tensor in th
bulk andl is the vacuum energy on the brane.Tmn is the
matter energy-momentum tensor on the brane with com
nentsT0

052r, T1
15T2

25T3
35p, andT5Tm

m is the trace
of the energy-momentum tensor. In this paper we restrict
analysis to a conformally flat bulk geometry withCIAJB[0.
The Einstein equation in the bulk implies the conservation
the energy momentum tensor of the matter on the brane

Tm
n

;nux5050. ~5!

In the following we investigate the Bianchi type un
verses that are obtained from space-time geometries tha
mit a simple transitive three-dimensional group of isometr
G3 on spacelike hypersurfaces. Hence the correspon
cosmological models are spatially homogeneous. Ther
only one essential dynamical coordinate, the timet, and the
gravitational field equations reduce to ordinary different
equations. The metric on the brane is given in the gen
case by

ds252dt21gab~ t !ei
a~x!dxiej

b~x!dxj , ~6!
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whereei
a(x) are one-forms inverse to the spatial vector tri

ea
i (x), which have the same commutatorsCa

bc , a,b,c
51,2,3 as the structure constants of the group of isomet
and commute with the unit normal vectore0 to the surfaces
of homogeneity, that is,ea5ea

i ]/]xi ande05]/]t obey the
commutation relations@ea ,eb#5Cc

abec , @e0 ,ea#50.
In order to simplify the calculations we only consider g

ometries so thatgab(t) can be taken to be a diagonal matri
We denote byai(t), i 51,2,3 the components of the metr
tensor on the anisotropic brane.

We define the following variables:

V5)
i 51

3

ai ~volume scale factor!, ~7!

Hi5
ȧi

ai
, i 51,2,3~directional Hubble parameters!, ~8!

H5
1

3 (
i 51

3

Hi ~mean Hubble parameter!, ~9!

DHi5Hi2H, i 51,2,3. ~10!

From Eqs.~7!, ~8!, and~9! we obtainH5V̇/3V.
The physical quantities of observational interest in c

mology are the expansion scalaru, the mean anisotropy pa
rameterA, the shear scalars2 and the deceleration paramet
q, all are defined according to

u53H, ~11!

A5
1

3 (
i 51

3 S DHi

H D 2

, ~12!

s25
1

2
s iks ik5

1

2 S (
i 51

3

Hi
223H2D 5

3

2
AH2,

~13!

q5
d

dt
H212152H22~Ḣ1H2!. ~14!

The sign of the deceleration parameter indicates whe
the model inflates or not. The positive sign ofq corresponds
to ‘‘standard’’ decelerating models whereas the negative s
indicates inflation.

III. EVOLUTION OF PERFECT COSMOLOGICAL FLUIDS
ON BIANCHI TYPE I BRANE UNIVERSES

The line element of a Bianchi type I space-time, whi
generalizes the flat Robertson-Walker metric to the an
tropic case, is given by

ds252dt21a1
2~ t !dx21a2

2~ t !dy21a3
2~ t !dz2. ~15!

We assume that the thermodynamic pressurep of the cosmo-
logical fluid obeys a linear barotropic equation of statep
5(g21)r,g5const and 1<g<2.
3-3
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Using the variables~7!–~9! the gravitational field equa
tions and the Bianchi identity on the brane take the form

3Ḣ1(
i 51

3

Hi
25L2

3g22

2
k4

2r2
3g21

12
k5

4r2, ~16!

1

V

d

dt
~VHi !5L2

g22

2
k4

2r2
g21

12
k5

4r2, i 51,2,3, ~17!

ṙ13gHr50. ~18!

Thus, the time evolution of the energy density of the m
ter is given by

r5r0V2g, r05const.0. ~19!

By summing Eqs.~17! we find

1

V

d

dt
~VH!5L2

g22

2
k4

2r2
g21

12
k5

4r2. ~20!

Subtracting Eq.~20! back to Eqs.~17! we obtain

Hi5H1
Ki

V
, i 51,2,3, ~21!

with Ki , i 51,2,3 constants of integration satisfying th
consistency condition( i 51

3 Ki50. By using the evolution
equation of the matter energy density Eq.~20!, the basic
equation describing the dynamics of the anisotropic br
world for a conformally flat bulk can be written as

V̈53LV2
3~g22!

2
k4

2r0V12g2
g21

4
k5

4r0
2V122g,

~22!

and has the general solution

t2t05E S 3LV213k4
2r0V22g1

1

4
k5

4r0
2V222g1CD 21/2

dV,

~23!

whereC is a constant of integration.
Therefore for a Bianchi type I induced brane geometry

general solution of the gravitational field equations can
expressed in the following exact parametric form, withV
>0 taken as parameter:

u5S 3L13k4
2r0V2g1

1

4
k5

4r0
2V22g1CV22D 1/2

, ~24!

ai5a0iV
1/3expFKiE S 3LV413k4

2r0V42g

1
1

4
k5

4r0
2V422g1CV2D 21/2

dVG , i 51,2,3, ~25!
04401
-
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A53K2S 3LV213k4
2r0V22g1

1

4
k5

4r0
2V222g1CD 21

, ~26!

s25
K2

2
V22, ~27!

q522
36LV2118~22g!k4

2r0V22g13~12g!k5
4r0

2V222g

12LV2112k4
2r0V22g1k5

4r0
2V222g14C

,

~28!

whereK25( i 51
3 Ki

2 .
With the use of Eqs.~19!, ~21!, and~24!, from Eq.~16! it

follows that the arbitrary integration constantsKi , i
51,2,3 andC must satisfy the consistency condition

K25
2

3
C. ~29!

At densities significantly greater than the nuclear onern ,
e.g.,r@rn , we havep→r, with the speed of soundcs tend-
ing to the speed of light,cs→c. A typical approach to the
nuclear equation of state in the very high-density regime is
construct a relativistic Lagrangian that allows ‘‘bare’’ nucl
ons to interact attractively via scalar meson exchange
repulsively via the exchange of a more massive vector m
son. But at the highest densities the vector meson excha
dominates and one still hasp5r. Therefore the equation o
state most appropriate to describe the high density regim
the early universe is the stiff Zeldovich one, withg52. For
a stiff cosmological fluid, the dynamics of the matter on t
brane is mainly determined by the correction terms fro
Smn , quadratic in the matter variables and due to the form
the Gauss-Codazzi equations.

With g52 Eq. ~23! becomes

t2t05E V dV

A3LV41aV21b
, ~30!

where a53k4
2r01C and b5 1

4 k5
4r0

2. The time dependence
of the volume scale factor of the Bianchi type I universe
the high-energy limit is therefore given by

V~ t !5
1

2A3L
e2A3L(t2t0)A~e2A3L(t2t0)2a!2212Lb.

~31!

For t5tS5t01 ln(2A3bL1a)/2A3L the volume scale
factor is zero,V(tS)50. By reparametrizing the initial value
of the cosmological time according to

exp~22A3Lt0!5a12A3Lb, ~32!

the evolution of the high-density brane universe starts fr
t50 from a singular stateV05V(t50)50.

The time evolution of the expansion, scale factors, anis
ropy, shear, and deceleration parameter are given by
3-4
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u~ t !5A3L
e4A3L(t2t0)2a2112Lb

~e2A3L(t2t0)2a!2212Lb
, ~33!

ai~ t !5a0ie
2AL/3(t2t0)@~e2A3L(t2t0)2a!2212Lb#1/6exp@2KiF~eA3L(t2t0)!#, i 51,2,3, ~34!

A~ t !5
12K2e2A3L(t2t0)@~e2A3L(t2t0)2a!2212Lb#

~e4A3L(t2t0)2a2112Lb!2
, ~35!

s2~ t !5
6K2Le2A3L(t2t0)

~e2A3L(t2t0)2a!2212Lb
, ~36!

q~ t !512e2A3L(t2t0)
ae4A3L(t2t0)1~a2212Lb!~a22e2A3L(t2t0)!

@e4A3L(t2t0)2a2112Lb#2
21, ~37!
n
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where a0i , i 51,2,3 are arbitrary constants of integratio
andF(x)5*@(x22a)2212Lb#21/2 dx.

If the cosmological constant is zero,L50, the evolution
of the brane universe in the extreme limit of high densities
described by

V~ t !5
1

Aa
Aa2~ t2t0!22b, ~38!

u~ t !5
a2~ t2t0!

a2~ t2t0!22b
, ~39!

ai~ t !5a0i@a2~ t2t0!22b#1/6@a~ t2t0!

1Aa2~ t2t0!22b#Ki /Aa, i 51,2,3, ~40!

A~ t !5
3K2

a3

a2~ t2t0!22b

~ t2t0!2
, ~41!

s2~ t !5
aK2

2@a2~ t2t0!22b#
, ~42!

q~ t !521
3b

a2~ t2t0!2
. ~43!

IV. SCALAR FIELD EVOLUTION ON THE ANISOTROPIC
BIANCHI TYPE I BRANE

In the previous sections we have considered the evolu
of ordinary matter, obeying a barotropic equation of state,
the branelike universe. In this case the gravitational fi
equations can be solved exactly, with the general solu
represented in an exact parametric form for arbitraryg and
in an exact analytic form in the extreme limit of high den
ties, corresponding tog52.
04401
s

n
n
d
n

As suggested by particle physics models, scalar fieldsf,
with energy density and pressure given byrf5ḟ2/2
1U(f) andpf5ḟ2/22U(f), respectively, whereU(f) is
the scalar field potential, are supposed to play a fundame
role in the evolution of the early universe. For a Bianchi ty
I brane-universe filled with a scalar field the gravitation
field equations take the form

3Ḣ1(
i 51

3

Hi
25k4

2@U~f!2ḟ2#2k5
4F1

6
S ḟ2

2
1U~f! D 2

1
1

4
S ḟ4

4
2U2~f! D G , ~44!

1

V

d

dt
~VHi !5k4

2U~f!2
1

12
k5

4S ḟ4

4
2U2~f! D , i 51,2,3.

~45!

The scalar field also obeys the following evolution equ
tion:

f̈13Hḟ1
dU~f!

df
50. ~46!

Depending on the functional form of the potentialU(f),
several cosmological scenarios of scalar field evolution
the brane can be obtained.

As a first example we consider that the scalar field pot
tial is a constant,U(f)5L5const.0. The potential acts as
a cosmological constant. Hence Eq.~46! gives ḟ52f0 /V,
with f0.0 a constant of integration. Adding Eqs.~45! we
find the basic equation describing the dynamics of the c
stant potential scalar field on the brane:

V̈5lV2
l0

V3
, ~47!

where we denotedl53k4
2L1k5

4L2/4 andl05k5
4f0

4.0.
The general solution of Eq.~47! is given by
3-5
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V~ t !5
1

2Al
e2Al(t2t0)A~e2Al(t2t0)2C!224l0l, ~48!

with C a constant of integration. This solution is similar
the solution corresponding to the stiff matter cosmologi
fluid and all the other physical quantities can be obtain
from Eqs. ~33!–~37! by means of the formal substitution
3L→l,a→C, and b→l0. Therefore, by choosing th
value of t0 such that exp(22Alt0)5C1A4l0l, then the
brane Universe evolves fromt50 with a singular initial
state.

As a second example of scalar field evolution on the br
we consider a scalar field with potential energy proportio
to the kinetic one, so thatU(f)5(gf21)ḟ2/2,gf5const
.1 @29#. The energy density and pressure of the scalar fi
s
th

a
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an
l

he
m
o
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d

o

04401
l
d
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are given byrf5gfḟ2/2 and pf5(22gf)ḟ2/2, respec-
tively. The evolution equation for the scalar field givesḟ
52f0V21/gf. The evolution equation for the volume sca
factor becomes

V̈56k4
2f0

2~gf21!V122/gf2k5
4f0

4gf~22gf!V124/gf,
~49!

and has the general solution

t2t05E @6k4
2f0

2gfV222/gf1k5
4f0

4gf
2 V224/gf1C#21/2dV,

~50!

with t0 and C arbitrary constants of integration. The tim
variation of the physically important parameters is given in
parametric form, withV taken as parameter, by
u5A6k4
2f0

2gfV22/gf1k5
4f0

4gf
2 V24/gf1CV22, ~51!

ai5ai0V1/3expFKiE ~6k4
2f0

2gfV422/gf1k5
4f0

4gf
2 V424/gf1CV2!21/2dVG , ~52!

A5
3K2

6k4
2f0

2gfV222/gf1k5
4f0

4gf
2 V224/gf1C

, ~53!

s25
K2

2
V22, ~54!

q522
18k4

2f0
2~gf21!V222/gf13k5

4f0
4gf~gf22!V224/gf

6k4
2f0

2gfV222/gf1k5
4f0

4gf
2 V224/gf1C

, ~55!

f2f0852f0E @6k4
2f0

2gfV222/gf1k5
4f0

4gf
2 V224/gf1C#21/2V21/gf dV, ~56!
n-
cts

m-

I

lar
ants

the
with ai0 , i 51,2,3 andf08 constants of integration. In thi
model the scalar field satisfies an equation of state of
form pf5(2/gf21)rf .

The cosmological behavior of universes filled with a sc
lar field, f, as well as a Liouville type exponential potenti
U(f)5Le2kf,L,k5const.0, has been extensively inves
tigated in the physical literature for both homogeneous
inhomogeneous scalar fields~for a discussion of the physica
relevance of the exponential potential see Ref.@30#, and ref-
erences therein!. The exponential type potential arises in t
four-dimensional effective Kaluza-Klein type theories fro
compactification of the higher-dimensional supergravity
superstring theories. In string or Kaluza-Klein theories
moduli fields associated with the geometry of the extra
mensions may have effective exponential potentials due
the curvature of the internal spaces or to the interaction
e

-

d

r
e
i-
to
f

the moduli with form fields on the internal spaces. Expone
tial potentials can also arise due to nonperturbative effe
such as gaugino condensation.

For the flat isotropic Friedmann-Robertson-Walker geo
etry a particular solution of the field equations withf
5d ln t, has been obtained by Barrow@31#. In the framework
of general relativity there is no anisotropic Bianchi type
solution of this type.

We try to generalize this solution for the case of the sca
fields confined on the brane. By assuming that the const
k and d satisfy the conditionkd52, it is easy to check by
direct calculations that the following expressions satisfy
field equations~44!–~46!:

V~ t !5V0t2, H~ t !5
2

3
t21,
3-6
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ai~ t !5ai0t2/3exp~2KiV0
21t21!, i 51,2,3, ~57!

A~ t !5
3

4
K2V0

22t22, s2~ t !5
1

2
K2V0

22t24, q~ t !5
1

2
,

~58!

f~ t !5
2

A3k4

ln t, U~ t !5
2

3k4
2

t22. ~59!

The scalar field and the potential are determined by
four-dimensional coupling constant, withL52/3k4

2 , k
5A3k4 and d52/A3k4. The integrations constantsKi , i
51,2,3 satisfy the consistency conditions( i 51

3 Ki50.
However, if we substitute above results to Eq.~44!, then

we will find a constraint on the constants of integrationK2

528k5
4V0

2/27k4
4. From the expression ofK2 we can see tha

for the general relativistic case,k550, only isotropic solu-
tions can exist, namelyK25( i 51

3 Ki
250, leading to Ki

[0,; i and to a zero pressure scalar field,pf[0. For the
brane world model, the constraint condition forK2 indicates
that the scalar field driven brane universe with exponen
type potential and with a simple logarithmic time depe
dence of the scalar field cannot exist, in general.
04401
e

l
-

In the case of this simple model the scalar field poten
can also be given, in the isotropic case, as a function of
volume scale factor,U;V21. It is interesting to find the
general solution of the field equations for this choice ofU for
the anisotropic brane, without imposing any supplement
restrictions on the physical variables. For the sake of ge
ality we consider a more general problem, with a gene
functional dependence of the scalar field potential on
volume scale factorU5U(V). With this assumption the
Klein-Gordon equation for the scalar field~46! can be inte-
grated to give

ḟ25
2

V2 S B2E V2
dU

dV
dVD ~60!

and

rf5
ḟ2

2
1U5

1

V2
@B1Y~V!#, ~61!

where B is a constant of integration andY(V)
52*VU(V)dV. The general solution of the gravitationa
field equations on the brane can be expressed again i
exact parametric form, withV as parameter:
t2t05E H 3

2
K213k4

2@B1Y~V!#1
k5

4

4
V22@B1Y~V!#2J 21/2

dV, ~62!

u5A3

2
K2V2213k4

2V22@B1Y~V!#1
k5

4

4
V24@B1Y~V!#2, ~63!

ai5ai0V1/3expH KiE F3

2
K2V213k4

2V2@B1Y~V!#1
k5

4

4
@B1Y~V!#2G21/2

dVJ , i 51,2,3, ~64!

A5
3K2

3

2
K213k4

2@B1Y~V!#1
k5

4

4
V22@B1Y~V!#2

, ~65!

s25
K2

2V2
, ~66!

q522
18k4

2VY8~V!13k5
4V21@B1Y~V!#Y8~V!23k5

4V22@B1Y~V!#2

6K2112k4
2@B1Y~V!#1k5

4V22@B1Y~V!#2
, ~67!

f2f05E A2B12Y~V!2VY8~V!dV

A3

2
K2V213k4

2@B1Y~V!#V21
k5

4

4
@B1Y~V!#2

, ~68!
3-7
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with t0 ,ai0 , i 51,2,3 andf0 constants of integration an
Y8(V)5dY(V)/dV.

Suppose that the scalar field potential is given, as a fu
tion of the volume scale factor, by the simple relationU
5u0 /V, with u0.0 a constant. Then, by denotingv
53k4

2u0/2 andt5(3K212k5
4u0

2)/12k4
2u0 and taking the in-

tegration constantB50, the general solution of the gravita
tional field equations for the scalar field confined on the
isotropic brane take the form

V~ t !5v~ t2t0!22t, u~ t !5
2v~ t2t0!

v~ t2t0!22t
, ~69!

ai~ t !5ai0 )
j 51,2

@Av~ t2t0!1« jAt#1/32« jKi /2Avt, i 51,2,3,

~70!

A~ t !5
3K2

4v2~ t2t0!2
, s2~ t !5

K2

2@v~ t2t0!22t#2, ~71!

q~ t !5
1

2
1

3t

2v~ t2t0!2
,

~72!

f~ t !5
2

A3k4

sinh21FAv

t
~ t2t0!221G ,

U~ t !5
u0

v~ t2t0!22t
, U~f!5

u0

t
sinh22SA3k4

2
f D , ~73!

where we have also takenf050 and denoted«1511, «2
521.

V. PERFECT FLUID BIANCHI TYPE V BRANE
COSMOLOGIES

The line element of a Bianchi type V space-time, rep
senting the anisotropic generalization of the openk521
Robertson-Walker geometry, is given by

ds252dt21a1
2~ t !dx21a2

2~ t !e22x dy21a3
2~ t !e22x dz2.

~74!

The effective Einstein field equations on the brane
given by

3Ḣ1(
i 51

3

Hi
25L2

3g22

2
k4

2r2
3g21

12
k5

4r2, ~75!
04401
c-

-

-

e

1

V

d

dt
~VHi !22a1

225L2
g22

2
k4

2r2
g21

12
k5

4r2, i 51,2,3,

~76!

2H12H22H350, ~77!

ṙ13gHr50. ~78!

From Eq.~77! we obtaina2a35a1
2, leading toV5a1

3. The
distribution of the matter energy density on the brane
given again byr5r0V2g. Adding Eqs.~76! we obtain

1

V

d

dt
~VH!5L12V22/32

g22

2
k4

2r2
g21

12
k5

4r2. ~79!

Subtracting Eq.~79! from Eqs.~76! leads again to

Hi5H1
Ki

V
, i 51,2,3, ~80!

with Ki , i 51,2,3 constants of integration satisfying th
consistency condition( i 51

3 Ki50.
Substitution of the Hubble parametersHi , i 51,2,3 into

Eq. ~77! gives 2K15K21K3 and, consequently, we obtain

K150, K252K3 . ~81!

The general dynamics of the Bianchi type V space-time
described by the equation

V̈56V1/313LV2
3~g22!

2
k4

2r0V12g2
g21

4
k5

4r0
2V122g,

~82!

with the general solution

t2t05E S 9V4/313LV213k4
2r0V22g

1
1

4
k5

4r0
2V222g1CD 21/2

dV, ~83!

whereC is a constant of integration.
Therefore for a Bianchi type V induced brane geome

the general solution of the gravitational field equations c
be expressed in the following exact parametric form, w
V>0 taken as parameter:
3-8
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u5S 9V22/313L13k4
2r0V2g1

1

4
k5

4r0
2V22g1CV22D 1/2

, ~84!

ai5a0iV
1/3expFKiE S 9V10/313LV413k4

2r0V42g1
1

4
k5

4r0
2V422g1CV2D 21/2

dVG , i 51,2,3, ~85!

A53K2S 9V4/313LV213k4
2r0V22g1

1

4
k5

4r0
2V222g1CD 21

, ~86!

s25
K2

2
V22, ~87!

q522
72V4/3136LV2118~22g!k4

2r0V22g13~12g!k5
4r0

2V222g

36V4/3112LV2112k4
2r0V22g1k5

4r0
2V222g14C

, ~88!
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2 .
Substitution of the Hubble parameter and of the den

into Eq.~75! gives the second consistency condition satisfi
by the constantsKi , i 52,3:

K25
2

3
C. ~89!

Hence we can express the integration constantsK2 ,K3 as
functions of the constantC:

K256AC

3
, K357AC

3
. ~90!

In the limit of high matter densities (g52) the general so-
lution of the gravitational field equations for a Bianchi typ
V geometry cannot be expressed in an exact analytic for

VI. DISCUSSIONS AND FINAL REMARKS

In the present paper we have considered some class
exact solutions of the gravitational field equations on
brane world in the framework of the Randall-Sundrum s
nario. The Randall-Sundrum mechanism was originally m
tivated as a possible mechanism for evading Kaluza-K
compactification by localizing gravity in the presence of
uncompactified extra dimension. In this model, t
5-dimensional bulk space-time is assumed to be vacuum
cept for the presence of a cosmological constant. Ma
fields on the brane are regarded as responsible for the
namics of the brane. The quadratic terms in the ene
momentum tensor, due to the form of the Gauss-Coda
equations, may be important in the very early stages of
Universe, leading to major changes in the dynamics
the Universe.

For a perfect linear barotropic cosmological fluid confin
on the brane, the early cosmological evolution in anisotro
Bianchi type I and V geometries is fundamentally chang
by the inclusion of the terms proportional to the square of
energy density. The time variation of the mean anisotro
04401
y
d
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parameter of the Bianchi type I space-time is represented
different values ofg, in Fig. 1. At high densities the bran
Universe starts its evolution from an isotropic state, w
A(t0)50. The anisotropy increases and reaches a maxim
value after a finite time intervaltmax, and for t.tmax, the
mean anisotropy is a monotonically decreasing functi
tending to zero in the large time limit. This behavior is
sharp contrast to the usual general relativistic evolution,
lustrated by the caseg51 in Fig. 1 ~for this choice the
quadratic contribution to the energy-momentum tensor v
ishes!, in which the Universe is born in a state of maximu
anisotropy. In the initial stage the evolution is noninflatio
ary, but in the large time limit the brane universe ends in
inflationary stage. In Fig. 2 we present the dynamics of
deceleration parameter for different values ofg. In the limit
of small t ~and smallV, also!, and withC50, from Eq.~23!
we obtainV;t1/g ~this result is valid for both Bianchi type
and V geometries!. Therefore in the early stages of evolutio
of the Universe the mean anisotropy varies asA;t222/g.
Near the singular point the scale factors behave asai

;t1/3g exp@g/(11g)Ki8t
111/g#. The deceleration parameter

FIG. 1. Variation as a function of time of the anisotropy para
eter of the Bianchi type I brane universe with confined perfect c
mological fluid forg52 ~solid curve!, g54/3 ~dotted curve!, and
g51 ~dashed curve!. The constants have been normalized acco
ing to the conditions 3L51, 3k4

2r051, k5
4r0

2/451, C51,
andK252/3.
3-9
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given byq53g21. Figures 3 and 4 present the time evo
tion of the mean anisotropy and deceleration parameter
the brane with Bianchi type V geometry, the general featu
of the cosmological dynamics being similar to the Bianc
type I case.

The general evolution of scalars fields confined on
anisotropic brane is also modified by the presence of
quadratic terms in the energy-momentum tensor. For a c
stant potential scalar field, the solution of the gravitatio
field equations is very similar to the stiff cosmological flu
case, with the cosmic evolution starting from an isotro
state, with zero anisotropy and with a maximum anisotro
phase reached after a finite timetmax. The dynamics of the
scalar field satisfying the equation of statepf5(2/gf
21)rf , gf.1, depends on the values ofgf . For 1,gf
,3/2, the Universe is born in an isotropic state, but forgf
.3/2 the behavior is similar to the general relativistic ca
with an infinite initial anisotropy, which rapidly decays t
zero. For smallgf the evolution is noninflationary. In the
limit of large gf the scalar field behaves as a cosmologi
fluid obeying an equation of state of the formpf52rf . In
this case and for large times the behavior of the Univers
described by

V5V0 exp~H0t !, H5
1

3
H0 ,

ai5ai0 expS H0

3
t2

Ki

V0H0
e2H0tD , i 51,2,3, ~91!

A5
3K2

V0
2H0

2
exp~22H0t !, q521, f52f0t,

rf52f0
2gf5const, ~92!

whereH05f0A6k4
2gf1k5

4f0
2gf

2 . In the large time limit the
Universe ends in an isotropic de Sitter inflationary pha

FIG. 2. Variation as a function of the time of the decelerati
parameterq of the Bianchi type I brane geometry, with perfe
cosmological fluid confined on the brane, forg52 ~solid curve!,
g54/3 ~dotted curve!, and forg51 ~dashed curve!. The constants
have been normalized according to the conditions 3L51, 3k4

2r0

51, k5
4r0

2/451, andC51.
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The time variations of the anisotropy and deceleration
rameters are represented, for different values ofgf , in Figs.
5 and 6.

Scalar fields with potentials of the formU(f)
5U0 sinhb(af),U0,b,a5const, have been recently consi
ered in quintessence models as tracker solutions of the g
tational field equations, which can drive the Universe in
present nondecelerating phase@32#. For such a type of po-
tential we have obtained the general solution of the fi
equations in the case of the anisotropic brane world fob
522. The asymptotic behavior of the potential correspon
to an inverse power-law-like form for smallf, U(f)
;f22 and to an exponential one for large values of t
scalar fieldU(f);e2A3k4f. In this model the Universe start
from a state with infinite anisotropy and ends in an isotro
phase, but the evolution is generally noninflationary, withq
.0 for all times.

It is interesting to note that in two measure gravitation
theories with scale invariance a dilaton field with exponen
type potentials has to be also introduced, leading to n

FIG. 3. Variation as a function of time of the anisotropy para
eter of the Bianchi type V brane universe with confined perfe
cosmological fluid forg52 ~solid curve!, g54/3 ~dotted curve!,
andg51 ~dashed curve!. The constants have been normalized a
cording to the conditions 3L51, 3k4

2r051, k5
4r0

2/451, C51,
andK252/3.

FIG. 4. Variation as a function of the time of the decelerati
parameterq of the Bianchi type V brane geometry, with perfe
cosmological fluid confined on the brane, forg52 ~solid curve!,
g54/3 ~dotted curve!, and forg51 ~dashed curve!. The constants
have been normalized according to the conditions 3L51, 3k4

2r0

51, k5
4r0

2/451, andC51.
3-10
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trivial mass generation. Interpolating models for natural tr
sition from inflation to a slowly accelerated universe at la
times appear naturally@22#. For cosmological models with
out the cosmological constant problem and theories of
tended objects~strings, branes! without a fundamental scal
see Guendelman@33,34#.

We have not presented the solutions corresponding to
lar fields confined to the Bianchi type V brane world. The
mathematical form is very similar to the Bianchi type I cas
with one correction term, proportional toV4/3 added to the
parametric time equation. Due to the presence of this te

FIG. 5. Variation as a function of time of the anisotropy para
eter of the Bianchi type I brane universe with confined scalar fie
obeying the equation of statepf5(2/gf21)rf for gf51.5 ~solid
curve!, gf52 ~dotted curve!, andgf55 ~dashed curve!. The con-
stants have been normalized according to the conditions 6k4

2f0
2

51, k5
4f0

451, C51, andK251.
s

u

cl.

d,’

t.

04401
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x-
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,

exact analytic solutions cannot be generally obtained for s
lar field models in Bianchi type V space-times, but the ge
eral physical behavior of scalar fields in both geometries
the same qualitative features.
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FIG. 6. Variation as a function of time of the deceleration p
rameterq of the Bianchi type I brane universe with confined sca
fields obeying the equation of statepf5(2/gf21)rf for gf51.5
~solid curve!, gf52 ~dotted curve!, andgf55 ~dashed curve!. The
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