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Abstract— This letter considers the exact bit error rate (BER)
analysis of a two-user non-orthogonal multiple access (NOMA)
system using square quadrature amplitude modulation (QAM).
Unlike existing work, no constraints are imposed on the
modulation order of the QAM symbols for any user. Closed-
form expressions are derived for the BER of the successive
interference cancellation (SIC) receiver in Raleigh fading
channels. The analytical BER results corroborated by Mote
Carlo simulation show that the power control becomes
challenging for high order QAM. Moreover, the BER of each
user is approximately independent of the modulation scheme
used by the other user for certain power settings.

Index Terms— Non-orthogonal multiple access (NOMA), bit
error rate (BER), joint detection, multiuser detection, successive
interference cancellation (SIC), quadrature amplitude modula-
tion (QAM).

I. INTRODUCTION

NON-ORTHOGONAL multiple access (NOMA) is an
efficient multiple access technique, which is considered

as a promising candidate for future wireless communication
networks. Although NOMA has received an increased atten-
tion recently, it is based on well-known schemes such as
superposition coding and successive interference cancellation
(SIC) [1]. NOMA can improve the spectral efficiency by
allowing multiple users to share the transmission resources
simultaneously, at the expense of some additional receiver
complexity and bit error rate (BER) degradation [2]. Sev-
eral NOMA schemes have been proposed in the literature,
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but the main categories are the code-domain [3], [4] and
power-domain NOMA [5], [6], which is the focus of this
work. In the literature, SIC has been widely considered as
the main detection scheme for power-domain NOMA [4],
[7]–[14]. However, SIC detectors (SICDs) suffer from long
processing times because the nth user has to sequentially
detect and subtract the signals of all users whose indices are
less than n [15]. To reduce the processing time, joint multiuser
detector (JMuD) has been proposed as an alternative for the
SICD [15]–[18].

The BER analysis of downlink NOMA using SICDs has
received extensive attention in the recent literature. For exam-
ple, the pairwise error probability is derived in [12], [19]
using quadrature phase shift keying (QPSK), and it is used to
compute a union bound on the BER. However, the union bound
can be far from the exact BER for several operating conditions
as shown in [7]. The exact BER for NOMA over Nakagami-
m channels is derived in [7] for two and three-user scenarios
using QPSK. In [20], the BER performance for three-user
NOMA using SICD is investigated where space shift key-
ing (SSK) is considered. The BER analysis is also considered
in [21] for cooperative NOMA where the BER for the signals
in the first phase is evaluated by an approximation. In the sec-
ond phase, the relay uses SSK to send the signal to the far user.
Therefore, the exact BER analysis for the first and second users
using QAM is not considered. In [9], the BER is investigated
for NOMA using SICDs under Rayleigh fading channels
where exact and approximate closed-form expressions are
derived for downlink and uplink, respectively. The presented
expressions are applicable for the two-user NOMA using only
binary phase shift keying (BPSK) and QPSK. In [22], the BER
for downlink NOMA is derived for any number of users using
BPSK. Exact symbol error rate (SER) analysis for NOMA
using quadrature amplitude modulation (QAM) is presented in
[23], [24]. Although SER is a useful indicator for the system
error performance, the BER is more informative and it is the
standard metric for error rate performance.

As can be noted from the aforementioned discussion,
the surveyed literature, and to the best of the authors’ knowl-
edge, there is no work that considers the exact BER analysis of
NOMA using QAM with arbitrary modulation orders, which
is the main objective of this work.

The rest of the letter is organized as follows. In Sec. II,
the system and channel models are presented. The exact BER
analysis for the first and second users are presented in Sec. III
and IV, respectively. Numerical and simulation results are
given in Sec. V. Finally, the work is concluded in Sec. VI.
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Fig. 1. The constellation diagram of the transmitted NOMA symbol x.

II. SYSTEM MODEL

This work considers a downlink power-domain NOMA
system that supports two simultaneous users, U1 and U2.
All users equipment (UE) and the base station (BS) are
equipped with a single antenna [7], and the data for U1 and
U2 are modulated using square QAM with modulation orders
M1 and M2. Gray coding is used to map the bits of each
user before being multiplexed to form the NOMA symbol.
The inphase and quadrature components of a QAM symbol
are respectively given by

AnI = ± (2kn − 1), kn ∈ {1, 3, . . . , Λn} (1)

Anq = ± (2ln − 1), ln ∈ {1, 3, . . . , Λn}. (2)

Given that all symbols are equally probable with unity min-
imum Euclidean distance (ED), the average energy for the
nth user can be expressed as E

n
= 2

3 (Mn − 1). Therefore,
the QAM symbol of the nth user sn = AnI +jAnq , j =

√−1,
sn ∈ Sn = {d0, d1, . . . , dMn−1}. Therefore, the NOMA
signal transmitted from the BS can be described as

x =
�

β1PT

E1
s1 +

�
β2PT

E2
s2 (3)

where sn is selected uniformly from the nth QAM con-
stellation with modulation order Mn, PT is the BS total
transmit power, which is normalized to unity, and βn is the
power allocation coefficient for the nth user, β1 + β2 = 1.
Consequently, E

�|x|2� = 1, where E [·] denotes the statistical
average. An example for the resultant NOMA constellation
for M1 = M2 = 4 is shown in Fig. 1. In the figure, the first
user bits are the leftmost two bits and the second user bits are
the rightmost two bits. The NOMA symbol x has a 16-point
constellation.

In flat fading channels, the received signal at the nth UE
can be expressed as [4]

rn = hnx + wn (4)

where hn =
�

q−ζ
n �n, qn is the distance between the BS and

nth user, ζ is the path-loss exponent, �n ∼ CN (0, 1) is the
small-scale channel fading parameter, and wn ∼ CN (0, N0)
is the additive white Gaussian noise (AWGN). Given that
the channel phase arg {hn} � θn is estimated and com-
pensated perfectly at the receiver, then the received signal
after phase compensation řn = rne−jθn = αnx + w̌n, where

TABLE I

NOTATIONS USED THROUGHOUT THE LETTER

TABLE II

THE RATIO OF β1/β2 FOR VARIOUS VALUES OF M1 AND M2

w̌n = wne−jθn and αn = |hn| is the channel envelope which
follows Rayleigh distribution. Assuming that the AWGN is
circularly symmetric, then w̌n and wn have identical prob-
ability density functions (PDFs), consequently w̌n and wn

can be used interchangeably. Without loss of generality, it is
assumed that the first user has the lowest channel gain, and
the second user has the second lowest channel gain, and
so forth, i.e., α1 < α2. To enable reliable detection of all
users, it is necessary to cancel the inter-user interference (IUI),
which is typically performed using SIC. Therefore, the power
should be allocated in the opposite order of the channel gains,
i.e., β1 > β2 [7], [12]. Moreover, for proper implementation
and avoiding overlap between the users’ symbols, the power
allocation coefficients must satisfy the following range
constraint [24],

β1

β2
>

M1 − 1
M2 − 1

Λ2
2. (5)

For M1 = M2 we obtain β1/β2 > Λ2
2, where Λ2 and all other

notations used throughout the letter are shown in Table I. The
ratio for different values of M1 and M2 is shown in Table II.
To extract the information symbols sn ∀n, the SICD can
be used as described in Sec. III and IV for U1 and U2,
respectively.

III. BER ANALYSIS OF U1

The SICD for U1 is similar to the single user maximum
likelihood detector (MLD) used with QAM signals. Therefore,

ŝ1 = arg min
s1∈S1

�����r1 − ĥ1

�
β1

E1
s1

�����
2

(6)

where ĥ1 is the estimated value of h1. In this work we
assume perfect channel estimation, thus ĥ1 = h1. Based on
the constellation in Fig. 1, it can be noted that U1 bits in each
of the four quadrants {R0, R1, R2, R3} are fixed regardless of
U2 bits. Therefore, computing and comparing the EDs with
any four symmetrical points would result in the same decision
when the ED with the 16 constellation points is computed. For
example, the constellation points that correspond to x0, x5,
x10 and x15 in Fig. 1 are symmetrical and they can be used to
detect ŝ1. Or equivalently, we can use M1 virtual constellation

points obtained from the scaled set
�

βi

Ei
S1, which are marked

using the solid squares in Fig. 1.
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TABLE III

REGULAR PATTERNS FOR C(b1i), F1(b1i), AND F2(b1i) FOR THE BER OF THE FIRST USER

The bit representation for each point in the NOMA con-
stellation diagram can be expressed as bni, where the user
index n ∈ {1, 2} and the bit index i ∈ {1, 2, . . . , Bn},
where the first leftmost B1 bits belong to U1. To simplify the
presentation, we initially consider the case of M1 = M2 = 4
shown in Fig. 1, and then the approach is generalized for
an arbitrary M1 and M2. For this scenario, each NOMA
symbol consists of 4 bits, 2 bits from each user. For b11,
the constellation can be divided into two regions based on
the decision boundary, which is the y-axis. In this case,
the decision boundary and the constellation point can be at
a distance of ϕ1 or ϕ2, and the error event for b11 depends on
the transmitted NOMA symbol. For example, if x0, x1, x4 or
x5 is transmitted, then Pr

�
b̂11 �= b11

�
= Pr(n1 < −α1ϕ1),

n1 � � (w̌1), and similarly, if x2, x3, x6 or x7 is transmitted,

then Pr
�
b̂11 �= b11

�
= Pr(n1 < −α1ϕ2). The case for b12 is

similar to b11, except that the decision boundary is the x-axis,
consequently, Pb11 = Pb12 . By considering all cases and the
fact that Pb11 = Pb12 , the average conditional BER for U1 can
be expressed as

PU1 =
1
2

2	
i=0

Pb1i

=
1
2

[Q (�1ϕ1) + Q (�1ϕ2)] (7)

where Q(·) is the Q-function and σ2
n1

= N0/2.
Applying the same approach for various values of M1

and M2 indicates that the errors’ events follow a specific
pattern, which allows using induction to derive the BER for
an arbitrary Mn. One of the main observations is that the
error probabilities of the Bn/2 leftmost and rightmost bits
are identical, and hence, only one of them should be derived.
Moreover, for an arbitrary Mn, Pb1i has the following general
expression

Pb1i =
	

l

	
k

C (b1i)Q


g+
1 (F1 (b1i) , F2 (b1i))

�
. (8)

For b11, C (b11) = 1, and it is repeated 2B2 times. For b1v1 ,
the value of C (b1v1) starts with

√
M1/2, which is repeated Λ2

times. The

√

M2 + 1
�
th value of C (b1v1) is the first value

decreased by 1 and repeated Λ2 times. The


3
√

M2

�
th value is

the

√

M2 + 1
�
th term with a different sign and repeated Λ2

times. This pattern repeats for the remaining terms until the
value of C (b1v1) becomes −1, and repeated Λ2. The other
patterns for C (b1i) are presented in Table III. For F1 (b1i),

TABLE IV

PARAMETERS EVALUATION FOR M1 = M2 = 16, 1̄ � −1 AND 3̄ � −3

it starts at 1 and ends at 2
�


1 − 2i
�√

M1 − 1
�

+ 1 where
each term is repeated

√
M2 times as shown in Table III.

Similarly, the F2 (b1i) patterns can be obtained from Table III.
As example for using Table III is shown in Table IV for
M1 = M2 = 16.

From the regularities shown in Table III, the probability that
the bit b1i is in error can be formulated as follows:

Pb1i =
1√
M

L1,1	
k=0

Λ2	
l=0

D1 (i, k)Q
�
g+
1

�
2k+1, 2l−

�
M2+1

��

(9)

where

D1 (i, k) = (−1)
λi,k,1



2i−1 −

�
k2i−1

√
M1

+
1
2

��
.

As can be noted from (9), Pb1i is conditioned on the
instantaneous signal-to-noise ratio (SNR), which is defined as�

g+
1

�
2k + 1, 2l −

�
M2 + 1

��2

� γ1. (10)

Therefore, the unconditional bit error can be obtained as

P̄b1i =
� ∞

0

Pb1i f (γ1) dγ1 (11)

where the PDF of γ1 is given by

f (γ1) =
1
γ̄1

exp


−γ1

γ̄1

�
(12)

in (12), γ̄1 = E (γ1). By substituting (9) and (12) into (11)
we obtain

P̄b1i =
1√
M

L1,1	
k=0

Λ2	
l=0

D1 (i, k)
�
1 −

�
γ̄1

γ̄1 + 2

�
. (13)

And finally, the average unconditional BER can be computed
as

P̄U1 =
2
v1

v1	
i=1

P̄b1i . (14)
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IV. BER ANALYSIS OF U2

For U2 symbols, the SIC detector can be described as,

ŝ2 = arg min
s2∈S2

�����rn − ĥ2

�
β1

E1
ŝ1 − ĥ2

�
β2

E2
s2

�����
2

(15)

where ŝ1 is the estimated U1 symbols and ĥ2 is the estimated
value of h2. Therefore, the probability of error for U2 depends
on ŝ1, which is obtained in the first stage of the SIC process
described in Sec. III. More specifically, Fig. 1 shows that the
error event for a particular bit for U2 depends only on b11

in ŝ1. For example, given that x0 is transmitted, then b21

will be detected incorrectly if x0 is detected as one of the
symbols in the second column of the constellation diagram,
i.e., {x2, x3, x6, x7}, or if it is detected as one of the symbols
in the fourth column {x10, x11, x14, x15}, which corresponds

to the case where R {r2} is in the intervals

�
α2

�
β1
2 , 0

�
or�

−α2

�
β1
2 ,−∞

�
. The same observation can be made for b22

except that the bit will be detected incorrectly if x0 is detected
as any of the symbols in the second {x1, x3, x9, x11} or fourth
{x5, x7, x13, x15} rows, and the error depends only on b12

in ŝ1. Consequently, the bit error will occur if I {r2} is in

the intervals

�
α2

�
β1
2 , 0

�
or

�
−α2

�
β1
2 ,−∞

�
. As a result,

the error events for b21 and b22 will have the same probability.
For higher M1 and M2 values, the same approach can used
except that the bits of each user will be divided into two
equal groups each of which has v2 bits, and the two groups
will have the same BER. The error events and probability of
error for each bit in each group should be computed following
the same approach used for the M1 = M2 = 4 example.
After an exhaustive study of several modulation orders, it was
interestingly found that the bits’ errors for U2 bits have a fixed
pattern that can be used to derive a general expression for the
BER, which is given by

Pb2i =
1√
M

L1,2	
k=0

2Λ1	
l=0

SD2 (i, k)D3 (i, l)Q


g+
2 (cil, 2k + 1)

�

−
L1,2	
k=0

2Λ1	
l=1

SD2 (i, k)D3 (i, l)Q


g−2 (cil, 2k + 1)

�

(16)

where

S = (−1)

�
l2v2+i−1√

M2

�
+λi,k,2

, ci = 2 − δi,1

D2 (i, k) = 2i−1 −
�

k2i−1

√
M2

+
1
2

�

D3 (i, l) = 2v1 −
�

l

21−(i−1) log2(
√

M1−1)
+

1
2

�
. (17)

Moreover, the simplified BER formulae for several values
of M1 and M2 are given in [25]. Similar to U1 case, the
unconditional Pb2i over Rayleigh fading channels can be
obtained as

P̄b2i =
� ∞

0

P+
b2i

f


γ+
2

�
dγ+

2 +
� ∞

0

P−
b2i

f


γ−
2

�
dγ−

2 (18)

where P+
b2i

and P−
b2i

are the first and second parts of Pb2i

(16), γ±
2 �

�
g±2 (cil, 2k + 1)

�2
and γ̄±

2 = E


γ±
2

�
are the

Fig. 2. Average BER using various modulation orders for U1 and U2

where M1 = M2.

instantaneous and average SNRs, respectively, the PDF of γ±
2

is similar to (12). By substituting (16) and the PDFs of γ+
2

and γ−
2 into (18) and evaluating the integrals we obtain

P̄b2i =
L1,2	
k=0

2Λ1	
l=0

P+
C√
M

SD2 (i, k)D3 (i, l)Q


g+
2 (cil, 2k + 1)

�

−
L1,2	
k=0

2Λ1	
l=1

P−
C√
M

SD2 (i, k)D3 (i, l) × Q


g−2 (cil, 2k + 1)

�⎞⎠.

(19)

where P±
C =

�
1 −

�
γ̄±
2

γ̄±
2 +2

�
. Finally, the average BER can be

expressed as

P̄U2 =
2
v2

v2	
i=1

P̄b2i . (20)

V. NUMERICAL AND SIMULATION RESULTS

This section presents the analytical and Monte Carlo sim-
ulation results where q1 = 6.015, q2 = 1, ζ = 2. The
power allocation factors βn are selected to satisfy (5) where
M1 = M2 = 256, more specifically, β1 = 0.99657, and
Eb/N0 = 1/σ2

n1
= 1/σ2

n2
. In the legends of the presented

figures, the modulation orders are arranged as [M1, M2].
Fig. 2 shows the analytical and simulated BER of U1 and

U2 for various modulation orders where M1 = M2. As can be
noted, the analytical and simulation results match very well
for all the considered values of M1, M2, and SNR. Moreover,
the figure shows the trade-off between the power assignment
and BER for each user. For example, because β1 	 β2 in
the case of QPSK, the BER for U1 will be much lower than
U2 because β1 is much larger than the threshold (5) required
to prevent the constellations overlap. In particular for the
considered system, U1 requires 11 dB less than U2 to obtain
BER of 10−3. For the case of M1 = M2 = 256, β1 value
is very close to the threshold, therefore, the performance is
mostly determined by the channel conditions, and U1 needs
roughly an additional 2 dB as compared to U2 to obtain BER
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Fig. 3. Average BER using various modulation orders for U1 and U2 using
various values of M1 and M2.

of 10−3. It is worth noting that the power allocation will be
challenging for high modulation orders as the value of β2

will be extremely small, which is hard to tune. Fig. 2 also
shows the BER calculated using the typical approximation,
dividing SER by log2(M) [23], [24], where it is shown that the
approximation is close only for low order modulation such as
QPSK, or for high SNRs, otherwise, the approximation error
is substantial.

Fig. 3 shows the BER for U1 and U2 where the modulation
order for one user is fixed while varying the modulation order
for the other. Interestingly, it can be noted that changing
the modulation order of one user has nearly a negligible
effect on the BER of the other user for such power settings.
For example, the BERs of U1 for the cases of [4, 4] and
[4, 16] are identical. The same conclusion applies to the cases
of {[16, 16] , [16, 64]} and {[64, 64] , [64, 256]}. Nevertheless,
a slight discrepancy at high SNRs is observed for the case of
{[256, 64] , [256, 256]}. The same trends can be noted for U2.

VI. CONCLUSION

This work derived the exact BER expressions in closed-
form for a two-user NOMA system using square QAM with
arbitrary modulation order. The BER analysis was carried
out using the SIC detector. The presented numerical exam-
ples showed that the difference between β1 and β2 can be
substantial for high modulation orders. For example, using
M1 = M2 = 64 implies that β1 > 49β2. Therefore, the power
assignment becomes a critical matter as inaccurate assignment
may cause interference. Moreover, for certain power values,
it is shown that the BER for each user is nearly invariant when
the modulation order of the other user is varied.
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