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Abstract We report exact black hole solutions in asymp-
totically flat or (A)dS four-dimensional spacetime with a
conformally coupled self-interacting scalar field in f (R)

gravity. We first consider the asymptotically flat model
f (R) = R − 2α

√
R and derive an exact black hole solu-

tion. Then, we consider the asymptotically (A)dS model
f (R) = R − 2� − 2α

√
R − 4� and derive an exact black

hole solution. In both cases the modified gravity parameter
α, which has the dimension of the inverse mass, cannot be set
to zero and the self-interacting potential is determined from
the Klein–Gordon equation, preserving the conformal invari-
ance. The thermodynamics of the solutions is also studied.
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1 Introduction

The first exact black hole solution with a scalar field as a
matter field was found by Bocharova, Bronnikov and Mel-
nikov and independently by Bekenstein, called BBMB black
hole [1–3]. The scalar field is conformally coupled to grav-
ity, resulting in the vanishing of the trace of the energy–
momentum tensor, which means that the scalar curvature is
constant and in this particular case in the absence of cos-
mological constant is zero. The resulting spacetime is the
external Reissner–Nordström (RN) spacetime and the scalar
field diverges at the black hole horizon. It was also shown in
[4] that this solution is unstable under scalar perturbations.
Later, a scale was introduced to the theory via a cosmological
constant in [5] and also a quartic scalar potential that does
not break the conformal invariance of the action, which gives
a very simple relation between the scalar curvature and the
cosmological constant. In this case, the scalar field does not
diverge at the horizon, but the solution is found to be unstable
[6].

Regarding the minimal coupling case, the first exact black
hole solution was presented in [7], the MTZ black hole. The
scalar potential is fixed ad hoc, the geometry of the solution is
hyperbolic and the scalar field remains finite at the black hole
horizons. In [8] the electrically charged case was discussed.
In [9], a potential that breaks the conformal invariance of
the action of the MTZ black hole in the Jordan frame was
considered and new black hole solutions where derived. In
[10] the scalar field was fixed ad hoc and novel black hole
solutions were investigated, letting the scalar potential to be
determined from the equations and in [11] the electrically
charged case is considered. In [12], asymptotically (anti)
de Sitter black holes and wormholes with a self-interacting
scalar field in four dimensions were investigated. In [13–17]
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black holes with non-minimal derivative coupling were stud-
ied. However, the scalar field which was coupled to Einstein
tensor should be considered as a particle living outside the
horizon of the black hole because it blows up on the event
horizon. In [18] super-entropic black holes with Immirzi
hair were investigated and Plebanski–Demianski solutions
in quadratic gravity with conformally coupled scalar fields
were also found [19]. Black holes in Lanczos–Lovelock grav-
ity theories with a non-minimally coupled scalar field were
recently discussed [20] and hairy black holes in disformal
gravity theories were investigated in [21].

In the context of f (R) gravity (for a review see [22,23])
several black hole solutions have been found recently. Vac-
uum solutions were discussed in [24–28], while charged
black hole solutions were also found in [29–36]. In [37],
dynamical black holes, characterized by time-varying appar-
ent horizons, in various theories of gravity, including the
f (R) theory were investigated. The possibility of scalariza-
tion of black holes in the context of f (R) gravity was dis-
cussed in [38] and (2 + 1)-dimensional black holes with a
minimally coupled self-interacting scalar field in the context
of f (R) gravity was discussed in [39]. Recently non-trivial
black hole solutions were investigated [40]. These solutions
are considered non-trivial in the sense that gtt grr �= −1 and
the integration of the field equations is achieved by fixing the
fR(r) function. Finally in [41] the uniqueness of non-trivial
spherically symmetric black hole solution in special classes
of f (R) gravitational theory was discussed.

The viability of any theory of gravity should also be tested
against the astrophysical observations. Differences between
general relativity (GR) and alternative theories are expected
to occur for strong gravitational fields, such as the ones cre-
ated by different compact objects like neutron stars, strange
stars and black holes. In [42] an f (R) modified theory of the
form f (R) = R + αR2 was investigated. Studying neutron
stars in which strong gravity effects are non-negligible, it was
found that the neutron stars within these theories can differ
significantly from their GR counterpart which makes them a
very good candidate to test f (R) theories on astrophysical
scales [43].

In this f (R) modified theory studying non-perturbatively
and self-consistently the structure of neutron stars, bounds
on the α parameter were imposed [44]. Employing various
equations of state for the neutron star, the mass-radius rela-
tions were obtained constraining the α parameter resulting
at large deviations from GR. Then there was a discussion of
the choice of equation of state [45–47] trying to impose a
realistic equation of state to search for predictions or derive
relations that are independent of the equation of state.

In our previous work [39] we considered (2 + 1)-
dimensional f (R) gravity with a self interacting scalar field
as a matter field. The motivation for considering an explicit
scalar field was that in f (R) gravity theories if a conformal

transformation is applied from the Jordan frame to the Ein-
stein frame then, a new scalar field with a potential appears
in the Lagrangian. The generated scalar-tensor theory has a
geometric (gravitational) scalar field which however cannot
dress a f (R) black hole with hair [48–50]. Without spec-
ifying the form of the f (R) function we derived the field
equations and we showed that the f (R) model has a direct
contribution from the scalar field.

At first we considered the case, where fR(r) = 1 −∫ ∫
φ′(r)2drdr . Integrating with respect to the Ricci scalar

we obtained a pure Einstein–Hilbert term and another term
that depended on the scalar field. The scalar curvature was
dynamical and due to its complexity it was difficult to
obtain an exact form of the f (R) function. Using asymp-
totic approximations, we showed that the scalar charges make
the theory to deviate form Einstein’s Gravity. Then an exact
black hole solution dressed with a scalar hair was found, in
which the scalar charge appears in the f (R) function and
the thermodynamics of the solution was studied. We further
considered a pure f (R) theory supported by the scalar field.
We showed that the thermodynamic and observational con-
straints require that the pure f (R) theory to be builded with a
phantom scalar field. The scalar charge is the one that deter-
mines the behaviours of the solution.

In this work we will extent our previous work to a more
realistic model. We will work in (3+1)-dimensions with the
aim to generate a compact object with regular matter, i.e. a
black hole dressed with scalar hair. The common practice in
constructing such objects is to choose a particular equation
of state, expressing the matter content of the f (R) theory.
Instead of that, we will introduce matter as a conformably
coupled scalar field and a dynamic scalar curvature. This
particular type of theory, f (R) gravity and non-minimally
coupled scalar fields as matter in (3+1)-dimensions, has been
previously considered for cosmological purposes [51,52]. In
our study, the scalar field is introduced in the action as a
matter field in the way it was done in the GR context [1–3,5]
and we study its effect on a metric ansatz solving the field
equations. In [49] there is reported a black hole solution with
a conformally coupled scalar field for f (R) = R2, but since
R2 describes an exact (A)dS space [53], the solution turns
out to be identical to the one reported in [5].

At first we will discuss the well known GR cases of the
BBMB black hole [1–3] and the de Sitter black hole with a
conformally coupled scalar field [5], in order to compare our
modified gravity solutions with the Einstein Gravity ones. In
the BBMB black hole model, the action, except for the Ricci
scalar R includes the kinetic energy of the scalar field and
its conformal coupling to R. In our model a general f (R)

function is introduced instead of the Ricci scalar.
In the literature there are various choices for the f (R)

function (for an extensive review of the f (R) gravity the-
ories see [54,55].) These choices depend on the require-
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ments of having consistent gravity theories, free of ghosts
and tachyonic instabilities. The parameters introduced in the
f (R) functions are constrained by the cosmological observa-
tions. In our study we discuss the profiles f (R) = R−2α

√
R

and f (R) = R − 2� − 2α
√
R − 4�. These particular pro-

files allow us to find exact black hole solutions dressed with
a scalar field. The solutions respect the conformal invari-
ance and the self-interacting potential of the scalar field is
determined from the field equations, respecting the confor-
mal invariance. We checked the trace of the resultant energy–
momentum tensor and find it vanishing, as a result of the con-
formal invariance. The scalar field diverges between the inner
and outer horizon which is what happens in the context of
GR [5]. We also studied the thermodynamics of the solutions
and we found that an electric charge has to be introduced, for
the solution to have positive entropy.

As it happens in the astrophysical applications of the f (R)

gravity theories, since we are in a strong gravity regime,
the parameter α having dimensions of inverse mass, plays
a decisive role in the construction of compact objects like
black holes. Solving the full system of field equations we
find that this parameter contributes to the mass of the black
hole, specifies the strength of the scalar field and influences
the thermodynamical properties of the solutions.

If we switch off the scalar field, these profiles of the f (R)

function can generate analytic spherically symmetric black
hole solutions that have been extensively studied [24,25,56],
while in [32] an electromagnetic field was added. It is inter-
esting to note that these black holes are characterized by the
parameter α that makes solutions deviate from the standard
solutions of GR. The Kretschmann scalar and squared Ricci
tensor are shown to depend on the parameter α which is
not allowed to be zero. Also these black hole solutions have
interesting thermodynamical properties [32].

This paper is organized as follows: In Sect. 2 we briefly
discuss the black hole solutions with a conformally coupled
scalar field in the context of GR. In Sect. 3 we derive novel
black hole solutions with a conformally coupled scalar field
and dynamic Ricci curvature. The thermodynamics of the
solutions is also studied. Finally in Sect. 4 we conclude.

2 Black hole solutions in conformal gravity theories

In this section we discuss the GR black hole solutions with
a scalar field conformally coupled to gravity. The first solu-
tion was found by Bocharova, Bronnikov and Melnikov and
independently by Bekenstein, called the BBMB black hole
[1–3].

Consider the action in which a scalar field is conformally
coupled to gravity

S =
∫

d4x
√−g

[
1

16πG
R − 1

2
∇μφ∇μφ − 1

12
Rφ2

]

. (1)

By variation of the above action we obtain the Einstein equa-
tion and Klein–Gordon equation respectively

Gμν = 8πGTμν, (2)

�φ = 1

6
Rφ, (3)

where the energy–momentum tensor is,

Tμν = ∇μφ∇νφ − 1

2
gμν∇αφ∇αφ

+1

6

(
gμν� − ∇μ∇ν + Gμν

)
φ2. (4)

In the following we will set 8πG = 1. The matter part of the
action is invariant under conformal transformations

gμν → �2(x)gμν, φ → �−1(x)φ. (5)

As a result, the energy–momentum tensor is traceless and
from the Einstein equations we get R = 0 for the scalar
curvature.

Considering the spherically symmetric metric ansatz

ds2 = −b(r)dt2 + b−1(r)dr2 + r2d�2, (6)

the R = 0 relation gives

r2b′′(r) + 4rb′(r) + 2b(r) − 2 = 0, (7)

from which we get

b(r) = 1 + c1

r
+ c2

r2, (8)

where c1, c2 are constants of integration. Now, the Klein–
Gordon equation becomes

�φ = 0. (9)

From the Einstein equations we can obtain a relation for the
scalar field

2φ′(r)2 − φ′′(r)φ(r) = 0, (10)

which gives

φ(r) = 1

c3r + c4
, (11)

where c3, c4 are constants of integration. Substituting the
expressions for the metric function and the scalar field to
Einstein and Klein–Gordon equations we obtain the BBMB
black hole

b(r) =
(

1 − m

r

)2

= 1 − 2m

r
+ m2

r2 , (12)

123



897 Page 4 of 14 Eur. Phys. J. C (2021) 81 :897

φ(r) = ±√
6

m

r − m
, (13)

where, m is the mass of the black hole. To summarize, the
metric function has an extra m2/r2 term because of the pres-
ence of the scalar field which resembles the external RN case,
where the scalar field diverges at the black hole horizon while
the Kretschmann scalar is divergent at the origin indicating a
physical singularity. Also note that in some sense the scalar
field provides the mass of the black hole.

The thermodynamical properties of the BBMB black hole
are interesting. The Hawking temperature is zero, since it is
given by

T (rh) = b′(rh)
4π

= m

2πr2

(
1 − m

r

) ∣
∣
∣
r=m

= 0, (14)

while the entropy [57,58] becomes infinite

S = πr2
h

(

1 − 1

6
φ(rh)

2

)

, (15)

since the scalar field diverges at the event horizon. There-
fore, the BBMB black hole does not have the conventional
thermodynamic properties of black holes as it was discussed
in [59] and since black holes should have non-zero surface
gravity (temperature) one may argue that the BBMB black
hole is not a black hole.

Hence, the BBMB black hole solution is not a hairy black
hole because the conformal symmetry does not allow the for-
mation of finite hair at the horizon with a scalar charge inde-
pendent of the black hole mass that can be detected asymp-
totically.

A generalization of the BBMB black hole solution was
presented in [5]. Consider the action

S =
∫

d4x
√−g

(
R − 2�

16πG
−1

2
gμν∂μφ∂νφ− 1

12
Rφ2−αφ4

)

.

(16)

The resulting field equations are

Gμν + �gμν − 8πGTμν = 0, (17)

�φ − 1

6
Rφ − 4αφ3 = 0, (18)

where

Tμν = ∇μφ∇νφ − 1

2
gμν∇αφ∇αφ

+1

6

(
gμν� − ∇μ∇ν + Gμν

)
φ2 − αgμνφ

4. (19)

The matter part of the action is invariant under the confor-
mal transformations (5). As a result, the energy–momentum

tensor is traceless and in the presence of the cosmological
constant the scalar curvature is

R = 4�. (20)

With the metric (6) the constant curvature relation (20) gives
the metric function

b(r) = −�r2

3
+ c2

r2 + c1

r
+ 1. (21)

From Einstein equations, we can obtain Eq. (10) for the pro-
file of the scalar field. Plugging the metric (21) and the scalar
(11) back to Einstein equations, the integration constants take
particular values and the solution becomes

φ(r) = ±
√

3

π

√
GM

2GM − 2r
, (22)

b(r) = 1 − �r2

3
− 2GM

r
+ G2M2

r2

= −�r2

3
+

(

1 − GM

r

)2

. (23)

In order to respect the conformal invariance, the parameter
α is specified, so the solution exists only for α = −2πG�/9.
There are three horizons the inner, event and cosmological
horizon and all possible divergencies of the curvature invari-
ants, the metric function and the scalar field are hidden behind
the event horizon. We note that we cannot have a black hole
solution for an AdS spacetime, since Eq. (23) is always pos-
itive.

The thermodynamics of this solution have been discussed
in [57]. The temperature of the black hole is given by

T = 1

2πl

√

1 − 4M

l
, (24)

where l is the dS radius � = 3/ l2. The entropy at the black
hole horizon is negative, while the entropy at the cosmologi-
cal horizon is positive and the total entropy of the black hole
is zero, since the two entropies have the same absolute value.

The black hole solution discussed in [5] is a generaliza-
tion of the BBMB black hole solution in the presence of a
positive cosmological constant. This modification allows the
scalar field to be finite on the event horizon dressing the black
hole with secondary scalar hair [60], but still the thermody-
namic properties of the solution indicate that the produced
compact object does not have a conventional thermodynamic
behavior. In an attempt to understand better the thermody-
namical properties of the solution a charge was introduced
to the theory [5,57].
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3 Black hole solutions in conformal f (R) gravity
theories

As we have seen in the previous section in conformal gravity
theories the Ricci scalar plays an important role to obtain
exact black holes. If it is zero then no black hole with finite
scalar hair can be produced, since the scalar field is divergent
at the event horizon. If it is proportional to a positive cosmo-
logical constant then an exact black hole is generated with
a scalar field regular on the event horizon. However, in both
cases we do not get a black hole with the conventional ther-
modynamic properties. In this section we will investigate the
case of introducing a non-linear curvature correction term to
the Ricci scalar in the context of the f (R) gravity theory and
study the thermodynamic properties of the resulting black
hole solutions.

We consider the action

S =
∫

d4x
√−g

(
f (R)

2
− 1

2
∂μφ∂μφ − 1

12
Rφ2 − V (φ)

)

,

(25)

which consists of an arbitrarily differentiable function of the
Ricci scalar and a self-interacting, non-minimally coupled to
gravity scalar field. The factor of the non-minimal coupling
is the conformal coupling factor and the potential is arbitrary.
We will determine the potential from the field equations. The
field equations are

fR Rμν − 1

2
f (R)gμν + gμν� fR − ∇μ∇ν fR = Tμν, (26)

�φ − 1

6
Rφ − V ′(φ) = 0, (27)

where fR = d f (R)

dR
. The energy–momentum tensor is given

by

T φ
μν = ∂μφ∂νφ − 1

2
gμν∂

αφ∂αφ

+1

6

(
gμν� − ∇μ∇ν + Gμν

)
φ2 − gμνV (φ). (28)

Considering the same metric ansatz as in the GR cases (6),
the components of the Einstein field equation are

0 = r
(
r
(
b′(

(
φφ′ − 3 f ′

R

) + 3 fRb
′′

−b
(

6 f ′′
R + φ′2 − 2φφ′′) + 3 f − 6V

)

+b′ (6 fR + φ2
)

− 12b f ′
R + 4bφφ′) (b − 1)φ2, (29)

0 = r
(
r
(
b′ (φφ′ − 3 f ′

R

) + 3 fRb
′′ + 3bφ′2 + 3 f − 6V

)

+b′ (6 fR + φ2
)

− 12b f ′
R + 4bφφ′) + (b − 1)φ2,

(30)

0 = r
(
−2

(
6rb′ f ′

R + b
(

6 f ′
R + 6r f ′′

R + rφ′2))

+4φ
((
rb′ + b

)
φ′ + rbφ′′) + φ2 (

2b′ + rb′′))

+12 fR
(
rb′ + b − 1

) + 6r2( f − 2V ). (31)

The Klein–Gordon equation (27) for the metric (6) reads

φ(r)
(
r2b′′(r) + 4rb′(r) + 2b(r) − 2

)

6r2 + b′(r)φ′(r)

+2b(r)φ′(r)
r

+ b(r)φ′′(r) − V ′(r)
φ′(r)

= 0. (32)

The trace of Einstein equation (26) in tensor and differential
form reads

R fR − 2 f (R) + 3� fR = φ�φ − Rφ2/6 − 4V (φ), (33)

0 = r
(

2b′ (−9r f ′
R + 3rφφ′ + 2φ2

)
+ rφ2b′′)

+6 fR
(
r2b′′ + 4rb′ + 2b − 2

)

+2b
(
−9r

(
2 f ′

R + r f ′′
R

) + 3rφ
(
2φ′ + rφ′′) + φ2

)

+12r2( f − 2V ) − 2φ2, (34)

while the trace of the energy–momentum tensor is

Tμ
μ = φ(r)

(
φ(r)

(
r2b′′(r) + 4rb′(r) + 2b(r) − 2

) + 6r
((
rb′(r) + 2b(r)

)
φ′(r) + rb(r)φ′′(r)

))

6r2 − 4V (r). (35)

We will determine if the resulting solution is conformally
coupled to gravity by examining if the trace (35) vanishes.

In the following we will fix the f (R) function, determine
the resulting black hole solutions and study their thermody-
namic properties.

3.1 f (R) = R − 2α
√
R

3.1.1 Neutral solution

We first consider the f (R) model

f (R) = R − 2α
√
R, (36)

where a non-linear curvature correction is added to the
Einstein–Hilbert term through the model parameter α which
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has the dimensions of [L]−1 (inverse mass). Solving Eqs. (29)–
(32) we obtain the following configurations

b(r) = 1

2
− 1

3αr
+ 3

64α2r2 , (37)

fR(r) = 1 − αr, (38)

f (r) = 1 − 2αr

r2 , (39)

φ(r) =
√

6

1 − 4αr
, (40)

V (r) = − 4α2

(4αr − 1)4 , (41)

V (φ) = −1

9
α2φ4, (42)

R(r) = 1

r2. (43)

The trace of the resulting energy–momentum tensor is zero,
meaning that the scalar field is conformally coupled to gravity
and the scalar potential which is obtained from the Klein–
Gordon equation preserves the conformal invariance. The
metric function has two roots

r± = 8 ± √
10

24α
, (44)

which are both positive for α > 0, r− being the inner while
r+ being the outer horizon. There exists a simple pole (diver-
gence) in the scalar field function that lies between the hori-
zons

r− < rdivergence < r+. (45)

The scalar field is finite at the event horizon and takes the
value

φ(r+) = − 6
√

6√
10 + 2

. (46)

The behavior of the scalar field is similar with the GR case [5].
The model is stable only for α > 0 since then we have fRR =

α

2R3/2 > 0 avoiding tachyonic instabilities [22] which means

that for α > 0 we can interpret this solution as a black hole
solution with a conformally coupled scalar field as matter in
a viable f (R) model. Therefore we will impose the condition
α > 0 throughout the paper.

If the parameter α is non-zero then the Ricci curvature R
receives a non-linear correction term and the field equations
have the solution (37)–(43) in which the only free param-
eter is α. If α is zero then the f (R) is given by the Ricci
curvature R and then the field equations, as we discussed
in the previous section, give the BBMB solution (12), (13).
In this solution the mass is an integration constant which is
fixed by the gravitational potential and a mass-squared term

appears because of the presence of the scalar field. In the
case of the f (R) theory in which gravity is stronger we have
a similar behaviour. However, the mass of the black hole is
proportional to 1/α and also this parameter gives an effective
charge term to the scalar field. A similar behaviour is found
in the vacuum and charged black hole solutions [24,29,32].
We note here that in modified theories of gravity the strong-
field gravity effects can potentially introduce much greater
differences in the parameters of local solutions in these the-
ories. These theories can pass the present weak-field gravi-
tational tests and exhibit non-perturbative strong-field devi-
ations away from GR in systems involving various compact
objects [61,62].

In Fig. 1 we plot the fR(r) and f (r) (the gravitational
model as a function of the radial coordinate). From f (r) we
can see that the gravitational effects are stronger near the ori-
gin, since the Ricci scalar diverges there, while tend rapidly
to zero at large distances. In Fig. 2 we plot the metric func-
tion and the scalar field in order to see the behaviour of these
functions in the regime (45). The metric function diverges at
the origin while tends rapidly to 1/2 at large distances. The
scalar field diverges only between the inner and outer hori-
zons and vanishes at large distances. We should note that the
scalar field does not dress the black hole with some kind of
hair. The only free parameter of the system is α. The scalar
field does not have a scalar charge because of the conformal
invariance but, it acquires a charge from the curvature sector
of the action. We compute the Kretschmann scalar for the
metric (37) and the norm of the Weyl tensor.

Rαβγ δRαβγ δ = 55

48α2r6 − 3

4α3r7 + 63

512α4r8 + 4

3αr5
+ 1

r4 ,

(47)

Cαβγ δCαβγ δ = (1 − 4αr)2(4αr + 9)2

768α4r8 . (48)

Both scalars diverge at the origin meaning that r → 0 is a
physical singularity. The norm of the Weyl tensor also van-
ishes at the point where the scalar field diverges. We present
plots for the curvature invariants in Fig. 3. We also plot the
event (outer) horizon of the black hole as a function of the
modified gravity parameter α in Fig. 4, where we can see that
for bigger values of α, the black hole is formed closer to the
origin of the coordinates.

We have seen that the black hole solutions in GR with
conformally coupled scalar field do not have a conventional
thermodynamical behavior, due to the existence (and there-
fore modification of the area law for the entropy) of the non-
minimally coupled scalar field. We will discuss the thermo-
dynamics of the asymptotically flat black hole solution in the
f (R) gravity theory with the choice f (R) = R − 2α

√
R.

To compute the Hawking temperature and the Bekenstein–
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Fig. 1 Quantities related to the f (R) model: fR(r) and f (r) for different values of the parameter α

Fig. 2 The metric function b(r) (left) and the scalar field φ(r) (right) for different values of the parameter α. Below, we plot the scalar field while
the vertical lines represent the positions of the horizons for a particular value of α

Fig. 3 The norm of the Weyl tensor (left) and the Kretschmann scalar (right) as functions of r for different values of the parameter α
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Fig. 4 The event (outer) horizon r+ as a function of the parameter α

Hawking entropy we use the following relations [32,57,63]

T (r+) = b′(r+)

4π
, (49)

S(r+) = A fR(r+)

4
= A

4

(
f (gravity)

R (r+) + f (matter)
R (r+)

)

= A

4

(

1 − αr+ − 1

6
φ(r+)2

)

, (50)

which are the Hawking temperature and the Bekenstein–
Hawking entropy, where A denotes the area of the black hole
A = 4πr2+. It is of major importance to note the fact that
the entropy acquires a multiplicative factor due to the exis-
tence of the non-minimal coupling between Ricci scalar and
scalar field. So, we do not only have the modified gravity
part but we also have contribution from the matter part of
the action, that modifies the area law for the entropy. The
concrete expressions of them are

T (r+) = 32αr+ − 9

384πα2r3+
=

(
37

√
10 − 80

)
α

243π
, (51)

S(r+) = πr2+
(

1 − αr+ − 1

(1 − 4αr+) 2

)

=
5
(

191
√

10 − 848
)

π

6912α2 . (52)

It is clear that we cannot set the parameter α to zero. The
Hawking temperature is always positive and proportional
to the model parameter α while the Bekenstein–Hawking
entropy is always negative and inversely proportional to α2.
Their figures are present in Fig. 5. The thermodynamics of
this solution if we set α → 0 behaves similar to the BBMB
black hole which we previously discussed.

3.1.2 Solution with charge

We now add in (25) a Maxwell term and the whole action
reads

S =
∫

d4x
√−g

(
f (R)

2
− 1

2
∂μφ∂μφ − 1

12
Rφ2 − V (φ) − 1

4
F2

)

,

(53)

where

F2 = FμνFμν, (54)

Fμν = ∂μAν − ∂ν Aμ. (55)

By variation with respect to the inverse metric tensor, the
scalar field and the U (1) field we obtain the Einstein equa-
tion (26), the Klein–Gordon equation (27) and the Maxwell
equation

∇μF
μν = 0, (56)

while the energy–momentum tensor is now

T total
μν = T φ

μν + T EM
μν , (57)

where

T EM
μν = FμαF

α
ν − 1

4
gμνF

2. (58)

Imposing the same metric ansatz (6) and the following ansatz
for the electromagnetic field, allowing only radial electric
fields

Aμ = (A(r), 0, 0, 0), (59)

we get

−2A′(r)
r

− A′′(r) = 0 → A(r) = Q

r
, (60)

where Q is the charge of the black hole.
Now, solving Einstein equations and (32) the only func-

tions that change are

φ(r) = −
√

6 − 64α2Q2

(4αr − 1)
, (61)

V (r) = 4α2
(
32α2Q2 − 3

)

3(1 − 4αr)4 , (62)

V (φ) = α2φ4

96α2Q2 − 9
, (63)

while all other functions remain the same. For the vanishing
of Q the solution turns back to the uncharged one. The electric
charge does not appear in the metric function but modifies
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Fig. 5 The Hawking temperature T (r+) (left) and the Bekenstein–Hawking entropy S(r+) (right) at the event horizon of the black hole as functions
of the modified gravity parameter α

the scalar field and scalar potential, which is exactly what
happens in the GR case [1–3,5].

In order to have a real valued scalar field we should impose
the condition

− 1

4α

√
3

2
< Q <

1

4α

√
3

2
. (64)

The scalar field still remains finite at the black hole horizon
and now takes the value

φ(r+) = −6
√

6 − 64α2Q2
√

10 + 2
. (65)

Since the metric function remains unchanged, the divergence
of the scalar field lies in between of the inner and event hori-
zon of the black hole.

Thermodynamically, the temperature will be still given
by Eq. (51), since the electric charge does not appear in the
metric function. The entropy will change though, now the
electric charge has an impact on the profile of the scalar
field. The entropy at the event horizon of the black hole will
be given by (50)

S(r+) = 2

3

(
11 − 2

√
10

)
πQ2 +

5
(

191
√

10 − 848
)

π

6912α2 ,

(66)

where we have taken into account that the event horizon is
located at r+ = (8 + √

10)/24α. The second term in the
relation (66) is the entropy of the uncharged black hole. It
is clear that the addition of the electric charge gains more
entropy for the black hole throughout the scalar field. The
entropy is positive when the electric charge and the modified
gravity parameter α are related throughout the inequalities

√
10

α

√√
√
√

191
√

10 − 848
(

2
√

10 − 11
) + 96Q < 0 or

Fig. 6 The Bekenstein–Hawking S(r+) entropy of the charged solu-
tion at the event horizon of the black hole as a function of α while
changing the electric charge Q

√
10

α

√√
√
√

191
√

10 − 848
(

2
√

10 − 11
) < 96Q and

√
6

α
> 8Q. (67)

In Fig. 6 we give a plot of the entropy at the event hori-
zon of the black hole as a function of the modified gravity
parameter α while changing the electric charge. We can see
that when the above relations hold, the entropy becomes pos-
itive while otherwise is negative.

3.2 f (R) = R − 2� − 2α
√
R − 4�

3.2.1 Neutral solution

In this section we introduce a cosmological constant in the
f (R) function

f (R) = R − 2� − 2α
√
R − 4�. (68)

In this case the solution to the system of Eqs. (29)–(32) yields
the following configurations

fR(r) = 1 − αr, (69)
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b(r) = 1

2
− 1

3αr
+ 3

64α2r2 − �r2

3
, (70)

f (r) = 2�r2 − 2αr + 1

r2 , (71)

φ(r) =
√

6

1 − 4αr
, (72)

V (r) = − 4α2 + �

(4αr − z)4 , (73)

V (φ) = − 1

36
φ4

(
4α2 + �

)
, (74)

R(r) = 4� + 1

r2 . (75)

The trace of the energy–momentum tensor vanishes, meaning
that the scalar field is conformally coupled to gravity and
the resulting potential preserves the conformal invariance.
The second derivative of the gravitational model should be
positive in order to be stable and for the choice of the f (R)

function (68), we have

fRR = α

2(R − 4�)3/2 , (76)

which is always positive for α > 0. The horizons can be
obtained analytically. For completeness we give the possibly
positive roots of the metric function which for appropriate
relations between the constants represent black hole hori-
zons.

r1 = 1

4

⎛

⎜
⎜
⎝

√√
√
√α2

(
�

3
√
L + 2

)2 − 3�

α2�2 3
√
L

−2

√√
√
√
√
√
√
√
√

2

�
+ 3

√
L

⎛

⎜
⎜
⎜
⎜
⎝

− 4

α�
3
√
L

√
α2

(
�

3√L+2
)2−3�

α2�2 3√L

− 1

4

⎞

⎟
⎟
⎟
⎟
⎠

+
3�
α2 − 4

4�2 3
√
L

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(77)

r2 = 1

4

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2

√√
√
√
√
√
√
√
√

2

�
+ 3

√
L

⎛

⎜
⎜
⎜
⎜
⎝

4

α�
3
√
L

√
α2

(
�

3√L+2
)2−3�

α2�2 3√L

− 1

4

⎞

⎟
⎟
⎟
⎟
⎠

+
3�
α2 − 4

4�2 3
√
L

−

√√
√
√α2

(
�

3
√
L + 2

)2 − 3�

α2�2 3
√
L

⎞

⎟
⎟
⎠ , (78)

r3 = 1

4

⎛

⎜
⎜
⎝

√√
√
√α2

(
�

3
√
L + 2

)2 − 3�

α2�2 3
√
L

+2

√√
√
√
√
√
√
√
√

2

�
+ 3

√
L

⎛

⎜
⎜
⎜
⎜
⎝

− 4

α�
3
√
L

√
α2

(
�

3√L+2
)2−3�

α2�2 3√L

− 1

4

⎞

⎟
⎟
⎟
⎟
⎠

+
3�
α2 − 4

4�2 3
√
L

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(79)

where

L =
√

88α2� − 80α4 + 27�2

α6�5
+ 14

α2�2 − 8

�3 . (80)

In Fig. 7 we plot the metric function (70). For appropri-
ate relations between the parameter α and the cosmological
constant, the positive cosmological constant case gives dS
spacetimes with two black hole horizons and one cosmolog-
ical horizon, which is what happens in the GR case [5]. As in
the asymptotically flat case, the divergence of the scalar field
is in between of the two black hole horizons. We compute
the Kretschmann scalar for the metric (70)

Rαβγ δRαβγ δ = 8�2

3
+ 55

48α2r6 − 3

4α3r7

+ 63

512α4r8 + 4

3αr5
+ 4�

3r2 + 1

r4 , (81)

lim
r→0

Rαβγ δRαβγ δ → ∞. (82)

The square of the Weyl tensor remains the same (48) as
expected, since the cosmological constant does not appear
in the Weyl tensor.

To study thermodynamics we consider that the black hole
horizon for the metric (70) is the largest positive root of the
metric function

r+ = Root
(

9 − 32αr
(

2α�r3 − 3αr + 2
))

. (83)

Now using the relations (49), (50) we compute the Hawking
temperature and the Bekenstein–Hawking entropy as

T (r+) = 32αr+
(
1 − 2α�r3+

) − 9

384πα2r3+
, (84)

S(r+) = πr2+
(

+1 − αr+ − 1

(1 − 4αr+) 2

)

. (85)

In order to make sure that r+ represents the black hole hori-
zon we solve the metric function for the modified gravity
parameter α and we obtain

b(r+) = 0 → α1,2 =
−8r+ ± √

2
√

18�r4+ + 5r2+
8
(
2�r4+ − 3r2+

) , (86)

where the α1 represents the solution with the plus sign. The
modified gravity parameter is positive and therefore both
roots of the above equation should be positive. For dS space-
times α1,2 are both positive when the cosmological con-
stant satisfies 0 < � < 3

2r2+
. For AdS spacetimes, α1,2

are both positive when the cosmological constant satisfies
− 5

18r2+
≤ � < 0. Now, we substitute the expressions for α
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back to the temperature and we have

T (r+)1,2 = −
36�r3+ ± 4

√
2
√
r2+

(
18�r2+ + 5

) + 5r+
108πr2+

.

(87)

For AdS spacetimes, the above temperature is positive
when the cosmological constant and the horizon satisfy
− 5

18r2+
≤ � < − 1

4r2+
which also gives a positive α.

For dS spacetimes, the temperature is positive for α2 when
the cosmological constant satisfies: 0 < � < 5

12r2+
and is

negative for α1.
From Eq. (85) we can see that regardless of the sign and

value of the cosmological constant, the entropy is always
negative, for any r+ > 0, α > 0.

3.2.2 Solution with charge

We have seen in the asymptotically flat case that the addi-
tion of the Maxwell term in the action, results in positive
entropy when the constants of our solution satisfy particular
relations. Therefore we consider the action (53) and the gravi-
tational model (68) and solving the Einstein–Klein–Gordon–
Maxwell system we find that the only functions that change
are

V (r) =
(
4α2 + �

) (
32α2Q2 − 3

)

3(1 − 4αr)4 , (88)

V (φ) = φ4
(
4α2 + �

)

384α2Q2 − 36
, (89)

while the scalar field is now given by (61) and the metric
function, the Ricci scalar and the functions fR and f (r) are
given by (69), (70), (71) and (75) respectively. The tempera-
ture of the solution is given by (84) and we discussed in detail
the possibility of positive temperature, while the entropy is
given by

S(r+) = πr2+
(

1 − αr+ + 32α2Q2 − 3

3(1 − 4αr+)2

)

. (90)

We will now follow the same procedure as in the uncharged
case. In order to ensure that the entropy (90) is indeed the
entropy at the black hole horizon we solve the metric function
for the parameter α and substitute back to the entropy. We find
that for particular range of values for the electric charge and
the cosmological constant, the entropy is positive for positive
α. The inequalities are complicated and therefore, we will
only give the simplest one in order to illustrate the fact that
we can have positive entropy. For α2 and − 5

18r2+
≤ � < 0

(AdS spacetime) the entropy is positive when the electric
charge and the black hole horizon are related through

4Q+√
3

√√
√
√
√

r2+
(

5

(√
36�r2+ + 10 − 4

)

− 4�r2+
(√

36�r2+ + 10 − 2

))

2�r2+ − 3
< 0,

(91)

or,

4Q >
√

3

√√
√
√
√

r2+
(

5

(√
36�r2+ + 10 − 4

)

− 4�r2+
(√

36�r2+ + 10 − 2

))

2�r2+ − 3
.

(92)

For these particular values we also have positive temperature.

4 Conclusions

In this work we studied f (R) gravity theories in the presence
of matter. We considered a scalar field non-minimally cou-
pled to gravity in the context of f (R) theories. We derived
asymptotically flat or (A)dS exact black hole solutions with
dynamic Ricci curvature. We also studied the thermodynam-
ics of these black hole solutions. We calculated the temper-
ature and the entropy and because of the presence of the
non-minimal coupling between the scalar field and the scalar
curvature the area law of the Bekenstein–Hawking entropy
is modified resulting to some interesting properties for the
entropy.

We first considered the case where f (R) = R − 2α
√
R.

The parameter α which has the dimension of inverse length,
introduces a non-linear correction term to the Ricci scalar R.
This parameter induces a charge in the scalar field function
which however is not independent of the black hole mass
and therefore cannot be detected asymptotically, failing in
this way to dress the black hole with a primary hair. Calcu-
lating the temperature of the black hole solution we find that
it is positive for any value of the parameter α. However, the
entropy, having a contribution from the scalar field, is nega-
tive regardless of the value of the parameter α. To cure this
problem we introduced an electromagnetic field. Then we
found that because of the conformal invariance, the electric
charge does not appear in the metric function giving charge
to the black hole solution, it appears however in the scalar
field function making the entropy positive.

We then introduced a cosmological constant in the f (R)

function f (R) = R − 2� − 2α
√
R − 4�. We found dS

and AdS black hole solutions depending on the sign of the
cosmological constant, while the scalar field has the same
behavior with the asymptotically flat case, it cannot give hair
to the black hole solutions. If we introduce electric charge
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Fig. 7 The metric function b(r) while changing the cosmological constant, where we’ve set α = 1. The black vertical line represents the position
of the divergence of the scalar field. The left plot represents dS spacetimes, while the right AdS spacetimes

this charge appears in the scalar function and the interplay
between the cosmological constant and the electric charge
can result to a positive entropy.

It is known that in order to have a black hole with a non-
minimally coupled scalar field regular at the horizon, a scale
has to be introduced in the theory [5,64,65], which, so far, has
been considered to be a cosmological constant. In this work
we showed that this not the only possibility. A scale in the
form of a non-linear correction term in the gravitational part
of the action, also results to a regular scalar field at the black
hole event horizon. This would be interesting to be further
investigated. One could also consider non-linear electrody-
namics, instead of Maxwell electrodynamics to see if it is
possible to construct regular black hole solutions (without a
singularity). In our case, in order to respect the conformal
invariance, the f (R) model and the Ricci scalar are fixed in
a particular way and regular black hole solutions cannot be
found since Ricci scalar is divergent at the origin and so are
the other curvature scalars. The introduction of non-linear
electrodynamics will break the conformal invariance mak-
ing it hopeful to construct regular black holes as it was done
in [66,67].

It would be interesting to extent this work to the study
of other compact objects in the f (R) gravity theories. The
conformally coupled scalar field can provide the matter con-
tent of these theories. Then the astrophysical observations in
this strong gravity regime may give important information
on the departure from GR restricting the parameter α which
expresses the deviation from the Ricci scalar R.
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