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SUMMARY

Sequential and group sequential procedures are proposed for monitoring repeated
t, x* or F statistics. These can be used to construct hypothesis tests or repeated
confidence intervals when the parameter of interest is a normal mean with unknown
variance or a multivariate normal mean with variance matrix known or known up to a
scale factor. Exact methods for calculating error probabilities and sample size
distributions are described and tables of critical values needed to implement the

procedures are provided.
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1. INTRODUCTION

We consider group sequential designs for independent identically distributed
normal observations. We suppose observations are taken in groups with g
observations in the kth group; important special cases are equally sized groups, g;=g,
and the fully sequential case, g,=1. Tests for the mean of univariate observations with
known variance have been treated extensively. Wald (1947), Anderson (1960) and
Siegmund (1985) derived accurate analytic approximations to performance measures of
certain sequential tests; more general numerically exact methods have been used by
Aroian (1968, 1976), Armitage et al. (1969) and many subsequent authors. For more
detailed surveys see the books by Armitage (1975), Whitehead (1983) and Wetherill
and Glazebrook (1986).

In this paper we present numerically exact methods for sequential and group
sequential designs for univariate normal response with unknown variance, the
sequential r-test, and for multivariate normal response with known or unknown
variance, the sequential 752 and F tests.

2. UNIVARIATE NORMAL OBSERVATIONS WITH UNKNOWN VARIANCE

Let X;,X,,... be independent normal observations with mean g and unknown
variance o2. We consider the problem of testing Hy:p=p against the two-sided
alternative Hy:u#u, with a specified power at u=u, + do for given 6. Allowing the
value of u at which the power condition is satisfied to depend on the unknown o is
quite reasonable in some applications: Rushton (1950) shows that this is a natural
requirement in an acceptance sampling problem and Whitehead (1983, p. 64) describes

a similar problem in a two period crossover trial.

Early work on the sequential r-test by Wald (1947), Rushton (1950, 1952),
Barnard (1952) and Hajnal (1961) used analytic approximations to calculate error
probabilities for sequential -tests with constant likelihood ratio boundaries.
Schneiderman and Armitage (1962) and Myers, Schneiderman and Armitage (1966)
presented closed sequential r-tests derived heuristically from sequential tests for
observations with known variance. Suich and Iglewicz (1970) and Alexander and
Suich (1973) proposed an approximate modification of Anderson’s (1960) method to
the case of unknown variance. Siegmund (1985, p. 116) derived analytic
approximations for a modified repeated significance test based on the ¢-statistic.

Schmee (1974) has calculated exact values for the error probabilities of sequential
-tests. He used a different recursive method from that which we shall propose and

his computed results were limited to tests with a maximum of 5 observations.
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All the above methods concern the fully sequential approach, ie., gg=1. Pocock
(1977, p. 195-6) has suggested an approximate group sequential t-test based on the
nominal significance levels appropriate to the case of known variance. Our exact
calculations show that this approximate method is reasonably accurate, as is the
analogous approximation for sequential 77 tests.

We define n; =g+...+g;, the cumulative sample size at stage k, and let
X,, ,+1s---» Xy, denote the g, observed responses in the kth group. We define

_— 1 ny
Xp=— 2 X
R =1

and

ny _2
> Xi=Xp)
2 i=1

S =

?

ﬂk"-l

the sample mean and standard estimate of o? at the kth analysis. We now form the

usual z-statistic,
Te=Nng (Xe=120) [si.-

A group sequential test is specified by a maximum number of groups, K, and a
partition {A;,B;,C;} of the real line for each stage k=1,...,K. The test stops at the
first stage that T, €A, UB,; H, is chosen if T, €A, and H; if T eB,. As long as
T,eCy the test continues. The final set Ck is necessarily empty. The type I error
probability of this test is given by

K
a=Y m @2.1)
k=1
where
n—k:P,uo(Tl ECI,... sTk—IECk—-l’TkeBk) (22)

for k>1. Thus r; is the probability under H of stopping at stage k and choosing Hy;
this quantity can be viewed as the error probability ‘spent’ at the kth interim analysis.
The nominal significance level at the kth analysis is defined to be the marginal
probability a; = P, (Ty€By) in the absence of an early stopping rule. The quantities
{my;k=1} and { & :k=21} should not be confused.
A symmetric group sequential test without early stopping to accept Hy is given

by

A, =0 (1<k<K-1), Ag = (~cg,ck)

By = (—o0,—c] U [¢p,0)  1<k<K

Cy = (—c,cp) (1sksK-1), Cg=0
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where @& denotes the empty set. Thus, constants ¢;,c,,...,cx are specified and the
test stops to accept H; if |Ty|>c, at any 1<k<K. The test is truncated at stage K
and H, is accepted if | Ty |<cg. For this stopping rule,

Ty = P/‘O { lTl |<C1,..., !Tk—l I<Ck_1, ITk IZCk}. (2.3)
For given boundary values cy,c;,...,cx or, equivalently, nominal levels

ay,0, ..., 0, the exact probabilities {7z, ;k=1,...,K } can be calculated recursively as
described below. Let

— 1 n
X(k)=— E X;
8k i=ny+1

be the mean of the kth group. By straightforward algebra,

L8]

(M1 =Dsty = (m=Dst + Y (X=X (k+D)})?

i=m+1
Mgyl = o 24
+ (Xpp1=X)%
Ek+1
Define the scale invariant quantities
(X —tto)
K= T
and
(m—1)
L= 2 82.

o

The joint distribution of {T;,T,, ... } when observations have mean yx and variance o?

can be obtained from the joint distribution of {Z;,R;,Z,,R5,...} which, in turn, can
be constructed from successive conditional distributions. Firstly, Z; and R; are
independent with Z; ~ N(ny(z—ug)/o,n) and R, ~ x,%l _1- The conditional
distributions of Z, given Z; and R; and of R, given Z;, Ry and Z, are

H—Hy
P(Zy|Zy,R)) ~ N(Zy + & > g2)

and, using identity (2.4),

PRy |Zy Ry, Zy) ~ Ry + 22 [E—‘——E?—TJr 2
2 141500 ,49 1 g n n2 Xgr-1-
In general
P(Zis1 1 Z1,R 20 Ry s Zi Ry ) = B(Zii1 | Z4,Ry)

H—Ho
~ N(Zy + g1 5 8k+1) (2.5)



and

P(Ri1 1Z1.Ry . Z3 Ry oo 2 Ri Zpy1) = PRt | Zk R Zpy1 )

2

Ml 2 Zist

R+ ——— | = - == + 22,1 (2.6)
8k+1 ny Rpit

Note that when the group size g, is equal to 1, the value of Ry, is completely
determined by Z;, R, and Z;,;. Combining (2.5) and (2.6) for k£ = 0,1,...,K-1 we
can obtain the joint density of (Z;,Ry,Z;,Ry,....2¢ ,Rg). Since
T, = N(n—1) Z,/\(niRy), this determines the joint density of {Tj;k=1,....,K}.
Precise details of this recursion are given in the Appendix.

These joint densities depend on the parameters u, gy and o only through
(,u——,uo)/o. However, the probabilities 7, (k21) in (2.3) are always calculated with
1=, and hence they can be computed for specified {cy;k21} without knowledge of
Uo or o. Conversely, if the {7;;k>1} are given, values of {ci;k=1} satisfying (2.3)
can be found successively. If u=py, T; has a central t-distribution with g—1
degrees of freedom and ¢; can be obtained from standard tables. Values of ¢; for
k=2 can be obtained using numerical integration to evaluate the right hand side of
(2.3).

Nominal two-sided significance levels of the r-statistic are defined by

o = 2{1-¥(ey;m—D}  (k2D)

where W(- ; v) denotes the cumulative distribution function of the ¢-distribution with v
degrees of freedom. In particular, a; = 7.

There have been several suggestions in the literature for the known variance case
as to how to choose these constants subject to the constraint (2.1). A constant nominal
significance level a;=...=ag=a’, say, was used by Armitage et al. (1969) and, in the
group sequential case, by Pocock (1977). Adapting this approach to the group
sequential t-test with K groups of size g, we reject Hy at stage k (1<k<K) if

2 (1-¥(|T | s m-D} €

where «’ is chosen so that (2.1) is satisfied. We then define
Zp(K,g,a) = o1 (1-—a'/2) where @ is the standard normal cumulative distribution
function. Table 1 gives values of Zp(K,g,a) for @ = 0.01, 0.05 and 0.10, g = 1, 2, 3,
5and 10 and K=2,...,10. If g=1, it is assumed that no analysis is performed at the
first stage, k=1, which explains the different pattern of the entries in the rows for g=1.
The critical values for the case of known variance, Zp(K,eo,), which equal the values
z in Table 1 of Pocock (1977), are shown for comparison. The entries were
calculated by use of numerical integration and the recursive formulae of the Appendix;
the error probabilities of tests computed using these constants are within 107* or less



of the specified values of o.

Pocock (1977, p. 195-6) recommended the use of the same nominal significance
level for a repeated r-test as is needed for the case of known variance and presented
simulation results to support this suggestion. It is clear from Table 1 that only a
slight adjustment to this approximation is needed; in fact, the standard errors of
Pocock’s simulation results do not do justice to the accuracy of his proposal. For
example, for 5 groups of 3 observations and an intended a = 0.05, using Zp = 2.413 in
place of the correct value 2.457 gives an actual error probability of 0.056. The
discrepancy here is quite typical for groups of g =2 or more observations but the case
g =1 is somewhat different since a r-test cannot be performed after the first group of
just 1 observation.

[Tables 1 and 2 about here]

There is no restriction to constant nominal significance levels; any of the methods
proposed for known variance can be adapted to allow unknown variance. In the case
of the O’Brien and Fleming (1979) test for equal group sizes, it is natural to define the

{cy;k21} in terms of significance levels by setting
‘P(Ck;nk—-l) =@ (ZOBF ‘\/(K/k) )

where Zppr = Zppr(K,g,a) depends on the number of analyses, K, the number of
observations per group, g, and the error rate, . Values of Zypr for K=2,..., 10,
g=1,2,3,5and 10 and & = 0.01, 0.05 and 0.10 are shown in Table 2, the values of
Zopr(K,eo,a) corresponding to the case of known variance being included for
comparison. Again, if g=1, it is assumed that no analysis is performed at the first
stage. Broadly speaking, arguments concerning the relative merits of ways to choose
the {cy;k=1} will be the same as in the known variance case; see the discussions by
Pocock (1982) and Jennison and Turnbull (1989).

Repeated confidence intervals for x4 can also be constructed using the same
constants {c,}. The repeated confidence interval at the kth stage is given by
I, = (Xy—ciS/Nng, Xp+cisifvng). For a full discussion of the motivation and
applications of repeated confidence intervals, see Jennison and Turnbull (1989).

The same method of numerical calculation could be used for other types of
stopping regions, such as the triangular or double triangular regions described by
Whitehead (1983), the ‘wedge’ regions proposed by Schneiderman and Armitage
(1962), Myers, Schneiderman and Armitage (1966) and Gould and Pecore (1982) or
the modified repeated significance tests of Siegmund (1985). Alternatively, stopping
régions for one-sided tests can be constructed from repeated confidence intervals in the
manner described by Jennison and Turnbull (1984, 1989).
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The power functions of these tests can be obtained by repeating the above
calculations with u#u,. In particular, the group size needed to ensure power 1-4 at
u=uy t 8o for given B and & can be found by a simple one-dimensional search. As
noted earlier, it is natural in some applications to specify power at a value of u a fixed
multiple of ¢ away from u,. If, instead, power is to be guaranteed at a fixed value of
4, a sequential test with predetermined boundary does not exist; see Dantzig (1940).
The two-sample test of Stein (1945) might be adapted to this setting. Alternatively, an
adaptive approach in which group sizes are determined by the current estimate of o?
should give at least an approximate procedure.

Finally we note that our methodology can be extended to procedures in which the
average range method is used for estimating o2. Such procedures have applications
in multiple sampling inspection plans by variables.

3. MULTIVARIATE OBSERVATIONS

We assume that multivariate normal observations X;, X,, ... of dimension p2>1
with mean vector u and covariance matrix o2 I are available sequentially. Here ¥ is

known and the scale factor o2

may be known or unknown. By applying the linear
transformation X; — 2‘1’2 X;, we can assume ¥ = 1, without loss of generality. We
shall describe the use of sequentially computed y% and F statistics to test a null

hypothesis of the form Hj: u = u; and to construct repeated confidence sets for u.

Data of this form might arise in a medical trial with multiple endpoints:
Whitehead (1986) describes several examples including a trial concerned with both
length and weight of newborn babies. Another application is to industrial sampling
inspection where acceptance of batches is is based on several variables; see Jackson
and Bradley (1961) for an example. By applying the Helmert transformation (Stuart
and Ord, 1987, p. 350) to eliminate location effects, the same methods can also be
used to test equality of p+1 means in a one-way analysis of variance layout.

Wetherill and Glazebrook (1986, Chapter 5) have surveyed the literature on
sequential 2 and F tests. Most papers have been concerned with asymptotic or
empirical results for procedures with constant likelihood ratio boundaries which are
generalizations of Wald’s (1947) sequential probability ratio test. Of particular note is
the paper by Siegmund (1980), who derived analytic approximations for operating
characteristics and sample sizes of sequential 2% and F tests, using a generalization of
repeated significance test boundaries; see also Siegmund (1985, p. 111).

In the next section, we present numerically exact calculations and tables of
constants for sequential and group sequential tests of the null hypothesis Hy: u = uy,
the repeated 22 test. Repeated confidence ellipsoids for u can also be constructed
using the same results. In Section 3.2, we indicate how these methods can be
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extended to give a sequential F-test in the case of unknown ol

3.1 Multivariate normal mean with known covariance matrix

We suppose that observations X;, i=1, 2, ..., are multivariate normal with mean
M and covariance matrix 0'21[,. Observations are collected in groups and, as before, we
denote the ith group size by g; and let n, = g, +... + g; be the cumulative sample size

at the kth analysis (k > 1). We define Y, =X;+...+X, . The test of Hy:p=p, will
be based on successive values of the statistic

1
Sp = Silio) = ——5 I Y = mepto 112 (3.1)
n; (03

We consider a test that stops to reject Hy the first time that S, exceeds a critical value
¢, The hypothesis Hy is accepted at the final stage K if Sg<cg. The critical values
{cy s 1<k<K} are to be constructed so that the size of the test is equal to some

prespecified level @. Note that this will also imply that the sequence of repeated
confidence sets { u:Sy(u)<c,} for k=1,...,K has level 1-a .

The marginal distribution of S, is chi-squared with p degrees of freedom and
non-centrality parameter mngljy — ug I12/c?, denoted by xpz(nk =g 12/6%). In
particular we use this to obtain the distribution of §;. We proceed to show how to
construct recursively the joint distribution of {S; k=1,...,K'}; from this distribution
with g4 = u,, appropriate critical values {¢;;k=1,...,K} can then be found. To derive
the joint distribution of the {S;;k>1} under u = u, we note the identity

1
See1 = =5 IVe=npttg) + Y1 ~Ye=grr1 O
Me+19

where Yy 1 =Y, —gri1 0 ~ Ny(0,84 +lcrzlp) is independent of Y, and, hence, of S;.
Thus, conditionally on Yy, ..., Y,

Sk+1 ~ % = (3-2)

2

8kl o | WWe—mektoll™ | 8isa 2| s
P k|-

Pyl gk+102 Rpia

8k+1

Therefore the sequence {S;;k=1} is Markov and the joint distribution of
{Sg;k=21} under py can be constriucted by multiplying together the conditional
densities of S;,; given S, for k>1. Critical values {c;;k21} based on exit
probabilities {z;;k>1} or nominal significance levels {a;;k=1} can be calculated in
the same way as for the univariate normal, known variance case but with non-central
2?2 densities replacing the normal densities.

For a Pocock (1977) type boundary with constant nominal significance levels, we
set ¢;=...=cx=Cp(p,K,a), say. For boundaries analogous to those of O’Brien and
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Fleming (1979) we set ¢, = (K /k)COBp (p,K,a). For the case of equal group sizes,
the required constants Cp(p,K,a) and Copr (p,K,«) are tabulated in Tables 3 and 4,
respectively, for values of ¢ = 0.01, 0.05 and 0.10, K=1,...,10, 20 and 50 and
p=1,...,5. The entries were calculated using numerical integration and the
recursive formulae described below. Note that when p =1, Cp(1,K,) =ZI§(K ,00,0)
and Cppr(1,K,) =ZOBF(K,oo,a)2. When K =1, ¢; =Cp(p,1,0) =Cppr(p,1,a), the
usual percentage point of the xpz distribution.

[Tables 3 and 4 about here]

As for the sequential t-test,an approximate method for obtaining critical values is
to use percentage points of the )(1)2 distribution with the same nominal significance
levels as is required for univariate normal observations with known variance. This
approximation also works reasonably well. For example, for «=0.05 and 5 groups
of observations in a p=15 dimensional problem the actual Type I error probability of a
Pocock-type boundary constructed in this way is 0.053.

For power calculations it is necessary to evaluate the exit probabilities for the
sequence {S;;k=1} under the non null case u#uy. Without loss of generality, we
can take u — uy = |lu—poll (1,0,0,...,0). We write ¥, — n pg = (YED,¥{), where
the scalar Y{! is the first element of ¥, —n, o and Y2 is a (p—1)-vector denoting the
remaining elements. Then, given Y{V and W, = [|[¥{?||?, the conditional distributions
of YD and Wy, = |¥{2, ||? are independent and given by

Y | YD W) ~ NV + gl = soll, gre10?)
and
PWip1 | YO W) ~ 810?22 1(Wi [ gir0?).

The conditional distribution of S;,; then follows from the relation

1
Sk+1 = 5 (YD + W)
Ri+10

As in Section 2, the recursive formulae to determine exact probabilities now involve
double rather than single integrals. Further details of their evaluation are omitted.

3.2 The case of unknown scale factor, o

We consider the same situation as in Section 3.1 where the multivariate normal

observations X;,X,,... have covariance matrix 0'223, ¥ is a known pxp positive

2

definite matrix but now the scalar o“ is unknown. Again we may take ¥ = 1,

without loss of generality. We proceed as in Section 3.1, but replace ¢ by the
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estimator

ng - 2

2 X=Xl
s2 ==t
T pyD)
where X—k = Yk/nk.

Group sequential tests and repeated confidence sets are therefore based on the
sequentially computed F-statistics {F,;k=1} given by
1Y —ng o> /ny

31X -X, 12/ (ne=1)
i=1

Fy=F(uy) = (3.3)

Dividing numerator and denominator by p we see that marginally Fy ~ Fp ,, 1)

under u = p.
We now derive the joint distribution of {Fy;k=1,...,K} when u = uy. Write
U = 1Y = menoll?
SO
U
Fk - u 3
prySi

We proceed recursively. First, U; and s? are wdependent with nyo? xpz and
o2 sz(nl-l)/ {p(n 1)} distributions respectively. For k=1, let
e = (Ye—m o)/ IYy—ne o]l be a unit vector in the direction Yy—n,p, and let the
scalar random variable A and vector random variable B be defined by the orthogonal
decomposition.

Yir1 = Y = 8kr1 Mo = Ae + B

where BTe = 0.

Now, Ae + B is distributed as Np(O,ngGzIp) and by the spherical symmetry of
this distribution, A and B are independent of each other, as well as of Y¥;. Using these
facts and the multivariate analogue of (2.4),

P —DsEy =

Mgl Yeer Yoo, 0 o 5
ll - —" +0° % -1 (3‘4)
8k+1 Myl M Plge=1)

p(ng=1)s +

we can derive the conditional joint distribution of U, and s?,,, given U; and s? for
1 < i < k, from the relations

U1 = GU, + A)? + ||B||? (3.5)



-11 -

and

p(m1—Dsiy =

2
2
, I8l

2
i1

+ C (3.6)

nen nA—ge VU
p(nk—l)skz " k7 k+1 [ k k+1¥YE

g

8k+1

where A, |B|> and C are independent scalar random variables with

A~ N©0,gi16D), IBI? ~ gre10? 221 and C ~ 02 2%, 1.

Note that U,,; and s?,; depend on the past history of the bivariate process
{((U i,siz);i-—-l,...,k}, only through U, and s,?. Using techniques similar to those used
in Section 2, boundary values {c;;k21} can be computed so that the test has the
required size @. Since the distribution of the sequence {Fj;k=1} does not depend on

02, these values can be calculated using any convenient value, 62=1, say.

3.3. Extensions to other multivariate modeis

If, in Section 3.2, the covariance matrix ¥ were completely unknown it could be
estimated by the sample covariance matrix ﬁl The natural statistic on which to base
group sequential tests and repeated confidence sets would then be Hotelling’s T2
statistic (Jackson and Bradley, 1961). If the initial group sizes are large, a test with
approximate level 1—o might be constructed using the methods of Sections 3.1 and
3.2. Nominal significance levels {a;;k=>1} corresponding to critical values calculated
using the methods of Section 3.1 or 3.2 could be converted to critical values {¢;;k>1}
for the T? statistic using percentage points of the Hotelling distribution with the
appropriate degrees of freedom. Exact methods would involve joint distributions of
repeated Wishart variables!

3.4. Survival data and contingency tables

The univariate normal known variance case can serve as a basis for survival data
and contingency table data methods as described, for example, in Jennison and
Turnbull (1989). The methods of Section 3 could analogously be developed to handle
survival data from trials with three or more treatments or discrete data that can be
expressed as 2xk contingency tables, either stratified or unstratified.

ACKNOWLEDGEMENT

This research was supported in part by grant GM 28364 from the US National
Institutes of Health.



-12 -

APPENDIX

The recursive formula for the exit probabilities of the repeated t-statistics.

Suppose boundary values cy,...,cx or, equivalently, nominal levels «y,...,ag are
given. We wish to determine the exit probabilities {z;;k=1,...,K} as defined in

(2.3). Maintaining the notation of Section 2, for k<2 let
Fi(z,r) = P(Z,<z, R <r and |T; |<c; for all 1<i<k—1)
and let
ZFk

9
Ten) = 55

For &k = 1, we define
f1(z,r) = qi(2)hy(r)

where g, is the normal density with mean n,(u—puo)/o and variance n; and Ay is a

7531—1 density function. For k£ =2 1 we can recursively construct

fre1(z,r) = “Ck eV (zluv iy (r|u,v,z)du dv
where

nkv
Ce = {(u,v): v>0, |u] < ¢ (

) b

I’lk"l

gr+1(z|u,v) is the conditional density of Z,,; given Z, = u and R, = v, and
hpe1(r|u,v,z) is the conditional density of Ry, given Z, = u, Ry = v and Z,,; = z.
The conditional densities ¢;,; and Ak, , are given by Equations (2.5) and (2.6)
respectively. Finally, for £ > 1 the exit probabilities are given by

™, = ”Dkfk(u,v)du dv (k=1)

where

Dy = {(u,v): v>0, Jul| = ¢ (

nv
=il
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Table 1. Constants Zp(K,g,a) for Pocock type repeated t-tests with constant nominal

significance level and overall error rate «.

Number of obs. Number of groups, K
per group, g 2 3 4 5 6 7 8 9 10
a=0.01
1 2576 2792 2903 2977 3032 3068 3.099 3121 3.146
2 2801 2914 2986 3.036 3074 3.107 3133 3.153 3.169
3 2797 2907 2977 3.026 3063 3.093 3118 3.139 3.157
5 2790 2.897 2965 3.014 3051 3.081 3.105 3.126 3.144

10 2782 2.887 2954 3.002 3.039 3.068 3.093 3114 3132
limit as g— e 2772 2.873 2939 2986 3.023 3.053 3.078 3.099 3.117

a=0.05
1 1.960 2203 2323 2400 2455 2495 2532 2558 2582
2 2220 2344 2418 2472 2512 2543 2570 2591 2611
3 2210 2329 2404 2457 2498 2530 2556 2579 2598
5 2.198 2315 2389 2442 2482 2514 2541 2563 2583
10 2.188 2303 2376 2428 2468 2500 2527 2550 2.569

limit as g—>e0 2178 2.289 2361 2413 2453 2485 2512 2535 2555

a=0.1
1 1.645 1.896 2.021 2100 2159 2204 2235 2266 2290
2 1922 2050 2.128 2.184 2225 2258 2285 2308 2328
3 1908 2.033 2111 2.166 2208 2242 2269 2293 2313
5 1.894 2017 2.094 2149 2191 2225 2253 2276 2297
10 1.884 2004 2080 2135 2177 2211 2239 2263 2283

limit as g—o0 1.875 1992 2067 2122 2164 2197 2225 2249 2270

Observations are taken in up to K groups of size g and at each analysis the null hypothesis is rejected if the
two-sided significance level of the Student’s t-statistic, without adjustment for repeated looks, is less than
2{1-®(Zp(K ,8,2))}.
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Table 2. Constants Zppr(K,g,) for O'Brien & Fleming type repeated t-tests with

overall error rate a.

Number of obs. Number of groups, K
per group, g 2 3 4 5 6 7 8 9 10
a=0.01
1 2576 2619 2646 2663 2679 2.689 2695 2701 2.706
2 2584 2614 2635 2652 2660 2667 2673 2678 2682
3 2.584 2610 2629 2643 2654 2663 2669 2675 2680
5 2583  2.606 2.622 2635 2646 2.654 2661 2667 2672

10 2582 2.601 2616 2629 2639 2647 2655 2661 2666
limit as g—o0 2.580 2595 2609 2621 2631 2640 2648 2654 2660

a = 0.05

1.960 2.047 2077 2097 2112 2117 2128 2133 2138
1.995 2.034 2058 2075 2084 2094 2100 2105 2.109
1.993 2,027 2050 2.065 2077 2.088 2096 2102 2.108
1.989 2.019 2041 2:.056 2068 2.078 2086 2093 2.099

10 1984 2012 2033 2048 2061 2.071 2079 2087 2093
limit as g—»o0 1.977 2.004 2024 2040 2053 2063 2072 2080 2086

W W N e

1.645  1.759 1795 1812 1.823 1.835 1844 1848 1.853
1.707 1746 1770 178 1798 1.807 1.813 1819 1.824
1702 1736 1760 1777 1790 1.800 1.808 1.816 1.822
1.694 1.727 1750 1767 1.781 1.791 1.800 1.807 1.814

10 1.687 1.719 1742 1759 1773 1.784 1793 1801 1.807
limit as g—>oo 1.678 1710 1.733 1751 1765 1.776 1786 1.794 1.801

N W N e

Observations are taken in up to K groups of size g and the null hypothesis is rejected at the kth analysis if

the two-sided significance level of the Student’s t-statistic, without adjustment for repeated looks, is less than
2{1-D(Zppr (K ,g,2)N(K/k))).
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Table 3. Constants Cp(p,K,a) for Pocock type repeated 22 tests with constant nominal

significance level and overall error rate a.

a = 0.01 o= 0.05 o= 0.10
P P P
K 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
t 663 921 1134 1328 1509 3.84 599 781 949 1107 271 461 625 778 924
2 7.68 1040 1264 1466 1655 474 708 904 1082 1249 352 563 742 9.07 1063
3 825 1105 1334 1541 1733 524 767  9.69 1153 1325 397 618 805 976 1137
4 8.64 1148 1381 1590 17.86 558 806 1013 1200 1375 427 655 847 1022 1186
5 892 1179 1415 1627 1824 582 835 1044 1235 1412 450 683 877 1055 1222
6 914 1204 1441 1655 18.54 602 858 1069 1262 1441 468 7.04 901 1081 1250
7 932 1224 1463 1678 1878 618 877 1090 12.84 14.65 483 722 921 1103 1273
8 9.47 1241 1481 1698 18.99 631 892 1107 13.02 1484 495 737 937 1121 1292
9 9.60 1256 1497 1714 19.16 643 906 1121 1318 1501 506 750 951 1136 13.09
10 971 1269 1510 1729 1931 653 917 1134 1332 1516 515 761 963 1149 1323
20 1040 1345 1594 1816 20.23 714 988 1213 1415 16.04 572 828 1039 1230  14.09
50 115 1428 1683 19.10 2121 7.82 1066 1298 1506 17.00 637 9.03 1122 1320 1504
Observations from a p-variate normal distribution are taken in up to K equally sized groups. At each
analysis, the null hypothesis is rejected if the standard y? statistic exceeds Cp(p,K,). All entries were
found by numerical integration and are accurate to two decimal places.
Table 4. Constants Copr(p,K,a) for O’Brien and Fleming type repeated 22 tests with
constant nominal significance level and overall error rate o.
a = 0.01 a=0.05 a=0.10
p P P
K 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 663 921 1134 1328 1509 384 599 781 949 1107 271 461 625 7178 924
2 665 922 1135 1328 1509 391 602 7.8 950 1L08 282 467 629 780 925
3 673 927 1139 1331 1511 402 612 792 957 1114 292 478 639 790 933
4 681 934 1145 1336 1516 410 620 799 964 1121 3.00 48 648 798 9.42
5 687 940 1151 1342 1521 416 627 806 971 1127 307 493 654 805  9.49
6 692 945 1156 1347 1526 421 633 811 977 1133 311 499 660 811 954
7 697 950 1160 1352 1531 426 637 816 9.8 1138 316 503 665 816 9.60
3 701 955 1164 1356 1535 429 641 820 986 11.42 319 507 669 820 9.64
9 704 958 1167 1360 1539 433 645 823 990 1146 322 510 672 824  9.68
10 708 961 1170 1363 1542 435 648 826 993 1150 324 513 675 827 971
20 726 981 1193 1385 1564 452 667 848 1014 1171 339 531 696 848  9.93
50 746 1004 1217 1410 1591 469 686 869 1037 11.95 354 549 715 869 1016

Observations from a p-variate normal distribution are taken in up to K equally sized groups. At the kth

analysis, the null hypothesis is rejected if the standard y? statistic exceeds (K/k) Copr(p.K,a). All entries

were found by numerical integration and are accurate to two decimal places.




