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1. Introduction

In this paper we are concerned with the minimum feedback vertex set problem of directed graphs. A
feedback vertex set of a graph is a subset of vertices containing at least one vertex from every cycle of the
graph, and a minimum feedback vertex set is a feedback vertexset of minimal size. Computing minimum
feedback vertex sets is of fundamental importance in combinatorial optimization. The problem originally
appeared in the context of switching circuits; cf. [20]. Further applications include, for example, the
analysis of signal flow graphs and electrical networks [8], the solution of linear algebraic systems [16],
as well as constraint satisfaction problems and Bayesian inference [1].

As shown in [15], the minimum feedback vertex set problem is NP-hard. Due to this negative result,
polynomial time approximation algorithms have been developed for computing near optimal feedback
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vertex sets. In [1] it is shown that a minimum feedback vertexset for undirected graphs can be approx-
imated within a constant factor of 4. In [14], this approximation ratio has been improved to 2, and to
the best of our knowledge 2 is still the smallest approximation ratio for the time being. For directed
graphs, the case we are concerned with, a solution seems muchharder to approximate. To the best of our
knowledge, currently the smallest ratio isO(log n log log n) as found in [10].

Our approach, however, is based on relational algebra in thesense of [19]. We stepwise develop an
exact algorithm solving the minimum feedback vertex set problem for directed graphs. The algorithm is
based on a representation of directed graphs by adjacency relations and on the reduction of the feedback
vertex set problem to the enumeration of all vertex sets of elementary chordless cycles. In essence, the
enumeration of these vertex sets corresponds to exhaustively testing each subset of vertices for being the
vertex set of an elementary chordless cycle. Therefore, onemay expect the execution time of our algo-
rithm to grow so rapidly that one can only deal with graphs of fairly small size. Precisely here, a specific
implementation of relations based on binary decision diagrams (BDDs for short) appears beneficial. Due
to this sophisticated implementation, we can compute exactsolutions of the minimum feedback vertex
set problem for medium-sized graphs consisting of about 100vertices in general and more in some ad-
vantageous cases. We use the relation-algebraic programming and visualization tool RELV IEW [3, 4]
for this computation. It implements relations as well as many operations and tests on them by means
of reduced ordered BDDs; see [17, 5, 18]. RELV IEW thereby provides a high-performance and nice
mechanization of relational algebra.

The remainder of this paper is organized as follows. Some relation-algebraic preliminaries used
throughout this paper are provided in the next Section 2. In particular, we deal with some different
possibilities to model sets and direct products with relations. These constructions are of importance for
our approach discussed in detail in Sections 3, 4, and 5: Section 3 shows how the minimum feedback
vertex set problem can be reduced to the column-wise enumeration of vertex sets of elementary chord-
less cycles; Sections 4 presents a first relation-algebraicsolution of the latter problem, and Section 5
refines it in order to improve performance. In Section 6, we report on results of running practical experi-
ments with RELV IEW and sketch some refinements which in some cases even considerably speed-up the
computation time. Section 7 contains concluding remarks and briefly describes some applications in the
world of Petri nets where the calculation of vertex sets of elementary chordless cycles can similarly be
of advantage.

2. Relation-Algebraic Preliminaries

We assume the reader to be familiar with relational algebra.Details can be found, for example, in [19].
Nonetheless, we provide in the following the notations and definitions as used throughout this paper. In
particular, we focus on representations of sets and a relational description of direct products which are
not commonly used and require some detailed explanation.

We writeR : X ↔ Y if R is a relation with domainX and rangeY , i.e., a subset ofX × Y . Both
setsX andY are assumed to be nonempty. Since we are interested in computations, we additionally
assume that the setsX andY of R’s typeX ↔ Y are finite. Hence, we may consider every relation
R as a Boolean matrix with|X| rows and|Y | columns. Since this interpretation is well suited for many
purposes and Boolean matrices are the main means to depict relations graphically in RELV IEW, we use
Boolean matrix notions and notations when appropriate. In particular, we speak of rows and columns of
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relations and writeRx,y instead of〈x, y〉 ∈ R or xR y.
We use the notationRT for transposition, R for complement, R∪S for union, R∩S for intersection,

RS for composition, andR ⊆ S for inclusion. Theempty relationis denoted byO, theuniversal relation
byL, and theidentity relationby I. Finally, we will use thetransitive closureR+ =

⋃
i≥1

Ri, where the
powers ofR are defined byR0 := I andRi+1 := RRi.

A relationR is calledunivalentif RTR ⊆ I, andtotal if RL = L. A univalent and total relationR
is called amapping. It is aninjective mappingif, in addition,RT is univalent.

Relational algebra provides different possibilities to model sets. The first possibility applied in this
paper usesvectors(or row-constant relations), that is relationsv with v = vL. For a vectorv of type
X ↔ Y this condition means: Whatever setZ and universal relationL : Y ↔ Z we choose, an element
x ∈ X is in relationship(vL)x,z to either none or every elementz ∈ Z. Since for a vector the range is
irrelevant, in this paper we mainly consider vectorsv : X ↔ 1 with a specific singleton set1 = {⊥}
as range and omit in such cases the second subscript, i.e., write vx instead ofvx,⊥. Such a vector can
be considered as a Boolean matrix with exactly one column, i.e., as a Boolean column vector, and it
representsthe subset{x ∈ X : vx} of its domainX.

We will also use injective mappings to model subsets. Given an injective mappingı : Y ↔ X, we
may considerY as a subset ofX by identifying it with its image underı. If Y is actually a subset ofX
andı is the identity mapping fromY to X, then the vectorıTL : X ↔ 1 representsY as subset ofX in
the sense above. Clearly, it is also possible to generate theinjective mapping

inj(v) : Y ↔ X inj(v)y,x : ⇐⇒ y = x (1)

from a given vectorv : X ↔ 1 representing a subsetY of X. We call inj(v) the injective mapping
generatedby the vectorv.

As a third possibility to model subsets of a given setX we will use the set-theoreticmembership
relation defined by

M : X ↔ 2X
Mx,Y : ⇐⇒ x ∈ Y , (2)

where2X is the powerset ofX. Using matrix terminology, a combination of injective mappings and
membership relations lead to acolumn-wise representation (enumeration)of sets of subsets. More specif-
ically, if the vectorv : 2X ↔ 1 represents a nonempty subsetS of 2X in the sense above, then for all
x ∈ X andY ∈ S we get the equivalence ofx ∈ Y and(M inj(v)T)x,Y due to (1) and (2). This means
that the elements ofS are represented precisely by the columns of the relationS := M inj(v)T : X ↔ S.

A further consequence is thatSTS : S ↔ S is the relation-algebraic specification of set inclusion on

S, that is, for allY,Z ∈ S we have the relationship(STS )Y,Z if and only if Y ⊆ Z. Due toinj(L) = I,
hence, theset inclusion relationon the entire powerset2X is relation-algebraically given by

S := MTM : 2X ↔ 2X . (3)

Besides set inclusion relations, we will in this paper also apply size-comparison relationson power-
sets. Such a relation is defined by

C : 2X ↔ 2X
CY,Z : ⇐⇒ |Y | ≤ |Z| . (4)

Membership relations and size comparison relations allow for very space-efficient implementations
using reduced ordered BDDs. Given a variable ordering such that the variables of the domain of a relation
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to be implemented via a BDD are tested prior to the variables of the range, the number of vertices of the
BDD implementingM : X ↔ 2X is bounded by3 ∗ |X| + 1, and the number of vertices of the BDD
implementingC : 2X ↔ 2X is exactly2+ |X| ∗ (|X|+1); see [17] and [18] for the detailed algorithms.
Unfortunately, the size of the BDD for implementing a set inclusion relationS : 2X ↔ 2X is exponential
in |X|.

Given a direct productX × Y of two setsX andY , there are two projection functions decomposing
a pairu = 〈u1, u2〉 into its first componentu1 and its second componentu2. For a relation-algebraic
approach, instead to consider these functions it is more convenient to take the correspondingprojection
relationsπ : X × Y ↔ X andρ : X × Y ↔ Y such that for allu ∈ X × Y , x ∈ X, andy ∈ Y

we haveπu,x if and only if u1 = x, andρu,y if and only if u2 = y. With projection relations we can
relation-algebraically describe the well-known pairing operation of functional programming as follows:
For relationsR : Z ↔ X andS : Z ↔ Y we define theirpairing (frequently also called theirfork or
tupling) by

[R,S] := RπT ∩ SρT : Z ↔ X × Y . (5)

Using specification (5), for allz ∈ Z andu ∈ X ×Y a simple reflection shows that[R,S]z,u if and only
if Rz,u1

andSz,u2
.

3. Reduction of Feedback Vertex Sets to Cycle Enumeration

In the remainder, letg = (V,R) be afinite and directed graphwhereV is its nonempty set of vertices
andR : V ↔ V its adjacency relation. The latter assumes each pair〈x, y〉 ∈ V 2 to be an arc ing if and
only if Rx,y holds.

A sequencec := (x0, . . . , xn) of n > 0 vertices is acycleof g if each pair of consecutive vertices
forms an arc, i.e.,Rxi,xi+1

for 0 ≤ i ≤ n − 1, andx0 = xn. V(c) := {xi : 0 ≤ i ≤ n} denotes the
set of vertices ofc. The cyclec is elementaryif the verticesx0, . . . , xn−1 are pairwise different. An arc
〈x, y〉 of g is achordof c if x, y ∈ V(c) but 〈x, y〉 is not an arc ofc. A cycle ofg is calledchordlessif it
does not possess a chord. Finally, a setF ∈ 2V is afeedback vertex setof g if for each cyclec of g there
exists a vertexx ∈ F with x ∈ V(c), i.e.,F ∩ V(c) 6= ∅.

As the following proposition shows, feedback vertex sets can sufficiently be characterized by the
vertex sets of elementary chordless cycles.

Proposition 3.1. Let F ∈ 2V be a set of vertices ofg. ThenF is a feedback vertex set ofg if and only
if F ∩V(c) 6= ∅ for all elementary chordless cyclesc of g.

Proof:
“=⇒” If F is a feedback vertex set ofg, each cycle ofg (and, hence, each elementary chordless one)
contains a vertex ofF .

“⇐=” Let c be a cycle ofg. We consider the set

{c′ : c′ cycle ofg andV(c′) ⊆ V(c)}.

Then this set is nonempty and contains minimal elements withrespect to the preorder on sequences
induced by length comparison, since this preorder is Noetherian. Letc′ be such a minimal element. Then
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obviouslyc′ is an elementary chordless cycle ofg. By assumption,F ∩V(c′) 6= ∅. With V(c′) ⊆ V(c)
it follows thatF contains a vertex fromc. ⊓⊔

In the following, we assume a column-wise representation ofthe subset

C := {V(c) : c elementary chordless cycle ofg}

of the powerset2V to be given, i.e., a relationC : V ↔ C such thatCx,S if and only if S is the vertex
set of an elementary chordless cycle ofg andx ∈ S. The calculation of the relationC is postponed to
Sections 4 and 5.

Our objective is to calculate a vector representing the setF ⊆ 2V of all feedback vertex sets ofg. We
assume an arbitrary set of verticesF ∈ 2V and calculate as follows, wherec ranges over the elementary
chordless cycles of the directed graphg andS ranges over the setC of their vertex sets:

F is a feedback vertex set ofg

⇐⇒ ∀ c : F ∩ V(c) 6= ∅ Proposition 3.1

⇐⇒ ∀ c : ∃x : x ∈ F ∧ x ∈ V(c)

⇐⇒ ∀S : ∃x : Mx,F ∧ Cx,S M : V ↔ 2V

⇐⇒ ¬∃S : MTC F,S ∧ LS L : C ↔ 1

⇐⇒ MTC LF .

This derivation merely uses well-known correspondences between logical and relation-algebraic con-
structions. If we remove the subscriptF from the last expression following the representation of sets

through vectors as introduced in Section 2, we getMTC L : 2V ↔ 1 as the relation-algebraic descrip-
tion of the vector representing the setF of all feedback vertex sets ofg.

From this vector we obtain a vector representation of the setFmin ⊆ 2V of all minimum feedback
vertex sets ofg as follows. The relational function

LeEl(Q, v) = v ∩ Qv

computes vector representations of the least elements of a vector/setv using a preorderQ (see [19]).

With the size comparison relationC : 2V ↔ 2V taken as the preorderQ andMTC L as vectorv, the
vector

MinFvs(C) := LeEl(C,MTC L) : 2V ↔ 1 (6)

represents the desired set of minimum feedback vertex sets of g. If this vector is nonempty, the column-
wise representation of the minimum feedback vertex setsFmin is represented by the relation

M inj(MinFvs(C ))T : V ↔ Fmin

as an immediate consequence of (6) and the technique mentioned in Section 2.
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4. Enumeration of Elementary Chordless Cycles

In this section, we are concerned with the computation of vertex sets of elementary chordless cycles in
the directed graphg = (V,R). The relationC : V ↔ C as used in the previous chapter demands for
its relation-algebraic specification to complete the program development. It will deliver a column-wise
representation of the setC of vertex setsV(c) of all elementary chordless cyclesc of the graphg. For
a better understanding of our approach, we start with a simple consideration on progressively infinite
vertex sets ofg. A setS ∈ 2V is progressively infiniteif for each vertexx ∈ S there exists a successor in
S, i.e. a vertexy ∈ S with Rx,y. The following property fundamentally relates these sets to vertex sets
of elementary chordless cycles.

Proposition 4.1. LetS ∈ 2V be a set of vertices ofg. ThenS is the vertex set of an elementary chordless
cycle ofg if and only if S is a minimal (w.r.t. set-inclusion) nonempty and progressively infinite subset
of V .

Proof:
“=⇒” Let c = (x0, . . . , xn) be an elementary chordless cycle ofg and assumeS = V(c). ThenS is
nonempty. Furthermore, for eachxi ∈ S, 0 ≤ i ≤ n − 1, there exists a successorxi+1 ∈ S so thatS
is progressively infinite.S is also a minimal set with these properties: AssumeS′ to be a nonempty and
progressively infinite proper subset ofS. Then,S′ is the vertex setV(c′) of a cyclec′ of g sinceV is
finite. NowV(c′) ⊂ V(c) implies thatc must contain a chord, which contradicts the assumption thatc

is chordless.

“⇐=” From S being nonempty and progressively infinite it follows that there exists a cyclec of g with
V(c) = S due to the finiteness ofV . Let c have the form(x0, . . . , xn). Then the cyclec is elementary:
Assumexi = xj for some0 ≤ i, j ≤ n − 1 and w.l.o.g.i < j. This implies that{xi, . . . , xj} is a
proper nonempty and progressively infinite subset ofS, which contradictsS to be minimal. The cyclec
is also chordless. To prove this by contradiction as well, weassume the arc〈xi, xj〉 of g to be a chord of
c. W.l.o.g. we again assumei < j. Then, obviously{x0, . . . , xi, xj , . . . , xn} is a proper nonempty and
progressively infinite subset ofS, which again contradictsS to be minimal. ⊓⊔

This proposition offers a first way to relation-algebraically specify the decisive relationC : V ↔ C we
are looking for. In a first step, we develop a vector representation for the nonempty and progressively
infinite subsets ofV . In a second step, we extract minimal elements therefrom. The relational function

Min(Q, v) = v ∩ (QT ∩ I)v

computes the minimal elements of a vector/setv using a preorderQ (again, see [19]). We simply take
the set inclusion relationS : 2V ↔ 2V as preorderQ and the vector representation of the progressively
infinite subsets as vectorv and yield a vector representation of the setC. In a third step, we transform
this vector representation into a column-wise one following the technique introduced in Section 2 and
eventually obtain the relationC : V ↔ C.

For the first step, we assume an arbitrary setS ∈ 2V to be given. Using some well-known corre-
spondences between logical and relation-algebraic constructions again, we are able to develop a vector
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representing the set of all nonempty and progressively infinite sets as given below; in this calculation
bothx andy range over the setV :

S 6= ∅ and progressively infinite

⇐⇒ ∃x : x ∈ S ∧ ∀x : x ∈ S → ∃ y : y ∈ S ∧ Rx,y

⇐⇒ ∃x : Mx,S ∧ ∀x : Mx,S → ∃ y : My,S ∧ Rx,y M : V ↔ 2V

⇐⇒ ∃x : L⊥,x ∧Mx,S ∧ ∀x : Mx,S → (RM)x,S L : 1 ↔ V

⇐⇒ (LM)⊥,S ∧ ¬∃x : L⊥,x ∧Mx,S ∧ RMx,S

⇐⇒ (LM)TS ∧ L(M ∩ RM)⊥,S

⇐⇒ ((LM)T ∩ L(M ∩ RM)
T

)S .

The last expression of this derivation leads to

PrInf (R) := (LM)T ∩ L(M ∩ RM)
T

: 2V ↔ 1 (7)

as the vector representation of the set of all nonempty and progressively infinite subsets ofV . The
remaining steps for the column-wise representation of the setC via the relationC are now straightforward
and lead to the equality

C = M inj(Min(S,PrInf (R)))T
, (8)

whereS : 2V ↔ 2V is the set inclusion relation on the powerset2V .
Each of the relational specifications (6), (7), and (8) we have derived so far easily can be translated

into the programming language of the RELV IEW tool. Doing so, we obtain the following RELV IEW-
program for computing the vector representation of the setFm of all minimum feedback vertex sets of a
directed graphg = (V,R).

PrInf(R)

DECL M, L

BEG M = epsi(O(R));

L = L1n(R)

RETURN (L * M)^ & -(L * (M & -(R * M)))^

END.

MinFvs(C)

DECL LeEl(Q,v) = v & -(-Q * v);

M, CC

BEG M = epsi(O(C));

CC = cardrel(O(C))

RETURN LeEl(CC,-dom(-(M^ * C)))

END.
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Main(R)

DECL Min(Q,v) = v & -((Q^ & -I(Q)) * v);

M, SS, C

BEG M = epsi(O(R));

SS = -(M^ * -M);

C = M * inj(Min(SS,PrInf(R)))^

RETURN MinFvs(C)

END.

The bottleneck of this program is the set inclusion relationSS in Main. As already mentioned in Section
2, the size of the reduced ordered BDD of such a relation is exponential in the size of the base set.
In applications this means thatMain only works for adjacency relations of fairly small graphs with
approximately 25 vertices. In the following section, we will demonstrate how to avoid a set inclusion
relation in computing the decisive relationC : V ↔ C by refining the hitherto approach.

5. A Refined Version which Avoids Set Inclusion

So far, we used the nonempty and progressively infinite subsets ofg = (V,R) to approximate the vertex
sets of elementary chordless cycles. We computed their vector representation,PrInf (R) : 2V ↔ 1,
and provided inC : V ↔ C the exact result by minimizingPrInf (R) using a set inclusion relation, see
Specification (8). Now, we add some further properties to obtain a much better approximation of the set
C and simultaneously avoid the set inclusion relation. The sets S of vertices ofg we are concerned with
now are considered to be:

• Regressively infinite: S is progressively infinite w.r.t. the transposed graphgT = (V,RT).

• Free of branching vertices(branch-free): There is nox ∈ S such thatRx,y and Rx,z for any
different verticesy, z ∈ S.

• Free of joining vertices(join-free): S is free of branching vertices w.r.t. the transposed graph
gT = (V,RT).

From a column-wise representationQ : V ↔ S of the set

S := {S ∈ 2V : S 6= ∅, progr. and regr. infinite, branching and joining free}

we compute the relationC : V ↔ C by removing fromQ those columns not corresponding to minimal
sets of the approximationS of C. As we will demonstrate later, this can be done without usinga set
inclusion relation. The following proposition tightens Proposition 4.1 and is the crucial justification of
the proposed refinement.

Proposition 5.1. Let S ∈ 2V be a vertex set. ThenS is the vertex set of an elementary chordless cycle of
g if and only if S is a minimal (w.r.t. set-inclusion) nonempty, progressively infinite, regressively infinite,
branch-free, and join-free subset ofV .
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Proof:
“=⇒” Let c = (x0, . . . , xn) be an elementary chordless cycle ofg and assumeS = V(c). In the
proof of Proposition 4.1 we already have shown thatS is nonempty and progressively infinite.S is also
regressively infinite since for eachxi ∈ S, 1 ≤ i ≤ n, there exists a predecessorxi−1 ∈ S.

The absence of chords inc implies thatS is free of branching vertices: A branching vertexx ∈ S

with two different successorsy, z ∈ S would lead to a chord ofc since at least one of the arcs〈x, y〉 or
〈x, z〉 is not an arc ofc. In the same way it follows thatS is free of joining vertices.

Additionally, S is also minimal. AssumeS′ to be a proper subset ofS fulfilling the properties stated
in the proposition. Then, the cyclec must contain a chord as already shown in the proof of Proposition
4.1, direction “=⇒”.

“⇐=” The argument is the same as in the proof of Proposition 4.1, direction “⇐=”: The finiteness of
V implies thatS is the vertex set of a cyclec and thatc is both elementary and chordless sinceS is
minimal. ⊓⊔

Further considerations lead to the observation thatS is nonempty, progressively infinite, regressively
infinite, branch-free, and join-free if and only ifS is the union of vertex sets of disjoint elementary
chordless cycles. This property is not used in any of our formal proofs. Its value is to motivate further
refinement steps since it shows how the minima of such setsS look like. Hence, it remains to refine the
derivation of regressively infinite, branch- and join-freesets, and to show how to extract the minima from
their column-wise representation.

From the vectorPrInf (R) : 2V ↔ 1 as derived in (7), we immediately obtain the vector repre-
sentation of all nonempty and regressively infinite sets throughPrInf (RT) : 2V ↔ 1. Equally, the
vector representation of join-free sets can be reduced to the vector representation of branch-free sets. If
the latter one is given byFreeBv (R) : 2V ↔ 1, then obviouslyFreeBv (RT) : 2V ↔ 1 represents the
join-free sets. Thus, it remains to develop a relation-algebraic specification ofFreeBv(R). We divide
this task into two steps: In the first step, we calculate a relation B : V ↔ 2V that relates a vertexx ∈ V

and a setS ∈ 2V if and only if x is a branching vertex ofS. In the second step, based onB we calculate
a vector of type2V ↔ 1 representing all branch-free vertex sets.

In the derivation of the relationB : V ↔ 2V , we will usey andz ranging overV , andu = 〈u1, u2〉
ranging overV 2. Furthermore, we will consecutively introduce a membership relation, the two projection
relations onV 2, a diversity relation, an identity relation, and an universal relation:

x is a branching vertex ofS

⇐⇒ x ∈ S ∧ ∃ y : y ∈ S ∧ Rx,y ∧ ∃ z : z ∈ S ∧ Rx,z ∧ y 6= z

⇐⇒ x ∈ S ∧ ∃ y, z : y ∈ S ∧ z ∈ S ∧ Rx,y ∧ Rx,z ∧ y 6= z

⇐⇒ Mx,S ∧ ∃u : u1 ∈ S ∧ u2 ∈ S ∧ Rx,u1
∧ Rx,u2

∧ u1 6= u2 M : V ↔ 2V

⇐⇒ Mx,S ∧ ∃u : (πM)u,S ∧ (ρM)u,S ∧ Rx,u1
∧ Rx,u2

∧ u1 6= u2 π, ρ project.

⇐⇒ Mx,S ∧ ∃u : [R,R]x,u ∧ (πM ∩ ρM)u,S ∧ u1 6= u2 (5)

⇐⇒ Mx,S ∧ ∃u : [R,R]x,u ∧ (πM ∩ ρM)u,S ∧ (π Iρ)u,u I : V ↔ V

⇐⇒ Mx,S ∧ ∃u : [R,R]x,u ∧ (πM ∩ ρM)u,S ∧ ((π Iρ ∩ I)L)u,S I : V 2 ↔ v2

⇐⇒ (M ∩ [R,R](πM ∩ ρM ∩ (π Iρ ∩ I)L))x,S L : V 2 ↔ 2V.
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This yieldsM∩[R,R](πM∩ρM∩(π Iρ∩ I)L) as the relation-algebraic specification ofB. To calculate
a vector representing all branch-free vertex sets, we assume an arbitrary setS ∈ 2V , let x range overV ,
and calculate as follows:

S is free of branching vertices

⇐⇒ ¬∃x : x ∈ S ∧ Bx,S

⇐⇒ ¬∃x : Mx,S ∧ Bx,S M : V ↔ 2V

⇐⇒ ¬∃x : L⊥,x ∧Mx,S ∧ Bx,S L : 1 ↔ V

⇐⇒ ¬(L(M ∩ B))⊥,S

⇐⇒ L(M ∩ B)
T

S .

A consequence of this is the relation-algebraic specification L(M ∩ B)
T

: 2V ↔ 1 of the branch-free
vertex sets ofg. Unfolding the relationB within this vector, the vectorFreeBv (R) we originally were
interested in reads as follows:

FreeBv(R) = L(M ∩ (M ∩ [R,R](πM ∩ ρM ∩ (π Iρ ∩ I)L)))
T

: 2V ↔ 1 . (9)

To obtain a relationQ : V ↔ S representing in a column-wise manner the setS of nonempty, pro-
gressively infinite, regressively infinite, branch-free, and join-free vertex sets, we combine the relation-
algebraic specifications (7) and (9) with the membership relationM : V ↔ 2V and yield

Q = M inj(PrInf (R) ∩ PrInf (RT) ∩ FreeBv(R) ∩ FreeBv(RT))
T

. (10)

After removing fromQ all columns not corresponding to minimal sets ofS, Proposition 5.1 shows that
the resulting relation coincides with the column-wise representationC : V ↔ C of the setC. It takes two
steps to remove such columns: First, we calculate a vector oftypeS ↔ 1 representing the minimal sets
of S, i.e.C as a subset ofS. Second, we simply restrict the rangeS of the relationQ to the setC. For
the first step, we assumeS to be an arbitrary set inS. Then we can proceed as follows, whereT ranges
overS andx ranges overV :

S is a minimal set ofS

⇐⇒ ¬∃T : S 6= T ∧ ∀x : x ∈ T → x ∈ S

⇐⇒ ¬∃T : S 6= T ∧ ∀x : Qx,T → Qx,S Q column-wisely repr.S

⇐⇒ ¬∃T : IS,T ∧ ¬∃x : Qx,T ∧ Qx,S I : S ↔ S

⇐⇒ ¬∃T : IS,T ∧ ¬∃x : Q
T

S,x ∧ Qx,T

⇐⇒ ¬∃T : IS,T ∧ (Q
T
Q)S,T ∧ LT L : S ↔ 1

⇐⇒ (( I ∩ Q
T
Q)L)S .

As a consequence, the subsetC of S is represented by( I ∩ Q
T
Q)L : S ↔ 1. Now, the range restriction

is trivially achieved by multiplying toQ from the right the transposed injective mapping generated by
this vector. This results in:

C = Q inj(( I ∩ Q
T
Q)L)

T

. (11)
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In comparison to the specification provided in (8) above, in (11) we do not use the very expensive set
inclusion relationS : 2V ↔ 2V .

Similar to the relation-algebraic specifications (6), (7),and (8), the specifications shown in (9), (10),
and (11) can immediately be translated into the programminglanguage of RELV IEW. Here, we only
present the code for (9) to show how the RELV IEW-language allows to introduce direct products, projec-
tion relations, and pairing. Specifications (10) and (11) merely require simple syntactic adoptions.

FreeBv(R)

DECL Prod = PROD(R,R);

M, pi, rho, I1, I2, L1, L2, A

BEG M = epsi(O(R));

pi = p-1(Prod);

rho = p-2(Prod);

I1 = I(R);

I2 = I(pi * pi^);

L1 = L1n(R);

L2 = L(pi * M^);

A = pi * M & rho * M & (pi * -I1 * rho^ & I2) * L2

RETURN -(L1 * (M & ([R,R] * A)))^

END.

Of course, in this program the computations ofI2 andL2 can be improved by replacing the compositions
pi * pi^ andpi * M^ by compositions of corresponding empty relations (e.g.,O(pi) * O(pi)^ in
the first case) since in a BDD-implementation of relations the generation and composition of empty
relations require constant execution time (see [17] for details).

6. Some Further Improvements

The algorithms developed in the previous sections formed the basis for divers experiments to estimate
the runtime behavior and the size of the graphs treatable. Weused RELV IEW as the surrounding soft-
ware system executed on a Sun-Fire 880 workstation running Solaris 9 at 750 MHz with 32 GByte of
main memory. We constructed some specific graphs by hand to ensure reasonable data to experiment
with. Additionally, we generated graphs randomly, a feature provided by RELV IEW. Randomization is
controllable through the number of vertices and the densityof a graph, i.e. its number of edges. Further,
one can compel relations which are adjacency relations of directed graphs consisting of a single cycle or
the disjoint union of cycles.

The algorithm as refined in (11) proved to be of much more performance than the original one as
provided in (8). Whereas for small graphs the computation turned out to be very fast, for medium-
sized graphs it took minutes or even more than an hour to obtain all minimum feedback vertex sets.
However, we frequently achieved impressive results on medium-sized graphs. For example, in a sparse
graph with 100 vertices, RELV IEW computed precisely 1 103 872 minimum feedback vertex sets within
2479 seconds. Each of them consisted of 11 vertices. The graph is depicted in Figure 1, and one of its
minimum feedback vertex sets is emphasized in black.
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Figure 1. A graph and a minimum feedback vertex set

In case of a large set of solutions, of course, it is recommendable to compute only a single minimum
feedback vertex set to reduce storage space. This can easilybe accomplished utilizing the vector repre-
sentation of all minimum vertex sets of a graphg = (V,R). One simply has to select a pointp : 2V ↔ 1

from the vector representation; a suitable base-operationpoint is provided by RELV IEW. A point is
a nonempty and injective vector or, in terms of Boolean matrices, a Boolean column vector in which
exactly one component is true. The compositionM p of the membership relationM : V ↔ 2V andp

delivers a vector of typeV ↔ 1 representing a single minimum feedback vertex set ofg.

Some possibilities to enhance runtime or space consumptionremain open. In the remainder, we
briefly sketch two of them. We need to mention that these possibilities of course do no affect each and
every graph. Our experiments have shown, however, that a large number of graphs are considerably
affected.

First of all, it is reasonable to consider a subgraphh = (W,S) of g = (V,R) generated by the setW

of vertices ofg lying on a cycle. The setW can be represented by the vectorw := (R+ ∩ I)L : V ↔ 1,
as a simple calculation proves. Consequently, we obtaininj(w)R inj(w)T : W ↔ W as the adjacency
relationS of h, and with the column-wise representationM : W ↔ Fmin of the minimum feedback
vertex sets ofh we yield inj(w)T M : V ↔ Fmin as the column-wise representation of the minimum
feedback vertex sets ofg. Obviously, the less vertices ofg are lying on a cycle the more effective this
improvement is.

The second improvement is based on the following property: Let x be a “pipeline vertex” ofg with
exactly one predecessory 6= x and exactly one successorz 6= x such thaty 6= z. If we modify g by
deleting the arcs〈y, x〉 and〈x, z〉 as well as by inserting the “bypass arc”〈y, z〉, then each minimum
feedback vertex set of the modification will also be a minimumfeedback vertex set of the original graph.
In case the number of elementary chordless cycles ofg is not too large, this fact suggests to compute the
relationS :=

⋃
v R ∩ vvT : V ↔ V , wherev ranges over the columns ofC : V ↔ C. Using a graph-

theoretic terminology,S exactly consists of the arcs of the elementary chordless cycles ofg. Therefore,
the minimum feedback vertex set problem forg can be reduced to the same problem with respect to the
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Figure 2. Subgraph consisting of the arcs of all elementary chordless cycles

subgraphh = (V, S). Since we construct feedback vertex sets from elementary cycles, this subgraph
may often contain a considerable number of pipeline vertices. Consequently, repeatedly bypassing them
leads to a directed graph with many isolated vertices to which, eventually, the first improvement can
successfully be applied.

We have combined both possibilities to compute a single minimum feedback vertex set of the graph
shown in Figure 1. This graph possesses exactly 35 elementary chordless cycles, as a computation with
RELV IEW showed. The subgraph consisting only of the arcs of these cycles is depicted in Figure 2.
Repeatedly applying bypassing to this graph produces a graph with 58 isolated vertices, presented in
Figure 3 together with the minimum feedback vertex set as shown in Figure 1. The combination of
repeatedly bypassing and restriction to the subgraph generated by the set of vertices lying on a cycle
reduces the computation of a single minimum feedback vertexset of the original graph shown in Figure
1 to the same problem for a graph with only 42 vertices. It tookRELV IEW 18.45 seconds to reduce the
graph, to compute a single minimum feedback vertex set of the42-vertex graph, and to extend this vector
to a vector representing a minimum feedback vertex set of theoriginal graph.

The runtime behavior of algorithms solving the minimum feedback vertex set problem is often tested
using the ISCAS89 or ITC99 benchmarks. These benchmarks offer sets of hardware circuits of various
complexities, some with up to 20.000 gates. It is of course interesting to see how our algorithm performs
on these benchmarks and how it compares to related approaches tested on them as well. As future work,
we need to convert the benchmark data into a relational stylefor use with the RELV IEW tool such that
these data are processable by our relational algorithm.

7. Conclusion

In this paper, we have developed a relational algorithm (a RELV IEW-program) for the exact enumeration
of minimum feedback vertex sets. We started with the observation that these sets can be obtained by
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Figure 3. Result after repeatedly bypassing

enumerating the vertex sets of all elementary chordless cycles. To solve the latter problem, we first used
minimal nonempty and progressively infinite vertex sets. The resulting program is merely applicable to
fairly small graphs, even if relations are implemented by reduced ordered BDDs as in the RELV IEW tool.
This arises from using a set inclusion relation, the reducedordered BDD of which is exponential in the
size of the base set. Therefore, we have refined our program insuch a way that the set inclusion relation
is avoided. Using the refined program, however, we are able todeliver minimum feedback vertex sets for
medium-sized graphs in reasonable time. Such graphs frequently appear in practical applications such
as analysing signal flow graphs.

At this place, a new application of minimum feedback vertex sets in coalition formation should also
be mentioned. It allows to determine a stable government even in the case the dominance graph of
feasible governments has no sources [6]. In practical applications, such dominance graphs are small or
at most of medium size, and hence RELV IEW can effectively be used.

Aside from feedback vertex sets, calculating vertex sets ofelementary chordless cycles is also bene-
ficial in other domains. For example, Petri nets, as the most prominent representative of bipartite graphs
in Computer Science, offer a nice playground for cycle calculation. State machines and marked graphs
are common classes of Petri nets. They model systems built out of cycles [2]. On a visual analysis level,
a designer wants to identify these building cycles, since they form the processes the system consists of.
Identifying the cycles visually helps to understand the nettopology and is thus vital for working with
the underlying system. On the level of machine-based analysis, as for example proposed in [11], the
enumeration of cycles is of particular interest for strongly connected conservative Petri nets. There, the
support of a minimal semi-positive place invariant of the net is also the support of an elementary cycle
[7]. A theory considering so calledhandlesis elaborated in [9]. It relies on the absence of certain cyclic
structures and then allows to deduce interesting net properties. For a brief explanation, let an elementary
cyclec = (x0, . . . , p, . . . , t, . . . , xn) be given withp andt any place and transition, respectively, of the
net. Further, letp be a branching point andt be a joining point with successors ofp and predecessors
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of t not in the vertex set ofc. A path fromp to t using no elements from the support ofc is called
a PT-handle (the dual is called TP-handle). Then, a stronglyconnected Petri net in which no elemen-
tary cycle has a PT- or TP-handle is structurally live, consistent, and conservative. With our algorithms,
the detection of such structures is feasible, and they provide an alternative to costly proving the latter
properties individually.

With a high-performance mechanization of relational algebra at hand, we were able to implement our
algorithms within the RELV IEW system and within RELCLIPSE, an object-oriented version of RELV IEW

implemented as an Eclipse Plug-In [13] using our KURE-Java library [12] providing this mechanization.
The algorithms and ideas discussed in this paper can of course be realized in any other programming
language using specialized data types instead of relationsonly. Nonetheless, we believe that our approach
and the computation and visualization of the results byR̄elView delivers some new insights into the NP-
hard problem of minimum feedback vertex set enumeration formedium-sized graphs.
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